x2
-a ≤x≤ a -b ≤y≤ b
对称轴: 坐标轴 A1 (-a,0) ,A2 (a,0) B1 (0,-b) ,B2 (0,b) 长轴 A1A2 的长为 |F1F2|= 2c
c e= ,e∈ (0,1) a
-b ≤x≤ b -a ≤y≤ a
,对称中心: (0,0) A1 (0,-a) ,A2 (0,a) B1 (-b,0) ,B2 (b,0)
������ 2 ������ 2 ������ 2
-15考点1 考点2 考点3
(2)由椭圆的定义知|PF1|+|PF2|=2a,������������1 ⊥ ������������2 ,故 |PF1|2+|PF2|2=|F1F2|2=4c2, 则(|PF1|+|PF2|)2-2|PF1||PF2|=4c2, 所以 2|PF1||PF2|=4a2-4c2=4b2. 所以|PF1||PF2|=2b2. 所以������△������������1 ������2 = 2|PF1||PF2| =2×2b2=b2=9. 所以 b=3.
+
������2 ������
2 =1(a>b>0)的两个焦点,P
为椭圆 C .
上的一点,且������������1 ⊥ ������������2 .若△PF1F2 的面积为 9,则 b=
答案: (1) +y2=1 (2)3
2 ������ 2
-14考点1 考点2 考点3
解析: (1)因为点 P 在线段 MF 的垂直平分线上, 所以|PF|=|PM|,所以|PE|+|PF|=|PE|+|PM|=|EM|=2√2. 所以点 P 的轨迹为以 E,F 为焦点的椭圆. 设椭圆方程为������ 2 + ������ 2 =1, 则 2a=2√2,c=1,所以 a=√2,b=1. 所以点 P 的轨迹方程为 2 +y2=1.