数字频带传输系统
- 格式:ppt
- 大小:1.54 MB
- 文档页数:80
实验2 数字频带传输系统实验一、实验目的掌握数字频带传输系统调制解调的仿真过程 掌握数字频带传输系统误码率仿真分析方法二、实验原理数字频带信号通常也称为数字调制信号,其信号频谱通常是带通型的,适合于在带通型信道中传输。
数字调制是将基带数字信号变换成适合带通型信道传输的一种信号处理方式,正如模拟通信一样,可以通过对基带信号的频谱搬移来适应信道特性,也可以采用频率调制、相位调制的方式来达到同样的目的。
1.调制过程 1)2ASK如果将二进制码元“0”对应信号0,“1”对应信号tf A c π2cos ,则2ASK 信号可以写成如下表达式:()()cos2T n s c n s t a g t nT A f tπ⎧⎫=-⎨⎬⎩⎭∑{}1,0∈n a ,()⎩⎨⎧≤≤=其他 0T t 01s t g 。
可以看到,上式是数字基带信号()()∑-=ns n nT t g a t m 经过DSB 调制后形成的信号。
其调制框图如图1所示:图1 2ASK 信号调制框图2ASK 信号的功率谱密度为:()()()][42c m c m s f f P f f P A f P ++-=2)2FSK将二进制码元“0”对应载波t f A 12cos π,“1”对应载波t f A 22cos π,则形成2FSK 信号,可以写成如下表达式:()()()()()12cos 2cos 2T n s n n s n nns t a g t nT A f t a g t nT A f t πϕπθ=-++-+∑∑当=n a 时,对应的传输信号频率为1f ;当1=n a 时,对应的传输信号频率为2f 。
上式中,n ϕ、n θ是两个频率波的初相。
2FSK 也可以写成另外的形式如下:()()cos 22T c n s n s t A f t h a g t nT ππ∞=-∞⎛⎫=+- ⎪⎝⎭∑其中,{}1,1-+∈n a ,()2/21f f f c +=,()⎩⎨⎧≤≤=其他 0T t 01s t g ,12f f h -=为频偏。
数字带通传输系统频带利用率
数字带通传输系统是一种基于数字信号传输的通信技术,目前已广泛应用于数据传输、视频传输、音频传输等领域。
在数字带通传输系统中,频带利用率是一个非常重要的指标,它反映了数字信号在频带上的利用效率。
频带利用率是指在一定的频带宽度内,数字信号所占用的比例。
在数字带通传输系统中,数字信号通常采用调制的方式进行传输,不同的调制方式对频带利用率有不同的影响。
例如,QPSK调制方式下的频带利用率是50%,16QAM调制方式下的频带利用率是64%,64QAM调制方式下的频带利用率是76%。
除了调制方式外,数字带通传输系统的频带利用率还受到其他因素的影响,如信噪比、码率等。
当信噪比较低时,数字信号的误码率较高,频带利用率也会受到影响;当码率较高时,数字信号所占用的频带宽度也会增加,频带利用率也会相应地减少。
为了提高数字带通传输系统的频带利用率,可以采用多种技术手段,如信道编码、调制方式的选择、功率控制等。
通过这些手段,可以在不增加带宽的情况下提高数字信号的传输效率,从而提高数字带通传输系统的频带利用率。
- 1 -。
数字通信系统的模型∙数字通信系统的分类∙数字通信系统可进一步细分为数字频带传输通信系统、数字基带传输通信系统、模拟信号数字化传输通信系统。
1. 数字频带传输通信系统数字通信的基本特征是,它的消息或信号具有“离散”或“数字”的特性,从而使数字通信具有许多特殊的问题。
例如前边提到的第二种变换,在模拟通信中强调变换的线性特性,即强调已调参量与代表消息的基带信号之间的比例特性;而在数字通信中,则强调已调参量与代表消息的数字信号之间的一一对应关系。
另外,数字通信中还存在以下突出问题:第一,数字信号传输时,信道噪声或干扰所造成的差错,原则上是可以控制的。
这是通过所谓的差错控制编码来实现的。
于是,就需要在发送端增加一个编码器,而在接收端相应需要一个解码器。
第二,当需要实现保密通信时,可对数字基带信号进行人为“扰乱”(加密),此时在收端就必须进行解密。
第三,由于数字通信传输的是一个接一个按一定节拍传送的数字信号,因而接收端必须有一个与发端相同的节拍,否则,就会因收发步调不一致而造成混乱。
另外,为了表述消息内容,基带信号都是按消息特征进行编组的,于是,在收发之间一组组的编码的规律也必须一致,否则接收时消息的真正内容将无法恢复。
在数字通信中,称节拍一致为“位同步”或“码元同步”,而称编组一致为“群同步”或“帧同步”,故数字通信中还必须有“同步”这个重要问题。
综上所述,点对点的数字通信系统模型一般可用图 1-3 所示。
需要说明的是,图中调制器 / 解调器、加密器 / 解密器、编码器 / 译码器等环节,在具体通信系统中是否全部采用,这要取决于具体设计条件和要求。
但在一个系统中,如果发端有调制 / 加密 / 编码,则收端必须有解调 / 解密 / 译码。
通常把有调制器 / 解调器的数字通信系统称为数字频带传输通信系统。
2. 数字基带传输通信系统与频带传输系统相对应,我们把没有调制器 / 解调器的数字通信系统称为数字基带传输通信系统,如图 1-4 所示。
数字带通传输系统的最高频带利用率
数字带通传输系统的最高带宽利用率
1. 什么是数字带通传输系统?
数字带通传输系统是一种高效率的数字信号传输技术,它主要是将信
号从一个频率转换到另一个频率,以加强系统的带宽,同时提高信号
回收的效率。
通常,它会使用有损或无损的数字压缩技术,以节省带宽,在高速通信中使用。
2. 数字带通传输系统的最高带宽利用率是怎样的?
数字带通传输系统的最高带宽利用率取决于传输线路、传输器宽度和
信号传输质量。
通常,数字带通传输系统可以获得高达90%以上的带
宽利用率。
该技术可以实现有效的、容量丰富的信号传输,并最大限
度地实现稳定的带宽保证。
3. 提高数字带通传输系统的带宽利用率
(1)使用高级压缩技术:使用压缩技术,可以获得更高的带宽利用率,因为这种技术可以有效地压缩原始信号,从而节省传输带宽。
(2)采用较低频带:较低的频带可以提高系统的传输速度,从而提高带宽利用率。
(3)使用动态调制/解调器:使用这种技术可以根据特定信道中的信号情况进行有效的频率调节,以最大限度地提高带宽利用率。
(4)消除线路噪声:减少线路噪声可以改善信号传输的质量,因而增强带宽利用率。
(5)建立带宽调节计划:建立带宽调节系统可以根据网络的实际情况动态调整带宽,以获得最佳的带宽利用率。
总之,通过采用可提高带宽利用率的传输技术,可以帮助企业有效地利用带宽资源,从而实现快速、高效率的通信。
数字基带传输系统的频带利用率数字基带传输是一种在通信系统中广泛应用的传输技术,它通过将模拟信号转换为数字信号进行传输。
在数字基带传输中,频带利用率是一个重要的指标,它衡量了系统在给定频率范围内能够传输的数据量。
频带利用率是指单位频谱带宽内可传输的最大数据量。
通信系统的频率范围是有限的,因此如何提高频带利用率,以实现更高的数据传输速率,一直是通信技术研究的焦点之一。
在数字基带传输系统中,频带利用率的提高可以通过以下几种方法实现:1. 调制技术:调制技术是一种将数字信号转换为模拟信号的过程。
常见的调制技术有调幅(AM)、调频(FM)和调相(PM)等。
通过选用适当的调制技术,可以在有限的频带范围内传输更多的数据,从而提高频带利用率。
2. 多址技术:多址技术是一种将多个用户的信号通过同一频带传输的技术。
常见的多址技术有频分多址(FDMA)、时分多址(TDMA)和码分多址(CDMA)等。
通过多址技术,多个用户可以在同一频带范围内同时进行通信,从而提高频带利用率。
3. 谱形塑造技术:谱形塑造技术是一种通过信号处理技术改变信号的频谱形状的方法。
通过塑造信号的频谱形状,可以减小信号的带宽,从而实现更高的频带利用率。
常见的谱形塑造技术有滤波器、非线性变换和压缩变换等。
4. 增强信号编码技术:增强信号编码技术是一种将冗余数据从信号中剔除的方法,从而提高数据传输的效率。
通过有效地利用信号的统计特性和冗余性,可以减少传输中的数据量,从而提高频带利用率。
常见的增强信号编码技术有差分编码、霍夫曼编码和矢量量化等。
尽管上述方法可以提高数字基带传输系统的频带利用率,但是在实际应用中,也会面临一些挑战和限制。
首先,不同的调制技术、多址技术和谱形塑造技术会互相影响,需要综合考虑它们的特点和适用条件。
其次,频带利用率的提高往往会伴随着更高的要求和复杂性,需要在成本、功耗和系统性能等方面做出平衡。
总结起来,数字基带传输系统的频带利用率是指单位频谱带宽内可传输的最大数据量。
频带传输频移,相移电路框图,并解释工作原理
数字调制:用基带数字信号控制高频载波,把基带数字信号变换为频带数字信号的过程。
那么,已调信号通过信道传输到接收端,在接收端通过解调器把频带数字信号还原成基带数字信号,这种数字信号的反变换称为数字解调。
数字解调:在接收端通过解调器把频带数字信号还原成基带数字信号。
通常,我们把数字调制与解调合起来称为数字调制,把包括调制和解调过程的传输系统叫做数字信号的频带传输系统。
数字调制:把数字调制与解调的统称。
数字信号的频带传输系统:包括调制和解调过程的传输系统。
在大多数的数字通信系统中,通常选择正弦波信号为载波,这一点与模拟调制没有什么本质的差异,它们均属于正弦波调制。
然而数字调制与模拟调制又有不同点,其不同点在于模拟调制需要对载波信号的参量连续进行调制,在接收端需要对载波信号的已调参量连续进行估值;而在数字调制中则可用载波信号参量的某些离散状态来表征所传输的信息,在接收端也只要对载波信号的调制参量有限个离散值进行判决,以便恢复出原始信号。