2.3 平面体系的计算自由度
- 格式:ppt
- 大小:185.50 KB
- 文档页数:11
§2-3 平面杆件体系的计算自由度1. 教学要求掌握实际自由度和计算自由度的计算方法。
2. 本节目录•1. 实际自由度S和计算自由度W•2. 部件和约束•3. 平面体系的计算自由度W的求法(1)•4. 平面体系的计算自由度W的求法(2)•5. 思考与讨论3. 参考章节1.《结构力学教程(Ⅰ)》,pp.28-32。
2. §2-1 基本概念2.3.1 实际自由度S 和计算自由度WS= (各部件自由度总和a)-(非多余约束数总和c)--- (2-1)S:体系是由部件加上约束组成的。
首先假设体系中各个约束都不存在,在此情况下计算各部件的自由度数的总和为a;其次在全部约束中确定非多余约束数c;最后将两个数相减得出体系的自由度数s。
图2-32S = 1×1-1= 0,非多余约束数 c = 2 ,多余约束数n = 1,但是复杂情况难以找全多余约束。
在复杂体系中很难分清全部约束中哪些是多余约束和非多余约束。
因此引入计算自由度的概念W。
W = (各部件自由度总和 a )- (全部约束数总和 d ) --- (2-2)由于全部约束数d 与非多余约束c 的差数是多余约束n ,则 n W S =- (2-3)对于自由度S 与多余约束都不是负数即:0,0≥≥n S ,因此: W S ≥, W n -≥即W 是自由度数S 的下限,而-W 则是多余约束数n 的下限。
2.3.2 部件和约束1. 部件可以是点,也可以是刚片在几何构造分析时要注意刚片内部是否有多余约束。
图2-32a图2-32b 图2-32c 图2-32d 一根链杆 一个铰 一个刚结 n = 0n = 1n = 2n = 3在计算体系的约束总数时也应当考虑刚片内部的多余约束。
2. 约束可分为单约束和复约束在几何构造分析时要将复约束简化为几个单约束。
图2-33a图2-33b(图中复铰相当两个单铰)m = 2 , h = 1 m = 3 , h = 2S = 3 × 2 - 2 × 1 = 4S = 3 × 3 - 2 × 2 = 5图2-34a图2-34b(图中复刚结相当两个单刚结)m = 2 , g = 1m = 3 , g = 2S = 3 × 2 - 3 × 1 = 3S = 3 × 3 - 2 × 3 = 3结论1:一般说来,联结n 个刚片的复铰(复刚结)相当于(n-1)个单铰(单刚结)。
第1章 绪论(无习题)第2章 平面体系的几何组成分析习题解答习题2.1 是非判断题(1) 若平面体系的实际自由度为零,则该体系一定为几何不变体系。
( )(2) 若平面体系的计算自由度W =0,则该体系一定为无多余约束的几何不变体系。
( ) (3) 若平面体系的计算自由度W <0,则该体系为有多余约束的几何不变体系。
( ) (4) 由三个铰两两相连的三刚片组成几何不变体系且无多余约束。
( )(5) 习题2.1(5) 图所示体系去掉二元体CEF 后,剩余部分为简支刚架,所以原体系为无多余约束的几何不变体系。
( )B DACEF习题 2.1(5)图(6) 习题2.1(6)(a)图所示体系去掉二元体ABC 后,成为习题2.1(6) (b)图,故原体系是几何可变体系。
( )(7) 习题2.1(6)(a)图所示体系去掉二元体EDF 后,成为习题2.1(6) (c)图,故原体系是几何可变体系。
()(a)(b)(c)AEBFCD习题 2.1(6)图【解】(1)正确。
(2)错误。
0W 是使体系成为几何不变的必要条件而非充分条件。
(3)错误。
(4)错误。
只有当三个铰不共线时,该题的结论才是正确的。
(5)错误。
CEF 不是二元体。
(6)错误。
ABC 不是二元体。
(7)错误。
EDF 不是二元体。
习题2.2 填空(1) 习题2.2(1)图所示体系为_________体系。
习题2.2(1)图(2) 习题2.2(2)图所示体系为__________体系。
习题2-2(2)图(3) 习题 2.2(3)图所示4个体系的多余约束数目分别为_______、________、__________、__________。
习题2.2(3)图(4) 习题2.2(4)图所示体系的多余约束个数为___________。
习题2.2(4)图(5) 习题2.2(5)图所示体系的多余约束个数为___________。
习题2.2(5)图(6) 习题2.2(6)图所示体系为_________体系,有_________个多余约束。
第1章 绪论(无习题)第2章 平面体系的几何组成分析习题解答习题2.1 是非判断题(1) 若平面体系的实际自由度为零,则该体系一定为几何不变体系。
( )(2) 若平面体系的计算自由度W =0,则该体系一定为无多余约束的几何不变体系。
( ) (3) 若平面体系的计算自由度W <0,则该体系为有多余约束的几何不变体系。
( ) (4) 由三个铰两两相连的三刚片组成几何不变体系且无多余约束。
( )(5) 习题2.1(5) 图所示体系去掉二元体CEF 后,剩余部分为简支刚架,所以原体系为无多余约束的几何不变体系。
( )B DACEF习题 2.1(5)图(6) 习题2.1(6)(a)图所示体系去掉二元体ABC 后,成为习题2.1(6) (b)图,故原体系是几何可变体系。
( )(7) 习题2.1(6)(a)图所示体系去掉二元体EDF 后,成为习题2.1(6) (c)图,故原体系是几何可变体系。
()(a)(b)(c)AEBFCD习题 2.1(6)图【解】(1)正确。
(2)错误。
0W 是使体系成为几何不变的必要条件而非充分条件。
(3)错误。
(4)错误。
只有当三个铰不共线时,该题的结论才是正确的。
(5)错误。
CEF 不是二元体。
(6)错误。
ABC 不是二元体。
(7)错误。
EDF 不是二元体。
习题2.2 填空(1) 习题2.2(1)图所示体系为_________体系。
习题2.2(1)图(2) 习题2.2(2)图所示体系为__________体系。
习题2-2(2)图(3) 习题 2.2(3)图所示4个体系的多余约束数目分别为_______、________、__________、__________。
习题2.2(3)图(4) 习题2.2(4)图所示体系的多余约束个数为___________。
习题2.2(4)图(5) 习题2.2(5)图所示体系的多余约束个数为___________。
习题2.2(5)图(6) 习题2.2(6)图所示体系为_________体系,有_________个多余约束。
《结构力学》教学大纲一、本课程的性质与任务本课程为土木工程专业本科生的一门主要技术基础课。
通过本课程的教学,使学生了解杆件体系的组成规律,了解各类结构的受力性能,撑握杆件结构的计算原理和方法,培养分析与解决工程实际中杆系结构力学问题的能力,为学习后续有关专业课程以及将来进行结构设计和科学研究打下力学基础。
二、本课程的教学内容、基本要求及学时分配1.绪论(4学时)(1)教学内容1.1结构力学的学科内容和教学要求。
1.2结构力学计算简图及简化要点。
1.3杆件结构的分类。
1.4荷载的分类。
(2)教学要求了解结构力学的任务以及与其它课程的关系,正确理解结构计算简图的概念、简化要点和条件,了解荷载的分类。
2.几何构造分析(6学时)(1)教学内容2.1几何构造分析中的几个基本概念。
2.2平面几何不变体系的组成规律。
2.3平面杆件体系的计算自由度。
(2)教学要求理解几何不变体系、几何可变体系、几何瞬变体系、自由度(静力自由度)约束及其类型等基本概念。
正确理解和应用几何不变体系的组成规则(两刚片法则、三刚片法则、二元体法则),会计算平面杆件体系的计算自由度。
3.静定结构的内力计算(14学时)(1)教学内容3.1梁的内力计算的回顾。
3.2静定多跨梁的组成、计算和内力图的绘制。
3.3静定平面刚架的内力计算和内力图的绘制。
3.4三铰拱的特点和内力计算。
三铰拱的合理拱轴曲线。
3.5静定平面桁架的特点、组成及分类。
用结点及截面法计算桁架的内力,结点法和截面法的联合应用。
3.6静定组合结构的特点、计算和内力图的绘制。
3.7静定结构的一般性质。
(2)教学要求巩固在材料力学中已经建立的截面法的概念与方法,并把它推广应用在结构计算上。
熟练掌握杆件上的荷载与内力的微分关系、增量关系,并用以定性分析内力图的形状。
熟练掌握分段叠加法作弯矩图的方法。
正确、灵活选取和画出隔离体图,熟练掌握应用隔离体图和平衡条件计算结构支反力、内力的方法;熟练掌握静定梁、静定刚架内力计算和内力图的绘制以及静定平面桁架内力的求解方法;掌握静定组合结构、三铰拱的内力计算和内力图的绘制方法;了解静定结构的力学特征。