材料物理化学 第五章 表面与界面 习题
- 格式:pdf
- 大小:375.31 KB
- 文档页数:8
材料表界面习题答案材料表界面习题答案近年来,随着科技的不断发展,材料表界面的研究成为了材料科学领域的热点之一。
材料表界面是指两个或多个不同材料之间的交界面,它们的性质和结构对材料的性能起着至关重要的作用。
因此,研究材料表界面的性质和行为对于开发新材料、改善材料性能以及解决材料失效问题具有重要意义。
一、材料表界面的定义和分类材料表界面是指材料中两个或多个不同相之间的交界面,它们的性质和结构往往与材料本身的性质有很大的差异。
根据不同的分类标准,材料表界面可以分为物理界面和化学界面。
物理界面是指两个相之间仅有形态和结构上的差异,而化学界面则是指两个相之间发生了化学反应,形成了新的化学物质。
二、材料表界面的性质和行为材料表界面的性质和行为受到多种因素的影响,包括界面能量、界面结构、界面化学反应等。
界面能量是指两个相之间的能量差异,它决定了界面的稳定性和相互作用力的大小。
界面结构则指的是界面上原子或分子的排列方式,它对界面的力学性能和电子结构具有重要影响。
界面化学反应是指两个相之间发生的化学反应,它可以导致界面的变化和材料性能的改变。
三、材料表界面的研究方法为了研究材料表界面的性质和行为,科学家们发展了多种研究方法。
其中,最常用的方法包括电子显微镜、X射线衍射、拉曼光谱等。
电子显微镜可以观察到材料表界面的形貌和结构,X射线衍射可以分析界面的晶体结构,而拉曼光谱则可以研究界面的振动和光学性质。
四、材料表界面的应用材料表界面的性质和行为在材料科学和工程中具有广泛的应用。
例如,在材料加工过程中,控制材料表界面的性质可以改善材料的加工性能和机械性能。
在材料设计中,通过调控材料表界面的结构和化学反应,可以开发出新的材料,如纳米材料和复合材料。
此外,材料表界面的研究还有助于解决材料失效问题,如腐蚀、疲劳和断裂等。
综上所述,材料表界面是材料科学领域的一个重要研究方向。
通过研究材料表界面的性质和行为,可以为开发新材料、改善材料性能以及解决材料失效问题提供理论指导和技术支持。
1.液体原子构造的主要特征。
〔1〕液体构造中近邻原子数一般为5~11个〔呈统计分布〕,平均为6个,与固态晶体密排构造的12个最近邻原子数相比差异很大;〔2〕在液体原子的自由密堆构造中存在五种间隙,四面体间隙占了主要地位。
〔3〕液体原子构造在几个原子直径范围内是短程有序的,而长程是无序的。
2.液体外表能的产生原因。
液体外表层的分子,一方面受到液体内层的邻近分子的吸引,另一方面受到液面外部气体分子的吸引,而且前者的作用要比后者大。
因此在液体外表层中,每个分子都受到一个垂直于液面并指向液体内部的不平衡力。
这种吸引力使外表上的分子趋向于挤入液体内部,促成液体的最小外表积。
要使液体的外表积增大就必须要对抗液体内局部子的吸引力而做功,从而增加分子的位能,这种位能就是液体的外表能。
3.液体外表张力的概念与影响因素。
液体外表层的原子或分子受到内部原子或分子的吸引,趋向于挤入液体内部,使液体外表积缩小,因此在液体外表的切线方向始终存在一种使液体外表积缩小的力,其合力指向液体内部的作用力,这种力称为液体外表张力。
液体的外表张力大小受很多因素的影响。
如果不考虑液体内部其它组元向液体外表的偏聚与液体外部组元在液体外表的吸附,液体外表张力大小主要受物质本身构造、所接触的介质与温度的影响。
〔1〕液体的外表张力来源于液体内部原子或分子间的吸引力,因此液体内部原子或分子间的结合能的大小直接影响到液体的外表张力的大小。
一般来说,液体中原子或分子间的结合能越大,外表张力越大。
具有金属键原子结合的物质的外表张力最大;其次由大到小依次为:离子键结合的物质、极性共价键结合的物质、非极性共价键结合的物质。
(2)液体的外表张力的产生是由于处于外表层的原子或分子一方面受到液体内部原子或分子的吸引,另一方面受到液体外部原子或分子的吸引。
当液体处在不同介质环境时,液体外表的原子或分子与不同物质接触所受的作用力不同,因此导致液体外表张力的不同。
一般来说,介质物质的原子或分子与液体外表的原子或分子结合能越高,液体的外表张力越小;反之,介质物质的原子或分子与液体外表的原子或分子结合能越低,液体的外表张力越大。
第五章习题及答案*1. (1) 比较、总结零级、一级和二级反应的动力学特征,并用列表形式表示。
(2) 某二级反应的反应物起始浓度为0.4×103mol · m -3。
该反应在80分钟内完成30%,计算其反应速率常数及完成反应的80%所需的时间。
(答案: k = 1.339×10-5 m 3•mol -1•min -1,t =746.8min)2. 已知A 、B 两个反应的频率因子相同,活化能之差:E A -E B =16.628 kJ ·mol -1。
求:(1) 1000K 时, 反应的速率常数之比k A /k B =? 1500K 时反应的速率常数之比k A /k B 有何变化?(答案: k A /k B, 1000=0.1353, k A /k B, 1500=0.2635 )3. 某电炉冶炼1Cr18Ni9 不锈钢, 试验中每两分钟取样一次,碳的质量分数的分析结果如下表所示。
t /min 0 2 4 6 8 10 12 14 w [C] 1.6% 1.25% 1.04% 0.78% 0.52% 0.30% 0.23% 0.16%要求:(1) 根据碳含量变化,绘出w [C]~t 及lg w [C]~t 图。
分析在w [C]≈0.2%附近,反应的表观级数有何变化。
如果以w [C]=0.2%为界,将脱碳过程分为两个阶段,问两个阶段的表观级数n 1、n 2和表观速率常数k 1、k 2各为多少?(2) 已知当w [C]<0.2%以后, 温度与时间成线性关系,可以写为3/k dt dT =,k 3仅为吹氧速率的函数。
试推导w [C]随温度变化的微分式及其积分式。
(3) 如果k 2/k 3=8.7×10-3K -1,又知同样的吹炼条件下,有如下原始数据:吹炼起始温度为1600o C ,起始钢液成分:w [C]=1.41%,w [Si]=0.44%,w [Cr]=19.38%, w [Ni]=10.60%。
第一章1、什么是Young方程?接触角的大小与液体对固体的润湿性好坏有怎样的关系?答:Young方程:界面化学的基本方程之一。
它是描述固气、固液、液气界面自由能γsv,γSL,γLv与接触角θ之间的关系式,亦称润湿方程,表达式为:γsv—γSL=γLv COSθ。
该方程适用于均匀表面和固液间无特殊作用的平衡状态。
关系:一般来讲,接触角θ的大小是判定润湿性好坏的依据,若θ=0。
cosθ=1,液体完全润湿固体表面,液体在固体表面铺展;若0<θ<90°,液体可润湿固体,且θ越小,润湿性越好;90°<θ<180°,液体不润湿固体;θ=180°,完全不润湿固体,液体在固体表面凝集成小球。
2、水蒸气骤冷会发生过饱和现象,在夏天的乌云中,用飞机撒干冰微粒,试气温骤降至293K,水气的过饱和度(P/Ps)达4,已知在293K时,水的表面能力为0.07288N/m,密度为997kg/m3,试计算:(1)在此时开始形成雨滴的半径。
(2)每一雨滴中所含水的分子数。
答:(1)根据Kelvin公式有开始形成的雨滴半径为:将数据代入得:(2)每一雨滴中所含水的分子数为N=N A n ,n=m/M= V/M,得3、在293k时,把半径为1.0mm的水滴分散成半径为1.0μm的小水滴,试计算(已知293K时水的表面Gibbs自由为0。
07288J 。
m—2)(1)表面积是原来的多少倍?(2)表面Gibbs自由能增加了多少?(9分)答:(1)设大水滴的表面积为A1,小水滴的总表面积为A2,则小水滴数位N,大水滴半径为r1,小水滴半径为r2.又因为将大水滴分散成N小水滴,则推出=故有即表面积是原来的1000倍。
(2)表面Gibbs自由能的增加量为=4*3。
142*0。
07288*[109*(10—6)2—(10-3)2]=第二章1、什么是CMC浓度?试讨论影响CMC的因素。
请设计一种实验测定CMC的方法。
1.液体的原子结构的主要特征。
液体的原子结构存在以下三个主要特征:(1)液体结构中近邻原子数一般为5~11个(呈统计分布),平均为6个,与固态晶体密排结构的12个最近邻原子数相比差别很大;(2)在液体原子的自由密堆结构中,四面体间隙占了主要地位。
(3)液体原子结构在几个原子直径范围内是短程有序的,而长程是无序的。
2.液体表面张力的概念和影响因素。
液体表面分子或原子受到内部分子或原子的吸引,趋向于挤入液体内部,使液体表面积缩小,因而在液体表面切向方向始终存在一种使液体表面积缩小的力,液体表面这种沿着切向方向,合力指向液体内部的作用力,就称为液体表面张力。
液体表面张力影响因素很多,如果不考虑液体内部分子或原子向液体表面的偏聚和外部原子或分子对液体表面的吸引,影响液体表面张力的因素主要有:(1)液体自身结构:液体的表面张力来源于液体内部原子或分子间的吸引力,因此液体内部原子或分子间的结合能的大小直接影响到液体的表面张力的大小。
一般来说,液体中原子或分子的结合能越大,液体表面张力越大,一般液体表面张力随结构不同变化趋势是:金属键结合物质>离子键结合物质>极性共价键结合物质>非极性共价键结合物质(2)表面所接触的介质:液体的表面张力的产生是由于处于表面层的原子或分子一方面受到液体内部原子或分子的吸引,另一方面受到液体外部原子或分子的吸引。
当液体处在不同介质环境时,液体表面的原子或分子与不同物质接触所受的作用力不同,因此导致液体表面张力的不同。
一般来说,介质物质的原子或分子与液体表面原子或分子结合能越大,液体表面能越小,反之越大(3)温度:随着温度的升高,液体密度下降,液体内部原子或分子间的作用力降低,液体内部原子或分子对表面原子或分子的吸引力减弱,液体表面张力下降。
最早给出的预测液体表面张力与温度关系的半经验表达式为:γ= γ0(1-T/T c)n式中T c为液体的气化温度,γ0为0K时液体的表面张力。
材料表界面习题答案【篇一:材料表界面期末复习】> 1、表界面的定义及其种类。
定义;表界面是由一个相过渡到另一个相的过渡区域。
若其中一相为气体,这种界面通常称为表面。
种类:表界面通常有五类:气-液界面(表面),气-固界面(表面),液-液界面,液-固界面,固-固界面。
二、液体表面1、表面张力定义及表面自由能定义答:表面张力是单位长度上的作用力,单位是n/m表界面张力的热力学定义为:由能量守恒定律,外界所消耗的功存储于表面,成为表面分子所具有的一种额外的势能,也称为表面能。
??(?g/?a)p,t,nb由于分子在体相内部与界面上所处的环境是不同的,产生了净吸力。
而净吸力会在界面2、计算:r1=1mm,r2=10-5 mm2?32a=4?r?4?3.1416?(6.2?10m)11?4.83?10?4m2se?ga1=?a11-3?2?42=(72?10j?m)(4.83?10m)?3.5?10?5j3、laplace方程表达式12 ?p??(1/r?1/r) (2-18)就是laplace方程,是表面化学的基本定律之一。
注释:(1)若:r1=r2=r,则曲面为球面,回到(2-15)式;(2)若:r1=r2=无穷大,则液面为平面,压差为0。
4、表面张力的几种测定方法。
(1)毛细管法(2)最大气泡压力法 (3)滴重法 (4)吊环法解:先求水滴半径:代入kelvin公式:6、gibbs吸附等温式(溶液的表面张力)表面张力随溶液组成的变化规律一般有三种比较典型的类型三、固体表面1、比表面积定义:-? 1g某种固体,其密度为2.2 g/cm3,把它粉碎成边长为106cm的小立方体,求其总表面积。
2、吸附等温线:吸附量可用单位质量吸附剂所吸附气体的量或体积来表示。
3、langmuir吸附等温式a、langmuir吸附公式b、用活性炭吸附chcl3,符合langmuir吸附等温式,在0 ℃时的饱和吸附量为93.8 dm-3*kg-1。
4-1 何谓表面张力和表面能?在固态和液态这两者有何差别?解:表面张力是将物体表面最大一个单位面积所需作的功。
也可理解为作用在单位长度上的力。
表面能是在恒温恒压及组成不变的条件下,每增加一个单位的表面积时,体系自由焓的增值。
液体因不能承受剪应力,外力所做的功表现为表面积的扩展。
因而表面能与表面张力的单位及数量是相同的。
其单位为J •m -2。
固溶体因能承受剪切力,外力的作用除了表现为表面积的增加外,有一部分变成塑性形变。
因此,固体的表面能与表面张力不等。
4-2 在真空条件下Al 2O 3的表面张力约为0.9J/m 2,液态铁的表面张力为1.72J/m 2,同样条件下的界面张力(液态铁-氧化铝)约为2.3J/m 2,问接触角有多大?液态铁能否润湿氧化铝?解:已知γSV =0.90J/m2,γLV =0.72J/m2,γSL =2.3J/m 2cos θ===-0.8139θ=144.48因为θ>90,所以液态铁不能润湿氧化铝。
4-3 测定了含有一个固态氧化物、一个固态硫化物和一个液态硅酸盐的显微结构,有以下的两面角:(a )两个硫化物颗粒之间的氧化物是112°;(b )两个硫化物颗粒之间的液体是60°;(c )两个氧化物颗粒之间的硫化物是100°;(d )一个氧化物和一个硫化物之间的液体是70°。
假如氧化物和氧化物之间界面能是0.9J/m 2,求其它界面能是多少?解:按题意绘图如下:图4-1 例题4-3附图SV SL LV γγγ-72.130.290.0-22J/m 70.056cos 2/γJ/m 78.056cos 50cos 2100cos /2112cos /)2/100cos(2)()2/112cos(2)(=======∙SS SO OOSS OO SS SO OO SO SS γγγγγγγc γγa 由题意题中γSS 是硫化物之间界面张力;γOO 为氧化物之间界面张力;γOL 是氧化物与液体间界面张力。
物理化学表面现象练习题含答案及详细讲解物理化学表面现象练习题一、判断题:1、只有在比表面很大时才能明显地瞧到表面现象,所以系统表面增大就是表面张力产生的原因。
2、对大多数系统来讲,当温度升高时,表面张力下降。
3、比表面吉布斯函数就是指恒温、恒压下,当组成不变时可逆地增大单位表面积时,系统所增加的吉布斯函数,表面张力则就是指表面单位长度上存在的使表面张紧的力。
所以比表面吉布斯函数与表面张力就是两个毫无联系的概念。
4、恒温、恒压下,凡能使系统表面吉布斯函数降低的过程都就是自发过程。
5.过饱与蒸气之所以可能存在,就是因新生成的微小液滴具有很低的表面吉布斯自由能。
6.液体在毛细管内上升或下降决定于该液体的表面张力的大小。
7、单分子层吸附只能就是化学吸附,多分子层吸附只能就是物理吸附。
8.产生物理吸附的力就是范德华力,作用较弱,因而吸附速度慢,不易达到平衡。
9.在吉布斯吸附等温式中,Γ为溶质的吸附量,它随溶质(表面活性物质)的加入量的增加而增加,并且当溶质达饱与时,Γ达到极大值。
10.由于溶质在溶液的表面产生吸附,所以溶质在溶液表面的浓度大于它在溶液内部的浓度。
11.表面活性物质就是指那些加入到溶液中,可以降低溶液表面张力的物质。
二、单选题:1、下列叙述不正确的就是:(A) 比表面自由能的物理意义就是,在定温定压下,可逆地增加单位表面积引起系统吉布斯自由能的增量;(B)?表面张力的物理意义就是,在相表面的切面上,垂直作用于表面上任意单位长度切线的表面紧缩力 ;(C)?比表面自由能与表面张力量纲相同,单位不同 ;(D) 比表面自由能单位为J·m-2,表面张力单位为N·m-1时,两者数值不同。
2.在液面上,某一小面积S周围表面对S有表面张力,下列叙述不正确的就是:(A) 表面张力与液面垂直;??(B) 表面张力与S的周边垂直 ;(C) 表面张力沿周边与表面相切;(D)?表面张力的合力在凸液面指向液体内部(曲面球心),在凹液面指向液体外部。