推荐-立体几何知识梳理,整理 精品 精品
- 格式:docx
- 大小:17.60 KB
- 文档页数:2
立体几何知识点汇总1、 棱柱:有两个面平行,其余各面都是__________,并且_______________都互相平行,由这些面围成棱柱2、 平行六面体__________________, 直棱柱_____________________,正棱柱______________________3、 棱锥:一个面是多边形,其余各面是______________________围成的几何体叫棱锥4、 正棱锥: 底面是____________,且顶点__________________________的棱锥是正棱锥5、 棱台: 用一个_________________________的平面切棱锥,切面与底面的部分叫棱台6、 圆柱:以矩形____________________________________,其余三边旋转形成的面所围成的几何体叫圆柱7、 圆锥: 以直角三角形的_______________为轴旋转所围成的几何体叫圆锥8、 圆台:用一个_________________________的平面切圆锥,切面与底面的部分叫圆台9、 球: 以_________________________为旋转轴旋转一周形成的旋转体叫球体10、三视图: 正视图__________,俯视图_____________,侧视图______________11、=S 圆柱表______________________________,=S 圆锥表____________________________________=S 圆台表______________________________,=S 球_________________12、=V 柱___________,=V 锥_______________,=V 圆台______________________,=V 球__________________ 求不规则几何体体积常用______________法或______________法求解13、公理1:__________________________________________________________________________________ 公理2:__________________________________________________________________________________ 公理3:__________________________________________________________________________________ 公理4:__________________________________________________________________________________14、空间角(1)线线角:范围____________,方法○1_________________○2向量法公式_________________________ (2)线面角: 范围_____________方法○1_________________○2向量法公式_________________________ (3)二面角:定义________________________________________________________,范围_____________ 方法(1)定义法:(两全等三角面、两等腰三角面)(2)三垂线法:已知二面角其中一个面内一点到另一个面的垂线,用三垂线或其逆定理作出平面角。
考点梳理一 、空间几何体(一) 空间几何体的类型1.多面体:由若干个平面多边形围成的几何体.围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.2. 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体.其中,这条直线称为旋转体的轴.(二)空间几何体的表面积与体积1. 空间几何体的表面积圆柱的表面积 :222Srl r ππ=+ 圆锥的表面积:2Srl r ππ=+ 圆台的表面积:22Srl r Rl R ππππ=+++ 球的表面积:24S R π=2. 空间几何体的体积柱体的体积 :VS h =⨯底 锥体的体积 :13V S h =⨯底 台体的体积:1)3V S S h =+⨯下上( 球体的体积:343V R π= (三)空间几何体的三视图和直观图1. 三视图: 正视图, 侧视图, 俯视图.2. 直观图:斜二测画法二 、直线与平面的位置关系(一)线面平行1.判定定理:////a b b a a ααα⎫⎪⊂⇒⎬⎪⊄⎭2.性质定理:////a a a b b αβαβ⎫⎪⊂⇒⎬⎪=⎭(二)线面垂直1. 判定定理:,a b a b O l a l a l b ααα⊂⎫⎪=⎪⎪⊄⇒⊥⎬⎪⊥⎪⊥⎪⎭2.性质定理:(1)若直线垂直于平面,则它垂直于平面内任意一条直线.即:,l a l a αα⊥⊂⇒⊥(2)垂直于同一平面的两直线平行.即:,//ab a b αα⊥⊥⇒(三)面面平行1.判定定理:一个平面内的两条相交直线分别平行于另一个平面,这两个平面平行.2.性质定理:垂直于同一条直线的两个平面平行.(四)面面垂直 1.判定定理:a a ααββ⊂⎫⇒⊥⎬⊥⎭2.性质定理:AB l l l ABαβαββα⊥⎫⎪=⎪⇒⊥⎬⊂⎪⎪⊥⎭。
立体几何的全部知识点立体几何是九年级数学中常见的概念,属于几何学知识,包括三维空间中各种形状和投影,以及它们之间的关系,有助于我们研究物体的结构和代数运算,为物体的准确表达提供帮助。
立体几何的知识点包括:一、定义和符号:(1)体积:体积V是在某一时刻,某一物体的容积所表示的实际大小。
(2)表面积:Surface Area S 是在某一时刻,某一物体的整个表面的面积总和。
(3)立体角:立体角也称为穹顶角,它由三条相交的边组成,表示物体上某一点到其他三面所角度的总和。
(4)体积和表面积的符号分别为V和S。
二、投影:(1)正投影:正投影是指沿着平面对物体进行投影,显示物体的各面的立体效果,物体被投影到平面上,形成新的三维形体。
(2)侧投影:侧投影是把物体投影到平面上,只显示物体上与投影面垂直的一部分,不会显示其上斜角或斜面。
三、变换:(1)平移:平移是把物体移动到新位置,沿着一个给定的方向进行移动。
(2)旋转:旋转是把物体局部或整体移动到新位置,沿着一定角度和指定的锥形旋转。
(1)水平投影:水平投影指通过把物体置于水平平面上来进行投影,表达投影物作为物体的一部分的立体视觉效果。
(3)正交投影:正交投影是将物体的正面以一个给定的垂线作为视轴,把物体投影到一个直角坐标系上,以呈现其真实模样。
(4) 仿射投影:仿射投影是把物体投射到平面上,同时保留物体形状和位置的相对关系,物体经过一个仿射变换,可以在平面上表示一种实体的完整的立体形状。
五、三角形几何:(1)三角形的周长:三角形的周长是指给定三角形的三条边之和。
(3)余弦定理:余弦定理是指在一个三角形中,要么是给定三条边,要么是两条边和夹角之间存在性质,充分表示相应之间关系。
(4)余切定理:余切定理是指在一个三角形中,无论如何,两条边的余切值都是一定的。
(5)三角函数:三角函数是以这三个角的正弦、余弦和正切为变量表示的函数,三角函数可以用来求解复杂的三角形。
立体几何初步1、 柱、锥、台、球的结构特征(1) 棱柱:几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行 于底面的截面是与底面全等的多边形。
(2) 棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与 高的比的平方。
(3) 棱台:几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点(4) 圆柱:定义:以矩形的一边所在的直线为轴旋转 ,其余三边旋转所成几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直; ④侧面展开图是一个矩形。
(5) 圆锥:定义:以直角三角形的一条直角边为旋转轴 ,旋转一周所成几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6) 圆台:定义:以直角梯形的垂直与底边的腰为旋转轴 ,旋转一周所成几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
(7) 球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
2、 空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影) ;侧视图(从左向右)、俯视图(从上向下)注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽 度。
3、 空间几何体的直观图一一斜二测画法斜二测画法特点: ①原来与x 轴平行的线段仍然与 x 平行且长度不变;② 原来与y 轴平行的线段仍然与 y 平行,长度为原来的一半。
4、 柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和。
(2)特姝儿何体表面积公式(、c 为底面周长, h 为高, h 为斜高, l 为母线)s 直棱柱侧面积 ch s ®柱侧 2 rh s 正棱锥侧面积 -ch' 2 S 圆锥侧面积 rls 正棱台侧面积1 尹 Q )h' s 圆台侧面积 (r R) ls 圆柱表 2 r r l S i 锥表 r r l s 圆台表 r rl Rl R 2(3) 柱体、 锥体、台体的体积公式V 柱 Sh 2V 圆柱 Sh r h V 锥 ’Sh 3 1 2V 圆锥-r h 3 V 台 S 'S S)h V I 台 3(s .S 'S S)h 12 2 -(r 2rR R 2)h3 (4)球体的表面积和体积公式: V 球=4 R 3 ; S 求面=4 R 234、空间点、直线、平面的位置关系公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。
立体几何初步知识点全总结一、空间几何体的结构。
1. 棱柱。
- 定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。
- 分类:- 按底面多边形的边数分为三棱柱、四棱柱、五棱柱等。
- 直棱柱:侧棱垂直于底面的棱柱。
正棱柱:底面是正多边形的直棱柱。
- 性质:- 侧棱都相等,侧面是平行四边形。
- 两个底面与平行于底面的截面是全等的多边形。
- 过不相邻的两条侧棱的截面(对角面)是平行四边形。
2. 棱锥。
- 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。
- 分类:- 按底面多边形的边数分为三棱锥、四棱锥、五棱锥等。
- 正棱锥:底面是正多边形,且顶点在底面的射影是底面正多边形的中心的棱锥。
- 性质:- 正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高)。
- 棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形;棱锥的高、侧棱和侧棱在底面上的射影也组成一个直角三角形。
3. 棱台。
- 定义:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台。
- 分类:由三棱锥、四棱锥、五棱锥等截得的棱台分别叫做三棱台、四棱台、五棱台等。
- 性质:- 棱台的各侧棱延长后交于一点。
- 棱台的上下底面是相似多边形,侧面是梯形。
4. 圆柱。
- 定义:以矩形的一边所在直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫做圆柱。
- 性质:- 圆柱的轴截面是矩形。
- 平行于底面的截面是与底面全等的圆。
5. 圆锥。
- 定义:以直角三角形的一条直角边所在直线为轴旋转,其余两边旋转所成的曲面所围成的几何体叫做圆锥。
- 性质:- 圆锥的轴截面是等腰三角形。
- 平行于底面的截面是圆,截面半径与底面半径之比等于顶点到截面距离与圆锥高之比。
6. 圆台。
- 定义:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台。
立体几何知识点总结1、 多面体(棱柱、棱锥)的结构特征(1)棱柱:①定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
棱柱斜棱柱直棱柱正棱柱;四棱柱平行六面体直平行六面体长方体正四棱柱正方体。
②性质:Ⅰ、侧面都是平行四边形; Ⅱ、两底面是全等多边形;Ⅲ、平行于底面的截面和底面全等;对角面是平行四边形;Ⅳ、长方体一条对角线长的平方等于一个顶点上三条棱的长的平方和。
(2)棱锥:①定义:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面围成的几何体叫做棱锥;正棱锥:底面是正多边形,并且顶点在底面内的射影是底面中心,这样的棱锥叫做正棱锥; ②性质:Ⅰ、平行于底面的截面和底面相似,截面的边长和底面的对应边边长的比等于截得的棱锥的高与原棱锥的高的比; 它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;Ⅱ、正棱锥性质:各侧面都是全等的等腰三角形;通过四个直角三角形POH Rt ∆,POB Rt ∆,PBH Rt ∆,BOH Rt ∆实现边,高,斜高间的换算棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是正多边形侧棱垂直于底面侧棱不垂直于底面AB CD OHP2、旋转体(圆柱、圆锥、球)的结构特征(2)性质:① 任意截面是圆面(经过球心的平面,截得的圆叫大圆,不经过球心的平面截得的圆叫 小圆)② 球心和截面圆心的连线垂直于截面,并且22d R r -=,其中R 为球半径,r 为截面半径,d 为球心的到截面的距离。
3、柱体、锥体、球体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和。
(2)特殊几何体表面积公式(C 底为底面周长,h 为高,h '为棱锥的斜高或圆锥的母线)直棱柱、圆柱的侧面积S C h =⋅侧底;正棱锥、圆锥的侧面积12S C h '=⋅侧底(3)柱体、锥体的体积公式V S h =⋅柱底, 13V S h =⋅锥底(4)球体的表面积和体积公式:34=3V R π球 ; 24S R π=球面(5)球面距离(注意识别经度和纬度)球面上,A B 两点的球面距离AB R α=⋅,其中α为劣弧AB 所对的球心角AOB ∠的弧度数.4、空间几何体的三视图空间中的点、直线、平面之间的关系(一)、立体几何网络图:(1)、平行于同一直线的两直线平行。
一、立体几何知识点归纳第一章空间几何体(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点。
旋转体一一把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。
其中,这条定直线称为旋转体的轴。
(2 )柱,锥,台,球的结构特征1.棱柱1.1棱柱一一有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1.2相关棱柱几何体系列 (棱柱、斜棱柱、直棱柱、正棱柱)的关系:斜棱柱①棱柱棱垂直于底j 直棱柱底面是正多—正棱柱*夂[其他棱柱川② 四棱柱I 底面为平行四边形|平行六面体|侧棱垂直于底面|直平行六面体底面为矩形长方体底面为正方形■正四棱柱I 侧棱与底面边长相等.1.3棱柱的性质:① 侧棱都相等,侧面是平行四边形;② 两个底面与平行于底面的截面是全等的多边形; ③ 过不相邻的两条侧棱的截面是平行四边形; ④ 直棱柱的侧棱长与高相等,侧面与对角面是矩形。
1.4长方体的性质:① 长方体一条对角线长的平方等于一个顶点上三条棱的 平方和;【如图】AC i 2二AB 2 • AD 2 • AA 2② (了解)长方体的一条对角线 AC 1与过顶点A 的三条 棱所成的角分别是:\, 那么cos 2 二 ' cos 2 : cos 2=1, sin 2 二 ' sin 2 “ - sin 2=2 ;③ (了解)长方体的一条对角线AC 1与过顶点A 的相邻三个面所成的角分别是 :-,则 cos 2 二'cos 2 : cos 2= 2, sin 2 口 " sin 2 : sin 2 = 1.1.5侧面展开图:正n 棱柱的侧面展开图是由 n 个全等矩形组成的以底面周长和侧棱长为邻 边的矩形.绻棱柱侧一C h卄亠土宀KW1.6面积、体积公式:‘(其中c 为底面周长,hS直棱柱全=ch +2S 底,《柱二S 底h为棱柱的高)2.圆柱2.1圆柱——以矩形的一边所在的直线为旋转轴, 其 余各边旋转而形成的曲面所围成的几何体叫圆柱•2.2圆柱的性质:上、下底及平行于底面的截面都是 等圆;过轴的截面(轴截面)是全等的矩形2.3侧面展开图:圆柱的侧面展开图是以底面周长和 母线长为邻边的矩形•正方体底面B2.4面积、体积公式2 2 、 、,S 圆柱侧= 2- rh ; S 圆柱全=2irrh +2irr , V 圆柱=S 底h=ir r h (其中r 为底面半径,h 为圆柱高)3.棱锥离与顶点到底面的距离之比;② 正棱锥各侧棱相等,各侧面是全等的等腰三角形;③ 正棱锥中六个元素,即侧棱、高、斜高、侧棱在底面内的射影、斜高在底面的射影、底面 边长一半,构成四个直角三角形。
立体几何知识点【考纲解读】1、平面的概念及平面的表示法,理解三个公理及三个推论的内容及作用,初步掌握性质与推论的简单应用。
2、 空间两条直线的三种位置关系,并会判定。
3、 平行公理、等角定理及其推论,了解它们的作用,会用它们来证明简单的几何问题,掌握证明空间两直线 平行及角相等的方法。
4、 异面直线所成角的定义,异面直线垂直的概念,会用图形来表示两条异面直线,掌握异面直线所成角的范 围,会求异面直线的所成角。
5•理解空间向量的概念,掌握空间向量的加法、减法和数乘;了解空间向量的基本定理,理解空间向量坐标的概念,掌握空间向量的坐标运算 ;掌握空间向量的数量积的定义及其性质,掌握用直角坐标计算空间向量数量积公式.6•了解多面体、凸多面体、正多面体、棱柱、棱锥、球的概念•掌握棱柱,棱锥的性质,并会灵活应用,掌握球的表面积、体积公式;能画出简单空间图形的三视图, 能识别上述的三视图所表示的立体模型, 会用斜二测法画出它们的直观图•7•空间平行与垂直关系的论证 •8.掌握直线与平面所成角、二面角的计算方法,掌握三垂线定理及其逆定理,并能熟练解决有关问题 ,进一步掌握异面直线所成角的求解方法,熟练解决有关问题9•理解点到平面、直线和直线、直线和平面、平面和平面距离的概念会用求距离的常用方法(如:直接法、转 化法、向量法)•对异面直线的距离只要求学生掌握作出公垂线段或用向量表示的情况)和距离公式计算距离。
【知识络构建】<— 翅MJL 何体的峯构特征一袞间几何怀的表面锲和体枳 —I 吩间儿何体的三视图和吒现图 空何向話的槪念线性运算空间向园数呈积理和坐标运算【重点知识整合】1. 空间几何体的三视图专间儿何体空问点仁n线、平面ft置关系宀VIHI向虽与<体儿何(1) 正视图:光线从几何体的前面向后面正投影得到的投影图;(2) 侧视图:光线从几何体的左面向右面正投影得到的投影图;(3) 俯视图:光线从几何体的上面向下面正投影得到的投影图.几何体的正视图、侧视图和俯视图统称为几何体的三视图.2. 斜二测画水平放置的平面图形的基本步骤(1) 建立直角坐标系,在已知水平放置的平面图形中取互相垂直的Ox, Oy,建立直角坐标系;(2) 画出斜坐标系,在画直观图的纸上(平面上)画出对应的Ox', Oy',使/ x Oy = 45。
高考数学立体几何知识点梳理关键信息:1、立体几何基本概念与公理点、线、面的位置关系三公理及推论2、直线与平面的位置关系直线与平面平行直线与平面垂直3、平面与平面的位置关系平面与平面平行平面与平面垂直4、空间几何体棱柱棱锥棱台圆柱圆锥圆台球5、空间几何体的表面积与体积表面积公式体积公式6、空间向量在立体几何中的应用空间向量的坐标表示空间向量的数量积利用空间向量证明位置关系利用空间向量求空间角11 立体几何基本概念与公理111 点、线、面的位置关系点是空间中最基本的元素,线是由无数个点组成的,面是由无数条线组成的。
点动成线,线动成面。
直线与平面的位置关系有:直线在平面内、直线与平面平行、直线与平面相交。
平面与平面的位置关系有:平行、相交。
112 三公理及推论公理 1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。
公理 2:过不在一条直线上的三点,有且只有一个平面。
公理 3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
推论 1:经过一条直线和这条直线外一点,有且只有一个平面。
推论 2:经过两条相交直线,有且只有一个平面。
推论 3:经过两条平行直线,有且只有一个平面。
21 直线与平面的位置关系211 直线与平面平行判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
性质定理:一条直线与一个平面平行,如果过该直线的平面与此平面相交,那么该直线与交线平行。
212 直线与平面垂直定义:如果一条直线与平面内任意一条直线都垂直,那么这条直线与这个平面垂直。
判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。
性质定理:垂直于同一个平面的两条直线平行。
31 平面与平面的位置关系311 平面与平面平行判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。
性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
312 平面与平面垂直定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。
立体几何知识梳理
一.基础知识:
(1)公理1:如果一条直线上的两个点在一个平面内,那么这条直线上所有的点都在这个平面内。
作用:证明直线在平面内。
(2)公理2:经过不在同一条直线上三点,有且只有一个平面。
(确定一个平面)
作用:如何确定一个平面。
①推论1:经过一条直线和这条直线外一点,有且只有一个平面。
②推论2:经过两条相交直线,有且只有一个平面。
③推论3:经过两条平行直线,有且只有一个平面。
(3)公理3:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。
作用:证明点在直线上。
(4)公理4:平行于同一条直线的两条直线互相平行。
作用:证明直线与直线平行。
二.直线与平面的位置关系:
(1)直线与直线的位置关系:
(2)直线与平面的位置关系:
(3)平面与平面的位置关系:
三.有关平行的判定:
1.直线与直线平行:
(1)平行于同一条直线的两条直线平行;
(2)如果一条直线与一个平面平行,经过这条直线的平面与这个平面相交,那么这条直线与交线平行;
(3)如果两条直线垂直于同一个平面,那么这两条直线平行;
(4)如果两个平行平面同时与第三个平面相交,那么它们的交线平行;
2.直线与平面平行:
(1)如果平面外的一条直线和这个平面内的一条直线平行,那么这条直线与这个平面平行;(2)如果两个平面平行,那么其中一个平面内的直线平行于另一个平面;
3.平面与平面平行:
(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行;
(2)如果一个平面内的两条相交直线都平行于另一个平面内的两条直线,那么这两个平面平行。
四.有关垂直的判定
1.直线与直线垂直:
(1)如果两条平行线中的一条垂直于第三条直线,那么另一条直线也垂直于第三条直线;(2)如果一条直线垂直于一个平面,那么这条直线垂直于平面内的所有直线;
(3)三垂线定理:如果平面内的一条直线与这个平面的一条斜线在这个平面内的射影垂直,那么它也与这条斜线垂直;
三垂线定理的逆定理:如果平面内的一条直线与这个平面的一条斜线垂直,那么它也与这条斜线在这个平面内的射影垂直;
2.直线与平面垂直:
(1)如果一条直线与一个平面内的两条相交直线都垂直,那么这条直线与这个平面垂直;(2)如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面;
(3)两个平面垂直,如果一个平面内的一条直线垂直于交线,那么这条直线垂直于另一个平面;
3.平面与平面垂直:
(1)如果两个平面相交所成的二面角为直二面角,那么么这两个平面垂直;
(2)如果一个平面经过另一个平面的垂线,那么这两个平面垂直;
五.有关成角问题:
1.异面直线所成的角:(00<θ≤900)
经过空间任意一点,分别引两条异面直线a、b的平行线a’、 b’, a’、 b’所成的锐角(或直角)叫做异面直线a、b所成的角。
2.直线与平面所成的角:(00≤θ≤900)
平面的斜线与它在平面上的射影所成的锐角,叫做斜线与平面所成的角;
当线面垂直时,垂线与平面所成的角为直角;线面平行或线在面内,规定线面角为零角。
3.平面与平面所成的角:
(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。
(2)二面角的平面角:以二面角的棱上任意一点为端点,分别在两个半平面内作垂直于棱的射线,这两条射线所成的角叫做二面角的平面角。
(00<θ≤1800)
各种角都用空间向量来求大小。