当前位置:文档之家› 高一数学平面向量应用举例教案

高一数学平面向量应用举例教案

高一数学平面向量应用举例教案
高一数学平面向量应用举例教案

高一数学平面向量应用举例教案

一、教学分析

1.本节的目的是让学生加深对向量的认识,更好地体会向量这个工具的优越性.对于向量方法,就思路而言,几何中的向量方法完全与几何中的代数方法一致,不同的只是用“向量和向量运算”来代替“数和数的运算”.这就是把点、线、面等几何要素直接归结为向量,对这些向量借助于它们之间的运算进行讨论,然后把这些计算结果翻译成关于点、线、面的相应结果.代数方法的流程图可以简单地表述为:

则向量方法的流程图可以简单地表述为:

这就是本节给出的用向量方法解决几何问题的“三步曲”,也是本节的重点.

2.研究几何可以采取不同的方法,这些方法包括:

综合方法——不使用其他工具,对几何元素及其关系直接进行讨论;

解析方法——以数(代数式)和数(代数式)的运算为工具,对几何元素及其关系进行讨论;

向量方法——以向量和向量的运算为工具,对几何元素及其关系进行讨论;

分析方法——以微积分为工具,对几何元素及其关系进行讨论,等等.

前三种方法都是中学数学中出现的内容.

有些平面几何问题,利用向量方法求解比较容易.使用向量方法要点在于用向量表示线段或点,根据点与线之间的关系,建立向量等式,再根据向量的线性相关与无关的性质,得出向量的系数应满足的方程组,求出方程组的解,从而解决问题.使用向量方法时,要注意向量起点的选取,选取得当可使计算过程大大简化.

二、教学目标

1.知识与技能:

通过平行四边形这个几何模型,归纳总结出用向量方法解决平面几何问题的“三步曲”.

2.过程与方法:

明了平面几何图形中的有关性质,如平移、全等、相似、长度、夹角等可以由向量的线性运算及数量积表示.

3.情感态度与价值观:

通过本节学习,让学生深刻理解向量在处理有关平面几何问题中的优越性,活跃学生的思维,发展学生的创新意识,激发学生的学习积极性,并体会向量在几何和现实生活中的意义.教学中要求尽量引导学生使用信息技术这个现代化手段.

三、重点难点

教学重点:用向量方法解决实际问题的基本方法;向量法解决几何问题的“三步曲”.

教学难点:如何将几何等实际问题化归为向量问题.

四、教学设想

(一)导入新课

思路 1.(直接导入)向量的概念和运算都有着明确的物理背景和几何背景,当向量和平面坐标系结合后,向量的运算就完全可以转化为代数运算.这就为我们解决物理问题和几何研究带来了极大的方便.本节专门研究平面几何中的向量方法.

思路2.(情境导入)由于向量的线性运算和数量积运算具有鲜明的几何背景,平面几何图形的许多性质,如平移、全等、相似、长度、夹角等都可以由向量的线性运算及数量积表示出来,因此,可用向量方法解决平面几何中的一些问题.下面通过几个具体实例,说明向量方法在平面几何中的运用.

(二)推进新课、新知探究、提出问题

图1

①平行四边形是表示向量加法和减法的几何模型,如图1,你能观察、发现并猜想出平行四边形对角线的长度与两邻边长度之间有什么关系吗?

②你能利用所学知识证明你的猜想吗?能利用所学的向量方法证明吗?试一试可用哪些方法?

③你能总结一下利用平面向量解决平面几何问题的基本思路吗?

活动:①教师引导学生猜想平行四边形对角线的长度与两邻边长度之间有什么关系.利用类比的思想方法,猜想平行四边形有没有相似关系.指导学生猜想出结论:平行四边形两条对角线的平方和等于四条边的平方和.

②教师引导学生探究证明方法,并点拨学生对各种方法分析比较,平行四边形是学生熟悉的重要的几何图形,在平面几何的学习中,学生得到了它的许多性质,有些性质的得出比较麻烦,有些性质的得出比较简单.让学生体会研究几何可以采取不同的方法,这些方法包括综合方法、解析方法、向量方法.

图2

证明:方法一:如图2.

作CE⊥AB于E,DF⊥AB于F,则Rt△ADF≌Rt△BCE.

∴AD=BC,AF=BE.由于AC

AE2+CE2=(AB+BE)2+CE2=AB2+2AB·BE+BE2+CE2=AB2+2AB·BE+BC2.

BD2=BF2+DF2=(AB-AF)2+DF2=AB2-2AB·AF+AF2+DF2=AB2-2AB·AF+AD2=AB2-2AB·BE+BC2.∴AC2+BD2=2(AB2+BC2).

图3

方法二:如图3.

以AB所在直线为x轴,A为坐标原点建立直角坐标系.

设B(a,0),D(b,c),则C(a+b,c).

∴|AC|2=(a+b)2+c2=a2+2ab+b2+c2,

|BD|2=(a-b)2+(-c)2=a2-2ab+b2+c2.

∴|AC|2+|BD|2=2a2+2(b2+c2)= 2(|AB|2+|AD|2).

用向量方法推导了平行四边形的两条对角线与两条邻边之间的关系.在用向量方法解决涉及长度、夹角的问题时,常常考虑用向量的数量积.通过以下推导学生可以发现,由于向量能够运算,因此它在解决某些几何问题时具有优越性,它把一个思辨过程变成了一个算法过程,学生可按一定的程序进行运算操作,从而降低了思考问题的难度,同时也为计算机技术的运用提供了方便.教学时应引导学生体会向量带来的优越性.因为平行四边形对角线平行且相等,考虑到向量关系

=-,AC=+,教师可点拨学生设=a,=b,其他线段对应向量用它们表示,涉及长度问题常常考虑向量的数量积,为此,我们计算||2与||2.因此有了方法三.

方法三:设AB=a,AD=b,则=a+b,DB=a-b,|AB|2=|a|2,|AD|2=|b|2.

||2=·=(a+b)·(a+b)=a·a+a·b+b·a+b·b=|a|2+2a·b+|b|2.①

同理|DB|2=|a|2-2a·b+|b|2.②

观察①②两式的特点,我们发现,①+②得

||2+||2=2(|a|2+|b|2)=2(||2+||2),

即平行四边形两条对角线的平方和等于两条邻边平方和的两倍.

③至此,为解决重点问题所作的铺垫已经完成,向前发展可以说水到渠成.教师充分让学生对以上各种方法进行分析比较,讨论认清向量方法的优越性,适时引导学生归纳用向量方法处理平面几何问题的一般步骤.由于平面几何经常涉及距离(线段长度)、夹角问题,而平面向量的运算,特别是数量积主要涉及向量的模以及向量之间的夹角,因此我们可以用向量方法解决部分几何问题.解决几何问题时,先用向量表示相应的点、线段、夹角等几何元素.然后通过向量的运算,特别是数量积来研究点、线段等元素之间的关系.最后再把运算结果“翻译”成几何关系,得到几何问题的结论.这就是用向量方法解决平面几何问题的“三步曲”,即

(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;

(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;

(3)把运算结果“翻译”成几何关系.

讨论结果:①能.

②能想出至少三种证明方法.

③略.

(三)应用示例

图4

例1 如图4,ABCD 中,点E 、F 分别是AD 、DC 边的中点,BE 、BF 分别与AC 交于R 、T 两点,你能发现AR 、RT 、TC 之间的关系吗?

活动:为了培养学生的观察、发现、猜想能力,让学生能动态地发现图形中AR 、RT 、TC 之间的相等关系,教学中可以充分利用多媒体,作出上述图形,测量AR 、RT 、TC 的长度,让学生发现AR=RT=TC,拖动平行四边形的顶点,动态观察发现,AR=RT=TC 这个规律不变,因此猜想AR=RT=TC.事实上,由于R 、T 是对角线AC 上的两点,要判断AR 、RT 、TC 之间的关系,只需分别判断AR 、RT 、TC 与AC 的关系即可.又因为AR 、RT 、TC 、AC 共线,所以只需判断与之间的关系即可.探究过程对照用向量方法解决平面几何问题的“三步曲”很容易地可得到结论.第一步,建立平面几何与向量的联系,用向量表示问题中的几何元素,将平面几何问题转化为向量问题;第二步,通过向量运算,研究几何元素之间的关系;第三步,把运算结果“翻译”成几何关系:AR=RT=TC.

解:如图4, 设=a ,=b ,=r ,=t ,则AC =a +b . 由于与共线,所以我们设r =n(a +b ),n ∈R . 又因为=-=a -2

1b , ER 与EB 共线, 所以我们设ER =m EB =m(a -

21b ). 因为+=,

所以r =

21b +m(a -2

1b ). 因此n(a +b )=2

1b +m(a -b ), 即(n-m)a +(n+2

1-m )b =0. 由于向量a 、b 不共线,要使上式为0,必须 ??

???=-+=-.021,0m n m n 解得n=m=3

1.

所以AR =31AC , 同理TC =31AC . 于是RT =3

1AC . 所以AR=RT=TC.

点评:教材中本例重在说明是如何利用向量的办法找出这个相等关系的,因此在书写时可简化一些程序.指导学生在今后的训练中,不必列出三个步骤.

变式训练

图5

如图5,AD 、BE 、CF 是△ABC 的三条高.求证:AD 、BE 、CF 相交于一点. 证明:设BE 、CF 相交于H,并设AB =b ,AC =c ,AH =h ,

则BH =h -b ,CH =h -c ,BC =c -b .

因为BH ⊥AC ,CH ⊥AB ,

所以(h -b )·c =0,(h -c )·b =0,

即(h -b )·c =(h -c )·b .

化简得h ·(c -b )=0.

所以AH ⊥BC .

所以AH 与AD 共线,

即AD 、BE 、CF 相交于一点H.

图6

例2 如图6,已知在等腰△ABC 中,BB′、CC′是两腰上的中线,且BB′⊥CC′,求顶角A 的余弦值.

活动:教师可引导学生思考探究,上例利用向量的几何法简捷地解决了平面几何问题.可否利用向量的坐标运算呢?这需要建立平面直角坐标系,找出所需点的坐标.如果能比较方便地建立起平面直角坐标系,如本例中图形,很方便建立平面直角坐标系,且图形中的各个点的坐标也容易写出,是否利用向量的坐标运

算能更快捷地解决问题呢?

教师引导学生建系、找点的坐标,然后让学生独立完成.

解:建立如图6所示的平面直角坐标系,取A(0,a),C(c,0),则B(-c,0), OA =(0,a),BA =(c,a),OC =(c,0),BC =(2c,0). 因为BB′、CC′都是中线, 所以'BB =21(BC +BA )=21[(2c,0)+(c,a)]=(2

,23a c ), 同理'CC =(2

,23a c -). 因为BB′⊥CC′,

所以2

2449a c +-=0,a 2=9c 2. 所以cosA=54299||||2222222=+-=+-=c c c c c a c a AC AB . 点评:比较是最好的学习方法.本例利用的方法与例题1有所不同,但其本质是一致的,教学中引导学生仔细体会这一点,比较两例的异同,找出其内在的联系,以达融会贯通,灵活运用之功效.

变式训练

图7

(2004湖北高考) 如图7,在Rt △ABC 中,已知BC=a.若长为2a 的线段PQ 以点A 为中点,问:BC PQ 与的夹角θ取何值时,CQ BP ?的值最大?并求出这个最大值.

解:方法一,如图7.

∵⊥AC ,∴·AC =0.

∵-=-=-=,,,

∴)()(-?-=?

=AC AB AQ AB AC AP AQ AP ?+?-?-?

=-a 2-AP AC +AB ·AP =-a 2+AP ·(AB -AC )

=-a 2+21PQ ·BC =-a 2+a 2cos θ. 故当cosθ=1,即θ=0,PQ 与BC 的方向相同时,CQ BP ?最大,其最大值为0.

图8

方法二:如图8.

以直角顶点A 为坐标原点,两直角边所在的直线为坐标轴,建立如图所示的平面直角坐标系.设|AB|=c,|AC|=b,则A(0,0),B(c,0),C(0,b),且|PQ|=2a,|BC|=a.

设点P 的坐标为(x,y),

则Q(-x,-y).

∴BP =(x-c,y),CQ =(-x,-y-b),BC =(-c,b),PQ =(-2x,-2y).

∴CQ BP ?=(x-c)(-x)+y(-y-b)=-(x 2+y 2)+cx-by.

∵cosθ=2||||a

by cx BC PQ -= ∴cx-by=a 2cosθ.

∴CQ BP ?=-a 2+a 2cosθ.

故当cosθ=1,即θ=0,PQ 与BC 的方向相同时, CQ BP ?最大,其最大值为0.

(四)知能训练

图9

1.如图9,已知AC 为⊙O 的一条直径,∠ABC 是圆周角.

求证:∠ABC =90°.

证明:如图9.

设=a ,=b ,

则AB =a +b ,OC =a ,BC =a -b ,|a |=|b |.

因为AB ·BC =(a +b )·(a -b )=|a |2-|b |2=0,

所以AB ⊥BC . 由此,得∠ABC =90°.

点评:充分利用圆的特性,设出向量.

2.D 、E 、F 分别是△ABC 的三条边AB 、BC 、CA 上的动点,且它们在初始时刻分别从A 、B 、C 出发,各以一定速度沿各边向B 、C 、A 移动.当t=1时,分别到达

B 、

C 、A.求证:在0≤t≤1的任一时刻t 1,△DEF 的重心不变.

图10

证明:如图10.

建立如图所示的平面直角坐标系,设A 、B 、C 坐标分别为(0,0),(a,0),(m,n). 在任一时刻t 1∈(0,1),因速度一定,其距离之比等于时间之比,有

1

11||||||||||||t t FA CF EC BE DB AD -====λ,由定比分点的坐标公式可得D 、E 、F 的坐标分别为(at 1,0),(a+(m-a)t 1,nt 1),(m-mt 1,n-nt 1).由重心坐标公式可得△DEF 的重心

坐标为(3,3m m a +).当t=0或t=1时,△ABC 的重心也为(3

,3m m a +),故对任一t 1∈[0,1],△DEF 的重心不变.

点评:主要考查定比分点公式及建立平面直角坐标系,只要证△ABC 的重心和时刻t 1的△DEF 的重心相同即可.

(五)课堂小结

1.由学生归纳总结本节学习的数学知识有哪些:平行四边形向量加、减法的几何模型,用向量方法解决平面几何问题的步骤,即“三步曲”.特别是这“三步曲”,要提醒学生理解领悟它的实质,达到熟练掌握的程度.

2.本节都学习了哪些数学方法:向量法,向量法与几何法、解析法的比较,将平面几何问题转化为向量问题的化归的思想方法,深切体会向量的工具性这一特点.

(六)作业

高中数学必修《平面向量》单元测试

平面向量单元测试卷(5) 一、选择题 1.在△OAB中,=,=,M为OB的中点,N为AB的中点,ON,AM交于点P,则=() A. ﹣B. ﹣+ C. ﹣ D. ﹣+ 2.已知向量≠,||=1,对任意t∈R,恒有|﹣t|≥|﹣|,则() A. ⊥B. ⊥(﹣)C.⊥(﹣)D.(+)⊥(﹣ ) 3.已知A,B,C是坐标平面内不共线的三点,o是坐标原点,动点P满足 (λ∈R),则点P的轨迹一定经过 △ABC的() A.内心B.垂心C.外心D.重心 4.已知平面上三点A、B、C满足,,,则 的值等于() A.25 B.﹣25 C.24 D.﹣24 5.已知向量=(2,0),向量=(2,2),向量=(cosα,sinα),则向量与向量的夹角范围为() A. [0,]B. [,] C. [,] D. [,] 6.设非零向量、、满足,则=()A.150°B.120°C.60°D.30° 7.设,,为同一平面内具有相同起点的任意三个非零向量,且满足与不共线,⊥,||=||,则|?|的值一定等于()

A. 以,为邻边的平行四边形的面积 B. 以,为两边的三角形面积 C. ,为两边的三角形面积 D. 以,为邻边的平行四边形的面积 8.设D是正△P1P2P3及其内部的点构成的集合,点P0是△P1P2P3的中心,若集合S={P|P∈D,|PP0|≤|PP i|,i=1,2,3},则集合S表示的平面区域是() A.三角形区域B.四边形区域C.五边形区域D.六边形区域 9.已知P={|=(1,0)+m(0,1),m∈R},Q={|=(1,1)+n(﹣1,1),n∈R}是两个向量集合,则P∩Q=() A.{(1,1)} B.{(﹣1,1)} C.{(1,0)} D.{(0,1)} 10.已知、是不共线的向量,=λ+,=+μ(λ,μ∈R),那么A、B、C三点共线的充要条件为() A.λ+μ=1 B.λ﹣μ=1 C.λμ=﹣1 D.λμ=1 二、填空题 11.若平面向量,满足,平行于x轴,,则=.12.给定两个长度为1的平面向量和,它们的夹角为120°.如图所示,点C在以O 为圆心,以1半径的圆弧AB上变动.若=x+y,其中x,y∈R,则x+y的最大值是. 13.在平行四边形ABCD中,E和F分别是边CD和BC的中点,若=λ+μ,其中λ、μ∈R,则λ+μ=.

2.5平面向量应用举例教案

2.5.1 平面向量应用举例 一.【教材分析】 前面已学习了向量的概念及向量的线性运算以及向量的数量积,本节课应用向量的知识来解决一些几何问题,例如利用向量解决平面内两条直线平行、垂直位置关系的判定等问题! 二.【教学目标】 1.通过应用举例,让学生会用平面向量知识解决几何问题的两种方法-----向量法和坐标法,可以用向量知识研究几何结论和生活中的实际问题; 2.通过本节的学习,让学生体验向量在解决几何问题中的工具作用,增强学生的积极主动的探究意识,培养创新精神. 三.【教学重难点】 重点:理解并能灵活运用向量加减法与向量数量积的法则解决几何问题. 难点:选择适当的方法,将几何问题转化为向量问题加以解决. 四.【教学过程】 (一). (二).【新课引入】 平移、全等、相似、长度、夹角等几何性质可以由向量线性运算及数量积表示出来,因此,可用向量方法解决平面几何中的一些问题.通过向量运算研究几何运算之间的关系,如距离、夹角等.本节课,我们就通过几个具体实例,来研讨 建议 说明向量方法在平面几何中的运用 (三)【典例精讲】 例1. 证明:平行四边形两条对角线的平方和等于相邻两条边的平方和. 已知:平行四边形ABCD. 求证:2222 2() AC BD AB BC +=+ 证明:不妨设AB=a,AD=b,则 AC=a+b,DB=a-b,2 || AB=|a|2,2 || AD=|b|2. 得2 || AC AC AC =?=( a+b)·( a+b) = a·a+ a·b+b·a+b·b =|a|2+2a·b+|b|2.① 同理,2 || DB=|a|2-2a·b+|b|2.② ①+②得2 || AC+2 || DB=2(|a|2+|b|2)=2(2 || AB+2 || AD). 所以,平行四边形两条对角线的平方和等于四条边的平方和. 对比其他方法: 建系设坐标法和做辅助线勾股定理等方法体验向量法的优越性. 跟踪练习应用上述结论解题 引导学生归纳,用向量方法解决平面几何问题“三步曲”: ⑴建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面 几何问题转化为向量问题; ⑵通过向量运算,研究几何元素之间的关系,如距离、夹角等问题; ⑶把运算结果“翻译”成几何关系. 简述为: 几何问题向量化向量运算关系化向量关系几何化

高一数学必修《集合》单元测试题及答案

高一数学必修 1:《集合》单元测试题 班级: 姓名: 得分: 一、单项选择题(每小题5分,共25分) (1).已知集合}1,1{-=A ,}1|{==mx x B ,且A B A =?,则m 的值为( ) A .1 B .—1 C .1或—1 D .1或—1或0 (2)设{} 022=+-=q px x x A ,{} 05)2(62=++++=q x p x x B ,若? ?? ???=21B A , 则=B A ( ) (A )??????-4,31,21 (B )??????-4,21 (C )??????31,21 (D )? ?????21 (3).函数2x y -= 的定义域为( ) A 、(],2-∞ B 、(],1-∞ C 、11,,222????-∞ ? ????? D 、11,,222? ???-∞ ? ?? ??? (4).设集合{}21<≤-=x x M ,{} 0≤-=k x x N ,若M N M =,则k 的取值范围( ) (A )(1,2)- (B )[2,)+∞ (C )(2,)+∞ (D )]2,1[- (5).如图,U 是全集,M 、P 、S 是U 的3个子集,则阴影部分所表示的集合是 ( ) A 、 ()M P S B 、 ()M P S C 、 ()u M P C S D 、 ()u M P C S 二、填空题(每小题4分,共20分) (6). 设{ }{} I a A a a =-=-+24122 2 ,,,,,若{}1I C A =-,则a=__________。 (7).已知集合A ={1,2},B ={x x A ?},则集合B= . (8).已知集合{ }{ } A x y y x B x y y x ==-==()|()|,,,322 那么集合A B = (9).50名学生做的物理、化学两种实验,已知物理实验做的正确得有40人,化学实验做的正确的有31人,两种实验都做错的有4人,则这两种实验都做对的有 人.

北师大版数学高一 2.7《平面向量应用举例》教案(必修4)

2.7平面向量应用举例 一.教学目标: 1.知识与技能 (1)经历用向量的方法解决某些简单的平面几何问题、力学问题与其它一些实际问题的过程,体会向量是一种处理几何问题、物理问题等的工具. (2)揭示知识背景,创设问题情景,强化学生的参与意识;发展运算能力和解决实际问题的能力. 2.过程与方法 通过本节课的学习,让学生体会应用向量知识处理平面几何问题、力学问题与其它一些实际问题是一种行之有效的工具;和同学一起总结方法,巩固强化. 3.情感态度价值观 通过本节的学习,使同学们对用向量研究几何以及其它学科有了一个初步的认识;提高学生迁移知识的能力、运算能力和解决实际问题的能力. 二.教学重、难点 重点: (体现向量的工具作用),用向量的方法解决某些简单的平面几何问题、力学问题与其它一些实际问题,体会向量在几何、物理中的应用. 难点: (体现向量的工具作用),用向量的方法解决某些简单的平面几何问题、力学问题与其它一些实际问题,体会向量在几何、物理中的应用. 三.学法与教学用具 学法:(1)自主性学习法+探究式学习法 (2)反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距. 教学用具:电脑、投影机. 四.教学设想 【探究新知】 同学们阅读教材P116---118的相关内容思考: 1.直线的向量方程是怎么来的? 2.什么是直线的法向量? 【巩固深化,发展思维】 教材P118练习1、2、3题 例题讲评(教师引导学生去做) 例1.如图,AD、BE、CF是△ABC的三条高,求证:AD、BE、CF相交于一点。 证:设BE、CF交于一点H, ?→ ? AB= a, ?→ ? AC= b, ?→ ? AH= h, 则 ?→ ? BH= h-a , ?→ ? CH= h-b , ?→ ? BC= b-a ∵ ?→ ? BH⊥ ?→ ? AC, ?→ ? CH⊥ ?→ ? AB B C

高一数学《平面向量》测试

高一平面向量测试 注意事项: 1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。 2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。 3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草稿纸和答题卡上的非答题区域均无效。 4.考试结束后,请将本试题卷和答题卡一并上交。 一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知向量()3,1=a ,()21,k k =-b ,且()+⊥a b a ,则k 的值是( ) A .1- B .37 C .35 - D .35 2.已知向量(3,2)=a ,(1,2)=-b ,(4,1)=c ,若()()2k +-∥a c b a ,()k ∈R , 则k =( ) A .43 B .1922- C .1613- D .1316 - 3.若向量()3,1AB =-u u u r ,()1,2=n ,且7AC ?=u u u r n ,那么BC ?u u u r n 的值为( ) A .6- B .0 C .6 D .6-或6 4.在ABC △中,2BD DC =u u u r u u u r ,AD mAB nAC =+u u u r u u u r u u u r ,则m n 的值为( ) A .12 B .13 C .2 D .3 5.四边形ABCD 中,AB DC =u u u r u u u r ,且ABCD 是( ) A .平行四边形 B .菱形 C .矩形 D .正方形 6.如果向量a 与b 的夹角为θ,那么我们称?a b 为向量的“向量积”,?a b 的大小为 sin θ?=?a b a b ,如果5=a ,1=b ,3?=-a b ,则?=a b ( ) A .3 B .4- C .4 D .5 7.已知向量(1,2)=a ,(1,1)=b ,若a 与λ+a b 的夹角为锐角,则实数λ的取值范围是( ) A .5 ,3 ??-+∞ ??? B .()5,00,3??-+∞ ?? ? U C .5 ,3 ?? -∞- ?? ? D .5,3?? -∞ ?? ?

平面向量的应用教学案 (5)

平面向量的应用 一、教学目标 1.能用向量方法解决某些简单的平面几何中的距离(线段长度)、夹角等问题. 2.能用向量方法解决物理中的有关力、速度等方面的问题 二、教学重点 1.能用向量方法解决某些简单的平面几何中的距离(线段长度)、夹角等问题. 2.能用向量方法解决物理中的有关力、速度等方面的问题 三、教学难点 能用向量方法解决物理中的有关力、速度等方面的问题 四、教学过程 知识提炼 1.用向量方法解决平面几何问题的“三步曲” 第一步,建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题; 第二步,通过向量运算,研究几何元素之间的关系; 第三步,把运算结果“翻译”成几何关系. 2.向量在物理中的应用 (1)物理问题中常见的向量有力,速度,加速度,位移等. (2)向量的加减法运算体现在力,速度,加速度,位移的合成与分解. (3)动量mv 是向量的数乘运算. (4)功是力F 与所产生的位移s 的数量积. 思考尝试 1.思考判断(正确的打“√”,错误的打“×”) (1)求力F 1和F 2的合力可按照向量加法的平行四边形法则.( ) (2)若△ABC 为直角三角形,则有AB →·BC → =0.( ) (3)若向量AB →∥CD → ,则AB ∥CD .( ) 解析:(1)正确.物理中的力既有大小又有方向,所以力可以看作向量,F 1,F 2的合力可按照向量加法的平行四边形法则求解. (2)错误.因为△ABC 为直角三角形,∠B 并不一定是直角,有可能是∠A 或∠C 为直角. (3)错误.向量AB →∥CD → 时,直线AB ∥CD 或AB ,CD 重合. 答案:(1)√ (2)× (3)×

高一年级数学集合单元测试题

高一《集合》单元测试试题(1) 一、选择题:(5×10=50′) ★1.设全集U =R ,集合A =(1,+∞),集合B =(-∞,2)。则eU (A ∩B)=( ) A .(-∞,1)∪(2,+∞) B .(-∞,1)∪[2,+∞) C .(-∞,1]∪[2,+∞) D .(-∞,1]∪(2,+∞) ★2、已知A={1,a },则下列不正确的是( ) A:a ∈A B:1∈A C:(1、a )∈A D:1≠a ★3、集合{}Z k k x x M ∈-==,23,{}Z n n y y P ∈+==,13,{} Z m m z z S ∈+==,16 之间的关系是( ) (A )M P S ?? (B )M P S ?= (C )M P S =? (D)M P S =? ★4、如图,阴影部分所表示的集合为( ) A 、A ∩(B ∩C ) B 、(C S A )∩(B ∩C ) C 、(C S A )∪(B ∩C ) D 、(C S A )∪(B ∪C ) ★5、设I 为全集,S 1、S 2、S 3是I 上的三个非空子集,且S 1∪S 2∪S 3=I ,则下列 论断正确的是( ) A 、 C I S 1∩(S 2∪S 3)=? B 、 S 1?( C I S 2∩C I S 3) C 、 C I S 1∩C I S 2∩C I S 3=? D 、 S 1?(C I S 2∪C I S 3) ★6、设关于x 的式子 1 ax 2 +ax+a+1 当x ∈R 时恒有意义,则实数a 的取值范围是( ) A 、a ≥0 B 、a<0 C 、a<-43 D 、 a ≥0或a<-4 3 ★7、设集合S={a,b,c,d,e },则包含{a,b }的S 的子集共有( )个 A 2 B 3 C 5 D 8 ★8、设集合M={x|x=k 2 +14,k ∈Z },N={x|x=k 4 +1 2 ,k ∈Z },则( ) A 、 M=N B 、 M ?N C 、 M ?N D 、 M ∩N=? ★9、设⊕是R 上的一个运算,A 是R 上的非空子集,若对任意的a 、b ∈A ,有a ⊕b ∈A ,则称 A 对运算⊕封闭,下列数集对加法、减法、乘法和除法(除数不等于0)四则运算都封闭的是( ) A 自然数集 B 整数集 C 有理数集 D 无理数集 ★10、设 P 、Q 为两个非空实数集合,定义集合 P+Q=},5,2,0{},,|{=∈∈+P Q b P a b a 若}6,2,1{=Q ,则P+Q 中元素的个数是( ) A .9 B .8 C .7 D .6 二、 填空题(5×5=25′) ★11、已知集合{} 1≤-=a x x A ,{ } 0452 ≥+-=x x x B ,若φ=B A I ,则实数a 的取值范围是 .

高一数学平面向量章节测试题(含答案)

高一数学平面向量章节测试题 一、选择题(本大题共12小题,共60分) 1. 已知向量a ?=(1,2),b ??=(3,1),则b ???a ?=( ) A. (?2,1) B. (2,?1) C. (2,0) D. (4,3) 2. 已知平面向量a ?=(1,?2),b ??=(?2,m),且a ?//b ??,则3a ?+2b ??等于( ) A. (-2,1) B. (1,-2) C. (-1,2) D. (2,-1) 3. 已知向量a ??,b ??满足|a ??|=1,|b ??|=2,a ???b ??=1,那么向量a ??,b ??的夹角为( ) A. 30° B. 60° C. 120° D. 150° 4. 已知|a ??|=3,|b ??|=5,a ??b ??=12,则向量a ??在向量b ??上的投影为( ) A. 12 5 B. 3 C. 4 D. 5 5. 已知菱形ABCD 的边长为2,∠BAD =120°,点E 、F 分别在边BC 、DC 上,BE ??????=λBC ??????,DF ??????=μDC ??????,若AE ???????AF ??????=1,CE ???????CF ??????=?2 3 ,则λ+μ=( ) A. 1 2 B. 2 3 C. 5 6 D. 7 12 6. 已知向量a ?=(1,m),b ??=(3,?2),且(a ?+b ??)⊥b ??,则m =( ) A. -8 B. -6 C. 6 D. 8 7. 在△ABC 中,已知D 是BC 延长线上一点,点E 为线段AD 的中点,若BC ??????=2CD ??????,且AE ??????=λAB ??????+34AC ??????,则λ=( ) A. ?1 4 B. 1 4 C. ?1 3 D. 1 3 8. 已知|a ??|=2,向量a ??在向量b ??上的投影为√3,则a ??与b ??的夹角为( ) A. π 3 B. π 6 C. 2π 3 D. π 2 9. 若向量a ?=(?2,0),b ??=(2,1),c ?=(x,1)满足条件3a ??+b ??与c ??共线,则x 的值为( ) A. ?2 B. ?4 C. 2 D. 4 10. 已知a ??、b ??均为单位向量,它们的夹角为60°,那么|a ?+3b ??|=( ) A. √7 B. √10 C. √13 D. 4 11. 在平行四边形ABCD 中,AB ??????=a ?,AD ??????=b ??,AM ???????= 4MC ???????,P 为AD 的中点,MP ???????=( ) A. 4 5a ?+3 10 b ?? B. 45a ?+13 10b ?? C. -45a ?-310b ?? D. 3 4a ?+1 4b ?? 12. 已知向量BA ??????=(12,√32),BC ??????=(√32,12 ),则∠ABC =( ) A. 30° B. 45° C. 60° D. 120° 二、填空题(本大题共4小题,共20分) 13. 设e 1????,e 2????是不共线向量,e 1?????4e 2????与k e 1????+e 2????共线,则实数k 为______ . 14. 已知向量a ?=(?1,2),b ??=(m,1),若向量a ?+b ??与a ??垂直,则m =______. 15. 设向量a ?=(m,1),b ??=(1,2),且|a ?+b ??|2=|a ?|2+|b ??|2,则m =______.

高一数学平面向量应用举例教案

高一数学平面向量应用举例教案 一、教学分析 1.本节的目的是让学生加深对向量的认识,更好地体会向量这个工具的优越性.对于向量方法,就思路而言,几何中的向量方法完全与几何中的代数方法一致,不同的只是用“向量和向量运算”来代替“数和数的运算”.这就是把点、线、面等几何要素直接归结为向量,对这些向量借助于它们之间的运算进行讨论,然后把这些计算结果翻译成关于点、线、面的相应结果.代数方法的流程图可以简单地表述为: 则向量方法的流程图可以简单地表述为: 这就是本节给出的用向量方法解决几何问题的“三步曲”,也是本节的重点. 2.研究几何可以采取不同的方法,这些方法包括: 综合方法——不使用其他工具,对几何元素及其关系直接进行讨论; 解析方法——以数(代数式)和数(代数式)的运算为工具,对几何元素及其关系进行讨论; 向量方法——以向量和向量的运算为工具,对几何元素及其关系进行讨论; 分析方法——以微积分为工具,对几何元素及其关系进行讨论,等等. 前三种方法都是中学数学中出现的内容. 有些平面几何问题,利用向量方法求解比较容易.使用向量方法要点在于用向量表示线段或点,根据点与线之间的关系,建立向量等式,再根据向量的线性相关与无关的性质,得出向量的系数应满足的方程组,求出方程组的解,从而解决问题.使用向量方法时,要注意向量起点的选取,选取得当可使计算过程大大简化. 二、教学目标 1.知识与技能: 通过平行四边形这个几何模型,归纳总结出用向量方法解决平面几何问题的“三步曲”. 2.过程与方法: 明了平面几何图形中的有关性质,如平移、全等、相似、长度、夹角等可以由向量的线性运算及数量积表示. 3.情感态度与价值观: 通过本节学习,让学生深刻理解向量在处理有关平面几何问题中的优越性,活跃学生的思维,发展学生的创新意识,激发学生的学习积极性,并体会向量在几何和现实生活中的意义.教学中要求尽量引导学生使用信息技术这个现代化手段. 三、重点难点 教学重点:用向量方法解决实际问题的基本方法;向量法解决几何问题的“三步曲”. 教学难点:如何将几何等实际问题化归为向量问题. 四、教学设想 (一)导入新课

高一数学必修四第二章平面向量测试题及答案

一、选择题: (本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.设点P(3,-6),Q(-5,2),R的纵坐标为-9,且P、Q、R三点共线,则R点的横坐标为()。 A、-9 B、-6 C、9 D、6 2.已知=(2,3), b=(-4,7),则在b上的投影为()。 A、B、C、D、 3.设点A(1,2),B(3,5),将向量按向量=(-1,-1)平移后得 向量为()。 A、(2,3) B、(1,2) C、(3,4) D、(4,7)4.若(a+b+c)(b+c-a)=3bc,且sinA=sinBcosC,那么ΔABC是()。 A、直角三角形 B、等边三角形 C、等腰三角形 D、等腰直角三角形5.已知| |=4, |b|=3, 与b的夹角为60°,则| +b|等于()。A、B、C、D、 6.已知O、A、B为平面上三点,点C分有向线段所成的比为2,则()。 A、B、 C、D、 7.O是ΔABC所在平面上一点,且满足条件,则点O是ΔABC的()。 A、重心 B、垂心 C、内心 D、外心8.设、b、均为平面内任意非零向量且互不共线,则下列4个命题:(1)( ·b)2= 2·b2(2)| +b|≥| -b| (3)| +b|2=( +b)2

(4)(b ) -( a )b 与 不一定垂直。其中真命题的个数是( )。 A 、1 B 、2 C 、3 D 、4 9.在ΔABC 中,A=60°,b=1, ,则 等 于( )。 A 、 B 、 C 、 D 、 10.设 、b 不共线,则关于x 的方程 x 2+b x+ =0的解的情况是( )。 A 、至少有一个实数解 B 、至多只有一个实数解 C 、至多有两个实数解 D 、可能有无数个实数解 二、填空题:(本大题共4小题,每小题4分,满分16分.). 11.在等腰直角三角形ABC 中,斜边AC=22,则CA AB =_________ 12.已知ABCDEF 为正六边形,且AC =a ,AD =b ,则用a ,b 表示AB 为______. 13.有一两岸平行的河流,水速为1,速度为 的小船要从河的一边驶 向对岸,为使所行路程最短,小船应朝________方向行驶。 14.如果向量 与b 的夹角为θ,那么我们称 ×b 为向量 与b 的“向量积”, ×b 是一个向量,它的长度| ×b |=| ||b |sin θ,如果| |=3, |b |=2, ·b =-2,则| ×b |=______。 三、解答题:(本大题共4小题,满分44分.) 15.已知向量 = , 求向量b ,使|b |=2| |,并且 与b 的夹角 为 。(10分)

平面向量的应用(教学设计)

平面向量的应用 一、江苏省高考说明对平面向量的要求 平面向量的概念,平面向量的加法、减法及数乘运算,平面向量的坐标表示,平面向量的平行与垂直这几个方面都是B 级要求,平面向量的应用是A 级要求,仅平面向量的数量积是C 级要求. 二、高考命题规律 1、高考对向量的考查主要是向量的概念及其运算(坐标运算、几何运算),平面向量的加、减法的几何意义,数量积及运算律,两个非零向量平行及垂直的充要条件; 2、常在大题中兼顾对向量的考查,主要涉及向量在三角函数、解析几何、函数及数列中的应用; 3、题目大都是容易题和中等题,题型多为一道填空题或一道大题. 三、复习目标 1、通过本节课的复习,进一步掌握向量数量积的几何运算法则和坐标运算法则; 2、使学生正确掌握向量的具体应用,并能通过解题体验平面向量应用问题的常规解法. 四、复习重点 1、平面向量的概念、加减法、数量积的灵活应用; 2、平面向量的具体应用. 五、复习过程 (一)小题训练 1、(高考题改编)已知两点M (-2,0)、N (2,0),点P 为坐标平 面内的动点,满足||||MN MP MN NP ?+?u u u u r u u u r u u u u r u u u r =0,则动点P (x ,y )的轨迹方程为 . 28y x =- 2、若向量a ρ ,b ρ满足2=a ρ ,1=b ρ ,()1=+?b a a ρ ρ ρ,则向量a ρ ,b ρ 的夹角 的大小为 . 34 π 3、已知向量2 (,1)a x x =+r ,(1,)b x t =-r ,若函数()f x a b =r r g 在区间(-1,1) 上是增函数,则t 的取值范围是 . 4、在△ABC 中,π 6 A ∠=,D 是BC 边上任意一点(D 与 B 、 C 不重合),且 22||||AB AD BD DC =+?u u u r u u u r u u u r u u u r ,则B ∠等于 . 512 π (二)典型例题 例1:已知向量(cos ,sin )a αα=r , sin ,cos )b αα=r ,(,)22 ππ α∈-.

高一数学集合单元测试

高一数学集合单元测试 一、选择题 ( 每小题5分,共50分) 1.已知M ={|5,}x x x R ≤∈, 11,12a b ==,则 ( ) A .,a M b M ∈? B .,a M b M ?? C .,a M b M ∈∈ D .,a M b M ?∈ 2.在下列各组中的集合M 与N 中, 使M N =的是 ( ) A .{(1,3)},{(3,1)}M N =-=- B .,{0}M N =?= C .22{|1,},{(,)|1,}M y y x x R N x y y x x R ==+∈==+∈ D .22{|1,},{|(1)1,}M y y x x R N t t y y R ==+∈==-+∈ 3.下列几个式子:(1)()M N N ??;(2)()()M N M N ???;(3)()M N N ??; (4)若M N ?,则M N M ?=。正确的个数是 ( ) A .1 B .2 C . 3 D .4 4.满足条件{,}{,,,}a b M a b c d ?=的所有集合M 的个数是 ( ) A .4 B .3 C .2 D .1 5.下列各式中,正确的是 ( ) A .2{2}x x ?≤ B .3{21}x x x ∈><且 C .{41,}{21,}x x k k Z x x k k Z =±∈≠=+∈ D .{31,}x x k k Z =+∈{32,}x x k k Z ==-∈ 6.设{0,1,2,3,4},{0,1,2,3}U A == ,{2,3,4}B =,则 ()()U U C A C B ?= ( ) A .{0,1,2,3,4} B . {0,1,4} C . {0,1} D . {0} 7 集合{|,}2x A x n n Z ==∈,1{|,}2 x B x n n Z +==∈, {41,}C x x k k Z ==+∈又,,B b A a ∈∈则有 ( ) A .()a b A +∈ B .()a b B +∈ C .()a b C +∈ D .(),,a b A B C +∈ 任一个 8.设集合2 {|1,},{|1,}M y y x x R N y y x x R ==+∈==+∈,则M∩N = ( )

平面向量应用举例

平面向量应用举例 【学习目标】 1.会用向量方法解决某些简单的平面几何问题. 2.会用向量方法解决简单的力学问题与其他一些实际问题. 3.体会用向量方法解决实际问题的过程,知道向量是一种处理几何、物理等问题的工具,提高运算能力和解决实际问题的能力. 【要点梳理】 要点一:向量在平面几何中的应用 向量在平面几何中的应用主要有以下几个方面: (1)证明线段相等、平行,常运用向量加法的三角形法则、平行四边形法则,有时用到向量减法的意义. (2)证明线段平行、三角形相似,判断两直线(或线段)是否平行,常运用向量平行(共线)的条件://λ?=a b a b (或x 1y 2-x 2y 1=0). (3)证明线段的垂直问题,如证明四边形是矩形、正方形,判断两直线(线段)是否垂直等,常运用向量垂直的条件:0⊥??=a b a b (或x 1x 2+y 1y 2=0). (4)求与夹角相关的问题,往往利用向量的夹角公式cos |||| θ?= a b a b . (5)向量的坐标法,对于有些平面几何问题,如长方形、正方形、直角三角形等,建立直角坐标系,把向量用坐标表示,通过代数运算解决几何问题. 要点诠释: 用向量知识证明平面几何问题是向量应用的一个方面,解决这类题的关键是正确选择基底,表示出相关向量,这样平面图形的许多性质,如长度、夹角等都可以通过向量的线性运算及数量积表示出来,从而把几何问题转化成向量问题,再通过向量的运算法则运算就可以达到解决几何问题的目的了. 要点二:向量在解析几何中的应用 在平面直角坐标系中,有序实数对(x ,y )既可以表示一个固定的点,又可以表示一个向量,使向量与解析几何有了密切的联系,特别是有关直线的平行、垂直问题,可以用向量方法解决. 常见解析几何问题及应对方法: (1)斜率相等问题:常用向量平行的性质. (2)垂直条件运用:转化为向量垂直,然后构造向量数量积为零的等式,最终转换出关于点的坐标的方程. (3)定比分点问题:转化为三点共线及向量共线的等式条件. (4)夹角问题:利用公式cos |||| θ?= a b a b . 要点三:向量在物理中的应用 (1)利用向量知识来确定物理问题,应注意两方面:一方面是如何把物理问题转化成数学问题,即将物理问题抽象成数学模型;另一方面是如何利用建立起来的数学模型解释相关物理现象. (2)明确用向量研究物理问题的相关知识:①力、速度、位移都是向量;②力、速度、位移的合成与分解就是向量的加减法;③动量mv 是数乘向量;④功即是力F 与所产生位移s 的数量积. (3)用向量方法解决物理问题的步骤:一是把物理问题中的相关量用向量表示;二是转化为向量问题的模型,通过向量运算解决问题;三是把结果还原为物理结论. 【典型例题】 类型一:向量在平面几何中的应用

高一数学《平面向量》单元测试.docx

高一数学《平面向量》单元测试 姓名 : 班级 : 一、 选择题 (共 8 小题 ,每题 5 分 ) 1. 下列命题正确的是 ( ) A .单位向量都相等 B . 任一向量与它的相反向量不相等 C .平行向量不一定是共线向量 D .模为 0 的向量与任意向量共线 2.已知向量 a =( 3,4), b =( sin α, cos α),且 a ∥ b ,则 tan α等于( ) A . 3 B . 3 C . 4 D . 4 4 4 3 3 3.在以下关于向量的命题中,不正确的是 ( ) A .若向量 a=(x , y),向量 b=(- y , x)(x 、 y ≠ 0),则 a ⊥ b B .四边形 ABCD 是菱形的充要条件是 AB = DC ,且 | AB |=| AD | C .点 G 是△ ABC 的重心,则 GA + GB + CG =0 D .△ ABC 中, AB 和 CA 的夹角等于 180°- A 4.设 P ( 3, 6), Q ( 5, 2), R 的纵坐标为 9,且 P 、 Q 、 R 三点共线,则 R 点的横坐标为 ( ) A . 9 B . 6 C . 9 D . 6 r r r r r r r r r ) 5.若 | a | 1,| b | 2, c a b ,且 c a ,则向量 a 与 b 的夹角为 ( A . 30° B .60° C .120° D . 150° 6.在△ ABC 中, A >B 是 sinA > sinB 成立的什么条件( ) A .充分不必要 B .必要不充分 C .充要 D .既不充分也不必要 7.若将函数 y sin 2x 的图象按向量 a 平移后得到函数 y sin( 2x ) -1 的图象 ,则向量 a 可以是: 4 ( ) A . ( , 1) B . ( ,1) C . ( ,1) D . ( , 1) 8 8 4 4 8.在△ ABC 中,已知 | AB | 4,| AC | 1, S ABC 3,则 AB AC 的值为( ) A .- 2 B . 2 C .± 4 D .± 2 二、 填空题 (共 4 小题 ,每题 5 分 ) 9.已知向量 a 、 b 的模分别为 3,4,则| a - b |的取值范围为 . r r r r r 10.已知 e 为一单位向量, a 与 e 之间的夹角 是 120O ,而 a 在 e 方向上的投影为- 2,则 r a . 11.设 e 1、e 2 是两个单位向量,它们的夹角是 60 ,则 (2e 1 e 2 ) ( 3e 1 2e 2 ) 12.在 ?ABC 中, a =5, b= 3,C= 1200 ,则 sin A 三、 解答题 (共 40 分 ) 13.设 e 1 ,e 2 是两个垂直的单位向量,且 a ( 2e 1 e 2 ) ,b e 1 e 2 (1)若 a ∥ b ,求 的值; (2) 若 a b ,求 的值 .( 12 分)

数学:平面向量应用举例教案北师大版必修

7.2平面向量应用举例 一.教学目标: 1.知识与技能 (1)经历用向量的方法解决某些简单的平面几何问题、力学问题与其它一些实际问题的过程,体会向量是一种处理几何问题、物理问题等的工具. (2)揭示知识背景,创设问题情景,强化学生的参与意识;发展运算能力和解决实际问题的能力. 2.过程与方法 通过本节课的学习,让学生体会应用向量知识处理平面几何问题、力学问题与其它一些实际问题是一种行之有效的工具;和同学一起总结方法,巩固强化. 3.情感态度价值观 通过本节的学习,使同学们对用向量研究几何以及其它学科有了一个初步的认识;提高学生迁移知识的能力、运算能力和解决实际问题的能力. 二.教学重、难点 重点:(体现向量的工具作用),用向量的方法解决某些简单的平面几何问题、力学问题与其它一些实际问题,体会向量在几何、物理中的应用. 难点:(体现向量的工具作用),用向量的方法解决某些简单的平面几何问题、力学问题与其它一些实际问题,体会向量在几何、物理中的应用. 三.学法与教学用具 学法:(1)自主性学习法+探究式学习法 (2)反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距. 教学用具:电脑、投影机. 四.教学设想 【探究新知】

[展示投影] 同学们阅读教材的相关内容思考: 1.直线的向量方程是怎么来的? 2.什么是直线的法向量? 【巩固深化,发展思维】 教材P 103练习1、2、3题 [展示投影]例题讲评(教师引导学生去做) 例1.如图,AD 、BE 、CF 是△ABC 的三条高,求证:AD 、BE 、CF 相交于一点。 证:设BE 、CF 交于一点H , ?→ ?AB = a , ?→?AC = b , ?→ ?AH = h , 则?→ ?BH = h a , ?→ ?CH = h b , ?→ ?BC = b a ∵?→ ?BH ?→ ?AC , ?→?CH ?→ ?AB ∴ 0)()()(0)(0)(=-???-=?-?? ?? =?-=?-a b h a b h b a h a a h b a h ∴?→ ?AH ?→ ?BC 又∵点D 在AH 的延长线上,∴AD 、BE 、CF 相交于一点 [展示投影]预备知识: 1.设P 1, P 2是直线l 上的两点,P 是l 上不同于P 1, P 2的任一点,存在实数λ,使?→ ?P P 1=λ?→ ?2PP ,λ叫做点P 分?→ ?21P P 所成的比, 有三种情况: λ>0(内分) (外分) λ<0 (λ<—1) ( 外分)λ<0 (—1<λ<0) A B C E F H P P P 222P P P

高一数学 集合单元测试

高一数学 集合单元测试 一、选择题(每一题只有一个正确的结果,每小题5分,共50分) 1.已知x,y 均不为0,则|||| x y x y -的值组成的集合的元素个数为( ) A .1 B .2 C .3 D .4 2.下列集合中,能表示由1、2、3组成的集合是( ) A .{6的质因数} B .{x|x<4,* x N ∈} C .{y||y |<4,y N ∈} D .{连续三个自然数} 3.已知集合M={x N|4-x N}∈∈,则集合M 中元素个数是( ) A .3 B .4 C .5 D .6 4.已知2U U={1,2,23},A={|a-2|,2},C {0}a a A +-=,则a 的值为( ) A .-3或1 B .2 C .3或1 D .1 5.设全集U U=Z,A={x|x=2n,n Z},M=C A ∈,则下面关系式成立的个数是( ) ①-2A ∈ ②2M ∈ ③U 0C M ? ④-3M ? A .1 B .2 C .3 D .4 6.定义A —B={x|x A x B ∈?且},若A={1,3,5,7,9},B={2,3,5},则A —B 等于( ) A .A B .B C .{2} D .{1,7,9} 7.设I 为全集,1S ,2S ,3S 是I 的三个非空子集,且123S S S I ??=,则下面论断正确的是( ) A .()I 123(C S )S S ?? B .()1I 2I 3S [ C S )(C S ]?? C .I 1I 2I 3(C S )(C S )(C S )??=? D .()1I 2I 3S [C S )(C S ]?? 8.如图所示,I 是全集,M ,P ,S 是I 的三个子集,则阴影部分所表示的集合是( ) A .()M P S ?? B .()M P S ?? C .()I (C )M P S ?? D .()I (C ) M P S ??

(完整版)高中数学平面向量测试题及答案

平面向量测试题 一、选择题: 1。已知ABCD 为矩形,E 是DC 的中点,且?→?AB =→a ,?→?AD =→b ,则?→ ?BE =( ) (A ) →b +→a 2 1 (B ) →b -→a 2 1 (C ) →a +→b 2 1 (D ) →a -→ b 2 1 2.已知B 是线段AC 的中点,则下列各式正确的是( ) (A ) ?→?AB =-?→?BC (B ) ?→?AC =?→?BC 2 1 (C ) ?→?BA =?→?BC (D ) ?→?BC =?→ ?AC 2 1 3.已知ABCDEF 是正六边形,且?→?AB =→a ,?→?AE =→b ,则?→ ?BC =( ) (A ) )(2 1→→-b a (B ) )(2 1 →→-a b (C ) →a +→b 2 1 (D ) )(2 1→ →+b a 4.设→a ,→b 为不共线向量,?→?AB =→a +2→b ,?→?BC =-4→a -→b ,?→ ?CD = -5→ a -3→ b ,则下列关系式中正确的是 ( ) (A )?→?AD =?→?BC (B )?→?AD =2?→ ?BC (C )?→?AD =-?→ ?BC (D )?→?AD =-2?→ ?BC 5.将图形F 按→ a =(h,k )(其中h>0,k>0)平移,就是将图形F ( ) (A ) 向x 轴正方向平移h 个单位,同时向y 轴正方向平移k 个单位。 (B ) 向x 轴负方向平移h 个单位,同时向y 轴正方向平移k 个单位。 (C ) 向x 轴负方向平移h 个单位,同时向y 轴负方向平移k 个单位。 (D ) 向x 轴正方向平移h 个单位,同时向y 轴负方向平移k 个单位。 6.已知→a =()1,2 1,→ b =(), 2 22 3- ,下列各式正确的是( ) (A ) 2 2?? ? ??=??? ??→ →b a (B ) →a ·→b =1 (C ) →a =→b (D ) →a 与→b 平行 7.设→ 1e 与→ 2e 是不共线的非零向量,且k → 1e +→ 2e 与→ 1e +k → 2e 共线,则k 的值是( ) (A ) 1 (B ) -1 (C ) 1± (D ) 任意不为零的实数 8.在四边形ABCD 中,?→?AB =?→?DC ,且?→?AC ·?→ ?BD =0,则四边形ABCD 是( ) (A ) 矩形 (B ) 菱形 (C ) 直角梯形 (D ) 等腰梯形 9.已知M (-2,7)、N (10,-2),点P 是线段MN 上的点,且?→ ?PN =-2?→ ?PM ,则P 点的坐标为( ) (A ) (-14,16)(B ) (22,-11)(C ) (6,1) (D ) (2,4)

平面向量应用举例(教学案)

2.5平面向量应用举例 一、教材分析 向量概念有明确的物理背景和几何背景,物理背景是力、速度、加速度等,几何背景是有向线段,可以说向量概念是从物理背景、几何背景中抽象而来的,正因为如此,运用向量可以解决一些物理和几何问题,例如利用向量计算力沿某方向所做的功,利用向量解决平面内两条直线平行、垂直位置关系的判定等问题。 二、教案目标 1.通过应用举例,让学生会用平面向量知识解决几何问题的两种方法-----向量法和坐标法,可以用向量知识研究物理中的相关问题的“四环节”和生活中的实际问题 2.通过本节的学习,让学生体验向量在解决几何和物理问题中的工具作用,增强学生的积极主动的探究意识,培养创新精神。 三、教案重点难点 重点:理解并能灵活运用向量加减法与向量数量积的法则解决几何和物理问题. 难点:选择适当的方法,将几何问题或者物理问题转化为向量问题加以解决. 四、学情分析 在平面几何中,平行四边形是学生熟悉的重要的几何图形,而在物理中,受力分析则是其中最基本的基础知识,那么在本节的学习中,借助这些对于学生来说,非常熟悉的内容来讲解向量在几何与物理问题中的应用。 五、教案方法 1.例题教案,要让学生体会思路的形成过程,体会数学思想方法的应用。 2.学案导学:见后面的学案 3.新授课教案基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习 六、课前准备 1.学生的学习准备:预习本节课本上的基本内容,初步理解向量在平面几何和物理中的应用 2.教师的教案准备:课前预习学案,课内探究学案,课后延伸拓展学案。 七、课时安排:1课时 八、教案过程 (一)预习检查、总结疑惑 检查落实了学生的预习情况并了解了学生的疑惑,使教案具有了针对性。 (二)情景导入、展示目标 教师首先提问:(1)若O为ABC 重心,则OA+OB+OC=0 (2)水渠横断面是四边形ABCD,DC=1 2 AB,且|AD|=|BC|,则这个四边形 为等腰梯形.类比几何元素之间的关系,你会想到向量运算之间都有什么关系? (3)两个人提一个旅行包,夹角越大越费力.为什么? 教师:本节主要研究了用向量知识解决平面几何和物理问题;掌握向量法和坐标法,以及用向量解决平面几何和物理问题的步骤,已经布置学生们课前预习了这部分,检查学生预习情况并让学生把预习过程中的疑惑说出来。 (设计意图:步步导入,吸引学生的注意力,明确学习目标。) (三)合作探究、精讲点拨。

相关主题
文本预览
相关文档 最新文档