工程流体力学
- 格式:doc
- 大小:394.50 KB
- 文档页数:4
工程流体力学知识点总结一、工程流体力学的内容1.流体力学的基本概念工程流体力学是一门重要的工程学科,它是研究运动的流体分布特性、流动过程的动力学特征、流体受力的控制机理以及提供理论支持的工程应用理论。
它综合了物理学、数学、材料学和力学等知识,它包括流体动力学、传热传质、流体力学和流体机械等方面的研究内容。
2.流体动力学流体动力学是流体运动的力学理论,它研究的是流体中的物理量,如流速、压力、密度等的变化和流体运动的规律。
它是流体物理学的基本内容,是工程流体力学的基础理论。
它的研究内容主要包括流体的静力学、流体的流变力学、流体的流动特性、流体的热力学性质、流体的动力学和流体的流动特性等。
3.传热传质传热传质是研究流体在传热和传质的过程中热量和物质的传递机理的一门学科。
它包括流体的热传导、热对流和热辐射、物质的传质、物质输运等方面的内容。
4.流体力学流体力学是一门综合学科,是研究流体的能量、动量和位置变化的动力学特性及其应用的学科。
流体力学研究的内容包括流体的流量和压力、流体的质量和动量、流体的流速、流体的流动特性等。
它主要研究的是流体受力的特性和运动特性,是工程流体力学中最重要的学科之一。
5.流体机械的理论流体机械是研究利用流体动力驱动转子的机械装置的科学,包括机械装置的流体的传动特性、涡轮机械和泵的流量控制、流体中的变频调速以及比热容与流场等。
它是工程流体力学中的重要内容,也是工程设计的重要基础。
二、工程流体力学的应用工程流体力学的基本理论可以应用于各种工程中,如机械制造、空气动力学、海洋技术、热能技术、新能源技术、能源储存和节能技术、化工反应技术等。
它在社会经济建设中发挥着重要作用,可以为社会生产提供良好的环境保护技术手段,也可以为工程设计和技术开发提供依据。
工程流体力学公式1.流体静力学公式:(1) 压强公式:P = ρgh,其中P为压强,ρ为流体密度,g为重力加速度,h为液面高度。
(2)压力公式:P=F/A,其中P为压力,F为作用力,A为受力面积。
2.流体力学基本方程:(1)质量守恒方程:∂(ρ)/∂t+∇·(ρv)=0,其中ρ为密度,t为时间,v为速度矢量。
(2) 动量守恒方程:∂(ρv)/∂t + ∇·(ρvv) = -∇P + ∇·τ +ρg,其中P为压力,τ为应力张量,g为重力加速度。
(3) 能量守恒方程:∂(ρe)/∂t + ∇·(ρev) = -P∇·v +∇·(k∇T) + ρg·v,其中e为单位质量的总能量,T为温度,k为热传导系数。
3.流体动力学方程:(1)欧拉方程:∂v/∂t+(v·∇)v=-∇(P/ρ)+g,其中v为速度矢量,P为压力,ρ为密度,g为重力加速度。
(2)再循环方程:∂v/∂t+(v·∇)v=-∇(P/ρ)+g+F/M,其中F为体积力,M为质量。
4.流体阻力公式:(1) 粘性流体的阻力公式:F = 6πμrv,其中F为阻力,μ为粘度,r为流体直径,v为速度。
(2)粘性流体在管道中的流量公式:Q=(π/8)ΔP(R^4)/(Lμ),其中Q为流量,ΔP为压差,R为半径,L为管道长度,μ为粘度。
5.流体力学定律:(1) Pascal定律:在封闭的液体容器中,施加在液体上的外力将均匀传递到液体的每一个点。
(2) Bernoulli定律:沿着流体流动方向,速度增大则压力减小,速度减小则压力增大。
除了上述公式之外,还有许多与特定问题相关的公式,如雷诺数、流体阻力系数、泵和液力传动公式等。
这些公式是工程流体力学研究和设计的基础,可以帮助工程师分析和解决与流体运动和相互作用有关的问题。
工程流体力学引言工程流体力学是研究流体在工程应用中行为的科学和技术领域。
它涉及流体的运动、压力、力学特性、流动的稳定性等问题。
工程流体力学是许多工程领域的基础,如航空航天、能源、建筑等。
本文将介绍工程流体力学的基本原理、应用以及相关的数学模型和实验技术。
基本概念流体的特性流体是一种物质的形态,其特点是可以流动。
流体包括气体和液体。
相比固体,流体在外力作用下可以流动,具有较高的分子间自由度。
流体的主要特性包括密度、压力、速度等。
流体力学基本方程工程流体力学研究流体的运动和相互作用。
在研究中,以下几个基本方程是非常重要的:•质量守恒方程:描述了流体质量的守恒原理,表示流体质量的变化率与流体的进出和积累有关。
•动量守恒方程:描述了流体的动量守恒原理,表示流体的动量变化率与外力和内力有关。
•能量守恒方程:描述了流体的能量守恒原理,表示流体的能量变化率与外界的热流和功有关。
•热力学状态方程:描述了流体在热平衡状态下的物态关系,如理想气体状态方程等。
流体的流动性质流体的流动性质是工程流体力学的核心内容之一。
流动性质包括速度场、压力场、流线和湍流等。
流体的流动性质受到流体的物理性质、边界条件和流动过程中的各种相互作用的影响。
数学模型和实验技术为了研究流体的行为和特性,工程流体力学采用了数学模型和实验技术。
数学模型数学模型是通过建立流体运动的数学方程来描述和预测流体行为的工具。
常用的数学模型包括流体运动的偏微分方程,如Navier-Stokes方程,以及一些简化的模型,如边界层理论、湍流模型等。
数学模型的选择和建立要考虑流体的性质和问题的复杂程度。
实验技术实验技术是验证和研究数学模型的重要手段。
工程流体力学中常用的实验技术包括水槽试验、风洞试验、流速测量技术等。
实验技术可以帮助研究者观察流体的实际行为,获取流体的相关参数,并与数学模型的预测结果进行比较。
应用领域工程流体力学广泛应用于各个工程领域。
以下是一些常见的应用领域:航空航天工程航空航天工程是工程流体力学的重要应用领域。
工程流体力学1 工程流体力学是什么工程流体力学(Engineering Fluid Mechanics,简写为EFM)是一门系统的学科,讨论的是涉及流体流动的物理原理及其在各种工程上的应用。
涵盖了气体和液体的流动,包括固体的流动。
它是材料科学,力学,电子学,电气工程,化学工程,热传导,机械工程等学科的综合。
它借助物理学和数学的方法来研究和分析流体物理过程,以及流体对各种物质,细节,器件和装置的影响。
2 流体力学的主要内容工程流体力学的主要内容包括静动力流体力学、压力与流量特性、热力学与流变学、不可压缩流体力学和固态流体力学。
其中,静动力流体力学研究流体的性质,及其在用于指定流体流经体系的一般条件下的性能;压力与流量特性研究的是特定的流体在给定的动压条件下的行为;热力学与流变学则是研究由于温度、压力和流速变化而引起的流体性质变化;而不可压缩流体力学则是研究气体的流动;固态流体力学则是研究固体材料的流动。
3 工程流体力学的应用工程流体力学的主要应用有液压传动,气动传动,涡轮机械和内燃机,压气机,增压机械,气体充填、分离、加热、蒸发、蒸馏及纯化等技术,空气动力学,水力学,污水处理,风力发电,水轮机械,水利工程等等。
工程流体力学的应用可以涉及空气动力学,流体压缩机和气动传动,涡轮机械,水体模型,机械设备等等。
它们可用于航空、轨道运输、宇宙空间技术、清洁能源技术、海洋技术、矿井技术等和其他工业等行业,复杂系统设计,军事科学及其它新技术中应用。
4 结论工程流体力学是涉及流体流动的物理原理及其在各种工程上的应用的系统学科,主要包括静动力流体力学、压力与流量特性、热力学与流变学、不可压缩流体力学和固态流体力学。
它的应用范围相当广泛,涉及到了航空、轨道运输、宇宙空间技术、清洁能源技术、海洋技术、矿井技术等等,作为工程科学技术的重要组成部分,它给人类带来了许多积极的影响。
工程流体力学pdf
工程流体力学指的是利用流体力学的基本原理和方程对有关流体的施用及影响的理论研究。
这是一种流体运动和物质传输的综合性学科,旨在研究及求解多相流体,其中含有液体、气体和固体等多种粒子,其运动行为。
工程流体力学利用数学模型解析介质运动特性,旨在获得精确的定义和运动方程,并且有助于理解介质的波动特性、物质的流动损失、湍流、传热、混合等物理现象过程。
工程流体力学举足轻重地促进了热工、机电、冶金、电厂、汽车等众多工程的发展,也是现代工程设计与研究的重要内容。
进行工程流体力学研究时,主要需要考虑物质与能量的传输以及流体循环系统本身带来的动态影响,并搭建介质动力学和电磁学的模型,求解介质的动力参数,如流速、温度、压强等,以及耦合场的分布。
计算机的出现给工程流体力学的研究带来了极大的便利,更便捷的绘制出精确的流线图和温度图及相应的各种物理参量分布。
工程流体力学在得到不断完善的前提下,还将在新兴技术领域中发挥重要作用,如航天、太空探索和生命科学等,从而促进人类进步。
流体:在任何微小剪切力的持续作用下能够连续不断变形的物质。
流体的密度ρ:单位体积流体所具有的质量,ρ=m/V。
流体的压缩性和膨胀性:随着压强的增加,体积缩小;温度增高,体积膨胀。
流体压缩性用体积压缩系数k来表示。
表示温度保持不变时,单位压强增量引起流体体积的相对缩小量。
不可压缩流体:在大多数情况下,可忽略压缩性的影响,认为液体的密度是一个常数。
可压缩流体:密度随温度和压强变化的流体。
通常把气体看成是可压缩流体,即它的密度不能作为常数,而是随压强和温度的变化而变化的。
把液体看作是不可压缩流体,气体看作是可压缩流体,都不是绝对的。
在实际工程中,要不要考虑流体的压缩性,要视具体情况而定。
流体的黏性:是流体抵抗剪切变形的一种属性。
流体具有内摩擦力的特性。
运动的流体所产生的内摩擦力(切向力) F 的大小与垂直于流动方向的速度梯度du/dy成正比,与接触面的面积A成正比,并与流体的种类有关,而与接触面上压强P 无关。
流层间单位面积上的内摩擦力称为切向应力,则τ=F/A=μdu/dy。
动力黏度(黏性系数)μ:在通常的压强下,压强对流体的黏性影响很小,可忽略。
高压下,流体的黏性随压强升高而增大。
液体黏性随温度升高而减小,气体黏性随温度升高而增大。
运动黏度ν:动力黏度与密度的比值,ν=μ/ρ。
理想流体:不具有黏性的流体,,实际流体都是具有黏性的。
在流体力学中,总是先研究理想流体的流动,而后再研究黏性流体的流动。
作用在流体上的力可以分为两大类,表面力和质量力。
表面力:作用在流体中所取某部分流体体积表面上的力,即该部分体积周围的流体或固体通过接触面作用在其上的力。
可分解成与流体表面垂直的法向力和与流体表面相切的切向力。
质量力:指作用在流体某体积内所有流体质点上并与这一体积的流体质量成正比的力,又称体积力。
在均匀流体中,质量力与受作用流体的体积成正比。
流体的压强:在流体内部或流体与固体壁面所存在的单位面积上的法向作用力,当流体处于静止状态时,流体的压强称流体静压强p,单位为Pa。
工程流体力学
一、选择题
1. 关于流体的粘性,以下说法不正确的是( )。
A 形成流体粘性的原因是分子间的引力和流体分子的热运动
B 压强增加,粘性增大
C 液体的粘性随温度的增加而增加
D 气体的粘性随温度的增加而增加
2. 流线和迹线重合的是那种流动?( )
A. 定常流动
B. 非定常流动
C. 不可压缩流动
D. 无粘性流动
3. 连续方程表示控制体的( )。
A. 能量守恒
B. 动量守恒
C. 流量守恒
D. 质量守恒
4. 水在一条管道中流动,如果两截面的管径比为321=d d ,则速度比为=21v ( )。
A. 3
B. 1
C. 9
D. 1
5. 文丘里流量计用于测量( )。
A. 点速度
B. 压强
C. 密度
D. 流量
6.局部损失系数ς的量纲为( )。
A. m
B. s m
C. s m 2
D. 无量纲
7. 管道截面积突然扩大的局部损失=j h ( )。
A. g v v 22221-
B. g
v v 22221+ C. ()g v v 222
1+ D. ()g
v v 2221- 8. 如果空气气流速度为s m 100,温度为10℃,则=Ma ( )。
A. 1.5776
B. 0.2966
C. 0.3509
D. 0.1876
9. 当收缩喷管的质量流量达到极大值时,出口处的Ma ( )。
A. 1〉
B. 1=
C. 1〈
D. ∞=
10. 边界层的流动分离( )。