复数的坐标表示 ppt课件
- 格式:ppt
- 大小:342.00 KB
- 文档页数:9
第一讲——复数的概念与坐标表示知识要点1.复数的概念形如(,)+∈a bi a b R 的数叫做复数,用字母z 表示,即(,)=+∈z a bi a b R 。
其中a 叫做复数z 的实部,记作Re z ,b 叫做复数z 的虚部,记作Im z ,i 叫做虚数单位,规定:21=-i 。
(1)对于复数=+z a bi ,如果没有特殊说明,则有,∈a b R ;(2)=+z a bi 是复数的代数形式,并规定:00,0i bi bi ⋅=+=;(3)复数=+z a bi , 当0=b 时,复数=z a 是实数;当0≠b 时,z 叫做虚数;当0=a 且0≠b 时,z 叫做纯虚数;当且仅当0==a b 时,0=z 。
(4)复数全体所组成的集合叫做复数集,用字母C 表示。
复数(,) z a bi a b R =+∈00b b =⎧⎨≠⎩()()实数虚数 口答:1、下列复数:0,13i -,13i -,3-,6i 中,实数是__________,虚数是__________,纯虚数是___________,实部与虚部都是0的复数是___________。
答:实数:0,3-;虚数:13i -,13i -,6i ;纯虚数:13i -,6i ;实部与虚部都是0的复数:0。
2.两个复数相等如果两个复数1(,)=+∈z a bi a b R 和2(,)=+∈z c di c d R 的实部与虚部分别相等,即=a c 且=b d ,那么这两个复数相等,记作+=+a bi c di 。
两个复数相等的充要条件是实部与虚部分别相等,即: +=+a bi c di ()()0⇔-+-=a c b d i 00-=⎧⇔⎨-=⎩a c b d =⎧⇔⎨=⎩a c b d3.复平面建立了直角坐标系用来表示复数的平面叫做复平面(如图所示),在这里x 轴叫做实轴,y 轴叫做虚轴。
表示实数的点都在实轴上,表示纯虚数的点都在虚轴上,原点表示实数0。