江西省南昌二中2020届高三高考数学(文科)校测试题(一)(wd无答案)
- 格式:doc
- 大小:178.57 KB
- 文档页数:5
2020届江西省南昌二中高三高考校测(一)数学(文)试题一、单选题1.已知全集U =R ,集合{|01},{1,0,1}A x R x B =∈<=-,则()UA B =( )A .{}1-B .{1}C .{1,0}-D .{0,1}【答案】C【解析】根据补集的运算,求得{|0Ux A x =≤或1}x >,再结合交集的运算,即可求解. 【详解】由题意,全集U =R ,集合{|01}A x R x =∈<≤, 可得{|0Ux A x =≤或1}x >,又由集合{1,0,1}B =-,所以(){1,0}UA B ⋂=-.故选:C. 【点睛】本题考查集合的补集与交集概念及运算,其中解答中熟记集合的交集、补集的概念和运算方法是解答的关键,着重考查了运算与求解能力. 2.若复数2i z =-,i 为虚数单位,则(1)(1)z z +-= A .24i + B .24i -+ C .24i -- D .4-【答案】B【解析】()()11z z +-=2211(2)1(34)24z i i i -=--=--=-+ ,选B.,3.已知实数.a b ,则“2ab ≥”是“224a b +≥”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【解析】本题考查充分必要条件的判断、不等式等知识. 充分性:由均值不等式;必要性:取,显然得不到2ab ≥.故“2ab ≥”是“224a b +≥”的充分不必要条件,选A .4.若函数()()sin 0x f x x ωωω=>的图象的一条对称轴为3x π=,则ω的最小值为( ) A .32B .2C .52D .3【答案】C【解析】由对称轴为3x π=可知3f π⎛⎫ ⎪⎝⎭为最大值或最小值,即可求解.【详解】∵()12sin 2sin 23f x x x x πωωω⎛⎫⎛⎫==- ⎪ ⎪ ⎪⎝⎭⎝⎭, 且函数()f x 的图象的一条对称轴为3x π=,∴当3x π=时,()2sin 333f x f πππω⎛⎫⎛⎫==-⎪ ⎪⎝⎭⎝⎭取最大值或最小值, ∴,332k k πππωπ-=+∈Z ,∴53,2k k ω=+∈Z , ∵0>ω, ∴ω的最小值为52. 故选:C. 【点睛】本题主要考查了正弦型函数的图象与性质,属于中档题.5.已知数列}{n a 为等比数列,n S 是它的前n 项和,若2312a a a ⋅=,且4a 与72a 的等差中项为54,则5S =( ). A .35 B .33C .31D .29【答案】C【解析】试题分析:由题意得,设等比数列的公比为q ,则2231112a a a q a q a =⋅=,所以42a =,又3474452224a a a a q +=+=⨯,解得11,162q a ==,所以5515116(1())(1)2311112a q S q --===--,故选C . 【考点】等比数列的通项公式及性质. 6.已知向量()3,0a =,(),2b x =-,且()2a a b ⊥-,则⋅=a b ( )A .-B .C .32-D .32【答案】D【解析】先由题意,求出()232,4a bx -=-,再由向量垂直的坐标表示列出方程求出x =,根据向量数量积的坐标表示,即可得出结果. 【详解】 因为向量()3,0a =,(),2b x =-, 则()232,4a b x -=-;又()2a a b ⊥-,则()20aa b ⋅-=,)2040x +⨯=,解得x ;所以()33·3022a b =⨯+⨯-=. 故选:D. 【点睛】本题考查了平面向量的数量积与坐标运算问题,是基础题.7.我国明朝数学家程大位著的《算法统筹》里有一道闻名世界的题目:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”以下程序框图反映了对此题的一个求解算法,则输出的n 的值为( )A .20B .25C .30D .75【答案】B【解析】利用循环结构依次推理计算即得结果. 【详解】由题意,模拟程序的运行过程,依次写出每次循环得到的n ,m ,s 的值,即可得出跳出循环时输出n 的值.解:输入20n =,80m =,100s ≠,21n =,79m =,100s ≠, 22n =,78m =,100s ≠, 23n =,77m =,100s ≠, 24n =,76m =,100s ≠, 25n =,75m =,100s ,输出25n =, 故选:B. 【点睛】本题考查了循环结构的程序框图应用问题,属于基础题.8.已知某样本的容量为50,平均数为70,方差为75.现发现在收集这些数据时,其中的两个数据记录有误,一个错将80记录为60,另一个错将70记录为90.在对错误的数据进行更正后,重新求得样本的平均数为x ,方差为2s ,则( ) A .270,75x s =<B .270,75x s =>C .270,75x s ><D .270,75x s <>【答案】A【解析】根据题中所给的平均数的条件,重新列式求新数据的平均数,根据方差公式写出两组数据的方差,并比较大小. 【详解】 由题意,可得7050806070907050x ⨯+-+-==,设收集的48个准确数据分别记为1248,,,x x x ,则222221248175[(70)(70)(70)(6070)(9070)]50x x x =-+-++-+-+-22212481[(70)(70)(70)500]50x x x =-+-++-+, 22222212481[(70)(70)(70)(8070)(7070)]50s x x x =-+-++-+-+-22212481[(70)(70)(70)100]7550x x x =-+-++-+<,所以275s <. 故选:A . 【点睛】本题主要考查了数据的平均数和方差的计算公式的应用,其中解答中熟记数据的平均数和方差的公式,合理准确计算是解答的关键,着重考查了推理与运算能力,是基础题. 9.下列图象可以作为函数()2xf x x a=+的图象的有 ( )A .1个B .2个C .3个D .4个【答案】C【解析】当a <0时,如取a =−4,则()24xf x x =- 其定义域为:{x |x ≠±2},它是奇函数,图象是③,所以③选项是正确的;当a >0时,如取a =1,其定义域为R ,它是奇函数,图象是②.所以②选项是正确的; 当a =0时,则()1f x x=,其定义域为:{x |x ≠0},它是奇函数,图象是④,所以④选项是正确的. 本题选择C 选项.10.已知P ,A ,B ,C 是半径为2的球面上的点,O 为球心,2PA PB PC ===,90ABC ︒∠=,则三棱锥O ABC -体积的最大值是( )A .3B .1C .12D .3 【答案】B【解析】画图分析可知O 到面ABC 的距离为定值,故只需求底面ABC 的面积最大值,再根据基本不等式的方法求解即可. 【详解】如图,设PO 交平面ABC 于D .因为2PA PB PC ===,由球的对称性有PD ⊥底面ABC .又PB PO OB ==,PO DB ⊥.故1PD OD ==.3DB =,23AC =因为90ABC ︒∠=,所以111326O ABC V AB BC OD AB BC -=⨯⋅⨯=⋅. 又222122AB BC AC AB BC +==≥⋅.故6AB BC ⋅≤. 故116O ABC V AB BC -=⋅≤.当且仅当6AB BC ==时取等号.故选:B 【点睛】本题主要考查了锥体外接球以及根据基本不等式求最值的问题,需要根据题意找到定量关系,利用基本不等式求最值,属于中档题.11.已知1F ,2F 分别是双曲线22:143x y C -=的左,右焦点,动点A 在双曲线的左支上,点B 为圆22:(3)1E x y ++=上一动点,则2AB AF +的最小值为( )A .7B .8C .6D .3【答案】A【解析】求得双曲线的a ,b ,c ,可得焦点坐标,求得圆E 的圆心和半径,运用双曲线的定义和圆的性质,结合三点共线取得最值的性质,即可得到所求最小值. 【详解】双曲线22143x y -=中2a =,b =c ==1(F ,2F ,0),圆E 半径为1r =,(0,3)-E ,21124AF AF a AF ∴=+=+,1AB AE BE AE -=-(当且仅当A ,E ,B 共线 且B 在A ,E 之间时取等号),21111433AB AF AE AF AF AE EF +-++=+++37==,当且仅当A 是线段1EF 与双曲线的交点时取等号.2AB AF ∴+的最小值是7.故选:A 【点睛】本题考查双曲线的定义和方程、性质,以及圆的方程和性质,考查三点共线取得最值的性质,考查运算能力,属于中档题.12.若函数(1),()21,x x e x af x x x a⎧-+=⎨-->⎩有最大值,则实数a 的取值范围是( )A .211[,)22e --+∞ B .21[,)2e -+∞ C .[2-,)+∞ D .211(2,]22e---【答案】A【解析】由x a >时,()21f x x =--递减,且无最大值,可得x a 时,()f x 取得最大值M ,且21M a --,求出x a 时,()f x 的导数和单调区间、极大值,讨论2a <-,判断单调性,可得最大值,解不等式判断无解,则2a -,求出最大值,解不等式即可得到所求a 的范围. 【详解】解:由x a >时,()21f x x =--递减,可得()21f x a <--,无最大值,函数(1),()21,x x e x a f x x x a⎧-+=⎨-->⎩有最大值,可得x a 时,()f x 取得最大值M ,且21Ma --,由()(1)xf x x e =-+的导数为()(2)xf x x e '=-+,可得2x >-时,()0f x '<,()f x 递减;2x <-时,()0f x '>,()f x 递增. 即有()f x 在2x =-处取得极大值,且为最大值2e -.若2a <-,则()f x 在(-∞,]a 递增,可得()()f x f a (1)aa e =-+,由题意可得(1)21a a e a -+≥--,即得(1)210aa e a +--≤, 令(1))1(2aa e g a a +--=,则()(2)20ag a a e '=+-<,(2)a <-, 则()g a 在(),2-∞-递减,可得2(2)0()3g a g e ->-=-+>,则不等式(1)210aa e a +--≤无实数解.故2a -,此时在2x =-处()f x 取得最大值,为2e --,故221e a ----, 解得21122a e --, 综上可得,a 的范围是211[22e--,)+∞. 故选:A. 【点睛】本题考查了分段函数的最值问题,考查转化思想,以及分类讨论思想方法,注意运用导数,求出单调区间和极值、最值,考查化简整理的运算能力,属于中档题.二、填空题13.函数x y axe =的图象在0x =处的切线与直线y x =-互相垂直,则a =_____. 【答案】1【解析】求出导函数,根据0x =处的导数值为1,即可求得参数的值. 【详解】因为x y axe =,故可得()xy eax a ='+,又x y axe =的图象在0x =处的切线与直线y x =-互相垂直, 故01x y a ='==.故答案为:1. 【点睛】本题考查由切线的斜率求参数的值,属基础题.14.如图在平行四边形ABCD 中,4AB =,3AD =,E 为边CD 的中点,13DF DA →→=,若·4AE BF →→=-,则cos DAB ∠=___________.【答案】14【解析】直接利用三角形法则和向量的线性运算和向量的数量积的运算的应用求出夹角的余弦值. 【详解】因为平行四边形ABCD 中,4AB =,3AD =,E 是边CD 的中点,13DF DA →→=,∴12AD DE AD AB AE →→→→→=+=+,23BF AF AB AD AB →→→→→=-=-,∴2212212()()23323AE BF AD AB AD AB AD AB AD AB →→→→→→→→→→⋅=+⋅-=--⋅222123434cos 323BAD =⨯-⨯-⨯⨯⨯∠ 688cos 4BAD =--∠=-,所以1cos 4DAB ∠=. 故答案为:14. 【点睛】本题考查的知识要点:向量的线性运算,向量的数量积,向量的夹角的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题.15.如图,在一个底面边长为4cm 的正六棱柱容器内有一个半径为23cm 的铁球,现向容器内注水,使得铁球完全浸入水中,若将铁球从容器中取出,则水面下降______cm .【答案】43π 【解析】由题意可求球的体积34(23)3233V ππ=⨯⨯=,假设铁球刚好完全浸入水中,则水面高度为32883234433243h ππ-==,即可求水面下降高度.【详解】解:假设铁球刚好完全浸入水中,球的体积34(23)3233V ππ=⨯⨯=,水面高度为3此时正六棱柱容器中水的体积为2134643323288323V ππ=⨯⨯=-, 若将铁球从容器中取出,则水面高度3234433243h ππ==,则水面下降4443(43)33ππ=. 故答案为:43π. 【点睛】本题考查了球体积的求解,考查了棱柱体积的求解.16.在数列{}n a 中,11a =,122133232(2)n n n n n a a n ----=-⋅+,n S 是数列1{}n a n+的前n 项和,则n S 为___________. 【答案】13(1)3n- 【解析】将122133232(2)n n n n n a a n ----=-⋅+化为1213(1)3(1)2(2)n n n n a a n ---+=++,再由等比数列的定义和通项公式、求和公式,可得所求和. 【详解】解:由11a =,122133232(2)n n n n n a a n ----=-⋅+,可得1212213(1)3(1)33232(2)n n n n n n n a a n ------+=++--⋅+,即1213(1)3(1)2(2)n n n n a a n ---+=++,所以数列{}13(1)n n a -+是以1113(1)2a -+=为首项、2为公差的等差数列,所以13(1)2n n a n -+=,由1123n n a n -+=,12(1)133(1)1313n n nS -==--.故答案为:13(1)3n-. 【点睛】本题考查数列的通项公式和求和公式,构造等比数列是解题的关键,考查转化思想和运算能力,属于中档题.三、解答题17.已知3()22sin()sin()2f x x x x ππ=++-,x ∈R , (1)求()f x 的最小正周期及单调递增区间;(2)已知锐角ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c,且()f A =,3a =,求BC 边上的高的最大值.【答案】(1)()f x 的最小正周期为:π;函数()f x 单调递增区间为: 511[,]()1212k k k Z ππππ++∈;(2. 【解析】(1)根据诱导公式,结合二倍角的正弦公式、辅助角公式把函数的解析式化简成余弦型函数解析式形式,利用余弦型函数的最小正周期公式和单调性进行求解即可; (2)由(1)结合()f A =,求出A 的大小,再根据三角形面积公式,结合余弦定理和基本不等式进行求解即可. 【详解】 (1)3()3cos 22sin()sin()23cos 22cos sin 3cos 2sin 22cos(2)6f x x x x x x x x x x πππ=++-=-=-=+()f x 的最小正周期为:22T ππ==; 当2222()6k x k k Z πππππ+≤+≤+∈时,即当511()1212k x k k Z ππππ+≤≤+∈时,函数()f x 单调递增,所以函数()f x 单调递增区间为:511[,]()1212k k k Z ππππ++∈; (2)因为()3f A =-,所以3()2cos(2)3cos(2),6675(0,),2(,)2.2666663f A A A A A A A πππππππππ=+=-⇒+=-∈∴+∈∴+=∴=设BC 边上的高为h ,所以有113sin 22ah bc A h bc =⇒=, 由余弦定理可知:22222222cos 929a b c bc A b c bc b c bc bc =+-⇒=+-+≥∴≤(当用仅当b c=时,取等号),所以333h bc =≤,因此BC 边上的高的最大值33. 【点睛】本题考查了正弦的二倍角公式、诱导公式、辅助角公式,考查了余弦定理、三角形面积公式,考查了基本不等式的应用,考查了数学运算能力.18.为响应党中央“扶贫攻坚”的号召,某单位指导一贫困村通过种植紫甘薯来提高经济收入.紫甘薯对环境温度要求较高,根据以往的经验,随着温度的升高,其死亡株数成增长的趋势.下表给出了2017年种植的一批试验紫甘薯在温度升高时6组死亡的株数: 温度(单位:C ︒)21 23 24 27 29 32死亡数y (单位:株)61120275777经计算:611266i i x x ===∑,611336i i y y ===∑,()()61557i i i x x y y =--=∑,()62184ii x x =-=∑,()6213930i i y y =-=∑,()621ˆ236.64i i y y=-=∑,8.0653167e ≈,其中i x ,i y 分别为试验数据中的温度和死亡株数,1,2,3,4,5,6i =.(1)若用线性回归模型,求y 关于x 的回归方程ˆˆˆy bx a =+(结果精确到0.1);(2)若用非线性回归模型求得y 关于x 的回归方程0.2303ˆ0.06xye =,且相关指数为20.9522R =.(i )试与(1)中的回归模型相比,用2R 说明哪种模型的拟合效果更好; (ii )用拟合效果好的模型预测温度为35C ︒时该紫甘薯死亡株数(结果取整数). 附:对于一组数据()11,u v ,()22,u v ,,(),n n u v ,其回归直线ˆˆˆvu αβ=+的斜率和截距的最小二乘估计分别为:()()()121ˆnii i ni i uu v v u u β==--=-∑∑,ˆˆav u β=-;相关指数为:()()22121ˆ1ni i i niii v vR v v ==-=--∑∑.【答案】(1)ˆy =6.6x −139.4;(2)(i )回归方程0.2303ˆ0.06xy e =比线性回归方程ˆy =6.6x −138.6拟合效果更好;(ii )190.【解析】(1)根据公式,结合已知数据,分别求得ˆˆ,ba ,则问题得解; (2)根据相关指数的计算公式,结合已知数据,求得2R ,再进行比较即可; (3)将35x =代入回归方程,即可求得结果. 【详解】(Ⅰ)由题意得,()()()121557ˆ 6.6384nii i nii xx y y bxx ==--==≈-∑∑∴ˆa=33−6.63⨯26=−139.4, ∴y 关于x 的线性回归方程为:ˆy=6.6x −139.4. (Ⅱ) (i )线性回归方程ˆy=6.6x −138.6对应的相关指数为: ()()6221621ˆ236.641110.06020.93983930ii i i i i yyR y y ==-=-=-≈-=-∑∑,因为0.9398<0.9522,所以回归方程0.2303ˆ0.06xye =比线性回归方程ˆy=6.6x −138.6拟合效果更好. (ii )由(i )知,当温度35C x ︒=时,0.2303358.06050.060.060.063167190ˆye e ⨯==≈⨯≈, 即当温度为35︒C 时该批紫甘薯死亡株数为190. 【点睛】本题考查线性回归直线方程的求解、相关指数的求解,以及用回归直线方程进行估算,属综合中档题.19.已知四棱台1111ABCD A B C D -的下底面是边长为4的正方形,14AA =,且1AA ⊥面ABCD ,点P 为1DD 的中点,点Q 在BC 上,3BQ QC =,1DD 与面ABCD 所成角的正切值为2.(1)证明://PQ 面11A ABB ;(2)求证:1AB ⊥面PBC ,并求三棱锥1Q PBB -的体积. 【答案】(1)证明见解析;(2)证明见解析,6.【解析】(1)取1AA 中点E ,连接PE 、BE ,过1D 作1D H AD ⊥于H ,可证四边形PQBE 为平行四边形,得出//PQ BE ,故而//PQ 面11A ABB ;(2)由1AA ⊥面ABCD 可得1AA BC ⊥,由相似三角形可得1AB BE ⊥,故而1AB ⊥平面PEBC ,求出1B 到平面PEBC 的距离,代入体积公式即可得出棱锥的体积. 【详解】(1)证明:取1AA 中点E ,连接PE 、BE ,过1D 作1D H AD ⊥于H .1AA ⊥面ABCD ,11//AA D H ,1D H ∴⊥面ABCD .1D DA ∴∠为1DD 与面ABCD 所成角. ∴12AA DH=,又14AA =, 2DH ∴=.112A D ∴=.111()32PE A D AD ∴=+=, 334BQ BC == 又//,//EP AD EP BQ ,∴四边形PQBE 为平行四边形,//PQ BE ∴,又PQ ⊂/面11A ABB ,BE ⊂面11A ABB , //PQ ∴面11A ABB .(2)1AA ⊥面ABCD ,BC ⊂平面ABCD ,1AA BC ∴⊥,又BC AB ⊥,1ABAA A =,BC ∴⊥面11ABB A ,又1AB ⊂平面11ABB A ,1BC AB ∴⊥.在梯形11A ABB 中,Rt BAE Rt ∆≅△11AA B ,111190B AE AEB B AE AB A ∴∠+∠=∠+∠=︒,1AB BE ∴⊥,又BEBC B =,BE ⊂平面PEBC ,BC ⊂平面PEBC ,1AB ∴⊥面PEBC .设1AB BE M ⋂=,2AE =,4AB =,25BM ∴=,112A B =,14AA =,125AB ∴=,·4525AE AB AM BE ∴===, 1165B M AB AM ∴=-=, 又334BQ BC ==, ∴11111165·3256332Q PBB B PBQ PBQ V V S B M --∆===⨯⨯⨯⨯=.【点睛】本题考查了线面平行的判定,线面垂直的判定,棱锥的体积计算,考查了空间想象能力与计算能力,属于中档题.20.已知曲线C 上的点到点()1,0F 的距离比到直线:20l x +=的距离小1,O 为坐标原点.(1)过点F 且倾斜角为45的直线与曲线C 交于M 、N 两点,求MON △的面积; (2)设P 为曲线C 上任意一点,点()2,0N ,是否存在垂直于x 轴的直线l ,使得l 被以PN 为直径的圆截得的弦长恒为定值?若存在,求出l 的方程和定值;若不存在,说明理由.【答案】(1)22(2)直线l 存在,其方程为1x =,定值为2.【解析】(1)利用抛物线的定义可求得曲线C 的方程,由题意可得直线MN 的方程为1y x =-,设点()11,M x y 、()22,N x y ,将直线MN 的方程与抛物线C 的方程联立,列出韦达定理,利用三角形的面积公式可求得MON △的面积;(2)假设满足条件的直线l 存在,其方程为x a =,并设点()00,P x y ,求出以PN 为直径的圆的方程,将x a =代入圆的方程,求出弦长的表达式,进而可求得a 的值,由此可求得直线l 的方程. 【详解】(1)依题意得,曲线C 上的点到点()1,0F 的距离与到直线:1l x =-的距离相等, 所以曲线C 的方程为:24y x =.过点F 且倾斜角为45的直线方程为1y x =-,设()11,M x y ,()22,N x y ,联立241y x y x ⎧=⎨=-⎩,得2440y y --=,则124y y +=,124y y ⋅=-,则1212MAN S y y =-==△;(2)假设满足条件的直线l 存在,其方程为x a =,设点()00,P x y , 则以PN 为直径的圆的方程为()()()0020x x x y y y --+-=, 将直线x a =代入,得()()20020y y y a a x -+--=,则()()()()2000424120y a a x a x a a ∆=---=-+->⎡⎤⎣⎦,设直线l 与以PN 为直径的圆的交点为()3,A a y 、()4,B a y , 则340y y y +=,()()3402y y a a x ⋅=--,于是有34AB y y =-==,当10a -=,即1a =时,2AB =为定值. 故满足条件的直线l 存在,其方程为1x =. 【点睛】本题考查利用抛物线的定义求抛物线的方程,同时也考查了抛物线中定值问题的求解,考查计算能力,属于中等题. 21.已知函数2()ln 2f x x x x =+-. (1)讨论函数()f x 的单调性;(2)判断并说明函数()()cos g x f x x =-的零点个数.若函数()g x 所有零点均在区间.[,](,)m n m n ∈∈Z Z 内,求n m -的最小值.【答案】(1)函数()f x 的单调增区间为10,2⎛ ⎝⎭,单调减区间为1,2⎛⎫++∞ ⎪ ⎪⎝⎭(2)答案见解析.【解析】(1)求出导函数()'f x ,由()0f x '>确定增区间,由()0f x '<确定减区间;(2)求出导函数()'g x ,分类讨论()'g x 的正负,确定()g x 的单调性,再根据零点存在定理确定零点存在的区间.首先确定(0,1)上有一个零点,然后确定1,2π⎛⎫ ⎪⎝⎭,,32π⎛⎫ ⎪⎝⎭,(2,3),(3,)+∞上有否零点,从而可得n m -的最小值.【详解】(1)2()ln 2f x x x x =+-的定义域为(0,)+∞,21221()22x x f x x x x'-++=+-=,令()0f x '=,得112x =,212x -=(舍).当x ⎛∈ ⎝⎭时,()0f x '>,当⎫+∞⎪⎪⎝⎭时,()0f x '<,所以()f x 在⎛ ⎝⎭上单调递增,在⎫+∞⎪⎪⎝⎭上单调递减,因此,函数()f x 的单调增区间为⎛ ⎝⎭,单调减区间为⎫+∞⎪⎪⎝⎭. (2)2()ln 2cos g x x x x x =+--,当(0,1)x ∈时,1()22sin g x x x x'=+-+, 因为1()22f x x x'=+-单调递减, 所以()12201g x '>+-+=,()g x 在(0,)+∞上单调递增, 又(1)1cos10g =->,11111ln cos 0442164g ⎛⎫=+--<⎪⎝⎭, 所以存在唯一1(0,1)x ∈,使得()10g x =.当1,2x π⎡⎫∈⎪⎢⎣⎭,1()22sin g x x x x '=+-+,21()2cos 0g x x x ''=--+<, 所以()'g x 单调递减, 又22102g πππ⎛⎫'=+-+>⎪⎝⎭, 所以()0g x '>,()g x 在1,2x π⎡⎫∈⎪⎢⎣⎭上单调递增. 因为(1)1cos10g =->,所以()0>g x ,故不存在零点.当,32x π⎡⎫∈⎪⎢⎣⎭时,1()22sin g x x x x '=+-+,21()2cos 0g x x x ''=--+<, 所以()'g x 单调递减, 又02g π⎛⎫'>⎪⎝⎭,1(2)24sin 202g '=+-+<, 所以存在0,22x π⎡⎫∈⎪⎢⎣⎭,使得()00g x '=. 当0,2x x π⎡⎫∈⎪⎢⎣⎭时,()0g x '>,()g x 单调递增, 当()0,3x x ∈时,()0g x '<,()g x 单调递减.又2ln 0224g ππππ⎛⎫=+-> ⎪⎝⎭,(2)ln 2cos 20g =->,(3)ln 369cos30g =+--<,所以存在唯一2(2,3)x ∈,使得()20g x =.当[3,)x ∈+∞时,22()12130g x x x x x x <-+-+=-+≤,故不存在零点. 综上,()g x 存在两个零点1x ,2x ,且1(0,1)x ∈,0(2,3)x ∈, 因此n m -的最小值为3. 【点睛】本题考查用导数研究函数的单调性,用导数研究函数的零点.解题关键是掌握导数与单调性的关系.本题对学生分析问题解决问题的能力,转化与化归能力要求较高,本题属于难题.22.选修4-4:坐标系与参数方程:在直角坐标系xOy 中,曲线1cos :1sin x tC y t=⎧⎨=+⎩(t 为参数),以坐标原点O 为极点,以x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2cos 3πρθ⎛⎫-= ⎪⎝⎭(1)求曲线1C 的极坐标方程;(2)已知点()2,0M ,直线l 的极坐标方程为6πθ=,它与曲线1C 的交点为O ,P ,与曲线2C 的交点为Q ,求MPQ ∆的面积. 【答案】(1)1:2sin C ρθ=(2)1【解析】(1)首先把参数方程转化为普通方程,利用普通方程与极坐标方程互化的公式即可得到曲线1C 的极坐标方程;(2)分别联立1C 与l 的极坐标方程、2C 与l 的极坐标方程,得到P 、Q 两点的极坐标,即可求出PQ 的长,再计算出M 到直线l 的距离,由此即可得到MPQ ∆的面积. 【详解】解:(1)1cos :1sin x t C y t =⎧⎨=+⎩,其普通方程为()2211x y +-=,化为极坐标方程为1:2sin C ρθ=(2)联立1C 与l 的极坐标方程:2sin 6ρθπθ=⎧⎪⎨=⎪⎩,解得P 点极坐标为1,6π⎛⎫⎪⎝⎭联立2C 与l的极坐标方程:2cos 36πρθπθ⎧⎛⎫-= ⎪⎪⎪⎝⎭⎨⎪=⎪⎩,解得Q 点极坐标为3,6π⎛⎫ ⎪⎝⎭,所以2PQ =,又点M 到直线l 的距离2sin 16d π==,故MPQ ∆的面积112S PQ d =⋅=. 【点睛】本题考查参数方程、普通方程、极坐标方程的互化,利用极径的几何意义求三角形面积是解题的关键,属于中档题.第 1 页 共 6 页 23.已知()11f x x ax =+--.(1)当1a =时,求不等式()1f x >的解集;(2)若()0,1x ∈时不等式()f x x >成立,求a 的取值范围.【答案】(1)12x x ⎧⎫>⎨⎬⎩⎭;(2)(]0,2 【解析】分析:(1)将1a =代入函数解析式,求得()11f x x x =+--,利用零点分段将解析式化为()2,1,2,11,2, 1.x f x x x x -≤-⎧⎪=-<<⎨⎪≥⎩,然后利用分段函数,分情况讨论求得不等式()1f x >的解集为12x x ⎧⎫⎨⎬⎩⎭; (2)根据题中所给的()0,1x ∈,其中一个绝对值符号可以去掉,不等式()f x x >可以化为()0,1x ∈时11ax -<,分情况讨论即可求得结果.详解:(1)当1a =时,()11f x x x =+--,即()2,1,2,11,2, 1.x f x x x x -≤-⎧⎪=-<<⎨⎪≥⎩故不等式()1f x >的解集为12x x ⎧⎫⎨⎬⎩⎭. (2)当()0,1x ∈时11x ax x +-->成立等价于当()0,1x ∈时11ax -<成立. 若0a ≤,则当()0,1x ∈时11ax -≥;若0a >,11ax -<的解集为20x a <<,所以21a ≥,故02a <≤. 综上,a 的取值范围为(]0,2.点睛:该题考查的是有关绝对值不等式的解法,以及含参的绝对值的式子在某个区间上恒成立求参数的取值范围的问题,在解题的过程中,需要会用零点分段法将其化为分段函数,从而将不等式转化为多个不等式组来解决,关于第二问求参数的取值范围时,可以应用题中所给的自变量的范围,去掉一个绝对值符号,之后进行分类讨论,求得结果.。
2020年江西省南昌二中高考数学质检试卷(文科)(7月份)一、选择题(共12小题).1.已知集合A={x||2x﹣1|≥3},B={x|y=lg(x2﹣x﹣6)},则∁R A∩B=()A.(﹣1,3)B.∅C.(2,3)D.(﹣2,﹣1)2.复数z=(sinθ﹣2cosθ)+(sinθ+2cosθ)i是纯虚数,则sinθcosθ=()A.﹣B.﹣C.D.3.甲、乙两组数据如茎叶图所示,若它们的中位数相同,平均数也相同,则图中的m,n 的比值=()A.B.C.2D.34.在等差数列{a n}中,a3+a8+a13=27,S n表示数列{a n}的前n项和,则S15=()A.134B.135C.136D.1375.已知a>0,b>0,两直线l1:(a﹣1)x+y﹣1=0,l2:x+2by+1=0且l1⊥l2,则的最小值为()A.2B.4C.8D.96.执行如图所示的程序框图,输出S的值是()A.0B.C.D.7.圆柱的底面半径为r,侧面积是底面积的4倍.O是圆柱中轴线的中点,若在圆柱内任取一点P,则使|PO|≤r的概率为()A.B.C.D.8.下列四个命题中,正确的有()①两个变量间的相关系数r越小,说明两变量间的线性相关程度越低;②命题“∃x∈R,使得x2+x+1<0”的否定是:“对∀x∈R,均有x2+x+1>0”;③命题“p∧q为真”是命题“p∨q为真”的必要不充分条件;④若函数f(x)=x3+3ax2+bx+a2在x=﹣1有极值0,则a=2,b=9或a=1,b=3.A.0 个B.1 个C.2 个D.3个9.已知x,y满足区域D:,则的取值范围是()A.[1,+∞)B.C.D.10.函数的图象大致为()A.B.C.D.11.已知抛物线C:x2=4y,焦点为F,圆M:x2﹣2x+y2+4y+a2=0(a>0),过F的直线l与C交于A,B两点(点A在第一象限),且,直线l与圆M相切,则a=()A.0B.C.D.312.若函数f(x)=ax2+(2﹣a)x﹣lnx(a∈R)在其定义域上有两个零点,则a的取值范围是()A.(4(ln2+1),+∞)B.(0,4(1+ln2)]C.(﹣∞,0)∪{4(1+ln2)}D.(0,4(ln2+1))二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卡的相应位置.13.已知某三棱锥的三视图如图所示,那么这个几何体的外接球的体积为.14.已知△ABC中,∠BAC=60°,AB=2,AC=4,E、F分别为BC边上三等分点,则=.15.若数列{a n}的前n项和为S n,对任意正整数n都有3S n+a n=2,记,则数列的前50项的和为.16.如图是3世纪我国汉代的赵爽在注解周髀算经时给出的,人们称它为“赵爽弦图”,阴影部分是由四个全等的直角三角形组成的图形,在大正方形内随机取一点,这一点落在小正方形内的概率为,若直角三角形的两条直角边的长分别为a,b(a>b),则=.三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤,解答应写在答题卡上的指定区域内.17.已知各项都不相等的等差数列{a n}中,,又a1,a2,a6成等比数列.(I)求数列{a n}的通项公式;(II)若函数,0<φ<π,的一部分图象如图所示,A(﹣1,a1),B(3,﹣a1)为图象上的两点,设∠AOB=θ,其中O为坐标原点,0<θ<π,求cos(θ+φ)的值.18.某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天每100颗种子浸泡后的发芽数,得到如下资料:日期3月1日3月2日3月3 日3月4日3月5日温差x(℃)101113128发芽数y2325302616(颗)(1)从3月1日至3月5日中任选2天,记发芽的种子数分别为m,n,求事件“m,n 均小于25”的概率;(2)请根据3月2日至3月4日的数据,求出y 关于x 的线性回归方程=x.(参考公式:回归直线方程为=x ,其中=,=x)19.如图甲,在平面四边形ABCD中,已知∠A=45°,∠C=90°,∠ADC=105°,AB =BD,现将四边形ABCD沿BD折起,使平面ABD⊥平面BDC(如图乙),设点E、F分别为棱AC、AD的中点.(Ⅰ)求证:DC⊥平面ABC;BCD间的体积.(Ⅱ)设CD=2,求三棱锥A﹣BCD夹在平面BEF与平面离心率为,且点M与点N关于原点O对称.(Ⅰ)求椭圆的方程;(Ⅱ)过点M作椭圆的切线l与圆C:x2+y2=4相交于A,B两点,当△NAB的面积最大时,求直线l的方程.21.已知函数f(x)=x+xlnx,h(x)=(a﹣1)x+xlnx+2ln(1+x).(Ⅰ)求函数f(x)在点(1,f(1))处的切线方程;(Ⅱ)当a∈(0,2)时,求函数g(x)=f(x)﹣h(x)在区间[0,3]上的最小值.请考生在第22-23二题中任选一题作答,如果多做,则按所做得第一题记分.作答时请写清题号.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,直线l的参数方程为(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为.(Ⅰ)求圆C的圆心到直线l的距离;(Ⅱ)设圆C与直线l交于点A、B.若点P的坐标为(3,),求|PA|+|PB|.[选修4-5:不等式选讲]23.(Ⅰ)已知非零常数a、b满足,求不等式|﹣2x+1|≥ab的解集;(Ⅱ)若∀x∈[1,2],x﹣|x﹣a|≤1恒成立,求常数a的取值范围.参考答案一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x||2x﹣1|≥3},B={x|y=lg(x2﹣x﹣6)},则∁R A∩B=()A.(﹣1,3)B.∅C.(2,3)D.(﹣2,﹣1)解:因为A={x||2x﹣1|≥3}={x|x≥2或x≤﹣1},所以∁R A=(﹣1,5),B={x|y=lg(x2﹣x﹣6)}={x|x>3或x<﹣4},故选:B.2.复数z=(sinθ﹣2cosθ)+(sinθ+2cosθ)i是纯虚数,则sinθcosθ=()A.﹣B.﹣C.D.解:∵复数z=(sinθ﹣2cosθ)+(sinθ+2cosθ)i是纯虚数,∴,解得tanθ=2.故选:C.3.甲、乙两组数据如茎叶图所示,若它们的中位数相同,平均数也相同,则图中的m,n 的比值=()A.B.C.2D.3解:根据茎叶图知,乙的中位数是31,∴甲的中位数也是31,即=31,又甲的平均数是×(24+29+33+42)=32,∴n=9;故选:A.4.在等差数列{a n}中,a3+a8+a13=27,S n表示数列{a n}的前n项和,则S15=()A.134B.135C.136D.137解:在等差数列{a n}中,∵a3+a8+a13=27,S n表示数列{a n}的前n项和,故选:B.5.已知a>0,b>0,两直线l1:(a﹣1)x+y﹣1=0,l2:x+2by+1=0且l1⊥l2,则的最小值为()A.2B.4C.8D.9解:∵a>0,b>0,两直线l1:(a﹣3)x+y﹣1=0,l2:x+6by+1=0,且l1⊥l2,∴(a﹣6)+2b=0,即a+2b=1≥2∴ab≤,≥8,当且仅当a=2b=时,等号成立.故选:C.6.执行如图所示的程序框图,输出S的值是()A.0B.C.D.解:由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S=tan+tan+…+tan的值,由于tan的取值周期为6,且2017=336×6+2,故选:C.7.圆柱的底面半径为r,侧面积是底面积的4倍.O是圆柱中轴线的中点,若在圆柱内任取一点P,则使|PO|≤r的概率为()A.B.C.D.解:根据题意,设圆柱的高为h,圆柱的底面半径为r,其底面面积S=πr2,侧面积S侧=2πr•h,若侧面积是底面积的3倍,即2πr•h=4πr2,则有h=3r,若|PO|≤r,则P在以O为球心,半径为r的球内,其体积V′=,故选:C.8.下列四个命题中,正确的有()①两个变量间的相关系数r越小,说明两变量间的线性相关程度越低;②命题“∃x∈R,使得x2+x+1<0”的否定是:“对∀x∈R,均有x2+x+1>0”;③命题“p∧q为真”是命题“p∨q为真”的必要不充分条件;④若函数f(x)=x3+3ax2+bx+a2在x=﹣1有极值0,则a=2,b=9或a=1,b=3.A.0 个B.1 个C.2 个D.3个解:对于①:相关系数r的绝对值越趋近于1,相关性越强;越趋近于0,相关性越弱,故①错误;对于②:命题“∃x∈R,使得x2+x+1<0”的否定是:“对∀x∈R,均有x7+x+1≥0”,故②错误;对于④:f'(x)=3x2+6ax+b,因为f(x)在x=﹣1有极值0,故,解得当a=1,b=3时,f'(x)=3x7+6x+3=3(x+1)2≥0恒成立,此时f(x)没有极值点,故不符合条件;故选:A.9.已知x,y满足区域D:,则的取值范围是()A.[1,+∞)B.C.D.解:作出不等式表示的平面区域如图所示,令t=,则t∈[0,8],t+1∈[1,3],==.而当1+t=1时,1+t+﹣3=1,当1+t=3时,1+t+﹣3=1,∴的取值范围是[,1].故选:C.10.函数的图象大致为()A.B.C.D.解:根据题意,函数,其定义域为{x|x≠0}有f(﹣x)==﹣=﹣f(x),即函数f(x)为奇函数,排除A,f(x)==,当x→+∞时,f(x)→0,函数图象向x轴靠近,排除C;故选:D.11.已知抛物线C:x2=4y,焦点为F,圆M:x2﹣2x+y2+4y+a2=0(a>0),过F的直线l与C交于A,B两点(点A在第一象限),且,直线l与圆M相切,则a=()A.0B.C.D.3解:如图,设A(x1,y1),B(x2,y2),由,得,解得x1=1.∴,则直线l的方程为y=,即3x+4y﹣6=0.则圆M的圆心坐标为(1,﹣2),半径为.故选:B.12.若函数f(x)=ax2+(2﹣a)x﹣lnx(a∈R)在其定义域上有两个零点,则a的取值范围是()A.(4(ln2+1),+∞)B.(0,4(1+ln2)]C.(﹣∞,0)∪{4(1+ln2)}D.(0,4(ln2+1))解:函数定义域为(0,+∞),由f(x)=0有两个根,而f(1)=2,所以x=1不是方程的根,即直线y=a与函数y=有两个交点,,.由图可知,a的取值范围是(4(1+ln4),+∞).故选:A.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卡的相应位置.13.已知某三棱锥的三视图如图所示,那么这个几何体的外接球的体积为.解:由三视图还原原几何体如图,PA⊥底面ABC,且AB=PA=2,∴BC⊥平面PAC,得BC⊥PC,取PB中点O,则O为三棱锥P﹣ABC外接球的球心,∴这个几何体的外接球的体积为.故答案为:.14.已知△ABC中,∠BAC=60°,AB=2,AC=4,E、F分别为BC边上三等分点,则=.解:根据题意,作出如下所示的图形:同理可得,=+,=++=.故答案为:.15.若数列{a n}的前n项和为S n,对任意正整数n都有3S n+a n=2,记,则数列的前50项的和为.解:数列{a n}的前n项和为S n,对任意正整数n都有3S n+a n=2①,当n=1时,.①﹣②得3(S n﹣S n﹣1)+(a n﹣a n﹣1)=0,所以数列{a n}是以为首项,为公比的等比数列.所以.所以T50=c1+c2+…+c50==.故答案为:.16.如图是3世纪我国汉代的赵爽在注解周髀算经时给出的,人们称它为“赵爽弦图”,阴影部分是由四个全等的直角三角形组成的图形,在大正方形内随机取一点,这一点落在小正方形内的概率为,若直角三角形的两条直角边的长分别为a,b(a>b),则=.解:根据题意知,大正方形的边长为,面积为a2+b2,小正方形的面积为(a2+b6)﹣4×ab=a4+b2﹣2ab;∴﹣3()+1=0,又a>b,故答案为:.三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤,解答应写在答题卡上的指定区域内.17.已知各项都不相等的等差数列{a n}中,,又a1,a2,a6成等比数列.(I)求数列{a n}的通项公式;(II)若函数,0<φ<π,的一部分图象如图所示,A(﹣1,a1),B(3,﹣a1)为图象上的两点,设∠AOB=θ,其中O为坐标原点,0<θ<π,求cos(θ+φ)的值.解:(I)设等差数列{a n}的公差为d(d≠0),则a4=a1+3d=①,∵a1,a2,a6成等比数列,∴=a4•a6,即=a1•(a1+5d)②,∴a n=a2+(n﹣1)d=n﹣(n∈N*).把A(﹣1,)代入函数y=sin(x+φ),得φ=+2kπ,k∈Z.∵A(﹣1,),B(5,﹣),在△AOB中,由余弦定理知,cos∠AOB=,又5<θ<π,∴θ=.∴cos(θ+φ)=cos(+)=cos cos﹣sin sin=()×()﹣×=.18.某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天每100颗种子浸泡后的发芽数,得到如下资料:日期3月1日3月2日3月3 日3月4日3月5日温差x(℃)101113128发芽数y(颗)2325302616(1)从3月1日至3月5日中任选2天,记发芽的种子数分别为m,n,求事件“m ,n 均小于25”的概率;(2)请根据3月2日至3月4日的数据,求出y关于x的线性回归方程=x.(参考公式:回归直线方程为=x,其中=,=x)解:(1)m,n构成的基本事件(m,n)有:(23,25),(23,30),(23,26),(23,16),(25,30),(25,26),(25,16),(30,26),(30,16),(26,16),共有10个.其中“m,n均小于25”的有1个,其概率为.(2),故所求线性回归方程为.19.如图甲,在平面四边形ABCD中,已知∠A=45°,∠C=90°,∠ADC=105°,AB =BD,现将四边形ABCD沿BD折起,使平面ABD⊥平面BDC(如图乙),设点E、F分别为棱AC、AD的中点.(Ⅰ)求证:DC⊥平面ABC;(Ⅱ)设CD=2,求三棱锥A﹣BCD夹在平面BEF与平面BCD间的体积.解:(Ⅰ)证明:由已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD,得DC⊥BC,AB⊥AD,∴AB⊥平面BCD,得AB⊥DC,∴DC⊥平面ABC;∵CD=2,∴BD=AB=4,BC=2,则.由(Ⅰ)知DC⊥平面ABC,则EF⊥平面ABC.∴.∴三棱锥A﹣BCD夹在平面BEF与平面BCD间的体积为.20.已知点M为椭圆上一个动点,且点M到两焦点的距离之和为4,离心率为,且点M与点N关于原点O对称.(Ⅰ)求椭圆的方程;(Ⅱ)过点M作椭圆的切线l与圆C:x2+y2=4相交于A,B两点,当△NAB的面积最大时,求直线l的方程.解:(Ⅰ)由椭圆的定义可得2a=4,即a=2,又e==,可得c=,b==1,(Ⅱ)设M(m,n),由题意可得N(﹣m,﹣n),可得过M的切线的斜率为﹣,化为mx+4ny=4,圆C的圆心为(7,0),半径为2,可得圆心到切线的距离为,故S△NAB=•2•=•2|n|=≤=4,则当△NAB的面积最大时,直线l的方程为x+8y﹣12=0,或x﹣8y﹣12=0,或x+8y+12=0,或x﹣8y+12=0.21.已知函数f(x)=x+xlnx,h(x)=(a﹣1)x+xlnx+2ln(1+x).(Ⅰ)求函数f(x)在点(1,f(1))处的切线方程;(Ⅱ)当a∈(0,2)时,求函数g(x)=f(x)﹣h(x)在区间[0,3]上的最小值.解:(Ⅰ)依题意,f′(x)=1+lnx+1=lnx+2,故k=f′(1)=2,又f(1)=3,(Ⅱ)由题意可知,g(x)=(2﹣a)x﹣2ln(x+1)(x>﹣1),则,∴6﹣a>0,∴函数g(x)在上单调递减,在单调递增,①当,即时,g(x)在单调递减,在单调递增,∴;②当,即时,g(x)在[0,3]单调递减,∴g(x)min=g(3)=8﹣3a﹣2ln4;综上,当时,;当时,g(x)min=6﹣3a﹣4ln2.请考生在第22-23二题中任选一题作答,如果多做,则按所做得第一题记分.作答时请写清题号.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,直线l的参数方程为(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为.(Ⅰ)求圆C的圆心到直线l的距离;(Ⅱ)设圆C与直线l交于点A、B.若点P的坐标为(3,),求|PA|+|PB|.解:(Ⅰ)由,可得,即圆C的方程为.由可得直线l的方程为.(Ⅱ)将l的参数方程代入圆C的直角坐标方程,得,即.所以,又直线l过点,故由上式及t的几何意义得.…[选修4-5:不等式选讲]23.(Ⅰ)已知非零常数a、b满足,求不等式|﹣2x+1|≥ab的解集;(Ⅱ)若∀x∈[1,2],x﹣|x﹣a|≤1恒成立,求常数a的取值范围.解:(I)由已知,∵a、b不为0,∴ab=1,或a+b=0,①ab=6时,原不等式相当于|﹣2x+1|≥1,所以,﹣2x+1≥1或﹣2x+1≤﹣1,②a+b=0时,a,b异号,ab<0,(Ⅱ)由已知得,|x﹣a|≥x﹣1≥7,a=1时,(a﹣1)(a﹣2x+1)≥8恒成立,a<1时,由(a﹣1)(a﹣2x+1)≥4得,a≤2x﹣1,从而a≤1,综上所述,a的取值范围为(﹣∞,1]∪[3,+∞).。
南昌二中2020届高三线上教学质量检测数学(文)试卷第I 卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|21|3}A x x =-≥,(){}2lg 6B xy x x ==--∣,则()RA B =( )A. (1,3)-B. ∅C. (2,3)D. (2,1)--【答案】B 【解析】 【分析】先解不等式得集合A ,再求定义域得集合B ,最后根据补集与交集定义得结果. 【详解】{|21|3}{|213A x x x x =-≥=-≥或213}(,1][2,)x -<-=-∞-+∞(){}{}22lg 660(,2)(3,)B x y x x x x x ==--=-->=-∞-+∞∣∣()R(1,2)A B B =-∅==故选:B【点睛】本题考查补集与交集、解含绝对值不等式、函数定义域,考查基本分析求解能力,属基础题. 2.复数(sin 2cos )(sin 2cos )z iθθθθ=-++是纯虚数,则sin cos =θθ( )A. 52-B. 25-C.25D.52【答案】C 【解析】 【分析】根据z 为纯虚数,求得tan 2θ=,由此求得sin cos θθ.【详解】由于z 是纯虚数,所以sin 2cos 0tan 2sin 2cos 0θθθθθ-=⎧⇒=⎨+≠⎩, 所以2222sin cos tan 22sin cos sin cos tan 1215θθθθθθθθ====+++.故选:C【点睛】本小题主要考查同角三角函数的基本关系式,考查纯虚数的知识,属于基础题.3.甲、乙两组数据如茎叶图所示,若它们的中位数相同,平均数也相同,则图中的m,n的比值m n=A.13B.12C. 2D. 3【答案】A 【解析】分析:根据茎叶图得到甲乙两组数的中位数和平均数,根据题意求出,m n 的值,然后可得所求. 详解:由题意得,甲组数据为:24,29,30,42m +;乙组数据为:25,20,31,33,42n +. ∴甲、乙两组数据的中位数分别为59,312m+, 且甲、乙两组数的平均数分别为2429(30)4212525(20)313342151,4455m m n nx x 甲乙+++++++++++====. 由题意得5931212515145mm n +⎧=⎪⎪⎨++⎪=⎪⎩,解得39m n =⎧⎨=⎩, ∴3193m n ==. 故选A .点睛:茎叶图的优点是保留了原始数据的所有特征,且便于记录及表示,能反映数据在各段上的分布情况.茎叶图和平均数、方差、众数、中位数等数字特征常结合在一起,考查学生的数据分析能力和运算能力.4.在等差数列{}n a 中,381327a a a ++=,n S 表示数列{}n a 的前n 项和,则15S =( ) A. 134 B. 135C. 136D. 137【答案】B 【解析】 【分析】利用等差中项的性质求得8a 的值,然后利用等差数列的求和公式以及等差中项的性质可求得15S 的值. 【详解】由等差中项的性质可得38138327a a a a ++==,则89a =,因此,()11581581515215159135 22a a aSa+⨯====⨯=. 故选:B.【点睛】本题考查等差中项性质的应用,同时也考查了等差数列求和,考查计算能力,属于基础题.5.已知0a>,0b>,直线1l:(1)10a x y-+-=,2l:210x by++=,且12l l⊥,则21a b+的最小值为()A. 2B. 4C. 8D. 9【答案】C【解析】【分析】由12l l⊥,可求得21a b+=,再由()2121424b aa ba b a b a b⎛⎫+=++=++⎪⎝⎭,利用基本不等式求出最小值即可.【详解】因为12l l⊥,所以()11120a b-⨯+⨯=,即21a b+=,因为0a>,0b>,所以()212144222428b a b aa ba b a b a b a b⎛⎫+=++=+++≥+⋅=⎪⎝⎭,当且仅当4b aa b=,即11,24a b==时等号成立,所以21a b+的最小值为8.故选:C.【点睛】本题考查垂直直线的性质,考查利用基本不等式求最值,考查学生的计算求解能力,属于中档题.6.执行如图所示的程序框图,输出S的值是()A. 0B.33C. 3D. 3【答案】C【解析】【分析】模拟执行程序,可得程序框图的功能是计算并输出S =tan 3π+tan 23π+tan 33π+…+tan 20163π+tan 20173π的值,利用正切函数的周期性即可计算求值.【详解】模拟执行程序,可得程序框图的功能是计算并输出S =tan3π+tan 23π+tan 33π+…+tan 20163π+tan 20173π的值, 由于tan(31)3k π++tan (32)3k π++tan (33)3k π+=0,k ∈Z , 且2017=3×672+1,所以S =(tan 3π+tan 23π+tan 33π)+…+(tan 20143π+tan 20153π+tan 20163π)+ tan 20173π=0+0+…+0+ tan 20173π=tan 3π故选:C .【点睛】本题考查程序框图的应用问题,也考查正切函数求值的应用问题,属于基础题.7.圆柱的底面半径为r ,侧面积是底面积的4倍.O 是圆柱中轴线的中点,若在圆柱内任取一点P ,则使||PO r ≤的概率为( ) A.13B.12C.23D.34【答案】C 【解析】 【分析】先求出圆柱的底面半径与高的关系,再根据圆柱体积公式、球体积公式求概率. 【详解】设圆柱的高为h ,因为侧面积是底面积的4倍,所以2242rh r h r ππ=⨯∴=因此||PO r ≤的概率为33224423323πr πrπr h πr r ==⨯ 故选:C【点睛】本题考查几何概型概率、圆柱体积公式与侧面积公式、球体积公式,考查基本分析求解能力,属基础题.8.下列四个命题中,正确的有( )①两个变量间的相关系数r 越小,说明两变量间的线性相关程度越低;②命题“x ∃∈R ,使得210x x ++<”的否定是:“对x ∀∈R ,均有210x x ++>”; ③命题“p g ∧为真”是命题“p q ∨为真”的必要不充分条件;④若函数322()3f x x ax bx a =+++在1x=-有极值0,则2a =,9b =或1a =,3b =. A. 0 B. 1C. 2D. 3【答案】A 【解析】 【分析】根据相关系数的定义可知①错误;根据特称命题(又叫存在性命题)的否定可知②错误;根据真值表即可判断“p q ∧为真”是命题“p q ∨为真”的充分不必要条件,故③错误;由条件可得,(1)0,(1)0,f f '-=-= 解得a=2,b=9或a=1,b=3,经检验,当a=1,b=3时,22()3633(1)0f x x x x '=++=+≥恒成立,此时()f x 没有极值点,故④错误。
2020年江西省高考数学试卷(文科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知集合A={x|x2−3x−4<0},B={−4, 1, 3, 5},则A∩B=()A.{1, 5}B.{−4, 1}C.{3, 5}D.{1, 3}2. 若z=1+2i+i3,则|z|=()A.1B.0C.√2D.23. 埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A.√5−12B.√5−14C.√5+14D.√5+124. 设O为正方形ABCD的中心,在O,A,B,C,D中任取3点,则取到的3点共线的概率为()A.2 5B.15C.12D.455. 某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:∘C)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(x i, y i)(i=1, 2,…,20)得到下面的散点图:由此散点图,在10∘C至40∘C之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是()A.y=a+bx2B.y=a+bxC.y=a+be xD.y=a+b ln x6. 已知圆x2+y2−6x=0,过点(1, 2)的直线被该圆所截得的弦的长度的最小值为()A.2B.1C.3D.47. 设函数f(x)=cos(ωx+π6)在[−π, π]的图象大致如图,则f(x)的最小正周期为()A.7π6B.10π9C.4π3D.3π28. 设a log34=2,则4−a=()A.19B.116C.18D.169. 执行如图的程序框图,则输出的n=()A.19B.17C.21D.2310. 设{a n }是等比数列,且a 1+a 2+a 3=1,a 2+a 3+a 4=2,则a 6+a 7+a 8=( ) A.24 B.12 C.30 D.3211. 设F 1,F 2是双曲线C:x 2−y 23=1的两个焦点,O 为坐标原点,点P 在C 上且|OP|=2,则△PF 1F 2的面积为( ) A.3 B.72C.52D.212. 已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆.若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( ) A.48π B.64π C.36π D.32π二、填空题:本题共4小题,每小题5分,共20分。
2020届江西省南昌市第二中学高三第六次考试数学(文)试题一、单选题1.已知集合,,则A. B. C. D.2.设复数,则的虚部是()A.1 B. C.-1 D.-3.已知命题甲:;命题乙:,则命题甲是命题乙的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2015年1月至2017年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.年接待游客量逐年增加B.各年的月接待游客量高峰期在8月C.2015年1月至12月月接待游客量的中位数为30万人D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳5.执行如图所示的程序框图,其输出结果是( )A.61 B.62 C.63 D.646.已知f(x)为定义在R上的奇函数,当x>0时,, 则()A.4 B.-4 C. D.7.函数(其中)的图象如图所示,为了得到函数的图象,只需将的图象上所有点()A.向右平移个单位长度 B.向左平移个单位长度C.向右平移个单位长度 D.向左平移个单位长度8.函数的部分图像大致为()A. B.C. D.9.已知双曲线mx2-ny2=1与直线y=1+2x交于M,N两点,过原点与线段MN中点所在直线的斜率为,则的值是( )A.- B. C. D.10.如图所示,边长为1的正方形网络中粗线画出的是某几何体的三视图,则该几何体的体积为()A. B. C. D.11.已知数列满足:,则的前40项的和为()A.860 B.1240 C.1830 D.242012.若函数的图象与曲线C:存在公共切线,则实数的取值范围为()A. B. C. D.二、填空题13.设向量a=(x-1,1),b=(-x+1,3),若a⊥(a-b),则x=__________。
14.已知集合从M中任取一个元素,则满足a+b-2≤0的概率为________.15.已知公差不为0的等差数列满足成等比数列,为数列的前项和,则的值为___________16.已知A,B两点都在以PC为直径的球O的表面上,AB⊥BC,AB=2,BC=4,若球O的体积为,则三棱锥P-ABC表面积为___________.三、解答题17.已知△ABC的内角A,B,C所对的边分别为a,b,c,向量,且.(1)求A;(2)若,求△ABC的面积.18.如图,四棱锥中,平面平面,为线段上一点,, 为的中点.(1)证明:平面;(2)求三棱锥C-BMN的体积.19.2018年,南昌市召开了全球VR产业大会,为了增强对青少年VR知识的普及,某中学举行了一次普及VR知识讲座,并从参加讲座的男生中随机抽取了50人,女生中随机抽取了70人参加VR知识测试,成绩分成优秀和非优秀两类,统计两类成绩人数得到如下的列联表:优秀非优秀总计男生a3550女生30d70总计4575120(1)确定a,d的值;(2)试判断能否有90%的把握认为VR知识的测试成绩优秀与否与性别有关;(3)为了宣传普及VR知识,从该校测试成绩获得优秀的同学中按性别采用分层抽样的方法,随机选出6名组成宣传普及小组.现从这6人中随机抽取2名到校外宣传,求“到校外宣传的2名同学中至少有1名是男生”的概率.附:P(K2≥k0)0.250.150.100.050.0250.010k1.3232.072 2.7063.841 5.024 6.63520.如图,已知抛物线C顶点在坐标原点,焦点F在Y轴的非负半轴上,点是抛物线上的一点.(1)求抛物线C的标准方程(2)若点P,Q在抛物线C上,且抛物线C在点P,Q处的切线交于点S,记直线 MP,MQ的斜率分别为k1,k2,且满足,当P,Q在C上运动时,△PQS的面积是否为定值?若是,求出△PQS的面积;若不是,请说明理由.21.已知函数为实数.(1)若,求的单调区间和极值;(2)设,且有两个极值点,若,求的最小值.22.直线的参数方程为,曲线C的极坐标方程,(1)写出直线l的普通方程与曲线C直角坐标方程;(2)设直线l与曲线C相交于两点A,B,若点,求的值.23.选修4-5:不等式选讲已知函数.(1)求不等式的解集;(2)若函数的图像最低点为,正数,满足,求的取值范围.2020届江西省南昌市第二中学高三第六次考试数学(文)试题参考答案一、单选题1.已知集合,,则A. B. C. D.【答案】C【解析】解一元二次不等式可得集合A,由对数型函数定义域可得集合B,利用交集定义求解即可.【详解】因为,,所以,故选C.【点睛】本题主要考查了集合的表示及集合交集的定义,属于基础题.2.设复数,则的虚部是()A.1 B. C.-1 D.-【答案】C【解析】结合复数的四则运算,计算z,得到虚部,即可。
2020年江西省南昌二中高三(6月份)高考数学校测试题一、单选题1.明清时期,古镇河口因水运而繁华.若有一商家从石塘沿水路顺水航行,前往河口,途中因故障停留一段时间,到达河口后逆水航行返回石塘,假设货船在静水中的速度不变,水流速度不变,若该船从石塘出发后所用的时间为x (小时)、货船距石塘的距离为y (千米),则下列各图中,能反映y 与x 之间函数关系的大致图象是( )A .B .C .D .2.已知1,2,25a b a b ==-=,则向量,a b 的夹角为A .6πB .3π C .4π D .2π 3.已知集合{}2|230,{|1sin ,0}A x x x B y y x x =+-<==->,则A B =( )A .[)3,1-B .[)0,1 C .[]1,2D .()3,2-4.已知关于,x y 的不等式组022020x x y kx y ≤≤⎧⎪+-≥⎨⎪-+≥⎩所表示的平面区域的面积为4,则k 的值为( )A .1B .3-C .1或3-D .05.若()()221214,,32z m m m m i m R z i =++++-∈=-,则1m =是12z z =的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .即不充分又不必要条件6.已知函数()()2sin 06f x x πωω⎛⎫=+> ⎪⎝⎭,x ∈R .在曲线()y f x =与直线1y =的交点中,若相邻交点距离的最小值为3π,则()f x 的最小正周期为( )A .2π B .23π C .2πD .π7.复平面内点A 、B 、C 对应的复数分别为i 、1、4+2i ,由A →B →C →D 按逆时针顺序作平行四边形ABCD ,则|BD |等于( )A .5 BC D 8.如图所示,在正方体ABCD ﹣A 1B 1C 1D 1中,M 为DD 1的中点,则图中阴影部分BC 1M 在平面BCC 1B 1上的正投影是( )A .B .C .D .9.已知点G 在ABC ∆内,且满足2340GA GB GC ++=,现在ABC ∆内随机取一点,此点取自,,GAB GAC GBC ∆∆∆的概率分别记为123,,P P P ,则( )A .123P P P ==B .321P P P >>C .123P P P >>D .213P P P >>10.已知直线34y x =与双曲线2222:1(0,0)x y C a b a b -=>>相交于不同的两点A 和B ,F 为双曲线C的左焦点,且满足AF BF ⊥,则双曲线C 的离心率为( )A B C D 111.设定义在R 上的函数()y f x =满足任意t R ∀∈都有()()12f t f t +=,且(]x 0,4∈时,()()´f x fx x>,则()2016f 、()42017f 、()22018f 的大小关系是( )A .()()()42017220182016f f f <<B .()()()42017220182016f f f >>C .()()()22018201642017f f f <<D .()()()22018201642017f f f >>12.已知正项等差数列{a n },{b n }的前n 项和分别是S n ,T n ,且(3n ﹣1)2S n 2﹣n (3n ﹣1)S n T n ﹣2n 2T n 2=0对任意的n ∈N *恒成立,则5282a b b +=( )A .49B .1011 C .8188D .913二、填空题13.已知函数()32cos f x x =-+的图象经过点(,)3b π,则b =____.14.在平面直角坐标系xOy 中,若双曲线x 2a 2−y 2=1(a >0)经过抛物线y 2=8x 的焦点,则该双曲线的离心率是____.15.在人类与大自然的较量中,经常面对影响人类生存、反复无常的天气变化.人类对天气变化经历了漫长的认识过程,积累了丰富的气象经验.三国时期,孙刘联军运用气象观测经验,预报出会有一场大雾出现,并在大雰的掩护下,演出了一场“草船借箭”的好戏,令世人惊叹.小明计划8月份去上海游览,受台风“利马奇”的影响,上海市8月份一天中发生雷雨天气的概率上升为0.8,那么小明在上海游览的3天中,只有1天不发生雷雨天气的概率约为___________. 16.已知数列{}n a 的通项公式是12n na ,数列{}nb 的通项公式是31n b n =-,集合{}{}1212,,...,,,,...,,n n A a a a B b b b n N *==∈,将集合A B 中的元素按从小到大的顺序排列构成的数列记为{}n c ,则数列{}n c 的前45项和45S =_______.三、解答题17.为了落实习总书记在改革开放40周年庆祝大会上的讲话精神,实现“更高质量、更有效率”的可持续发展,继续深化改革,某工业基地对在生产同一产品的甲、乙两个厂区,选择了乙厂区进行改革试点,一段时间后,工业基地为了检查甲、乙两个厂区的生产情况,随机地从这两厂区生产的大量产品中各抽取100件作为样本,得到关于产品质量指标值的频数分布表(已知合格产品的质量指标值应在区间 2.552.70](,内,否则为不合格产品):(1)将频率视为概率,由表中的数据分析,若在某个时间段内甲、乙两个厂区均生产了2000件产品,则在此时间段内甲、乙两个厂区生产出的不合格产品分别为多少件?(2)根据样本数据写出下面22⨯列联表中a b c d ,,,的值,判断是否有85%的把握认为“该工业基地的产品质量与改革有关”,并说明理由.18.已知函数()2πsin ()sin [sin π)]2f x x x x x ωωωω=+-⋅-+(其中0ω>)的最小周期为2π.(1)求ω的值及()f x 的单调递增区间; (2)将函数()f x 的图象向右平移6π个单位,再将图象上各点的横坐标缩短为原来的12(纵坐标不变)得到函数()y g x =的图象,若关于x 的方程()0g x m +=在区间ππ,46⎡⎤-⎢⎥⎣⎦上有且只有一个解,求实数m 的取值范围. 19.解下列不等式:(1)(1)(2)(3)0x x x x -+->; (2)()()2223210x x x x ---+<;(3)22320560x x x x ⎧-+>⎨-+<⎩;(4)333x x -+(5)1121lg 1lg x x+>+-;(6)|2||3|5x x -++>; (7)5|23|11x x <++≤; (8)12230x x -+-<.20.已知椭圆()22122:10x y C a b a b+=>>的左、右焦点为1F 、2F ,12F F =Q 方程(()2211x y +-=,且圆心Q 在椭圆上.(1)求椭圆1C 的方程;(2)已知直线1:1l y =+交椭圆1C 于A 、B 两点,过直线1l 上一动点P 作与1l 垂直的直线2l 交圆Q 于C 、D 两点,M 为弦CD 中点,MAB ∆的面积是否为定值?若为定值,求出此定值;若不为定值,说明你的理由.21.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,底面ABCD 是边长为2的正方形.(1)证明:A 1C 1//平面ACD 1;(2)求异面直线CD 与AD 1所成角的大小; (3)已知三棱锥D 1﹣ACD 的体积为23,求AA 1的长. 22.已知函数()ln (1)1()f x x a x a a R =+-++∈. (1)讨论函数()f x 的单调性; (2)证明:当1a =时,()0xe f x ->.23.在极坐标系中,直线:cos 3l ρθ=,P 为直线l 上一点,且点P 在极轴上方以OP 为一边作正三角形OPQ (逆时针方向),且OPQ △面积为(1)求点Q 的极坐标;(2)写出OPQ △外接圆的圆心C 的极坐标,并求OPQ △外接圆与极轴的相交弦长.参考答案1.A由题意可以得出各段过程中y 随x 变化而变化的趋势,即可得答案.由题意可得:货船从石塘到停留一段时间前,y 随x 增大而增大;停留一段时间内,y 随x 增大而不变;解除故障到河口这段时间,y 随x 增大而增大;从河口到返回石塘这段时间,y 随x 增大而减少. 故选A本题考查了函数的图像,解题的关键是理解题意,利用数形结合的思想,属于基础题. 2.C根据条件求出a b ⋅,然后再根据数量积的定义求解可得两向量的夹角. ∵25a b -=, ∴()2222445a ba ab b -=-⋅+=,又1,2a b ==, ∴14425a b -⋅+⨯=, ∴1a b ⋅=.设向量,a b 的夹角为θ,则2cos θ||a b a b ⋅==⋅, 又0θπ≤≤, ∴θ 4π=.故选C .求两向量的夹角时应先求出两向量的数量积,然后再根据公式求解,但在解题中要注意两向量夹角的取值范围,否则出现错误. 3.B解一元二次不等式求得集合A ,求三角函数值域求得集合B ,由此求得AB .由()()223310x x x x +-=+-<解得31x -<<.当0x >时,函数[]1sin 0,2y x =-∈,所以[)0,1A B ⋂=.故选:B本小题主要考查一元二次不等式的解法,考查含有sin x 的函数的值域的求法,考查集合交集概念和运算,属于基础题.。
江西省南昌二中2020届高三(6月份)高考数学(理科)校测试题(一)一、单选题(★★★) 1. 已知全集,集合,则()A.B.C.D.(★) 2. 已知是虚数单位,复数在复平面内所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限(★★★) 3. 已知实数,则“ ”是“ ”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(★★★) 4. 若函数的图象的一条对称轴为,则的最小值为()A.B.C.D.(★★★) 5. 下列图象可以作为函数的图象的有()A.1个B.2个C.3个D.4个(★★★) 6. 若两个非零向量,满足,则向量与的夹角为( ) A.B.C.D.(★★) 7. 不等式组表示的平面区域的面积是9,则 m的值是()A.8B.6C.4D.1(★★) 8. 设是等差数列的前项和,存在且时,有,,则()A.8B.C.17D.16(★★★) 9. 如图,点在以为直径的圆上,且满足,圆内的弧线是以为圆心,为半径的圆的一部分.记三边所围成的区域(灰色部分)为Ⅰ,右侧月牙形区域(黑色部分)为Ⅱ.在整个图形中随机取一点,记此点取自Ⅰ,Ⅱ的概率分别为,,则()A.B.C.D.(★★★) 10. 已知双曲线的左、右焦点分别为,,过作斜率为的直线与双曲线的左、右两支分别交于、两点,若,则双曲线的离心率为()A.2B.C.D.(★★★★) 11. 下图是棱长为2的正方体木块的直观图,其中分别是,,的中点,平面过点且平行于平面,则该木块在平面内的正投影面积是()A.B.C.D.(★★★) 12. 已知上的奇函数满足,则不等式的解集是()A.B.C.D.二、填空题(★★★) 13. 已知抛物线的焦点为是抛物线上一点,过点向抛物线的准线引垂线,垂足为,若为等边三角形,则______.(★★) 14. 一台仪器每启动一次都随机地出现一个5位的二进制数,其中的各位数字中,,,3,4,出现0的概率为,出现1的概率为,则启动一次出现的数字中恰有两个0的概率为__.(★★★) 15. 若数列满足,且,若使不等式成立的有且只有三项,则的取值范围为__.(★★★)16. 已知函数,方程在,上只有4个不同实根,,,.给出下列结论:① 的最小正周期为;② 在上的值域为;③若,则;④ ,则.其中正确结论的序号为__.三、解答题(★★) 17. 已知,,(1)求的最小正周期及单调递增区间;(2)已知锐角的内角,,的对边分别为,,,且,,求边上的高的最大值.(★★★★) 18. 如图,多面体中,四边形为矩形,二面角为,,,,,.(1)求证:平面;(2)为线段上的点,当时,求二面角的余弦值.(★★★) 19. 已知椭圆( )的离心率为,以的短轴为直径的圆与直线相切.(1)求的方程;(2)直线交于,两点,且.已知上存在点,使得是以为顶角的等腰直角三角形,若在直线的右下方,求的值.(★★★) 20. 华中师大附中中科教处为了研究高一学生对物理和数学的学习是否与性别有关,从高一年级抽取名同学(男同学名,女同学名),给所有同学物理题和数学题各一题,让每位同学自由选择一题进行解答.选题情况如下表:(单位:人)物理题数学题总计男同学女同学总计(1)在犯错误的概率不超过的条件下,能否判断高一学生对物理和数学的学习与性别有关?(2)经过多次测试后发现,甲每次解答一道物理题所用的时间为分钟,乙每次解答一道物理题所用的时间为分钟,现甲、乙解同一道物理题,求甲比乙先解答完的概率;(3)现从选择做物理题的名女生中任意选取两人,对她们的解答情况进行全程研究,记甲、乙两女生被抽到的人数为,求的分布列和数学期望. 附表及公式(★★★★) 21. 已知函数.(1)讨论的单调性;(2)若,是的两个零点,求证:.(★★★) 22. 选修4-4:坐标系与参数方程:在直角坐标系中,曲线(为参数),以坐标原点为极点,以轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的极坐标方程;(2)已知点,直线的极坐标方程为,它与曲线的交点为,,与曲线的交点为,求的面积.(★★★) 23. 已知.(1)当时,求不等式的解集;(2)若时不等式成立,求的取值范围.。
2020年江西省高考数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U ={−1, 0, 1, 2, 3, 4},集合A ={−1, 1, 2, 4},集合B ={x ∈N|y =√4−2x },则A ∩(∁U B)=()A.{−1, 2, 3, 4}B.{−1, 4}C.{−1, 2, 4}D.{0, 1}2.已知i 为虚数单位,z ⋅21−i =1+2i ,则复数z 的虚部是() A.32B.32iC.12iD.123.已知等差数列{a n }满足a 2+a 4=6,a 5+a 7=10,则a 18=() A.12B.13C.133D.1434.已知a ,b ∈R ,则“a +2b =0“是“ab =−2”成立的() A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件5.213,5−12,log 32的大小关系是() A.213<5−12<log 32B.5−12<213<log 32 C.log 32<5−12<213D.5−12<log 32<213E.5−12<log 32<2136.已知tan (α+π6)=−35,则sin (2α+π3)=() A.817B.−817C.1517D.−15177.设x ,y ∈R ,a →=(x, 1),b →=(2, y),c →=(−2, 2),且a →⊥c →,b → // c →,则|2a →+3b →−c →|=()A.2√34B.√26C.12D.2√108.设函数f(x)=e x +2x −4的零点a ∈(m, m +1),函数,g(x)=ln x +2x 2−5的零点b ∈(n, n +1),其中m ∈N ,n ∈N ,若过点A(m, n)作圆(x −2)2+(y −1)2=1的切线l ,则l 的方程为()A.y =±√33x +1 B.y =±√3x +1 C.y =1 D.x =0,y =19.若点(x, y)在不等式组{x +y −1≥0x −y −1≤0x −3y +3≥0表示的平面区域内,则实数z =2y−1x+1的取值范围是() A.[−1, 1]B.[−2, 1]C.[−12, 1]D.[−1, 12]10.已知三棱锥A −BCD 的顶点均在球O 的球面上,且AB =AC =AD =√3,∠BCD =π2,若H 是点A 在平面BCD 内的正投影,且CH =√2,则球O 的表面积为()A.4√3πB.2√3πC.9πD.4π11.函数f(x)=ln x −14x 2的大致图象是()A.B.C.D.12.已知点F 为双曲线E:x 2a 2−y 2b 2=1(a >0, b >0)的右焦点,若在双曲线E的右支上存在点P,使得PF中点到原点的距离等于点P到点F的距离,则双曲线E的离心率的取值范围是()A.(1, 3)B.(1, 3]C.(1, √3]D.[√3, 3]二、填空题:本大题共4小题每小题5分,共20分.13.中华文化博大精深,丰富多彩.“纹样”是中华艺术宝库的瑰宝之一,“组合花纹”是常见的一种传统纹样,为了测算某组合花纹(如图阴影部分所示)的面积,作一个半径为1的圆将其包含在内,并向该圆内随机投掷1000个点,已知恰有600个点落在阴影部分,据此可估计阴影部分的面积是________14.抛物线y=ax2(a>0)的焦点与椭圆y210+x2=1的一个焦点相同,则抛物线的准线方程是________15.已知函数f(x)={log2x,x≥42ax−3,x<4,对任意x1,x2∈(−∞, +∞),都有f(x1)−f(x2) x1−x2>0,则实数a的取值范围为________58]16.在三角形ABC中,|AB|=2,且角A,B,C满足2sin2C2−74=12cos2(A+B),三角形ABC的面积的最大值为M,则M=________三、解答题:解答应写出文字说明、证明过程或演算步骤,共70分.17.千百年来,我国劳动人民在生产实践中根据云的形状、走向、速度、厚度、颜色等的变化,总结了丰富的“看云识天气”的经验,并将这些经验编成谚语,如“天上钩钩云,地上雨淋淋”“日落云里走,雨在半夜后“…小波同学为了验证“日落云里走,雨在半夜后“,观察了所在地区A的200天日落和夜晚天气,得到如下2×2列联表:参考公式:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)(1)根据上面的列联表判断能否有99%的把握认为“当晚下雨”与“‘日落云里走’出现”有关?(2)小波同学为进一步认识其规律,对相关数据进行分析,现从上述调查的“夜晚未下雨”天气中按分层抽样法抽取4天,再从这4天中随机抽出2天进行数据分析,求抽到的这2天中仅有1天出现“日落云里走”的概率.18.设S n为等差数列{an}的前n项和,S7=49,a2+a8=18.(1)求数列{a n}的通项公式.(2)若S3、a17、S m成等比数列,求S3m.19.如图所示,四棱锥P−ABCD中,底面ABCD为平行四边形,O为对角线的交点,E为PD上的一点,PD⊥平面ABE,PA⊥平面ABCD,且PA=2,AB=1,AC=√5.。
南昌二中下学期高三数学(文)试卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知集合{1,0,1,2,3},{2,0}M N =-=-,则下列结论正确的是A .N M ⊆B .M N N =IC .M N M =UD .{}0M N =I 2、下列四个函数中,既是奇函数又是定义域上的单调递增的是A .2xy -= B .tan y x = C .3y x = D .3log y x = 3、已知复数z 满足2015(1)i z i --(其中i 为虚数单位),则z 的虚部为A .12 B .12- C .12i D .12i - 4、等比数列{}n a 为等差数列,且17134a a a ++=,则212a a +的值为A .43B .83C .2D .45、若实数x ,y 满足不等式组330101x y x y y +-≤⎧⎪-+≥⎨⎪≥-⎩,,,则2||z x y =+的最大值为(A )13 (B )11 (C )3 (D )1 6、投掷两枚骰子,则点数之和是8的概率为A .536 B .16 C .215 D .1127、在平面直角坐标系中,角α的顶点与原点重合,始边与x 轴的非负半轴重合,终边过点(3,1)P --,则sin(2)2πα-=A .32 B .32- C .12 D .12- 8、某几何体的三视图如图所示,则该几何体的体积为 A .103 B .53 C .203D .49、执行右下方的程序框图,如果输入的4N =,那么输出的S 的值为A .1111234+++ B .1111232432+++⨯⨯⨯ C .111112345++++ D .111112324325432++++⨯⨯⨯⨯⨯⨯ 10、在四面体S-ABC中,SA ⊥平面,120,2,1ABC BAC SA AC AB ∠====o ,则该四面体的外接球的表面积为 A .11π B .7π C .103π D .403π11、已知F 是抛物线24x y =的焦点,直线1y kx =-与该抛物线交于第一象限内的零点,A B ,若3AF FB =,则k 的值是A .3B .32 C .33 D .23312、已知函数()11(,2)2(2)[2,)x x f x f x x ⎧--∈-∞⎪=⎨-∈+∞⎪⎩,设方程()122x f x -=的根从小到大依次为12,,,,,n x x x n N *∈L L ,则数列{()}n f x 的前n 项和为A .2nB .2n n + C .21n - D .121n +-二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上。
2020年南昌市二中高三数学(文)5月高考模拟试卷一、单选题(每小题5分,共12小题,共60分) 1.设集合A={2,1-a ,a 2-a +2},若4∈A ,则a =( ) A .-3或-1或2 B .-3或-1 C .-3或2 D .-1或22.若复数2i2a z -=,a R ∈在复平面内对应的点在直线0x y +=上,则z =( ) A .2B .2C .1D .223.若双曲线223mx my -=3的一个焦点是()0,2,则m 的值是A .-1B .1C .10-D .10 4.已知各项为正数的等比数列{}n a 满足11a =,2416a a =,则6a =( ) A .64B .32C .16D .45.在ABC V 中,D 、P 分别为BC 、AD 的中点,且BP AB AC λμ=+u u u r u u u r u u u r,则λμ+=( )A .13-B .13C .12-D .126.如图,边长为1正方形ABCD ,射线BP 从BA 出发,绕着点B 顺时针方向旋转至BC ,在旋转的过程中,记([0,])2ABP x x π∠=∈,BP 所经过的在正方形ABCD 内的区域(阴影部分)的面积为()y f x =,则函数()f x 的图像是( )A .B .C .D .7.若两个正实数x ,y 满足142x y +=,且不等式2m 4yx m +<-有解,则实数m 的取值范围是 ( ) A .(1,2)- B .(,2)(1,)-∞-+∞U C .()2,1-D .(,1)(2,)-∞-+∞U8.已知实数,执行如图所示的流程图,则输出的不小于63的概率为( ) A .B .C .D .[]1,10x ∈x 4913253109.已知定义域为R 的函数()f x 满足:当0x ≤时,()x f x xe =,0x >时,()()1f x f x =-.若()()1g x k x =+,且方程()()0f x g x -=有两个不同的实根,则实数k 的取值范围是( )A .11,2e e ⎛⎫--⎪⎝⎭B .11,2e e ⎛⎤--⎥⎝⎦C .1,e ⎛⎫-∞-⎪⎝⎭D .1,e∞⎛⎤-- ⎥⎝⎦10.已知函数()()231cos sin 0,R 22xf x x x ωωω=+->∈.若函数()f x 在区间(),2ππ内没有零点,则ω的取值范围是( ) A .50,12⎛⎤ ⎥⎝⎦ B .55110,,12612⎛⎤⎡⎫⋃ ⎪⎥⎢⎝⎦⎣⎭ C .50,6⎛⎤⎥⎝⎦D .55110,,12612⎛⎤⎡⎤⋃ ⎥⎢⎥⎝⎦⎣⎦ 11.如图,棱长为1的正方体1111ABCD A B C D -中,P 为线段1AB 的中点,,M N 分别为线段1AC 和 棱 11C D 上任意一点,则2PM MN +的最小值为( ) A .24B .22C .1D .212.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12(,0),(,0)F c F c -,A 为双曲线C 的右支上一点,且12AF c =,1AF与y 轴交于点B ,若2F B 是21AF F ∠的平分线,则双曲线C 的离心率e =( ) A .51-B .152+ C .352+ D .5二、填空题(每小题5分,共4小题,共20分) 13.在等差数列{}n a 中,公差16250,14,40,d a a a a >+==则数列{a n}的前9项之和等于_____14.某市统计局就某地居民的月收入调查了10000人,并根据所得数据画出样本的频率分布直方图如图所示.(每个分组包括左端点,不包括右端点,如第一组表示[)1000,1500)试根据频率分布直方图求出样本数据的中位数为__________.15.如图,在ABC ∆中,,AC BC D ⊥为BC 边上的点,M 为AD 上的点,1,CD CAB MBD DMB =∠=∠=∠,则AM =__________.16. 设M ,N 分别是曲线f (x )=-x 3+x 2(x <e)与g (x )=a ln x (x ≥e)上一点,△MON 是以O 为直角顶点的直角三角形(其中O 为坐标原点),且斜边的中点恰好在y 轴上,则实数a 的取值范围是________. 三、解答题(共60分) 17.(12分)在ABC ∆中,角A ,B ,C 的对边分别为,b ,c,且sin sin sin a b cC B A+-=-. (1)求角A 的大小;(2)若等差数列{}n a 的公差不为零,1sin 1a A =,且2a 、4a 、8a 成等比数列,求14n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n S .四、选做题(10分)22.在平面直角坐标系xOy 中,已知直线l的参数方程为,4x t y =⎧⎪⎨=-⎪⎩(t 为参数),圆C 的方程为22(1)1y x +-=,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系.(1)求l 和C 的极坐标方程; (2)过O 且倾斜角为α的直线与l 交于点A ,与C 交于另一点B ,若5612ππα≤≤,求||||OB OA 的取值范围.23.设函数()|21|2|1|f x x x =-++.(1)若存在0x R ∈,使得()205f x m m +≤+,求实数m 的取值范围;(2)若m 是()I 中的最大值,且33a b m +=,证明:02a b <+≤.数学文科试卷参考答案一、单选题1.设集合A={2,1-a ,a 2-a +2},若4∈A ,则a =( ) A .-3或-1或2 B .-3或-1 C .-3或2 D .-1或2 【答案】C 【解析】若1−a =4,则a =−3,∴a 2−a +2=14,∴A ={2,4,14}; 若a 2−a +2=4,则a =2或a =−1,检验集合元素的互异性: a =2时,1−a =−1,∴A ={2,−1,4}; a =−1时,1−a =2(舍), 本题选择C 选项. 2.若复数2i2a z -=在复平面内对应的点在直线0x y +=上,则z =( )A .2BC .1D .【答案】B 【解析】分析:化简复数z ,求出对应点坐标,代入直线方程,可求得a 的值,从而可得结果. 详解:因为复数2i 22a az i -==-, 所以复数2i 2a z -=在复平面内对应的点的坐标为,12a ⎛⎫- ⎪⎝⎭, 由复数2i2a z -=在复平面内对应的点在直线0x y +=上,可得10212aa z i -=⇒==-,,z ==,故选B. 3.若双曲线223mx my -=3的一个焦点是()0,2,则m 的值是A .-1B .1C .20-D .2【答案】A【解析】双曲线223mx my -=3的标准方程为22113x y m m-=, ∵焦点在y 轴上,∴134m m+=,且0m <,∴ 1.m =-故选A . 4.已知各项为正数的等比数列{}n a 满足11a =,2416a a =,则6a =( ) A .64 B .32 C .16 D .4【答案】B【解析】先根据条件求公比,再根据等比数列通项公式求6.a【详解】由2416a a =得2445516116,1602232.a q q q q a a q ==>∴=∴===Q 选B.【点睛】本题考查等比数列通项公式,考查基本分析求解能力,属基本题.5.在ABC V 中,D 、P 分别为BC 、AD 的中点,且BP AB AC λμ=+u u u r u u u r u u u r,则λμ+=( )A .13-B .13C .12-D .12【答案】C【解析】由向量的加减法运算,求得BP BD DP BD PD =+=-u u u ru u u ru u u r u u u r u u u r,进而得出()()22BP AB AC BD PD λμμλλμ=+=-++u u u r u u u r u u u r u u u r u u u r,列式分别求出λ和μ,即可求得λμ+. 【详解】解:已知D 、P 分别为BC 、AD 的中点,由向量的加减法运算, 得BP BD DP BD PD =+=-u u u ru u u ru u u ru u u ru u u r,2AB AD DB BD PD =+=-+u u u r u u u r u u u r u u u r u u u r , 2AC AD DC BD PD =+=+u u u r u u u r u u u r u u u r u u u r ,又()()22BP AB AC BD PD λμμλλμ=+=-++u u u r u u u r u u u r u u u r u u u r Q ,则1221μλλμ-=⎧⎨+=-⎩,则12λμ+=-.故选:C.6.如图,边长为1正方形ABCD ,射线BP 从BA 出发,绕着点B 顺时针方向旋转至BC ,在旋转的过程中,记([0,])2ABP x x π∠=∈,BP 所经过的在正方形ABCD 内的区域(阴影部分)的面积为()y f x =,则函数()f x 的图像是( )A .B .C .D .【答案】D【解析】根据条件列()y f x =,再根据函数图象作判断.【详解】当0,4x π⎡⎤∈⎢⎥⎣⎦时,()112y f x tanx ==⨯⨯; 当,42x ππ⎛⎤∈⎥⎝⎦时,()11112y f x tanx ==-⨯⨯;根据正切函数图象可知选D. 【点睛】本题考查函数解析式以及函数图象,考查基本分析识别能力,属基本题. 7.若两个正实数x ,y 满足142x y +=,且不等式2m 4yx m +<-有解,则实数m 的取值范围是 ( ) A .(1,2)-B .(,2)(1,)-∞-+∞U C .()2,1-D .(,1)(2,)-∞-+∞U【答案】D【解析】将原问题转化为求最值的问题,然后利用均值不等式求最值即可确定实数m 的取值范围. 【详解】若不等式24y x m m +<-有解,即2()4min ym m x ->+即可, 142x y +=Q,1212x y∴+=, 则12122211121212112442248842y y x y x y x x x y y x y x ⎛⎫⎛⎫+=++=+++≥+⋅=+⨯=+⨯=+= ⎪ ⎪⎝⎭⎝⎭, 当且仅当28x y y x=,即2216y x =,即4y x =时取等号,此时1x =,4y =, 即()24min yx +=,则由22m m ->得220m m -->,即()()120m m +->, 得2m >或1m <-,即实数m 的取值范围是()(),12,-∞-⋃+∞,故选D .【点睛】本题主要考查基本不等式的应用,利用不等式有解转化为最值问题是解决本题的关键. 8.已知实数,执行如图所示的流程图,则输出的不小于63的概率为( )A .B .C .D . 【答案】B试题分析:运行该程序框图,第一次循环;第二次循环;第三次循环;推出循环输出,由得,由几何概型概率公式[]1,10x ∈x 49132531021,2x x n =+=()221+1=43,3x x x n =++=2187,4x x x n =+=+=87x +8763x +≥7x ≥可得输出的不小于的概率为,故选B. 考点:1、程序框图及循环结构;2、几何概型概率公式.【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是条件分支结构还是循环结构;(3)注意区分当型循环结构和直到型循环结构;(4)处理循环结构的问题时一定要正确控制循环次数;(5)要注意各个框的顺序;(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可. 9.已知定义域为R 的函数()f x 满足:当0x ≤时,()x f x xe =,0x >时,()()1f x f x =-.若()()1g x k x =+,且方程()()0f x g x -=有两个不同的实根,则实数k 的取值范围是( )A .11,2e e ⎛⎫-- ⎪⎝⎭B .11,2e e ⎛⎤--⎥⎝⎦C .1,e ⎛⎫-∞-⎪⎝⎭D .1,e∞⎛⎤-- ⎥⎝⎦【答案】A【解析】求出0x ≤时()x f x xe =的导数,可得单调区间和极值,可将()y f x =在(]10-,的图象每向右平移一个单位可得0x >时()f x 的图象,由题意可得()y f x =和()y g x =的图象有两个交点.将直线()y g x =绕着()10-,旋转考虑经过点10e ⎛⎫- ⎪⎝⎭,,11e⎛⎫- ⎪⎝⎭,,可得此时的斜率k ,结合图象可得所求范围. 【详解】当0x ≤时,()x f x xe =的导数为()()1x f x x e '=+,当10x -<<时,()0f x >′,()f x 递增;当1x <-时,()0f x <′,()f x 递减,则1x =-处()f x 取得极小值()11f e-=-,由0x >时,()()1fx f x =-,可将()y f x =在(]10-,的图象每向右平移一个单位,可得()f x 在0x >时的图象,如图:由方程()()0f x g x -=有两个不同的实根,可得()y f x =和()y g x =的图象有两个交点.又()()1y gx k x ==+的图象为恒过定点()10-,的直线,当该直线经过点10e⎛⎫- ⎪⎝⎭,时, 1k e=-;当该直线经过点11e ⎛⎫- ⎪⎝⎭,时,k 12e =-. 由图象可得当112k e e-<<-时,()y f x =和()y g x =的图象有两个交点.故选:A . x 631071103-=【点睛】本题考查函数方程的转化思想,考查导数的运用,以及图象平移,考查运算能力和数形结合思想的运用,属于中档题. 10.已知函数()()231cos sin 0,R 22xf x x x ωωω=+->∈.若函数 ()f x 在区间(),2ππ内没有零点 , 则ω的取值范围是( ) A .50,12⎛⎤ ⎥⎝⎦ B .55110,,12612⎛⎤⎡⎫⋃ ⎪⎥⎢⎝⎦⎣⎭ C .50,6⎛⎤⎥⎝⎦D .55110,,12612⎛⎤⎡⎤⋃ ⎥⎢⎥⎝⎦⎣⎦ 【答案】D 【解析】1cos 3131()sin sin cos 222x f x x x x ωωωω+=+-=+sin()6x πω=+ ,2,2,2666x x x πππππωπωωπωπωωπ<<∴<<+<+<+Q , 函数()f x 在区间(),2ππ内没有零点(1) (,2)(2,2),66k k k Z ππωπωππππ++⊆+∈,则26{226x k k πωππωπππ+≥+≤+ ,则126{512k k ωω≥-≤+,取0k = ,0,ω>Q 5012k ∴<≤ ;(2)(,2)(2,22),66k k k Z ππωπωπππππ++⊆++∈,则26{2226k k πωππππωπππ+≥++≤+ ,解得:526{1112k k ωω≥+≤+,取0k = ,511612k ∴≤≤ ;综上可知:k 的取值范围是5511(0,][,]12612U ,选D . 【点睛】有关函数sin()y A x ωϕ=+求ωϕ、的值及取值范围问题是近几年高考的重点考题,应引起足够的注意.本题首先利用降幂公式和辅助角公式把函数的解析式化为标准sin()y A x ωϕ=+型,函数 ()f x 在区间(),2ππ内没有零点,根据x 的范围求出3x πω+的范围,使其在(2,2)k k πππ+或在(2,22)k k ππππ++内,恰好函数无零点,求出ω的范围.11.如图,棱长为1的正方体1111ABCD A B C D -中,P 为线段1AB 的中点,,M N 分别为线段1AC 和 棱 11C D 上任意一点,则2PM MN +的最小值为( )A.4 B.2C .1 D.【答案】C【解析】首先连接1C D ,过M 作1MH C D ⊥,连接HN ,过H 作111HH C D ⊥.根据面面垂直的性质得到AD ⊥平面11CC D D ,即//MH AD .再根据相似三角形得到11C H MH AD C D =,1111HH C HDD C D=,即1MH HH =.再将2PM MN +转化为PM MH +,求其最小值即可. 【详解】连接1C D ,过M 作1MH C D ⊥,连接HN ,过H 作111HH C D ⊥.因为平面1AC D ⊥平面111CC D D C D =,1MH C D ⊥ 所以MH⊥平面11CC D D . 因为AD ⊥平面11CC D D ,所以//MH AD .所以11C HMH AD C D =. 又因为11//HH DD ,所以1111HH C H DD C D=. 即11HH MH AD DD =. 因为1AD DD =,所以1MH HH =. 在RT MHN V 中,222MN MH HN =+.因为1HN HH ≥,所以2222212MH HN MH HH MH +≥+=.即222MN MH ≥,MN ≥.所以12PM MN PM MH +≥+≥.即PM 的最小值为1 故选:C 12.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12(,0),(,0)F c F c -,A 为双曲线C 的右支上一点,且12AF c =,1AF与y 轴交于点B ,若2F B 是21AF F ∠的平分线,则双曲线C 的离心率e =( ) A1B.12C.32+ D【答案】C【解析】先利用角平分线及12AF c =得到三角形相似,进而得到AB ,再根据角平分线定理也可得到AB ,列方程即可求出离心率. 【详解】 如图:由题意得:112AF F F =,所以1212F AF F F A ∠=∠,又12F B F B =,所以1221BF F BF F ∠=∠,又2F B 是21AF F ∠的平分线,所以122BF F AF B ∠=∠, 所以221~BAF AF F V V ,所以2212||AF AB F F =⋅,即2(22)||2c a AB c -=⋅,所以22()||c a AB c-=,由角平分线定理知,2112||AF AB BF F F =,则112211||BF F F AB AF +=+, 所以21122||AF AB AF F F AF =+,所以2222()2()||22222c a c c a c a AB c c a c c a c---=⋅==-+-,故22230310c ac a e e e -+=⇒-+=⇒=.故选:C . 二、填空题 13.在等差数列{}n a 中,公差16250,14,40,d a a a a >+==则数列{a n}的前9项之和等于_____【答案】90 【解析】 【分析】先利用等差数列的性质列方程组求出2a 和5a 的值,并求出1a 和公差d 的值,再利用等差数列前n 项和公式可求出数列{}n a 的前9项之和。
南昌二中2020届高三线上教学质量检测数学(文)试卷 第I 卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|21|3}A x x =-≥,(){}2lg 6B xy x x ==--∣,则RCA B =( )A .(1,3)-B .ΦC .(2,3)D .(2,1)--2.复数(sin 2cos )(sin 2cos )Z i θθθθ=-++是纯虚数,则sin cos θθ=( ) A .52-B .25-C .25D .523.甲、乙两组数据如茎叶图所示,若它们的中位数相同,平均数也相同,则图中的m ,n 的比值mn=( )A .13B .12C .2D .34.在等差数列{}n a 中,381327a a a ++=,n S 表示数列{}n a 的前n 项和,则15S =( ) A .134B .135C .136D .1375.已知0a >,0b >,两直线1l :(1)10a x y -+-=,2l :210x by ++=且12l l ⊥,则21a b+的最小值为( ) A .2B .4C .8D .96.执行如图所示的程序框图,输出S 的值是( )A .0B 3C 3D .37.圆柱的底面半径为r ,侧面积是底面积的4倍。
O 是圆柱中轴线的中点,若在圆柱内任取一点P ,则使||PO r≤的概率为()A.13B.12C.23D.348.下列四个命题中,正确的有①两个变量间的相关系数r越小,说明两变量间的线性相关程度越低;②命题“x∃∈R,使得210x x++<”的否定是:“对x∀∈R,均有210x x++>”;③命题“p g∧为真”是命题“p q∨为真”的必要不充分条件;④若函数322()3f x x ax bx a=+++在1x=-有极值0,则2a=,9b=或1a=,3b=.A.0B.1C.2D.39.已知x,y满足区域D:30101x yx yx+-≤⎧⎪--≤⎨⎪≥⎩,则2()()x y xyx x y-++的取值范围是()A.[1,)+∞B.(0,23⎤⎦C.233,1⎡⎤-⎣⎦D.1,23⎡⎤⎣⎦10.函数()3sin3()91xxxf xx=-⋅⋅的图象大致为()A.B.C.D.11.已知抛物线C:24x y=,焦点为F,圆M:222240(0)x x y y a a-+++=>,过F的直线l与C交于A,B两点(点A在第一象限),且4FB AF=,直线l与圆M相切,则a=()A.0B211C11D.312.若函数2()(2)ln()f x ax a x x a=+--∈R在其定义域上有两个零点,则a的取值范围是()A.(4(ln21),)++∞B.(0,4(1ln2)]+C.(,0){4(112)}-∞+D.(0,(4(ln21))+二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卡的相应位置.13.已知某三棱锥的三视图如图所示,那么这个几何体的外接球的体积为________.14.已知ABC △中,60BAC ∠=︒,2AB =,4AC =,E 、F 分别为BC 边上三等分点,则AE AF ⋅=________.15.若数列{}n a 的前n 项和为n S ,对任意正整数n 都有32n n S a +=,记12log n nb a =,则数列11n n b b +⎧⎫⎨⎬⎩⎭的前50项的和为________.16.如右图是3世纪我国汉代的赵爽在注解周髀算经时给出的,人们称它为“赵爽弦图”,阴影部分是由四个全等的直角三角形组成的图形,在大正方形内随机取一点,这一点落在小正方形内的概率为13,若直角三角形的两条直角边的长分别为a ,b (a b >),则ba=________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤,解答应写在答题卡上的指定区域内. 17.(本小题满分12分)已知各项都不相等的等差数列{}n a 中,4103a =,又1a ,2a ,6a 成等比数列。
南昌二中2017~2020学年度上学期第七次考试高三数学(文)试卷一、选择题(每小题5分,共60分。
每小题所给选项只有一项符合题意,请将正确答案的选项填涂在答题卡上)1.设集合{}2M x x x ==,{}lg 0N x x =≤,则M N =( )A. [0,1]B. (0,1]C. [0,1)D. (,1]-∞2.设i 是虚数单位,若()52ii x yi i+=-,x ,y R ∈,则复数x yi +的共轭复数是( ) A. 2i -B. 2i --C. 2i +D. 2i -+3.设p :()21f x x mx =++在()2,+∞内单调递增,q :4m >-,则p 是q 的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分也不必要条件4.已知m 是两个数2,8的等比中项,则圆锥曲线221y x m+=的离心率为( )A.2或2 B. 2C.25.若,m n 是两条不同的直线, ,,αβγ是三个不同的平面,下面说法正确的是( ) A. 若,m βαβ⊂⊥,则m α⊥B. 若,αγαβ⊥⊥,则γβ⊥C. 若,,//m n m n αγβγ⋂=⋂=,则//αβD.若,//m m βα⊥,则αβ⊥6.在ABC ∆中, D 为AB 的中点,点F 在线段CD (不含端点)上,且满足AF x AB y AC =+,若不等式212a at x y+≥+对[]2,2t ∈-恒成立,则a 的最小值为( ) A. -4B. -2C. 2D. 47.执行如图所示的程序框图,则输出的S 的值为( )C. D. 18.七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形中任取一点,则此点取自黑色部分的概率是( ) A.316B.38C.14D.189.已知函数()2sin cos 2f x x x x ωωω=+(0ω>)的相邻两 个零点差的绝对值为4π,则函数()f x 的图象( ) A. 可由函数()cos4g x x =的图象向左平移524π个单位而得B. 可由函数()cos4g x x =的图象向右平移524π个单位而得C. 可由函数()cos4g x x =的图象向右平移724π个单位而得D. 可由函数()cos4g x x =的图象向右平移56π个单位而得10.某几何体的三视图如图所示,其中俯视图中六边形ABCDEF 是边长为1的正六边形,点G 为AF 的中点,则该几何体的外接球的表面积是( )A.316π B. 318π C. 48164π11.已知抛物线21:4C y x =和圆()222:11C x y -+=,直线()1y k x =-与12,C C 依次相交于()()1122,,,,A x y B x y()()3344,,,C x y D x y 四点(其中1234x x x x <<<), 则AB CD ⋅的值为( )A. 1B. 2C. 24kD. 2k12.已知实数0a >,函数()f x = ()112,02{1,022x x ae x a ae x a x x --+<+-++≥,若关于x 的方程()2aa f f x e -⎡⎤-=+⎣⎦有三个不等的实根,则实数a 的取值范围是( ) A. 21,2e ⎛⎫+⎪⎝⎭ B. 22,2e ⎛⎫+ ⎪⎝⎭ C. 11,1e ⎛⎫+ ⎪⎝⎭D. 12,2e ⎛⎫+⎪⎝⎭二、填空题(每小题5分,共20分,把答案填写在答题纸的相应位置上) 13.已知奇函数()f x 的图像关于直线对称,当[]0,3x ∈时, ()f x x =-,则()16f -=__________.14.已知x ,y 满足约束条件20,{20, 4180,x y x y x y -≤-≥+-≤则目标函数328xy z =的最小值为__________.15.在ABC ∆中,若OA OB OB OC OC OA ⋅=⋅=⋅,且,4cos cos a b c A B==,则OA AB ⋅=_______. 16.在平面直角坐标系xOy 中,点()0,3A -,若圆()()22:21C x a y a -+-+=上存在一点M 满足2MA MO =,则实数a 的取值范围是__________.三、解答题(本大题共70分=10分+12×5分,解答应写出文字说明,证明过程或演算步骤) 17. (本小题满分12分)在等差数列{}n a 中,13a =,其前n 项和为n S ,等比数列{}n b 的各项均为正数,11b =,且2211b S +=,3329S b =.(I )求数列{}n a 和{}n b 的通项公式;(II )令1(1)2n n n na c nb --=⋅,设数列{}n c 的前n 项和为n T ,求1n n T T -(*n N ∈)的最大值与最小值.18.(本小题满分12分)某市高中全体学生参加某项测评,按得分评为,A B 两类(评定标准见表1).根据男女学生比例,使用分层抽样的方法随机抽取了10000名学生的得分数据,其中等级为1A 的学生中有40%是男生,等级为2A 的学生中有一半是女生.等级为1A 和2A 的学生统称为A 类学生,等级为1B 和2B 的学生统称为B 类学生.整理这10000名学生的得分数据,得到如图2所示的频率分布直方图, 表一(I)已知该市高中学生共20万人,试估计在该项测评中被评为A 类学生的人数;(Ⅱ)某5人得分分别为45,50,55,75,85.从这5人中随机选取2人组成甲组,另外3人组成乙组,求“甲、乙两组各有1名B 类学生”的概率;(Ⅲ)在这10000名学生中,男生占总数的比例为51%, B 类女生占女生总数的比例为1k , B 类男生占男生总数的比例为2k ,判断1k 与2k 的大小.(只需写出结论)19.(本小题满分12分)如图,三棱柱111ABC A B C -中, AB ⊥平面11AAC C , 1AA AC =.过1AA 的平面交11B C 于点E ,交BC 于点F .(I)求证: 1A C ⊥平面1ABC ; (Ⅱ)求证: 1//AA EF ;(Ⅲ)记四棱锥11B AA EF -的体积为1V ,三棱柱111ABC A B C -的体积为V .若116V V =,求BFBC的值.20.(本小题满分12分)已知椭圆C : 22221(0)x y a b a b+=>>的离心率为2,且以两焦点为直径的圆的内接正方形面积为2.(I )求椭圆C 的标准方程;(II )若直线l : 2y kx =+与椭圆C 相交于A , B 两点,在y 轴上是否存在点D ,使直线AD 与BD 的斜率之和AD BD k k +为定值?若存在,求出点D 坐标及该定值,若不存在,试说明理由.21.(本小题满分12分)已知函数()222x e f x e x=+, ()3ln g x e x =,其中e 为自然对数的底数. (Ⅰ)讨论函数()f x 的单调性.(Ⅱ)试判断曲线()y f x =与()y g x =是否存在公共点并且在公共点处有公切线.若存在,求出公切线l 的方程;若不存在,请说明理由.四、请考生在第22、23题中任选一题做答,如果多做,则按所做的第一题记分.做答时,用2B 铅笔在答题卡上把所选题目对应的题号涂黑.22.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C : 21sin ρθ=-,直线l : {x tcos y tsin αα==(t 为参数, 0απ≤<). (Ⅰ)求曲线C 的直角坐标方程;(Ⅱ)设直线l 与曲线C 交于A 、B 两点(A 在第一象限),当30OA OB +=时,求α的值.23.(本小题满分10分)选修4-5:不等式选讲已知函数()21f x x =+.(I )求不等式()103f x x ≤--的解集;(II )若正数m , n 满足2m n mn +=,求证: ()()216f m f n +-≥.南昌二中2017~2020学年度上学期第七次考试高三数学(文)试卷参考答案一、选择题1.设集合{}2M x x x ==,{}lg 0N x x =≤,则M N =( )A. [0,1]B. (0,1]C. [0,1)D. (,1]-∞ 【答案】A【解析】试题分析:,,所以,故选A. 考点:集合的运算.2.设i 是虚数单位,若()52ii x yi i+=-, x , y R ∈,则复数x yi +的共轭复数是( ) A. 2i - B. 2i -- C. 2i + D. 2i -+ 【答案】A 【解析】()()5i 2i 5i i i i,12i 2i 5x y y x ++=-+==-+-,根据两复数相等的充要条件得2,1x y ==,即i 2i x y +=+,其共轭复数为i 2i x y -=-,故选A.3.设p : ()21f x x mx =++在()2,+∞内单调递增, q : 4m >-,则p 是q 的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 【答案】B【解析】∵()21f x x mx =++在()2,+∞内单调递增,∴42m-≤,解的4m ≥-,故则p 是q 的必要不充分条件,故选B.4.已知m 是两个数2,8的等比中项,则圆锥曲线221y x m+=的离心率为( )【答案】B【解析】由题意得216m =,解得4m =或4m =-.当4m =时,曲线方程为2214y x +=,故离心率为2c e a ====;当4m =-时,曲线方程为2214y x -=,故离心率为c e a ====B . 5.若,m n 是两条不同的直线, ,,αβγ是三个不同的平面,下面说法正确的是( ) A. 若,m βαβ⊂⊥,则m α⊥ B. 若,αγαβ⊥⊥,则γβ⊥C. 若,,//m n m n αγβγ⋂=⋂=,则//αβD.若,//m m βα⊥,则αβ⊥ 【答案】D【解析】若,m βαβ⊂⊥,则m 与α平行,相交或m α⊂,故A 不正确;若,αγαβ⊥⊥,则γ与β相交或平行,故B 不正确;若,m αγ⋂= n βγ⋂=, //m n ,则//αβ或α与β相交,故C 不正确;若,//m m βα⊥,则αβ⊥, //m α,根据线面平行的性质在α内至少存在一条直线'm 与m 平行,根据线面垂直的判定:如果两条平行线中的一条垂直这个平面,那么另一条也垂直于该平面, 'm β⊥,可得αβ⊥,故D 正确,故选D.6.在ABC ∆中, D 为AB 的中点,点F 在线段CD (不含端点)上,且满足AF x AB y AC =+,若不等式212a at x y+≥+对[]2,2t ∈-恒成立,则a 的最小值为( ) A. -4 B. -2 C. 2 D. 4 【答案】B【解析】根据图像知道点DFC 三点共线,故AF x AB y AC =+ 2x AD y AC =+,由共线定理得到21,x y += 则()124248y xx y x y x y ⎛⎫++=++≥ ⎪⎝⎭,故问题转化为28a at ≥+,对[]2,2t ∈-恒成,因为不等式是关于t 的一次函数,故直接代入端点即可, []22280{ 2,2280a a a a a +-≤⇒∈---≤ a 的最小值为-2. 故答案为:B 。
2020届高三摸底测试卷文科数学本试卷共4页,23小题,满分150分.考试时间120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、准考证号填涂在答题卡上,并在相应位置贴好条形码.2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案信息涂黑;如需改动,用橡皮擦干净后,再选涂其它答案.3.非选择题必须用黑色水笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来答案,然后再写上新答案,不准使用铅笔和涂改液.不按以上要求作答无效.4.考生必须保证答题卡整洁.考试结束后,将试卷和答题卡一并交回.一.选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}3=0,=21x M x N x y x x -⎧⎫>=-⎨⎬-⎩⎭,则()R C M N =I ( )A. (]1,2 B. []1,2C. (]2,3D. []2,3【答案】B 【解析】 【分析】根据求解分式不等式和二次根式的定义域得,M N 集合,再运用集合的补集和交集运算求解. 【详解】由已知得()()(],13,,,2MN =-∞⋃+∞=-∞,[]1,3R C M =,所以()R C M N =I []1,2, 故选B.【点睛】本题考查集合的补集和交集运算,属于基础题.2.复数z 满足1i1i z+=-,则||z =( ) A. 2i B. 2C. iD. 1【答案】D【解析】 【分析】根据复数的运算法则,求得复数z i =,即可得到复数的模,得到答案。
【详解】由题意,复数11ii z+=-,解得()()()()111111i i i z i i i i +++===--+,所以1z =,故选D 。
【点睛】本题主要考查了复数的运算,以及复数的模的求解,其中解答中熟记复数的运算法则是解答的关键,着重考查了推理与运算能力,属于基础题。
3.已知平面α内一条直线l 及平面β,则“l β⊥”是“αβ⊥”的( ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件【答案】B 【解析】 【分析】根据线面垂直的判定定理和性质定理,以及充分条件和必要条件的判定方法,即可求解。
江西省南昌二中2020届高三高考数学(文科)校测试题(一)一、单选题
(★★★) 1. 已知全集,集合,则()
A.B.C.D.
(★★★) 2. 若复数,为虚数单位,则
A.B.C.D.
(★★★) 3. 已知实数,则“ ”是“ ”的
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
(★★★) 4. 若函数的图象的一条对称轴为,则的最小值为()
A.B.C.D.
(★★★) 5. 已知数列为等比数列,是它的前项和,若,且与的等差中项为,则().
A.B.C.D.
(★) 6. 已知向量,,且,则()
A.B.C.D.
(★★) 7. 我国明朝数学家程大位著的《算法统筹》里有一道闻名世界的题目:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”以下程序框图反映了对此题的一个求解算法,则输出的的值为()
A.20B.25C.30D.75
(★★★) 8. 已知某样本的容量为50,平均数为70,方差为75.现发现在收集这些数据时,其中的两个数据记录有误,一个错将80记录为60,另一个错将70记录为90.在对错误的数据进行更正后,重新求得样本的平均数为,方差为,则()
A.B.
C.D.
(★★★) 9. 下列图象可以作为函数的图象的有()
A.1个B.2个C.3个D.4个
(★★★) 10. 已知 P, A, B, C是半径为2的球面上的点, O为球心,,,则三棱锥体积的最大值是( )
A.B.1C.D.
(★★★)11. 已知,分别是双曲线的左,右焦点,动点在双曲线的左支上,点为圆上一动点,则的最小值为()
A.7B.8C.D.
(★★★) 12. 若函数有最大值,则实数的取值范围是()
A.B.
C.,D.
二、填空题
(★★) 13. 函数的图象在处的切线与直线互相垂直 ,则_____.
(★★★) 14. 如图在平行四边形中,,,为边的中点,,若,则___________.
(★★★)15. 如图,在一个底面边长为 cm的正六棱柱容器内有一个半径为 cm的铁球,现向容器内注水,使得铁球完全浸入水中,若将铁球从容器中取出,则水面下降 ______ cm.
(★★★) 16. 在数列中,,,是数列的前
项和,则为___________.
三、解答题
(★★) 17. 已知,,
(1)求的最小正周期及单调递增区间;
(2)已知锐角的内角,,的对边分别为,,,且,,求边上的高的最大值.
(★★★) 18. 为响应党中央“扶贫攻坚”的号召,某单位指导一贫困村通过种植紫甘薯来提高经
济收入.紫甘薯对环境温度要求较高,根据以往的经验,随着温度的升高,其死亡株数成增长的趋势.下表给出了2017年种植的一批试验紫甘薯在温度升高时6组死亡的株数:
温度(单
212324272932
位:)
死亡数(单
61120275777
位:株)
经计算:,,,,,,,其中,分别为试验数据中的温度和死亡株数,. (1)若用线性回归模型,求关于的回归方程(结果精确到0.1);(2)若用非线性回归模型求得关于的回归方程,且相关指数为. (i)试与(1)中的回归模型相比,用说明哪种模型的拟合效果更好;(ii)用拟合效果好的模型预测温度为时该紫甘薯死亡株数(结果取整数). 附:对于一组数据,,,,其回归直线的斜率和截距的最
小二乘估计分别为:,;相关指数为:. (★★★) 19. 已知四棱台的下底面是边长为4的正方形,,且面,点为的中点,点在上,,与面所成角的正切值为2.
(1)证明:面;
(2)求证:面,并求三棱锥的体积.
(★★★) 20. 已知曲线上的点到点的距离比到直线的距离小,为坐标
原点.
(1)过点且倾斜角为的直线与曲线交于、两点,求的面积;
(2)设为曲线上任意一点,点,是否存在垂直于轴的直线,使得被以
为直径的圆截得的弦长恒为定值?若存在,求出的方程和定值;若不存在,说明理由.
(★★★★) 21. 已知函数.
(1)讨论函数的单调性;
(2)判断并说明函数的零点个数.若函数所有零点均在区间.
内,求的最小值.
(★★★) 22. 选修4-4:坐标系与参数方程:在直角坐标系中,曲线(为参数),以坐标原点为极点,以轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的极坐标方程;
(2)已知点,直线的极坐标方程为,它与曲线的交点为,,与曲线
的交点为,求的面积.
(★★★) 23. 已知.
(1)当时,求不等式的解集;
(2)若时不等式成立,求的取值范围.。