分布式光纤监测技术在我国的发展(新编版)
- 格式:docx
- 大小:233.35 KB
- 文档页数:15
《分布式光纤传感技术在结构应变及开裂监测中的应用研究》篇一一、引言随着科技的不断进步,分布式光纤传感技术作为一种新型的监测手段,在结构健康监测领域中发挥着越来越重要的作用。
本文旨在探讨分布式光纤传感技术在结构应变及开裂监测中的应用,分析其技术原理、应用现状及存在的问题,并展望其未来的发展趋势。
二、分布式光纤传感技术概述分布式光纤传感技术是一种基于光纤传输特性的传感技术,通过在光纤中传输光信号并检测其变化,实现对结构应力和开裂的实时监测。
其核心技术包括光纤的制造技术、光学传输原理、信号处理及解调技术等。
三、分布式光纤传感技术的原理与特点(一)技术原理分布式光纤传感技术利用光纤作为传感器,通过光时域反射(OTDR)技术或光频域反射(OFDR)技术,实时监测光纤中光信号的传输变化,从而推算出结构应力和开裂情况。
(二)特点1. 分布式测量:可对结构进行连续、长距离的测量。
2. 高灵敏度:能够检测到微小的结构变化。
3. 抗干扰能力强:光纤传感器对电磁干扰具有很好的抵抗能力。
4. 长期稳定性好:光纤传感器具有良好的耐久性和长期稳定性。
四、分布式光纤传感技术在结构应变及开裂监测中的应用(一)在桥梁工程中的应用桥梁是交通基础设施的重要组成部分,其安全性直接关系到人民的生命财产安全。
通过将分布式光纤传感器埋设于桥梁混凝土结构中,可以实时监测桥梁的应变及开裂情况,为桥梁的安全运营和维护提供依据。
(二)在建筑结构中的应用在建筑结构中,分布式光纤传感技术可以用于监测建筑物的应变及开裂情况,特别是在地震等自然灾害发生时,能够及时发现问题,为建筑物的安全评估和加固提供有力支持。
(三)在其他领域的应用此外,分布式光纤传感技术还可以应用于隧道、水利大坝、石油化工等领域的结构健康监测,具有广泛的应用前景。
五、现存问题与挑战虽然分布式光纤传感技术在结构健康监测中取得了显著的成果,但仍存在一些问题和挑战。
例如,传感器件的精度和稳定性有待进一步提高,信号处理和解调技术需要进一步优化等。
2024年分布式光纤传感器市场发展现状概述分布式光纤传感器是一种基于光学原理的传感器,可在单根光纤上实时测量温度、压力、应变等物理参数的变化。
随着技术的不断进步,分布式光纤传感器在工业、军事、能源领域等广泛应用,并在市场上取得了良好的发展。
本文将介绍分布式光纤传感器市场的发展现状。
市场规模目前,全球分布式光纤传感器市场规模持续扩大。
根据市场研究报告显示,预计到2025年,分布式光纤传感器市场规模将达到XX亿美元,年复合增长率为XX%。
其中,能源领域是分布式光纤传感器市场的主要驱动力,占据市场份额的40%以上。
应用领域分布式光纤传感器的应用领域广泛。
在工业领域,分布式光纤传感器可以应用于管道、油井、桥梁等结构的监测与检测,实时监测温度、应变等变化情况,确保安全可靠。
在军事领域,分布式光纤传感器可用于军事基础设施的监测、边界安全、侦察等方面,提供实时的数据支持。
此外,分布式光纤传感器还可以应用于交通运输、环境监测、医疗健康等领域。
技术趋势分布式光纤传感器的发展离不开技术的持续创新。
目前,光学通信技术、光纤传感器技术的进步为分布式光纤传感器提供了更好的发展机遇。
例如,光纤布拉格光栅传感器、光纤雷曼散射传感器等技术的不断改进,使得分布式光纤传感器的精度和可靠性得到显著提高。
此外,随着人工智能和大数据分析等技术的发展,分布式光纤传感器的数据处理和应用能力也将进一步增强。
发展挑战尽管分布式光纤传感器目前在市场上取得了一定的发展,但仍面临一些挑战。
首先,分布式光纤传感器的成本较高,限制了其广泛应用。
其次,传感器的精度和可靠性还需要进一步提升,以满足不同行业的需求。
此外,分布式光纤传感器的标准化和规范化工作也还有待完善,以促进市场的健康发展。
市场竞争格局当前,全球分布式光纤传感器市场竞争激烈。
市场上主要存在着一些大型跨国公司,如公司A、公司B等。
这些公司拥有先进的技术和研发能力,在市场上占据着一定的份额。
此外,还有一些中小型企业通过技术创新和市场定位,逐渐崭露头角,成为市场竞争的一股新力量。
分布式光纤传感技术的特点与研究现状论述摘要:分布式无线光纤传感技术是目前正在发展的一项新型检测技术,它的工作原理主要是利用光纤感知接收到一个信号并将这个信号实时传出并返回,相较于传统的节点式无线光纤传感器主要工作原理而言,分布式无线光纤传感技术可以实时测量前向光纤上成千上万个散射点的空间温度和其对应变量等信息,达到分布式温度测量。
通过连续函数的具体计算形式,针对整个光纤基层表面各个节点位置的实时监测温度,进行相对精准的温度测量。
关键词:分布式;光纤传感技术1 分布式光纤传感技术简介1.1 光纤的损耗特性如果想要光信号顺利通过,需要通过一些方法降低光纤损耗。
除此之外,光纤损耗的分类主要分为固有损耗和附加损耗。
固有损耗包括散射损耗、吸收损耗和因光纤结构不完善引起的损耗。
附加损耗则包括微弯损耗、弯曲损耗和接续损耗。
1.2 分布式光纤传感技术分布式光纤传感技术根据传感光类型不同可分为散射光传感和前向光传感2类。
其中,散射光又分为瑞利散射、拉曼散射和布里渊散射3类。
基于不同光学效应的传感技术可以检测不同的物理参量。
基于瑞利散射的光纤传感技术工程上主要用于检测振动与声音信号,基于拉曼散射的光纤传感技术工程上主要用于温度的测量,而基于布里渊散射的光纤传感技术工程上主要用于应变与温度的双参数测量,而前向光干涉的光纤传感技术工程上主要用于振动与声音的检测。
光纤总线调制调控总线起到一个传光器的调制作用。
各种新型分布式光纤调制总线调控传感器的调制系统实质上是一个联合调制复用工作调制调控系统。
根据调制光波所测的各种外界强度调制调控信号类型进行联合调制以及光波的各种外界物理强度波动变化特征情况和光波所参与测量的外界强度波动变化及其响应特征情况,可将用于调制时间光波的各种外界强度调制调控信号类型分为光化学光波被测强度调制信号联合调制、光化学微波被测频率调制信号联合调制、光波长强度信号联合调制、光化学微波偏振相位调制信号联合调制和偏振相位信号联合调制这几种主要工作调制类型。
《BOTDR分布式光纤传感系统解调技术的研究》篇一一、引言随着科技的不断进步,光纤传感技术在各个领域的应用越来越广泛。
BOTDR(基于光时域反射技术的分布式光纤传感系统)作为一种重要的光纤传感技术,以其高灵敏度、高空间分辨率和长距离监测等优势,在电力、石油、交通、环境监测等领域发挥着重要作用。
本文将重点研究BOTDR分布式光纤传感系统的解调技术,探讨其原理、应用及发展趋势。
二、BOTDR分布式光纤传感系统概述BOTDR分布式光纤传感系统是一种基于光时域反射技术的光纤传感系统,通过测量光在光纤中的传输时间及光信号的幅度变化,实现对光纤中物理量的分布式测量。
该系统主要由激光器、光纤、解调器等部分组成。
其中,解调技术是BOTDR系统的核心,直接影响到系统的性能和测量精度。
三、BOTDR解调技术原理BOTDR解调技术的核心在于对光信号的检测与处理。
当激光器发出的光脉冲在光纤中传播时,会受到外界环境的影响,产生光程变化,从而引起光信号的幅度、相位和频率等参数发生变化。
解调器通过检测这些参数的变化,将光纤中的物理量信息转换为可识别的电信号,从而实现对外界环境的监测。
四、BOTDR解调技术的研究现状目前,BOTDR解调技术的研究主要集中在提高系统灵敏度、降低噪声干扰、优化算法等方面。
通过采用高精度光电器件、优化数据处理算法等手段,不断提高BOTDR系统的性能。
此外,针对不同应用场景,研究者们还开发了多种BOTDR解调技术,如基于小波变换的解调技术、基于机器学习的解调技术等。
五、BOTDR解调技术的应用BOTDR解调技术在各个领域有着广泛的应用。
在电力系统中,可用于电缆故障定位、输电线路温度监测等;在石油化工领域,可用于油气管线泄漏检测、油井温度压力监测等;在交通领域,可用于桥梁、隧道等基础设施的健康监测;在环境监测领域,可用于地震预警、气象监测等。
通过应用BOTDR解调技术,可以提高监测的准确性和可靠性,为各个领域的安全运行提供有力保障。
第一节2017-2025年中国分布式光纤传感器行业投资前景分析 (2)一、分布式光纤传感器行业发展前景 (2)二、分布式光纤传感器发展趋势分析 (2)三、分布式光纤传感器市场前景分析 (3)第二节2017-2025年中国分布式光纤传感器行业十三五投资风险分析3一、市场竞争风险 (3)二、技术风险分析 (3)三、人才流失风险 (4)四、行业需求下滑风险 (4)五、新应用领域拓展风险 (5)第三节2017-2025年中国分布式光纤传感器行业十三五投资策略及建议 (5)第一节2017-2025年中国分布式光纤传感器行业投资前景分析一、分布式光纤传感器行业发展前景我国在20世纪70年代末就开始了光纤传感器的研究,几乎与国际同步。
进入21世纪以来,随着光纤通信走入低谷和新一轮金融危机的出现,我国光纤传感技术又开始进入了蓬勃发展的新时期。
许多光纤和相关元器件的生产厂家将目光转向光纤传感,很多投资机构也看好这一市场;与此同时,光器件和电子技术的发展使光纤传感技术本身有了很大的提高,不少光纤传感系统已能满足市场实用的要求,而更主要的则是市场的需求急剧增长。
国内已经有相当数量的研究成果具有很高的实用价值,达到了世界先进水平。
分布式光纤传感器应用于对磁、声、压力、温度、加速度、陀螺、位移、液面、转矩、光声、电流和应变等物理量的测量。
其应用范围十分广泛,几乎涉及国民经济和国防上所有重要领域和人们的日常生活,尤其可以安全有效地在恶劣环境中使用,解决了许多行业多年来一直存在的技术难题。
因此我们可以说分布式光纤传感器具有很大的市场需求,不说长久,至少在未来5年,分布式光纤传感器将会有广阔的发展前景。
二、分布式光纤传感器发展趋势分析由于分布式光纤传感技术能够实现大范围测量场中分布信息的提取,因而它可解决目前测量领域的众多难题,如:分布式温度传感器可用于大、中型变压器、发电机组和油井的温度分布测量,大型仓库、油库、高层建筑、矿井和隧道的火灾防护及报警系统等领域;分布式应力传感器可用于桥梁、堤坝等设施的安全检测,航空、航天飞行器等大型设备老化程度的检测,智能材料制备等领域。
分布式光纤传感技术及其在工程监测中的应用∗施斌丁勇索文斌高俊启(南京大学光电传感工程监测中心, 210093 南京)[摘要] 分布式光纤传感技术,如布里渊散射光时域反射测量技术(简称BOTDR),是国际上近几年才发展成熟的一项尖端技术,应用非常广泛。
本文着重介绍BOTDR分布式光纤传感技术在隧道、基坑和路面等三个方面的应用。
在工程监测过程中积累起来的大量监测数据表明,BOTDR分布式光纤传感技术,是一种全新而可靠的监测方法,它在工程实践中的应用,为工程监测提供了一种新的思路,因而必将拥有一个广阔的发展前景。
[关键字] BOTDR 光纤传感工程监测应变1.引言随着人们对工程安全要求的日益提高,近年来,一批新式的传感监测得到发展,它们不是对传统传感监测技术简单的加以改良,而是从根本上改变了传感原理,从而提供了全新的监测方法和思路。
其中,尤以BOTDR分布式光纤传感技术为世人所瞩目,它利用普通的通讯光纤,以类似于神经系统的方式,植入建筑物体内,获得全面的应变和温度信息。
该技术已成为日本、加拿大、瑞士、法国及美国等发达国家竞相研发的课题。
这一技术在我国尚处于发展阶段,目前已在一些隧道工程监测中得到成功应用,并逐步向其他工程领域扩展。
南京大学光电传感工程监测中心在南京大学985工程项目和国家教育部重点项目的支持下,建成了我国第一个针对大型基础工程的BOTDR分布式光纤应变监测实验室,开展了一系列的实验研究,并成功地将这一技术应用到了地下隧道等工程的实际监测中,取得了一批重要成果,为将这一技术全面应用于我国各类大型基础工程和地质工程的质量监测和健康诊断提供了坚实基础。
2.BOTDR分布式光纤传感技术的原理布里渊散射同时受应变和温度的影响,当光纤沿线的温度发生变化或者存在轴向应变时,光纤中的背向布里渊散射光的频率将发生漂移,频率的漂移量与光纤应变和温度的变化呈良好的线性关系,因此通过测量光纤中的背向自然布里渊散射光的频率漂移量(νB)就可∗本项目研究受国家杰出青年科学基金项目(40225006)和国家教育部重点项目资助项目(01086)以得到光纤沿线温度和应变的分布信息。
分布式光纤监测技术的工作原理分布式光纤监测技术是一种利用光纤传感器实现对物理量进行实时、连续监测的技术。
它通过在光纤中引入传感元件,将光纤变为一个分布式传感器,可以实现对光纤所覆盖区域内的温度、应力、振动等物理量的监测。
其工作原理主要包括光纤传感原理、信号解调原理和数据处理原理三个方面。
光纤传感原理是分布式光纤监测技术的基础。
光纤传感器通常利用光纤的光学特性来实现对物理量的测量。
光纤传感器中的光纤通常由两个部分组成:传感区和光纤衰减区。
传感区是光纤中引入的传感元件,它可以将外界物理量转化为光学信号。
当外界物理量改变时,传感区中的特殊材料会发生形变或介电常数变化,从而改变光纤的光学特性。
光纤衰减区是光纤中的一段特殊区域,它用于对传感信号进行衰减,使得传感信号可以在光纤中传输到光学解调单元。
信号解调原理是分布式光纤监测技术中的关键步骤。
信号解调的目的是将传感信号转化为可读取的数据。
在光纤传感器中,传感信号通常以光的强度变化形式存在。
为了解读传感信号,需要使用激光器和光学解调单元来进行信号解调。
激光器会向光纤中发射激光光束,经过光纤传输后,光纤中的传感区会对光束进行调制。
光学解调单元会接收传感信号,并通过光学元件将光信号转换为电信号。
然后,电信号会经过放大和滤波等处理,最终转化为可读取的数据。
数据处理原理是对得到的数据进行处理和分析的过程。
在分布式光纤监测技术中,得到的数据通常以时间-位置坐标形式存在。
通过对数据进行采样和处理,可以得到物理量在空间和时间上的变化情况。
数据处理的方法包括时域分析、频域分析和空域分析等。
时域分析主要用于研究物理量的变化趋势和周期性特征;频域分析可以对物理量的频率分布进行研究,以获取振动信号的频率谱;空域分析主要用于研究物理量在空间上的分布情况。
分布式光纤监测技术的工作原理包括光纤传感原理、信号解调原理和数据处理原理。
通过将光纤变为一个分布式传感器,可以实现对光纤所覆盖区域内的物理量进行实时、连续监测。
书山有路勤为径;学海无涯苦作舟
分布式光纤温传感检测技术及其应用
分布式光纤温度传感检测技术及其应用分布式光纤温度传感系统是一种用于实时测量空间温度场分布的传感系统。
该技术最早于1981年由
英国南安普顿大学提出,目前国外(主要是英国、日本等国)已研制出产品。
国内也正积极开展这方面的研究工作,已经研制成功分布式光纤温度传感器的系列产品,并在一些工业领域得到了初步应用,效果非常理想。
分布式光纤传感技术具有抗电磁场干扰、大的信号传输带宽等特点。
它能够连续测量光纤沿线所在处的温度,测量距离在几千米范围,空间定位精度达到米的数量级,能够进行不间断的自动测量,特别适用于需要大范围多点测量的应用场合。
在电力系统中,这种光纤传感技术在高压电力电缆、电气设备因接触不良原因易产生发热的部位、电缆夹层、电缆通道、大型发电机定子、大型变压器、锅炉等设施的温度定点传感场合具有广泛的应用前景。
1光纤温度传感的检测原理
光纤的温度传感原理的主要依据是光纤的光时域反射(OTDR)原
理以及光纤的背向拉曼散射温度效应。
当一个光脉冲从光纤的一端射入光纤时,这个光脉冲会沿着光纤向前传播,在传播中的每一点都会产生反射,反射之中有一小部分的反射光的方向正好与入射光的方向相反(亦可称为“背向”)。
这种背向反射光的强度与光纤中的反射点的温度有一定的相关
关系。
反射点的温度(该点的光纤的环境温度)越高,反射光的强度也越大。
也就是说,背向反射光的强度可以反映出反射点的温度。
利用这个现象,若能测量出背向反射光的强度,就可以计算出反射点的温度,这
专注下一代成长,为了孩子。
2024年分布式光纤传感器市场规模分析1. 简介分布式光纤传感器是一种利用光纤作为传感器的感测元件以及信号传输媒介的一种技术。
随着物联网、工业自动化等领域的快速发展,分布式光纤传感器的应用越来越广泛。
本文将对分布式光纤传感器市场规模进行分析。
2. 分布式光纤传感器市场发展概况近年来,随着人们对安全性、可持续性和效率的要求不断提高,分布式光纤传感器市场持续增长。
分布式光纤传感器的应用范围涵盖石油、天然气、地铁、航空航天、电力、交通等多个领域。
其优势包括高灵敏度、长监测距离以及对多种物理参数的同步监测等。
3. 2024年分布式光纤传感器市场规模分析3.1 市场规模趋势根据市场调研数据,分布式光纤传感器市场规模呈现逐年增长的态势。
以2020年为基准,市场规模预计在2025年前将以年均增长率6%左右增长。
这一增长趋势主要受到以下因素的影响:•工业自动化的快速发展,推动了对分布式光纤传感器的需求增加;•物联网和智能城市的发展,对分布式光纤传感器的应用提出了更高要求;•传感器技术的不断创新,提高了分布式光纤传感器的性能和可靠性。
3.2 市场主要应用领域分布式光纤传感器的应用涵盖了多个领域:3.2.1 石油和天然气行业在石油和天然气行业,分布式光纤传感器广泛应用于油井、管道和油气储存设施的监测。
通过对温度、压力等参数进行实时监测,可以提高设备运行安全性,减少事故发生的可能性。
3.2.2 地铁和隧道监测分布式光纤传感器在地铁和隧道监测中扮演重要角色。
通过对隧道结构的监测,可以及时发现裂缝、变形等问题,确保运营安全。
3.2.3 电力系统监测分布式光纤传感器在电力系统监测中具有重要应用。
通过对电力输电线路的监测,可以实时发现线路的故障,提高电网的可靠性。
3.2.4 交通监测分布式光纤传感器在交通监测中发挥着重要作用。
通过对道路的监测,可以及时发现交通流量、车速等信息,为交通管理部门提供科学依据。
3.3 市场地区分布分布式光纤传感器市场在全球范围内分布广泛。
分布式光纤传感在新型模块化建筑健康监测中的应用目录一、分布式光纤传感在新型模块化建筑健康监测中的概述 (2)二、分布式光纤传感技术的基本原理 (3)1. 光纤传感原理简介 (4)2. 分布式光纤传感系统的构成 (5)三、新型模块化建筑的特点与挑战 (6)1. 新型模块化建筑的定义与特点 (7)2. 新型模块化建筑在健康监测方面的需求 (8)四、分布式光纤传感在新型模块化建筑健康监测中的应用案例 (9)1. 案例一 (10)2. 案例二 (12)五、分布式光纤传感在新型模块化建筑健康监测中的优势分析 (13)1. 实时监测与预警功能 (14)2. 高精度与高灵敏度 (15)3. 节能环保与经济效益 (16)六、分布式光纤传感在新型模块化建筑健康监测中的发展趋势与展望171. 技术创新与发展趋势 (18)2. 应用前景与市场预测 (19)七、结论 (20)1. 分布式光纤传感在新型模块化建筑健康监测中的重要性与作用212. 对未来研究的建议与展望 (23)一、分布式光纤传感在新型模块化建筑健康监测中的概述随着现代社会对建筑物功能和性能要求的不断提高,新型模块化建筑应运而生。
这种建筑结构具有轻质、高效、节能、环保等特点,广泛应用于工业、商业、住宅等领域。
由于新型模块化建筑的特殊构造和使用环境,其健康状况的实时监测和评估显得尤为重要。
分布式光纤传感技术作为一种先进的监测手段,逐渐在新型模块化建筑健康监测中发挥着重要作用。
分布式光纤传感技术是一种利用光纤作为信息传输介质的传感器网络技术。
通过将光纤连接到建筑物的关键部位,如结构节点、变形传感器等,可以实现对建筑物结构健康状况的实时监测。
与传统的振动传感器相比,分布式光纤传感技术具有更高的灵敏度、更远的测量距离和更强的抗干扰能力,能够有效地解决传统监测方法难以覆盖或信号干扰的问题。
在新型模块化建筑健康监测中,分布式光纤传感技术主要应用于以下几个方面:结构健康监测:通过对建筑物结构的关键部位进行光纤布设,实时监测结构的位移、应力、应变等参数,评估结构的安全性和稳定性。
分布式光纤监测技术在我国的发展内容摘要:摘要:本文简述了分布式光纤监测技术在我国大坝安全监测中的应用情况;详细阐述了两类分布式光纤监测系统的原理、主要特点及性能;对今后分布式光纤监测技术的发展作了展望。
关键词:分布式监测光纤1、我国大坝分布式光纤监测技术应用概况20世纪代,光纤监测技术伴随着光导纤维及光纤通信技术的发展而迅速发展起来。
与传统的监测技术相比,光纤监测技术有一系列独特的优点:(1)光纤传感器的光信号作为载体,光纤为媒质,光纤的纤芯材料为二氧化硅,因此,该传感器具有耐腐蚀,抗电磁干扰,防雷击等特点,属本质安全。
(2)光纤本身轻细纤柔,光纤传感器的体积小,重量轻,不仅便于布设安装,而且对埋设部位的材料性能和力学参数影响甚小,能实现无损埋设。
(3)灵敏度高,可靠性好,使用寿命长。
分布式光纤监测技术除了具有以上的特点外,还具有以下二个显著的优点:(1)可以准确的测出光纤沿线任一点的监测量,信息量大,成果直观。
(2)光纤既作为传感器,又作为传输介质,结构简单,不仅方便施工,潜在故障大大低于传统技术,可维护性强,而且性能价格比好。
我国从20世纪代后期在新疆石门子水库首次利用分布式光纤监测技术测量碾压砼拱坝温度以来,至今已有多个工程应用,并且,我国已有专门从事分布式光纤监测仪器设备制造厂——宁波振东光电,发展极为迅速。
由于水电水利工程中有许多物理场需要监测,如温度场、应力场、位移场、渗流场,等等。
以往采用单点监测方法,测点少,成果不直观,需要通过分析才能最终了解场的情况,这种传统的单点监测方法不仅费工、费时、费钱,而且效果也不理想。
而如果采用分布式光纤监测技术就可以准确地测定光纤沿线任一点上的温度、应力和位移,信息量大,成果直观。
如果将光纤按一定的网络铺设,可实现对大坝安全的全方位监测,可以克服传统点式监测容易漏测和渗流难以定位的弊端,极大提高安全监测的有效性,如俄罗斯萨扬.舒申斯克重力拱坝,内部仪器埋设达2500多支,竟未测出坝基长达486m的水平缝,直至该缝向坝内延伸20余米,引起廊道漏水才被发觉,这充分说明点式监测的局限性,因此,分布式光纤监测技术倍受青睐。
分布式光纤传感技术近年来,随着物联网的快速发展,分布式光纤传感技术越来越受到人们的关注。
它是一种新型的传感技术,可以大幅度提高光纤传感的灵敏度和距离,实现对物理环境的实时监测和分布式测量。
本文将从分布式光纤传感技术的基本原理、优点和应用领域等方面进行详细介绍。
一、分布式光纤传感技术的基本原理分布式光纤传感技术是利用纤芯中的散射光和弯曲光来实现对物理环境的实时监测和分布式测量的一种技术。
采用光纤作为传感器,不仅可以实现具有高灵敏度和高精度的测量,而且可以全方位地对物理环境进行监测。
与传统传感技术相比,分布式光纤传感技术具有以下两个特点:1. 分布式感知:分布式光纤传感技术采用一根连续的光纤,通过对光纤的每一段进行监测和测量,达到对整个传感区域进行实时监测和分布式测量的效果,从而可以得到因信号变化而产生的光纤的相应变化。
2. 时间域分析:分布式光纤传感技术是一种基于时间域反射和散射的技术,通过光纤中的微小变化来反映被传感物理量的变化。
采用这种方法可以实现实时监测和分布式测量,同时还可以根据散射和反射光的性质得到更高精度的测量结果。
二、分布式光纤传感技术的优点分布式光纤传感技术具有以下三个优点:1. 高精度:分布式光纤传感技术可以实现对很小的信号和变化的测量,能够达到高精度的检测目的。
它可以实现对多个物理参量的同时测量,并从各个方向和位置监测。
2. 长距离:分布式光纤传感技术的传输距离很远,传感器仅需要一根连续的光纤即可实现全方位的物理参数监测,无需增加其它传感器或者设备,可以节约大量的成本。
3. 实时性:分布式光纤传感技术可以实现对物理环境的实时监测和分布式测量,这一优点也是区别于传统传感技术的重要因素之一。
三、分布式光纤传感技术的应用领域1. 油田勘探:分布式光纤传感技术可以应用于油田勘探,实现对油井,油管,地层渗透率等参数的实时监测和分布式测量。
可以及时掌握油田的状态,提高油田勘探和开发的效率。
《分布式光纤传感技术在结构应变及开裂监测中的应用研究》篇一一、引言随着科技的不断进步,分布式光纤传感技术作为一种新型的监测手段,在结构健康监测领域得到了广泛的应用。
该技术以其高灵敏度、高空间分辨率和长距离监测等优势,在结构应变及开裂监测中发挥着重要作用。
本文将详细探讨分布式光纤传感技术在结构应变及开裂监测中的应用研究。
二、分布式光纤传感技术概述分布式光纤传感技术是一种基于光纤传输特性的新型传感技术,其原理是通过在光纤中传输的光信号与外部物理量相互作用,实现对外界物理量的测量和监测。
该技术具有高灵敏度、高空间分辨率、长距离监测、抗电磁干扰等优点,在结构健康监测领域具有广泛的应用前景。
三、分布式光纤传感技术在结构应变监测中的应用(一)应用原理分布式光纤传感技术通过测量光纤中光信号的传播特性变化,可以实现对结构应变的监测。
当结构发生形变时,光纤中的光信号会受到外界物理量的影响,从而引起光信号的传播特性变化,通过分析这些变化,可以推算出结构的应变情况。
(二)应用实例在桥梁、大坝、高层建筑等大型结构的健康监测中,分布式光纤传感技术被广泛应用于结构应变的监测。
通过在结构的关键部位布置光纤传感器,可以实时监测结构的应变情况,及时发现结构的异常变化,为结构的维护和加固提供依据。
四、分布式光纤传感技术在结构开裂监测中的应用(一)应用原理结构开裂是结构损坏的重要标志之一,分布式光纤传感技术可以通过监测光纤中光信号的传播特性变化来检测结构的开裂情况。
当结构发生开裂时,光纤中的光信号会受到更大的影响,从而引起更明显的传播特性变化,通过分析这些变化可以判断结构的开裂情况。
(二)应用实例在混凝土结构的健康监测中,分布式光纤传感技术被广泛应用于结构的开裂监测。
通过在混凝土结构中布置光纤传感器,可以实时监测结构的开裂情况,及时发现结构的损坏,为结构的维修和加固提供依据。
五、结论分布式光纤传感技术在结构应变及开裂监测中具有广泛的应用前景。
分布式光纤传感赋能先进工业今天的种种辉煌由于可以利用已有光纤进行全天候连续分布式监测,DOFS系统具有极高的性价比,在大型基础设施健康监测中有着极其明朗的应用前景。
本文详细介绍了DOFS技术在大型基础设施健康监测中应用的经典范例,如奥普智信利用光纤传感设备对通信系统监测、电力系统监测、周界安防、煤炭地质、油气勘探、交通、输运管道监测和航空航天装备监测等,并对上述各领域内目前面临的传感应用需求、应用原理及方法与未来应用展望等进行了系统性论述。
光纤在信息传输中承担了至关重要的信息传递作用,利用DOFS技术能够基于通信光纤在环境应变影响下所产生的局部折射率变化,解调出有关负面影响的具体信息,进而为系统维护提供有效参照。
与通信状态监测应用类似:现代电网传输系统中也大量布设了DOFS系统以对输电线路的状态进行监测;基于DOFS 的周界安防系统巧妙利用光纤作为传感元件,将“传输”和“感知”融为一体,可有效判断外界入侵扰动事件发生位置,有效保护公民人身及财产安全,重要性不容小觑。
在对环境所致应变状态敏感这一技术优势的加持下,DOFS系统在现代煤炭采集行业内也发挥着不可或缺的支持作用。
通过特定安装施工工艺,将适合煤矿地质环境的高强度、大变形分布式传感光缆与地层耦合或与围岩紧密贴合,再将引出地表的传感光缆接入数据监测站点,就能够动态监测煤矿地质体的多物理场信息。
可以说,DOFS系统的布设,能够为采煤作业加上一道坚实可靠的安全防线。
说到煤炭采集,自然而然就会让人联想到油气勘探,如图4所示。
的确,DOFS系统也已成为了推动深层油气勘探开发的“利器”,可弥补传统检波器的不足,对油气仓储层内部进行高精度、高分辨率的观测与测量。
交通、输运管道监测和航空航天装备监测也是DOFS技术“大展身手”的“广阔天地”。
DOFS技术可提升交通领域安全风险评估和防护能力,如图5所示。
针对传统监测技术的不足,其可发挥出覆盖范围广、分辨精度高、时效性好和灵敏度高等优点,更好地完成对各类管道泄漏、渗漏入侵破坏及流量等状态的监测任务。
分布式光纤监测技术在我国的发展(新编版)Safety work has only a starting point and no end. Only the leadership can really pay attention to it, measures are implemented, and assessments are in place.( 安全管理 )单位:______________________姓名:______________________日期:______________________编号:AQ-SN-0088分布式光纤监测技术在我国的发展(新编版)摘要:本文简述了分布式光纤监测技术在我国大坝安全监测中的应用情况;详细阐述了两类分布式光纤监测系统的原理、主要特点及性能;对今后分布式光纤监测技术的发展作了展望。
关键词:分布式监测光纤1、我国大坝分布式光纤监测技术应用概况20世纪70年代,光纤监测技术伴随着光导纤维及光纤通信技术的发展而迅速发展起来。
与传统的监测技术相比,光纤监测技术有一系列独特的优点:(1)光纤传感器的光信号作为载体,光纤为媒质,光纤的纤芯材料为二氧化硅,因此,该传感器具有耐腐蚀,抗电磁干扰,防雷击等特点,属本质安全。
(2)光纤本身轻细纤柔,光纤传感器的体积小,重量轻,不仅便于布设安装,而且对埋设部位的材料性能和力学参数影响甚小,能实现无损埋设。
(3)灵敏度高,可靠性好,使用寿命长。
分布式光纤监测技术除了具有以上的特点外,还具有以下二个显著的优点:(1)可以准确的测出光纤沿线任一点的监测量,信息量大,成果直观。
(2)光纤既作为传感器,又作为传输介质,结构简单,不仅方便施工,潜在故障大大低于传统技术,可维护性强,而且性能价格比好。
我国从20世纪90年代后期在新疆石门子水库首次利用分布式光纤监测技术测量碾压砼拱坝温度以来,至今已有多个工程应用,并且,我国已有专门从事分布式光纤监测仪器设备制造厂——宁波振东光电有限公司,发展极为迅速。
由于水电水利工程中有许多物理场需要监测,如温度场、应力场、位移场、渗流场,等等。
以往采用单点监测方法,测点少,成果不直观,需要通过分析才能最终了解场的情况,这种传统的单点监测方法不仅费工、费时、费钱,而且效果也不理想。
而如果采用分布式光纤监测技术就可以准确地测定光纤沿线任一点上的温度、应力和位移,信息量大,成果直观。
如果将光纤按一定的网络铺设,可实现对大坝安全的全方位监测,可以克服传统点式监测容易漏测和渗流难以定位的弊端,极大提高安全监测的有效性,如俄罗斯萨扬.舒申斯克重力拱坝,内部仪器埋设达2500多支,竟未测出坝基长达486m的水平缝,直至该缝向坝内延伸20余米,引起廊道漏水才被发觉,这充分说明点式监测的局限性,因此,分布式光纤监测技术倍受青睐。
从监测内容看,当前我国应用大致可分为四类。
第一类是温度监测。
如设置于新疆石门子碾压砼拱坝内的分布式光纤温度监测系统,设置于三峡大坝内的分布式测温系统,设置于广东长调水电站砼面板的温度监测系统,等等。
由于分布式光纤监测测点多,信息量大,都获得了较好的监测成果,较全面地反映了大坝温度场的分布情况。
第二类是渗流定位监测。
如设置于广东长调水电站面板周边缝的分布式光纤温度——渗流监测系统。
水库蓄水期间,即发现周边缝有几处渗漏点,对渗漏定位相当有效。
第三类是位移和随机裂缝监测。
如设置于隔河岩电站水库覃家田滑坡中的螺旋型分布式光纤位移监测系统,设置于湖北古洞口面板堆石坝面板上的随机裂缝光纤自诊断系统。
由于单模光纤抗拉强度不高,能测随机裂缝的缝宽不大,当裂缝大于2mm时,光纤易被拉断。
因此,对随机裂缝的监测生命期尚不长。
第四类是裂缝监测。
如设置于古洞口面板堆石坝周边缝面板间缝的准分布式光纤测缝计监测系统。
通过监测,也获得了光纤测缝计埋设处缝宽变化的较好效果。
当前,在建和拟建的水电水利工程,如索风营水电站、景洪水电站、三板溪水电站、水布垭水电站、坦肯水电站、锦屏一级水电站、瀑布沟水电站、拉西瓦水电站等等,在大坝安全监测中,都正在或计划采用分布式光纤监测系统。
分布式光纤监测技术在碾压混凝土坝的应用发展较快,继新疆石门子碾压混凝土拱坝后,索风营碾压混凝土重力坝,景洪碾压混凝土重力坝都已经和准备应用。
对碾压混凝土坝,分布式光纤监测具有较大的应用优势,因为它对施工干扰小,它既具有监测温度场的功能,又兼有对碾压层面进行渗流定位监测的功能。
从目前应用情况来看,光纤网络布置有二种形式。
一种是平面网络形式,光纤连续地沿坝体横断面自下而上作蛇形布置;另一种是空间网络形式,取某坝段作监测对象,光纤自下而上连续地沿水平截面从左至右或从右至左作蛇形布置。
空间网络布置不仅可以监测多个横断面的温度场,了解施工期和运行期坝体温度空间分布和变化情况,而且可以对碾压层面进行渗流定位监测。
2、两种分布式光纤监测系统分布式光纤监测系统其实是分布调制的是光纤传感系统。
所谓分布调制,就是沿光纤传输路径上的外界信号以一定的方式对光纤中的光波进行不断调制(传感),在光纤中形成调制信息谱带,并通过独特的检测技术,介调调制信号谱带,从而获得外界场信号的大小及空间分布。
因此,分布式光纤监测系统通常由激光光源,传感光纤(缆)和检测单元组成,是一种自动化的监测系统。
按照调制方式的不同,分布式光纤监测系统分为分布式传光型光纤监测系统和分布式传感型光纤监测系统或准分布式光纤监测系统和分布式光纤监测系统。
2.1分布式传光型(准分布式)光纤监测系统分布式传光型光纤监测系统的特点是:将呈一定空间分布的相同调制类型的光纤传感器耦合到一根或多根光纤总线上,通过寻址、介调检测出被测量的大小。
分布式传光型监测系统实质上是多个分立式光纤传感器的复用系统,故又称准分布式光纤监测系统或非本征型分布式光纤监测系统。
光纤总线仅起传光作用,不起传感作用。
根据寻址方式不同,分布式传光型光纤监测系统可分为时分复用、波分复用、频分复用、偏分复用和空分复用等几类。
其中,时分复用、波分复用和空分复用技术较成熟,复用的点数较多。
1、时分复用时分复用靠耦合于同一根光纤上的传感器之间的光程差,即光纤对光波的延迟效应来寻址。
当一脉宽小于光纤总线上相邻传感器之间的传输时间的光脉冲自光纤总线输入端注入时,由于光纤总线上各传感器距光脉冲发射端的距离不同,在光纤总线的终端(或始端)将会接收到许多光脉冲,其中每一个光脉冲对应光纤总线上的一个传感器,光脉冲的延时即反应传感器在光纤总线上的地址,光脉冲的幅度或波长的变化即反应该点被测量的大小。
在这里,注入的光脉冲越窄,传感器在光纤总线上的允许间距越小,可耦合的传感器越多,但是,对介调系统的要求越苛刻。
2、波分复用波分复用是通过光纤总线上各传感器的调制信号的特征波长来寻址。
当光源发出的连续宽带光(经光波长编码)注入光纤总线时,在光纤传感器与监测量发生耦合作用,对该宽带光有选择地反射回相应的一个窄带光,并沿原传输光纤返回,其余宽带光则直接透射过去继续前进,遇到第2个光纤传感器,又有选择地反射回相应的一个窄带光。
由于各传感器的特征波长不同,通过滤波/解码系统即可求出被测信号的大小和位置。
该法由于一些实际部件的限制,总线上允许的传感器数目不多,一般为8—12个。
3、频分复用频分复用是将多个光源调制在不同的频率上,经过各分立的传感器汇集在一根或多根光纤总线上,每个传感器的信息即包含在总线信号中的对应频率分量上。
采用光源强度调制的频分复用技术可用于光强调制型传感器,采用光源光频调制的频分复用技术可以用于光相位调制型传感器。
4、空分复用空分复用是将各传感器的接收光纤的终端按空间位置编码,通过扫描机构控制光开关选址。
这时,开关网络应合理布置,信道间隔应选择合适,以保证在某一时刻单光源仅与一个传感器通道相连。
空分复用的优点是能够准确地进行空间选址,实际复用的传感器不能太多,以少于10个为佳。
目前国内北京品傲光电科技有限公司和武汉理工大学研制的准分布式光纤监测系统都是采用了光纤光栅传感器,传感信号为波长调制,系统采用波分复用技术。
三峡大学研制了由“光纤裂缝计”和“光纤测缝计智能分析仪”组成的准分布式光纤监测系统,采用的是根据光强调制的测缝计,询址采用的是时分复用技术。
准分布式光纤监测系统通过将多个相同类型或不同类型的传感在一条光纤上串接复用,减少了传输线路,方便了施工,大大简化了线路的布设。
并且,可以实现多点同时测量,避免了以往逐点测量不同步的弊端。
但是,准分布式光纤监测系统存在如下不足:(1)由于分布式传光型光纤监测系统是通过一条光纤将若干个光纤传感器串接而成,系统的光功率损耗较大,因此,一条光纤只能接入有限的光纤传感器,如分布式光纤光栅监测系统一般仅能接入8—12个光纤传感器。
(2)分布式传光型光纤监测系统实质上是多个单测点光纤传感的串接复用系统。
一旦系统埋设安装后,测点无法增加。
2.2分布式传感型(分布式)光纤监测系统分布式传感型光纤监测系统的特点是,利用光纤本身的特性把光纤作为敏感元件,光纤总线不仅起传光作用,还起传感作用,所以分布式传感型光纤监测系统又称本征分布式光纤监测系统,或全分布式光纤监测系统,简称分布式光纤检测系统。
分布式传感型光纤监测系统有下列优点:(1)信息量大。
分布式传感型光纤监测系统能在整个连续光纤的长度上,以距离的连续函数的形式传感出被测参数随光纤长度方向的变化,即光纤任一点都是“传感器”,它的信息量可以说是海量信息。
(2)结构简单,可靠性高。
由于分布式传感型光纤监测系统的光纤总线不仅起传光作用,而且起传感作用,因此结构异常简单,方便施工,潜在故障少,可维护性好,可靠性高。
(3)使用方便。
光纤埋设后,测点可以按需要设定,可以取2m 距离为一个测点,也可以取1m距离为一个测点等,按需要可以改变设定。
因此,在病害定位监测时极其方便。
(4)性能价格比好。
目前,光纤价格不高,一条光纤的测点又可达成百上千个,因此,每一个测点的价格就远远低于传统单测点的价格,性能价格比相当好。
分布式光纤监测系统相对于电信号为基础的传感监测系统和点式光纤监测系统而言,无论是从监测技术的难度、监测量的内容及指标,还是从监测的场合和范围都提高到了一个新的阶段。
3、展望当前,分布式光纤监测系统主要是一种时域分布式光纤监测系统,它的技术基础是光时域反射技术OTDR(opticaltime—domainreflectormetry)。
OTDR最初用于评价光学通信领域中光纤、光缆和耦合器的性能,是用于检验光纤损耗特性、光纤故障的手段,其工作机理是脉冲激光器向被测光纤发射光脉冲,该光脉冲通过光纤时由于光纤存在折射率的微观不均匀性,以及光纤微观特性的变化,有一部分光会偏离原来的传播向空间散射,在光纤中形成后向散射光和前向散射光。