湖北省钢城四中高二数学下学期期中试题(上)理
- 格式:doc
- 大小:562.50 KB
- 文档页数:7
湖北省钢城四中2018—2019学年高二数学下学期期中试题(上)文第I 卷(选择题)一、单选题1.将极坐标),232(π化成直角坐标为( )A .(0,—2)B .(0,2)C .(2,0)D .(-2,0)2.若直线l : ⎩⎨⎧+=+=at y tx 21(t 为参数),经过坐标原点,则直线l 的斜率是( )A .—2B .—1C .2D . 13.函数()()y y f x f x ==,的导函数的图像如图所示,则函数()y f x =的图像可能是A .B .C .D .4.点P 的直角坐标为)3,3(-,则点P 的极坐标可以为( )A . ),3232(πB . ),6532(πC . ),6532(π-D . ),3232(π-5.已知a 为函数x x x f 12)(3-=的极小值点,则a =( )A .–4B .4C .–2D .2 6.极坐标方程),(00))(1(≥=--ρπθρ表示的图形是( )A .两个圆B .一个圆和一条直线C .一个圆和一条射线D .一条直线和一条射线7.设=-+=→hf h f f h )1()21(lim4)1('0,则( )A .8B .4C .-8D .—48.设函数.ax x a x x f +-+=23)1()(若)(x f 为奇函数,则曲线)(x f y =在点(0,0)处的切线方程为( )A .x y 2-=B . x y -=C .x y =D . x y 2=9.在极坐标系中,点),62(π到直线1)6sin(=-πθρ的距离是A .5B .3C .2D . 110.不等式121<-x 的解集为 ( )A .(-1,0)B .(0,1)C .( 0,0。
5)D .(—0。
5,0)11.已知条件21:>+x p ,条件a x q >:,且p ⌝是q ⌝的充分不必要条件,则a 的取值范围是A .1≥aB .1≤aC . 1-≥aD . 3-≤a12.已知函数)(x f 的导函数为)('x f ,且满足x e xf x f ln )('2)(+=,则=)(e f ( )A . eB . e1-C .-1D .e -第II 卷(非选择题)二、填空题13.参数方程⎩⎨⎧==ϕϕsin 2cos 3y x (ϕ是参数)对应的普通方程是_____________。
湖北高二高中数学期中考试班级:___________ 姓名:___________ 分数:___________一、选择题1.已知向量a=(1,1,0),b=(-1,0,2),且ka+b与2a+b互相垂直,则k的值是A.1B.-1C.D.2.曲线在点A(2,10)处的切线的斜率是A.4B.5C.6D.73.等于A.-2ln2B.2ln2C.-ln2D.ln24.已知点A(1,-2,0)和向量a=(-3,4,12),若向量a,且,则B点的坐标为A.(-5,6,24)B.(-5,6,24)或(7,-10,-24)C.(-5,16,-24)D.(-5,16,-24)或(7,-16,24)5.直线y=x与抛物线y=x(x+2)所围成的封闭图形的面积等于A.B.C.D.6.若向量a=(1,0),b=(2,0,0)且a与b的夹角为,则等于A.1B.C.-或D.-1或17.为正方形,平面,,则与所成角的度数为A.30°B.45°C.60°D.90°8.已知则当时,n的最小值是A.9B.10C.11D.129.在正方体中,E是棱的中点,则BE与平面所成角的正弦值为A.B.C.D.10.已知二次函数的导数为,,对于任意实数,有,则的最小值为A .B .C .D .二、填空题1.已知向量,若,则______;2.已知,对任意实数x ,不等式恒成立,则m 的取值范围是 。
3.从1=1,1-4=-(1+2),1-4+9=1+2+3,1-4+9-16=-(1+2+3+4),…,推广到第个等式为 _________________________.4.一桥拱的形状为抛物线,已知该抛物线拱的宽为8米,抛物线拱的面积为160平方米,则抛物线拱的高等于5.若函数的单调增区间为(0,+∞),则实数的取值范围是________.三、解答题1.(本题满分10分) 设函数为奇函数,其图象在点处的切线与直线垂直,导函数的最小值为.试求,,的值。
湖北省钢城四中2018-2019学年高二数学10月月考试题 文一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 圆心为()1,1且过原点的圆的方程是( )A .()()22112x y -+-= B .()()22111x y +++= C .()()22112x y +++= D .()()22111x y -+-= 2. 直线3x +4y =b 与圆222210x y x y +--+=相切,则b =( )A. -2或12B. 2或-12C.-2或-12D.2或12 3. 已知直线l 的斜率k 满足-1≤k<1,则它的倾斜角α的取值范围是( )A .-45°<α<45°B .-45≤α<45°C . 0°<α<45°或135°<α<180°D .0°≤α<45°或135°≤α<180° 4. 直线y =kx +b 通过第一、三、四象限,则有( )A .k>0,b>0B .k>0,b<0C .k<0,b>0D .k<0,b<05. 两平行直线x +y -1=0与2x +2y +1=0之间的距离是( )A. 324B. 24 C .2 D .16. 下列四个结论中正确的是( )A .经过定点P 1(x 1,y 1)的直线都可以用方程y -y 1=k(x -x 1)表示B .经过任意不同两点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程 (x 2-x 1)(y -y 1)=(y 2-y 1)(x -x 1)表示C .不过原点的直线都可以用方程x a +yb =1表示D .经过点A(0,b)的直线都可以用方程y =kx +b 表示7. 直线(a +2)x +(1-a)y -3=0与(a -1)x +(2a +3)y +2=0互相垂直,则a 等于( )A .-1B .1C .±1D .-328. 圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为( )A .相交B .内切C .外切D .相离9. 已知点A(-3,-4),B(6,3)到直线l :ax +y +1=0的距离相等,则实数a 的值为( )A. 79 B .-13 C .-79或-13 D. 79或1310. 一条光线从点()2,3--射出,经y 轴反射后与圆()()22321x y ++-=错误!未找到引用源。
2023-2024学年湖北省部分省级示范高中高二(上)期中数学试卷一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知点A (2,0),B (0,4),若过P (﹣6,﹣8)的直线l 与线段AB 相交,则实数k 的取值范围为( ) A .k ≤1B .k ≥2C .k ≥2或k ≤1D .1≤k ≤22.圆 C 1:(x +2)2+(y ﹣2)2=4和圆C 2:(x ﹣2)2+(y ﹣5)2=16的位置关系是( ) A .外离B .相交C .内切D .外切3.若圆C 经过点A (2,5),B (4,3),且圆心在直线l :3x ﹣y ﹣3=0 上,则圆C 的方程为( ) A .(x ﹣2)2+(y ﹣3)2=4 B .(x ﹣2)2+(y ﹣3)2=8 C .(x ﹣3)2+(y ﹣6)2=2D .(x ﹣3)2+(y ﹣6)2=104.已知直线ax +3y +2a =0和2x +(a +1)y ﹣2=0平行,则实数a 的值等于( ) A .a =2或a =﹣3B .a =2C .a =﹣3D .a =﹣2或a =35.如图,在平行六面体ABCD ﹣A 1B 1C 1D 1中,M 为A 1C 1,B 1D 1的交点.若AB →=a →,AD →=b →,AA 1→=c →,则向量BM →=( )A .−12a →+12b →+c →B .12a →+12b →+c →C .−12a →−12b →+c →D .12a →−12b →+c →6.若椭圆x 29+y 24=1的弦AB 被点P (1,1)平分,则AB 所在直线的方程为( )A .4x +9y ﹣13=0B .9x +4y ﹣13=0C .x +2y ﹣3=0D .x +3y ﹣4=07.若直线l :kx ﹣y ﹣2=0与曲线C :√1−(y −1)2=x ﹣1有两个不同的交点,则实数k 的取值范围是( ) A .k >43B .43<k ≤2C .43<k ≤2或−2≤k <−43D .43<k ≤48.吹奏乐器“埙”(如图1)在古代通常是用陶土烧制的,一种埙的外轮廓的上部是半椭圆,下部是半圆.半椭圆y 2a 2+x 2b 2=1(y ≥0,a >b >0且为常数)和半圆x 2+y 2=b 2(y <0)组成的曲线C 如图2所示,曲线C 交x 轴的负半轴于点A ,交y 轴的正半轴于点G ,点M 是半圆上任意一点,当点M 的坐标为(√22,−12)时,△AGM 的面积最大,则半椭圆的方程是( )A .4x 23+y 22=1(y ≥0)B .16x 29+y 23=1(y ≥0)C .2x 23+4y 23=1(y ≥0)D .4x 23+2y 23=1(y ≥0)二、多选题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有2个或2个以上选项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.) 9.下面结论正确的是( )A .若事件A 与B 是互斥事件,则A 与B 也是互斥事件 B .若事件A 与B 是相互独立事件,则A 与B 也是相互独立事件C .若P (A )=0.6,P (B )=0.2,A 与B 相互独立,那么P (A +B )=0.8D .若P (A )=0.8,P (B )=0.7,A 与B 相互独立,那么P(AB)=0.2410.已知直线l :kx ﹣y ﹣k =0,圆M :x 2+y 2+Dx +Ey +1=0的圆心坐标为(2,1),则下列说法正确的是( ) A .直线l 恒过点(0,1)B .D =﹣4,E =﹣2C .直线l 被圆M 截得的最短弦长为2√2D .当k =1时,圆M 上存在无数对点关于直线l 对称 11.设椭圆x 29+y 23=1的右焦点为F ,直线y =m(0<m <√3)与椭圆交于A ,B 两点,则( ) A .|AF |+|BF |=6B .△ABF 的周长的取值范围是[6,12]C .当m =1时,△ABF 的面积为√6D .当m =√32时,△ABF 为直角三角形12.已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为2,点P 为平面ABCD 内一动点,则下列说法正确的是( ) A .若点P 在棱AD 上运动,则A 1P +PC 的最小值为2+2√2B .若点P 是棱AD 的中点,则平面PBC 1截正方体所得截面的周长为2√5+3√2C .若点P 满足PD 1⊥DC 1,则动点P 的轨迹是一条直线 D .若点P 在直线AC 上运动,则P 到棱BC 1的最小距离为2√33三、填空题(本大题共4小题,每小题5分,共20分.把答案填写在答题卡上相应位置的横线上.) 13.若以连续掷两次骰子分别得到的点数m 、n 作为点P 的坐标,则点P 落在圆x 2+y 2=16内的概率是 .14.已知两点A (﹣3,﹣4),B (6,3)到直线l :ax +y +1=0的距离相等,则实数a 的值等于 . 15.古希腊著名数学家阿波罗尼斯发现了平面内到两个定点A ,B 的距离之比为定值λ(λ≠1)的点的轨迹是圆,此圆被称为“阿波罗尼斯圆”.在平面直角坐标系中,已知A (1,0),B (4,0),若动点P 满足|PA||PB|=12,设点P 的轨迹为C ,过点(1,2)作直线l ,C 上恰有三个点到直线l 的距离为1,则满足条件的一条直线l 的方程为 . 16.已知椭圆x 2a 2+y 2b 2=1(a >b >0),F 1,F 2分别是椭圆的左、右焦点,A 是椭圆的下顶点,直线AF 2交椭圆于另一点P ,若|PF 1|=|P A |,则椭圆的离心率为 .四、解答题(本大题共6小题,第17小题10分,其余各小题每题12分,共70分.解答应写出文字说明,证明过程或演算步骤.)17.(10分)甲、乙两名魔方爱好者在30秒内复原魔方的概率分别是0.8和0.6.如果在30秒内将魔方复原称为“复原成功”,且每次复原成功与否相互之间没有影响,求:(1)甲复原三次,第三次才成功的概率;(2)甲、乙两人在第一次复原中至少有一人成功的概率. 18.(12分)已知△ABC 中,A (﹣2,1),B (4,3).(1)若C (3,﹣2),求BC 边上的高AD 所在直线的一般式方程; (2)若点M (3,1)为边AC 的中点,求BC 边所在直线的一般式方程.19.(12分)如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB =3,AD =AA 1=2,点E 在AB 上,且AE =1. (1)求直线A 1E 与BC 1所成角的余弦值; (2)求点B 到平面A 1EC 的距离.20.(12分)已知点A (1,2),圆C :x 2+y 2+2mx +2y +2=0. (1)若过点A 可以作两条圆的切线,求m 的取值范围;(2)当m =﹣2时,过直线2x ﹣y +3=0上一点P 作圆的两条切线PM 、PN ,求四边形PMCN 面积的最小值.21.(12分)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F(√3,0),长半轴长与短半轴长的比值为2.(1)求椭圆C 的方程;(2)设经过点A (1,0)的直线l 与椭圆C 相交于不同的两点M ,N .若点B (0,1)在以线段MN 为直径的圆上,求直线l 的方程.22.(12分)如图1,已知ABFE 是直角梯形,EF ∥AB ,∠ABF =90°,∠BAE =60°,C 、D 分别为BF 、AE 的中点,AB =5,EF =1,将直角梯形ABFE 沿CD 翻折,使得二面角F ﹣DC ﹣B 的大小为60°,如图2所示,设N 为BC 的中点.(1)证明:FN ⊥AD ;(2)若M 为AE 上一点,且AMAE =λ,则当λ为何值时,直线BM 与平面ADE 所成角的正弦值为5√714.2023-2024学年湖北省部分省级示范高中高二(上)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知点A (2,0),B (0,4),若过P (﹣6,﹣8)的直线l 与线段AB 相交,则实数k 的取值范围为( ) A .k ≤1B .k ≥2C .k ≥2或k ≤1D .1≤k ≤2解:过P (﹣6,﹣8)的直线l 与线段AB 相交,如图所示:可得k AP ≤k ≤k PB , 即0−(−8)2−(−6)≤k ≤4−(−8)0−(−6),即k ∈[1,2].故选:D .2.圆 C 1:(x +2)2+(y ﹣2)2=4和圆C 2:(x ﹣2)2+(y ﹣5)2=16的位置关系是( ) A .外离B .相交C .内切D .外切解:两个圆的圆心分别为 C 1(﹣2,2)、C 2:(2,5),半径分别为2、4,两圆的圆心距 C 1C 2=√(2+2)2+(5−2)2=5,大于半径之差而小于半径之和,故两个圆相交, 故选:B .3.若圆C 经过点A (2,5),B (4,3),且圆心在直线l :3x ﹣y ﹣3=0 上,则圆C 的方程为( ) A .(x ﹣2)2+(y ﹣3)2=4 B .(x ﹣2)2+(y ﹣3)2=8 C .(x ﹣3)2+(y ﹣6)2=2D .(x ﹣3)2+(y ﹣6)2=10解:圆C 经过点A (2,5),B (4,3),可得线段AB 的中点为(3,4),又 k AB =5−32−4=−1,所以线段AB 的中垂线的方程为y ﹣4=x ﹣3,即x ﹣y +1=0. 由{x −y +1=03x −y −3=0,解得{x =2y =3,即C (2,3),圆C 的半径 r =√(2−2)2+(5−3)2=2, 所以圆C 的方程为 (x ﹣2)2+(y ﹣3)2=4. 故选:A .4.已知直线ax +3y +2a =0和2x +(a +1)y ﹣2=0平行,则实数a 的值等于( ) A .a =2或a =﹣3B .a =2C .a =﹣3D .a =﹣2或a =3解:由直线ax +3y +2a =0和2x +(a +1)y ﹣2=0平行, 可得{a(a +1)=2×33×(−2)≠2a(a +1),解得a =2或a =﹣3.故选:A .5.如图,在平行六面体ABCD ﹣A 1B 1C 1D 1中,M 为A 1C 1,B 1D 1的交点.若AB →=a →,AD →=b →,AA 1→=c →,则向量BM →=( )A .−12a →+12b →+c →B .12a →+12b →+c →C .−12a →−12b →+c →D .12a →−12b →+c →解:∵在平行六面体ABCD ﹣A 1B 1C 1D 1中,M 为A 1C 1,B 1D 1的交点. AB →=a →,AD →=b →,AA 1→=c →,∴向量BM →=BB 1→+12B 1D 1→=BB 1→+12(BA →+AD →) =−12a →+12b →+c →.故选:A . 6.若椭圆x 29+y 24=1的弦AB 被点P (1,1)平分,则AB 所在直线的方程为( )A .4x +9y ﹣13=0B .9x +4y ﹣13=0C .x +2y ﹣3=0D .x +3y ﹣4=0解:设A (x 1,y 1),B (x 2,y 2),则{x 129+y 124=1x 229+y 224=1,所以x 12−x 229+y 12−y 224=0,整理得y 1−y 2x 1−x 2=−4(x 1+x 2)9(y 1+y 2),因为P (1,1)为弦AB 的中点,所以x 1+x 2=2,y 1+y 2=2, 所以k AB =y 1−y2x 1−x 2=−4(x 1+x 2)9(y 1+y 2)=−49,所以弦AB 所在直线的方程为y −1=−49(x −1),即4x +9y ﹣13=0. 故选:A .7.若直线l :kx ﹣y ﹣2=0与曲线C :√1−(y −1)2=x ﹣1有两个不同的交点,则实数k 的取值范围是( ) A .k >43B .43<k ≤2C .43<k ≤2或−2≤k <−43D .43<k ≤4解:直线l :kx ﹣y ﹣2=0恒过定点(0,﹣2),∵√1−(y −1)2=x −1,得到(x ﹣1)2+(y ﹣1)2=1(x ≥1),∴曲线C 表示以点(1,1)为圆心,半径为1,且位于直线x =1右侧的半圆(包括点(1,2),(1,0)),如下图所示:当直线l 经过点(1,0)时,l 与曲线C 有两个不同的交点,此时k =2; 当l 与半圆相切时,则由题可得√k 2+1=1,解得k =43,由图可知,当43<k ≤2时,l 与曲线C 有两个不同的交点. 故选:D .8.吹奏乐器“埙”(如图1)在古代通常是用陶土烧制的,一种埙的外轮廓的上部是半椭圆,下部是半圆.半椭圆y 2a 2+x 2b 2=1(y ≥0,a >b >0且为常数)和半圆x 2+y 2=b 2(y <0)组成的曲线C 如图2所示,曲线C 交x 轴的负半轴于点A ,交y 轴的正半轴于点G ,点M 是半圆上任意一点,当点M 的坐标为(√22,−12)时,△AGM 的面积最大,则半椭圆的方程是( )A .4x 23+y 22=1(y ≥0)B .16x 29+y 23=1(y ≥0)C .2x 23+4y 23=1(y ≥0)D .4x 23+2y 23=1(y ≥0)解:由点M(√22,−12)在半圆上,所以b =√32,G (0,a ),A (﹣b ,0), 要使△AGM 的面积最大,可平行移动AG ,当AG 与半圆相切于M(√22,−12)时,M 到直线AG 的距离最大, 此时OM ⊥AG ,即k OM •k AG =﹣1; 又k OM =−12√22=−√22,k AG =a b ,∴−√22⋅a b =−1,∴a =√2b =√62,所以半椭圆的方程为4x 23+2y 23=1(y ≥0).故选:D .二、多选题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有2个或2个以上选项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.) 9.下面结论正确的是( )A .若事件A 与B 是互斥事件,则A 与B 也是互斥事件 B .若事件A 与B 是相互独立事件,则A 与B 也是相互独立事件C .若P (A )=0.6,P (B )=0.2,A 与B 相互独立,那么P (A +B )=0.8D .若P (A )=0.8,P (B )=0.7,A 与B 相互独立,那么P(AB)=0.24解:A 中,由互斥事件的定义可知,事件A 、B 互斥,则A 与B 也是互斥事件不成立, 比如事件A 、B 是对立事件,则A 与B 是同一事件,显然不互斥,故A 错误; B 中,若A 与B 相互独立,则A 与B ,B 与A ,A 与B 都是相互独立事件,故B 正确;C 中,如果A 与B 相互独立,则P (A +B )=P (A )+P (B )﹣P (AB )=0.8﹣0.12=0.68,故C 错误;D 中,如果A 与B 相互独立,则P(AB)=P(A)P(B)=P(A)(1−P(B))=0.8×(1−0.7)=0.24,故D 正确. 故选:BD .10.已知直线l :kx ﹣y ﹣k =0,圆M :x 2+y 2+Dx +Ey +1=0的圆心坐标为(2,1),则下列说法正确的是( ) A .直线l 恒过点(0,1) B .D =﹣4,E =﹣2C .直线l 被圆M 截得的最短弦长为2√2D .当k =1时,圆M 上存在无数对点关于直线l 对称解:对于A ,直线l :kx ﹣y ﹣k =0⇒k (x ﹣1)﹣y =0,恒过点(1,0),所以A 不正确;对于B ,圆M :x 2+y 2+Dx +Ey +1=0的圆心坐标为(−D2,−E2),所以D =﹣4,E =﹣2,所以B 正确; 对于C ,圆M :x 2+y 2﹣4x ﹣2y +1=0⇒(x ﹣2)2+(y ﹣1)2=4的圆心坐标为(2,1),圆的半径为2. 直线l :kx ﹣y ﹣k =0,恒过点(1,0),圆的圆心到定点的距离为:√12+12=√2<2,直线与圆相交, 直线l 被圆M 截得的最短弦长为2√4−2=2√2,所以C 正确;对于D ,当k =1时,直线方程为:x ﹣y ﹣1=0,经过圆的圆心,所以圆M 上存在无数对点关于直线l 对称,所以D 正确. 故选:BCD . 11.设椭圆x 29+y 23=1的右焦点为F ,直线y =m(0<m <√3)与椭圆交于A ,B 两点,则( ) A .|AF |+|BF |=6B .△ABF 的周长的取值范围是[6,12]C .当m =1时,△ABF 的面积为√6D .当m =√32时,△ABF 为直角三角形解:∵椭圆方程为x 29+y 23=1,∴a =3,b =√3,c =√6,设椭圆的左焦点为F ',则|AF '|=|BF |,∴|AF |+|BF |=|AF |+|AF '|=2a =6,∴A 选项正确; ∵△ABF 的周长为|AB |+|AF |+|BF |,又|AF |+|BF |=6,易知|AB |的范围是(0,6), ∴△ABF 的周长的范围是(6,12),∴B 选项错误;将y =1与椭圆方程联立,解得A(−√6,1),B(√6,1),∴S △ABF =12×2√6×1=√6,∴C 选项正确;将y =√32与椭圆方程联立,可解得A(−3√32,√32),B(3√32,√32),又易知F(√6,0), ∴AF →⋅BF →=(√6+3√32)(√6−3√32)+(√32)2=0,∴△ABF 为直角三角形,∴D 选项正确. 故选:ACD .12.已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为2,点P 为平面ABCD 内一动点,则下列说法正确的是( ) A .若点P 在棱AD 上运动,则A 1P +PC 的最小值为2+2√2B .若点P 是棱AD 的中点,则平面PBC 1截正方体所得截面的周长为2√5+3√2C .若点P 满足PD 1⊥DC 1,则动点P 的轨迹是一条直线D .若点P 在直线AC 上运动,则P 到棱BC 1的最小距离为2√33解:对于A :如图将平面ABCD 展开与平面ADD 1A 1处于一个平面,连接A 1C 与AD 交于点P , 此时A 1P +PC 取得最小值,即(A 1P +PC)min =√22+42=2√5,故A 错误;对于B :如图取DD 1的中点E ,连接BP 、PE 、C 1E 、AD 1, 因为点P 是棱AD 的中点,所以PE ∥AD 1且PE =12AD 1,又AB ∥C 1D 1且AB =C 1D 1,所以四边形ABC 1D 1为平行四边形,所以AD 1∥BC 1, 所以PE ∥BC 1,所以四边形EPBC 1即为平面PBC 1截正方体所得截面, 又BC 1=2√2,PE =12AD 1=√2,BP =EC 1=√12+22=√5, 所以截面周长为3√2+2√5,故B 正确;对于C :如图,DC 1⊥D 1C ,BC ⊥平面DCC 1D 1,DC 1⊂平面DCC 1D 1, 所以DC 1⊥BC ,又D 1C ∩BC =C ,D 1C ,BC ⊂平面BCD 1A 1, 所以DC 1⊥平面BCD 1A 1,因为平面ABCD ∩平面BCD 1A 1=BC , D 1∈平面BCD 1A 1,P ∈平面ABCD ,又PD 1⊥DC 1,所以P 在直线BC 上,即动点P 的轨迹是一条直线,故C 正确;对于D :如图建立空间直角坐标系,则B (2,2,0),C 1(0,2,2),设P (a ,2﹣a ,0)(a ∈[0,2]), 所以BC 1→=(−2,0,2),BP →=(a −2,−a ,0), 所以P 到棱BC 1的距离d =√|BP →|2−(BC 1→⋅BP →|BC 1→|)2=√32a 2−2a +2=√32(a −23)2+43,所以当a =23时d min =√43=2√33,故D 正确.故选:BCD .三、填空题(本大题共4小题,每小题5分,共20分.把答案填写在答题卡上相应位置的横线上.) 13.若以连续掷两次骰子分别得到的点数m 、n 作为点P 的坐标,则点P 落在圆x 2+y 2=16内的概率是29.解:由题意知,本题是一个古典概型,试验发生包含的事件是连续掷两次骰子分别得到的点数m 、n 作为点P 的坐标,共有6×6=36种结果, 而满足条件的事件是点P 落在圆x 2+y 2=16内,列举出落在圆内的情况:(1,1)(1,2)(1,3) (2,1)(2,2)(2,3)(3,1)(3,2),共有8种结果, 根据古典概型概率公式得到P =836=29, 故答案为:2914.已知两点A (﹣3,﹣4),B (6,3)到直线l :ax +y +1=0的距离相等,则实数a 的值等于 −79或−13. 解:∵两点A (﹣3,﹣4),B (6,3)到直线l :ax +y +1=0的距离相等, ∴√a 2+1=√a 2+1,化为|3a +3|=|6a +4|.∴6a +4=±(3a +3),解得a =−79或−13. 故答案为:a =−79或−13.15.古希腊著名数学家阿波罗尼斯发现了平面内到两个定点A ,B 的距离之比为定值λ(λ≠1)的点的轨迹是圆,此圆被称为“阿波罗尼斯圆”.在平面直角坐标系中,已知A (1,0),B (4,0),若动点P 满足|PA||PB|=12,设点P 的轨迹为C ,过点(1,2)作直线l ,C 上恰有三个点到直线l 的距离为1,则满足条件的一条直线l 的方程为 x =1或3x ﹣4y +5=0(写出一条即可) . 解:因为A (1,0),B (4,0),点P 满足|PA||PB|=12,设P (x ,y ),则2222=12,化简得x 2+y 2=4,因为圆C 上恰有三个点到直线l 的距离为1,所以圆心到直线的距离为1. 若直线l 的斜率不存在,直线l 的方程为x =1;若直线l 的斜率存在,设直线l 的方程为y ﹣2=k (x ﹣1),即kx ﹣y ﹣k +2=0, d =|−k+2|√k +1=1,解得k =34,直线l 的方程为:3x ﹣4y +5=0.故答案为:x =1或3x ﹣4y +5=0(写出一条即可).16.已知椭圆x 2a 2+y 2b 2=1(a >b >0),F 1,F 2分别是椭圆的左、右焦点,A 是椭圆的下顶点,直线AF 2交椭圆于另一点P ,若|PF 1|=|P A |,则椭圆的离心率为 √33解:如图所示,∵点P 在椭圆上,∴|PF 1|+|PF 2|=2a , ∵点A 是椭圆的下顶点,∴|AF 1|=|AF 2|=a ,又∵|PF 1|=|P A |=|PF 2|+|AF 2|=|PF 2|+a =2a ﹣|PF 1|+a =3a ﹣|PF 1|, ∴|PF 1|=3a 2,|PF 2|=12a , 在△PF 1A 中,|PF 1|=3a 2,|P A |=3a2,|AF 1|=a , 由余弦定理可得:cos ∠F 1AP =|AF 1|2+|PA|2−|PF 1|22|AF 1||AP|=13,∴sin 2∠F 1AO =1−cos∠F 1AP 2=13, ∴sin ∠F 1AO =√33,又∵sin ∠F 1AO =ca , ∴离心率e =ca =√33, 故答案为:√33.四、解答题(本大题共6小题,第17小题10分,其余各小题每题12分,共70分.解答应写出文字说明,证明过程或演算步骤.)17.(10分)甲、乙两名魔方爱好者在30秒内复原魔方的概率分别是0.8和0.6.如果在30秒内将魔方复原称为“复原成功”,且每次复原成功与否相互之间没有影响,求:(1)甲复原三次,第三次才成功的概率;(2)甲、乙两人在第一次复原中至少有一人成功的概率.解:记“甲第i 次复原成功”为事件A i ,“乙第i 次复原成功”为事件B i , 依题意,P (A i )=0.8,P (B i )=0.6.(1)“甲第三次才成功”为事件A 1A 2A 3,且三次复原过程相互独立, 所以,P(A 1A 2A 3)=P(A 1)P(A 2)P(A 3)=0.2×0.2×0.8=0.032. (2)“甲、乙两人在第一次复原中至少有一人成功”为事件C . 所以P(C)=1−P(A 1⋅B 1)=1−P(A 1)⋅P(B 1)=1−0.2×0.4=0.92. 18.(12分)已知△ABC 中,A (﹣2,1),B (4,3).(1)若C (3,﹣2),求BC 边上的高AD 所在直线的一般式方程; (2)若点M (3,1)为边AC 的中点,求BC 边所在直线的一般式方程.解:(1)因为B (4,3),C (3,﹣2), 所以k BC =−2−33−4=5, 因为AD 是BC 边上的高, 所以k AD ⋅k BC =−1⇒k AD =−15,所以高AD 所在直线的方程为y −1=−15(x +2)⇒x +5y −3=0; (2)因为点M (3,1)为边AC 的中点,所以{3=−2+C x21=1+C y 2⇒C(8,1),因此BC 边所在直线的方程为y−33−1=x−44−8⇒x +2y −10=0.19.(12分)如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB =3,AD =AA 1=2,点E 在AB 上,且AE =1. (1)求直线A 1E 与BC 1所成角的余弦值; (2)求点B 到平面A 1EC 的距离.解:(1)由题意,建立如图所示空间直角坐标系,A 1(2,0,2),E(2,1,0),A 1E →=(0,1,−2),B(2,3,0),C 1(0,3,2),BC 1→=(−2,0,2), 设直线A 1E 与直线BC 1所成角为α,则cosα=|A 1E →⋅BC 1→|A 1E →|⋅|BC 1→||=5×22=√105.(2)由题意C(0,3,0),EC →=(−2,2,0), 设平面A 1EC 的法向量为n →=(x ,y ,z),则{n →⋅A 1E →=y −2z =0n →⋅EC →=−2x +2y =0,取n →=(2,2,1),又BE →=(0,−2,0),所以B 到平面A 1EC 的距离为|n →⋅BE →|n →||=|−43|=43.20.(12分)已知点A (1,2),圆C :x 2+y 2+2mx +2y +2=0. (1)若过点A 可以作两条圆的切线,求m 的取值范围;(2)当m =﹣2时,过直线2x ﹣y +3=0上一点P 作圆的两条切线PM 、PN ,求四边形PMCN 面积的最小值.解:(1)由题意得A (1,2)在圆外, 则1+4+2m +6>0,即m >−112, 又4m 2+4﹣8>0,即m >1或m <﹣1, 所以−112<m <−1或m >1;故m 的取值范围为(−112,﹣1)∪(1,+∞); (2)m =﹣2时,圆方程为(x ﹣2)2+(y +1)2=3, 则圆的半径r =√3,圆心C (2,﹣1),∴S 四边形PMCN =|PM|⋅r =√3|PM|=√3⋅√|PC|2−r 2=√3⋅√|PC|2−3. 直线方程为2x ﹣y +3=0,设圆心(2,﹣1)到直线2x ﹣y +3=0的距离为d ,∴|PC|min =d =|2×2−(−1)+3|5=85,∴(S 四边形PMCN )min =√3√645−3=√3√495=75√15. 21.(12分)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F(√3,0),长半轴长与短半轴长的比值为2.(1)求椭圆C 的方程;(2)设经过点A (1,0)的直线l 与椭圆C 相交于不同的两点M ,N .若点B (0,1)在以线段MN 为直径的圆上,求直线l 的方程.解:(1)由题可知c =√3,ab =2,a 2=b 2+c 2,∴a =2,b =1.∴椭圆C 的方程为x 24+y 2=1.(2)易知当直线l 的斜率为0或直线l 的斜率不存在时,不合题意.当直线l 的斜率存在且不为0时,设直线l 的方程为x =my +1,M (x 1,y 1),N (x 2,y 2). 联立{x =my +1x 2+4y 2=4,消去x ,可得(4+m 2)y 2+2my ﹣3=0. Δ=16m 2+48>0,y 1+y 2=−2m 4+m 2,y 1y 2=−34+m 2. ∵点B 在以MN 为直径的圆上,∴BM →⋅BN →=0.∵BM →⋅BN →=(my 1+1,y 1−1)⋅(my 2+1,y 2−1)=(m 2+1)y 1y 2+(m ﹣1)(y 1+y 2)+2=0, ∴(m 2+1)⋅−34+m 2+(m −1)⋅−2m4+m 2+2=0, 整理,得3m 2﹣2m ﹣5=0, 解得m =﹣1或m =53.∴直线l 的方程为x +y ﹣1=0或3x ﹣5y ﹣3=0.22.(12分)如图1,已知ABFE 是直角梯形,EF ∥AB ,∠ABF =90°,∠BAE =60°,C 、D 分别为BF 、AE 的中点,AB =5,EF =1,将直角梯形ABFE 沿CD 翻折,使得二面角F ﹣DC ﹣B 的大小为60°,如图2所示,设N 为BC 的中点.(1)证明:FN ⊥AD ;(2)若M 为AE 上一点,且AM AE=λ,则当λ为何值时,直线BM 与平面ADE 所成角的正弦值为5√714. 解:(1)证明:如图1,已知ABFE 是直角梯形,EF ∥AB ,∠ABF =90°,∠BAE =60°,C 、D 分别为BF 、AE 的中点,AB =5,EF =1,将直角梯形ABFE 沿CD 翻折,使得二面角F ﹣DC ﹣B 的大小为60°,如图2所示,设N 为BC 的中点.∵由图1得:DC ⊥CF ,DC ⊥CB ,且CF ∩CB =C ,∴在图2中DC ⊥平面BCF ,∠BCF 是二面角F ﹣DC ﹣B 的平面角,则∠BCF =60°, ∴△BCF 是正三角形,且N 是BC 的中点,FN ⊥BC , 又DC ⊥平面BCF ,FN ⊂平面BCF ,可得FN ⊥CD , ∵BC ∩CD =C ,BC ,CD ⊂平面ABCD . ∴FN ⊥平面ABCD ,∵AD ⊂平面ABCD ,∴FN ⊥AD .(2)∵FN ⊥平面ABCD ,过点N 做AB 平行线NP ,∴以点N 为原点,NP ,NB 、NF 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系N ﹣xyz ,如图,则A(5,√3,0),B(0,√3,0),D(3,−√3,0),E (1,0,3), 设M (x 0,y 0,z 0)则AM →=(x 0−5,y 0−√3,z 0),AE →=(−4,−√3,3), AD →=(−2,−2√3,0),DE →=(−2,√3,3).∵AM →=λAE →,∴{x 0−5=−4λy 0=√3−√3λz 0=3λ⇒{x 0=5−4λy 0=√3−√3λz 0=3λ.∴M(5−4λ,√3−√3λ,3λ),∴BM →=(5−4λ,−√3λ,3λ), 设平面ADE 的法向量为n →=(x ,y ,z)则{n →⋅AD →=0n →⋅DE →=0⇒{−2x −2√3y =0−2x +√3y +3z =0,取x =√3,得n →=(√3,−1,√3), 设直线BM 与平面ADE 所成角为θ, ∴sinθ=|cos〈n →,BM →〉|=|n →⋅BM →||n →|⋅|BM →|=5√3√3+1+3⋅√28λ−40λ+25=5√714,∴28λ2﹣40λ+13=0,解得λ=12或λ=1314. 故当λ为12或1314时,直线BM 与平面ADE 所成角的正弦值为5√714.。
2023-2024学年湖北省部分重点中学高二(上)期中数学试卷一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.两条不同直线l 1,l 2的方向向量分别为m →=(1,1,−2),n →=(2,−2,1),则这两条直线( ) A .相交或异面 B .相交C .异面D .平行2.已知椭圆C :x 2m+1+y 2m=1的离心率为12,则m =( )A .13B .1C .3D .43.一束光线从点A(−√3,3)射出,沿倾斜角为150°的直线射到x 轴上,经x 轴反射后,反射光线所在的直线方程为( ) A .y =√3x −2B .y =−√3x +2C .y =−√33x +2D .y =√33x −24.实数x ,y 满足x 2﹣4x +y 2﹣6y +9=0,则y−1x+1的取值范围是( ) A .[512,+∞)B .[125,+∞)C .[0,125]D .[0,512]5.已知△ABC 的顶点A (﹣2,1),AC 边上的高BE 所在直线方程为x +y ﹣5=0,AC 边上中线BD 所在的直线方程为3x ﹣5y +1=0,则高BE 的长度为( ) A .√22B .√2C .2√2D .3√26.在四面体ABCD 中,已知△ABD 为等边三角形,△ABC 为等腰直角三角形,斜边AB =4,CD =2√7,则二面角C ﹣AB ﹣D 的大小为( ) A .π6B .π3C .2π3D .5π67.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (c ,0)(b >c ),上顶点为B ,直线l :3√3x ﹣4y ﹣21=0交椭圆于P ,Q 两点,若F 恰好为△BPQ 的重心,则椭圆的离心率为( ) A .√55B .12C .√22D .√328.已知中心在原点O ,焦点在y 轴上,且离心率为√23的椭圆与经过点C (﹣2,0)的直线l 交于A ,B 两点,若点C 在椭圆内,△OAB 的面积被x 轴分成两部分,且△OAC 与△OBC 的面积之比为3:1,则△OAB 面积的最大值为( ) A .8√73B .4√73C .24√77D .12√77二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分. 9.已知椭圆C :x 24+y 23=1,F 1,F 2分别是椭圆的左,右焦点,P 为椭圆上任意一点.下列说法中正确的是( ) A .椭圆离心率为√32B .|PF 1|的最小值为1C .|PF 1|+|PF 2|=2D .0≤∠F 1PF 2≤π310.下列说法正确的是( )A .已知点A (2,1),B(−1,2√3),若过P (1,0)的直线l 与线段AB 相交,则直线l 的倾斜角范围为[π4,2π3]B .“a =1”是“直线ax ﹣y +1=0与直线x ﹣ay ﹣2=0互相平行”的充要条件C .曲线C 1:x 2+y 2+2x =0与C 2:x 2+y 2﹣4x ﹣8y +m =0恰有四条公切线,则m 的取值范围为4<m <20D .圆x 2+y 2=2上有且仅有2个点到直线l :x ﹣y +1=0的距离都等于√2211.如图,在多面体ABCDEP 中,P A ⊥平面ABCD ,四边形ABCD 是正方形,且DE ∥P A ,P A =AB =2DE =2,M ,N 分别是线段BC ,PB 的中点,Q 是线段DC 上的一个动点(不含端点D ,C ),则下列说法正确的是( )A .存在点Q ,使得NQ ⊥PBB .不存在点Q ,使得异面直线NQ 与PE 所成的角为30°C .三棱锥Q ﹣AMN 体积的取值范围为(13,23)D .当点Q 运动到DC 中点时,DC 与平面QMN 所成的余弦值为√6612.椭圆有如下的光学性质,从椭圆的一个焦点出发的光线射到椭圆镜面后反射,反射光线经过另一个焦点.现椭圆C 的焦点在x 轴上,中心在坐标原点,左、右焦点分别为F 1、F 2.一束光线从F 1射出,经椭圆镜面反射至F 2,若两段光线总长度为6,且椭圆的离心率为√53,左顶点和上顶点分别为A ,B .则下列说法正确的是( ) A .椭圆的标准方程为x 29+y 24=1B .若点P 在椭圆上,则sin ∠F 1PF 2的最大值为19C .若点P 在椭圆上,|BP |的最大值为9√55D .过直线y =x +2上一点M 分别作椭圆的切线,交椭圆于P ,Q 两点,则直线PQ 恒过定点(−92,2) 三、填空题:本大题共4题,每小题5分,共计20分.13.圆C 1:x 2+y 2=1与圆C 2:(x ﹣1)2+(y +2)2=4的公共弦所在的直线方程为 .14.所有棱长都为1的平行六面体ABCD ﹣A 1B 1C 1D 1中,若M 为A 1C 1与B 1D 1的交点,∠BAD =60°,∠DAA 1=∠BAA 1=30°,则|BM →|的值为 . 15.已知椭圆C :x 2a 2+y 2a 2−1=1(a >1)的左,右焦点分别为F 1,F 2,过点F 1且垂直于x 轴的直线与椭圆交于A 、B 两点,AF 2、BF 2分别交y 轴于P 、Q 两点,△PQF 2的周长为4.过F 2作∠F 2AF 1外角平分线的垂线与直线BA 交于点N ,则|ON |= .16.已知直线l 与圆O :x 2+y 2=4交于A (x 1,y 1),B (x 2,y 2)两点,且|AB|=2√3,则|3x 1+4y 1﹣10|+|3x 2+4y 2﹣10|的最大值为 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)在平面直角坐标系中,已知射线OA :x ﹣y =0(x ≥0),OB :x +2y =0(x ≥0).过点P (3,0)作直线分别交射线OA ,OB 于点A ,B . (1)已知点B (6,﹣3),求点A 的坐标;(2)当线段AB 的中点为P 时,求直线AB 的方程.18.(12分)如图,ABCD 和ABEF 是不在同一平面上的两个矩形,DM →=13DB →,AN →=13AE →,记AB →=a →,AD →=b →,AF →=c →.请用基底{a →,b →,c →},表示下列向量: (1)FC →; (2)MN →.19.(12分)已知圆C ,圆C 1:(x +3)2+y 2=9,圆C 2:(x −1)2+y 2=9,这三个圆有一条公共弦. (1)当圆C 的面积最小时,求圆C 的标准方程; (2)在(1)的条件下,直线l 同时满足以下三个条件:(i )与直线√19x +y −3=0垂直; (ii )与圆C 相切;(iii )在y 轴上的截距大于0,若直线l 与圆C 2交于D ,E 两点,求|DE |.20.(12分)如图,在四棱锥P ﹣ABCD 中,底面是边长为2的菱形,∠ABC =π3,H 为BC 的中点,P A =PB =PH =√2.E 为PD 上的一点,已知PD =4PE . (1)证明:平面P AB ⊥平面ABCD ; (2)求平面EAC 与平面P AB 夹角的余弦值.21.(12分)已知A(−√3,1),B ,M 是椭圆C 上的三点,其中A 、B 两点关于原点O 对称,直线MA 和MB 的斜率满足k MA •k MB =−13. (1)求椭圆C 的标准方程;(2)点Q 是椭圆C 长轴上的不同于左右顶点的任意一点,过点Q 作斜率不为0的直线l ,l 与椭圆的两个交点分别为P 、N ,若1|PQ|+1|QN|为定值,则称点Q 为“稳定点”,问:是否存在这样的稳定点?若有,试求出所有的“稳定点”,并说明理由;若没有,也请说明理由. 22.(12分)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的焦距为4√3,且点P(2,√3)在椭圆E 上.(1)求椭圆E 的方程;(2)若A 、B 、Q 是椭圆E 上的三点,且直线AB 与x 轴不垂直,点O 为坐标原点,OQ →=λOA →+μOB →,则当△AOB 的面积最大时,求λ2+μ2的值.2023-2024学年湖北省部分重点中学高二(上)期中数学试卷参考答案与试题解析一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.两条不同直线l 1,l 2的方向向量分别为m →=(1,1,−2),n →=(2,−2,1),则这两条直线( ) A .相交或异面 B .相交C .异面D .平行解:令m →=λn →,即(1,1,﹣2)=λ(2,﹣2,1),则{1=2λ1=−2λ−2=λ,此方程组无解,则直线l 1,l 2不平行,即相交或异面.故选:A . 2.已知椭圆C :x 2m+1+y 2m=1的离心率为12,则m =( )A .13B .1C .3D .4解:椭圆C :x 2m+1+y 2m=1,可得a 2=m +1,b 2=m , 所以该椭圆的离心率e =c a =√1−b 2a2=√1−m m+1=12,则m =3.故选:C .3.一束光线从点A(−√3,3)射出,沿倾斜角为150°的直线射到x 轴上,经x 轴反射后,反射光线所在的直线方程为( ) A .y =√3x −2B .y =−√3x +2C .y =−√33x +2 D .y =√33x −2解:由题意知,入射光线所在直线的斜率为tan150°=−√33, 所以入射光线为y ﹣3=−√33(x +√3),整理得y =−√33x +2,令y =0,得x =2√3,所以入射光线与x 轴的交点为(2√3,0), 由对称性知,反射光线的斜率为√33, 所以反射光线的方程为y ﹣0=√33(x ﹣2√3),即y =√33x ﹣2.故选:D .4.实数x ,y 满足x 2﹣4x +y 2﹣6y +9=0,则y−1x+1的取值范围是( ) A .[512,+∞) B .[125,+∞) C .[0,125] D .[0,512] 解:方程x 2﹣4x +y 2﹣6y +9=0,即(x ﹣2)2+(y ﹣3)2=4,所以(x ,y )是以(2,3)为圆心,半径为2的圆上的点,y−1x+1表示点(x ,y )与点(﹣1,1)连线的斜率,设直线y ﹣1=k (x +1),kx ﹣y +1+k =0与圆(x ﹣2)2+(y ﹣3)2=4相切, (2,3)到直线kx ﹣y +1+k =0的距离√k 2+1=√k 2+1=2,解得k =0或k =125,所以y−1x+1的取值范围是[0,125]. 故选:C .5.已知△ABC 的顶点A (﹣2,1),AC 边上的高BE 所在直线方程为x +y ﹣5=0,AC 边上中线BD 所在的直线方程为3x ﹣5y +1=0,则高BE 的长度为( ) A .√22B .√2C .2√2D .3√2解:根据题意,由{x +y −5=03x −5y +1=0,解得{x =3y =2,可知B (3,2).由直线BE 的方程为x +y ﹣5=0,且AC 、BE 相互垂直,可知k AC =−1kBE=1,结合点A (﹣2,1),得直线AC 的方程为y ﹣1=x +2,即x ﹣y +3=0, 因为点B 到直线AC 的距离d =|3−2+3|1+1=2√2,所以AC 边上的高BE 的长度等于2√2.故选:C .6.在四面体ABCD 中,已知△ABD 为等边三角形,△ABC 为等腰直角三角形,斜边AB =4,CD =2√7,则二面角C ﹣AB ﹣D 的大小为( ) A .π6B .π3C .2π3D .5π6解:如图,取AB 中点M ,连接CM ,DM ,因为△ABD 为等边三角形,△ABC 为等腰直角三角形,所以CM ⊥AB ,DM ⊥AB , 故∠CMD 即为二面角C ﹣AB ﹣D 的平面角. 因为AB =4,所以CM =2,DM =2√3,所以cos ∠CMD =CM 2+DM 2−CD 22⋅CM⋅DM =4+12−282×2×2√3=−√32,所以∠CMD =5π6,即二面角C ﹣AB ﹣D 的大小为5π6.故选:D .7.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (c ,0)(b >c ),上顶点为B ,直线l :3√3x ﹣4y ﹣21=0交椭圆于P ,Q 两点,若F 恰好为△BPQ 的重心,则椭圆的离心率为( ) A .√55B .12C .√22D .√32解:不妨设P (x 1,y 1),Q (x 2,y 2),线段PQ 的中点M (x 0,y 0),因为点F 是△BPQ 的重心,所以BF →=2FM →,即(c ,﹣b )=2(x 0﹣c ,y 0),所以x 0=3c 2,y 0=−b2, 此时x 1+x 2=2x 0=3c ,y 1+y 2=2y 0=﹣b , 因为点M 在直线l 上,所以3√3•3c 2−4•(−b2)﹣21=0,即9√3c +4b ﹣42=0,①因为P ,Q 两点均在椭圆上,所以{ x 12a 2+y 12b 2=1x 22a 2+y 22b 2=1,两式作差得(x 1+x 2)(x 1−x 2)a 2+(y 1+y 2)(y 1−y 2)b 2=0,则直线l 的斜率k =y 2−y 1x 2−x 1=−b 2(x 1+x 2)a 2(y 1+y 2)=−b 2⋅3c a 2⋅(−b)=3√34,即√3a 2=4bc ,②又a 2=b 2+c 2,b >c ③联立①②③,解得a =2c ,b =√3c ,则椭圆的离心率e =c a =12. 故选:B .8.已知中心在原点O ,焦点在y 轴上,且离心率为√23的椭圆与经过点C (﹣2,0)的直线l 交于A ,B 两点,若点C 在椭圆内,△OAB 的面积被x 轴分成两部分,且△OAC 与△OBC 的面积之比为3:1,则△OAB 面积的最大值为( ) A .8√73B .4√73 C .24√77D .12√77解:设椭圆的方程为y 2a 2+x 2b 2=1(a >b >0),设直线l 的方程为x =my ﹣2,A (x 1,y 1),B (x 2,y 2),联立{y 2a 2+x 2b 2=1x =my −2,整理得:(b 2+a 2m 2)y 2﹣4ma 2y +4a 2﹣a 2b 2=0,由椭圆的离心率e =c a =√1−b 2a2=√23,得b 2=79a 2,代入上式并整理得:(7+9m 2)y 2﹣36my +36﹣7a 2=0, 则y 1+y 2=36m 7+9m 2,y 1y 2=36−7a 27+9m 2, 由△OAC 与△OBC 的面积之比为3:1,则y 1=﹣3y 2,则y 2=−18m7+9m 2, 所以△OAB 的面积为S △OAC +S △OBC =12×|OC |×|y 1|+12|OC |×|y 2|=|y 1﹣y 2|=4|y 2| =4×18|m|7+9m 2≤4×18|m|2√7×9m 2=4×18|m|6√7|m|=12√77,当且仅当9m 2=7,即m =±√73时,等号成立, 故△OAB 面积的最大值为12√77.故选:D .二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分. 9.已知椭圆C :x 24+y 23=1,F 1,F 2分别是椭圆的左,右焦点,P 为椭圆上任意一点.下列说法中正确的是( ) A .椭圆离心率为√32B .|PF 1|的最小值为1C .|PF 1|+|PF 2|=2D .0≤∠F 1PF 2≤π3解:因为椭圆C :x 24+y 23=1,F 1,F 2分别是椭圆的左,右焦点,P 为椭圆上任意一点,故a =2,b =√3,c =√4−3=1,故椭圆离心率为ca=12,A 不对;|PF 1|的最小值为:a ﹣c =1,B 对; |PF 1|+|PF 2|=2a =4,C 不对;当P 与A 重合,即为短轴端点时,∠F 1PF 2取最大值,此时|AF 1|=|AF 2|=a =|F 2F 1|,故∠F 1PF 2=π3,所以0≤∠F 1PF 2≤π3,故D 正确. 故选:BD .10.下列说法正确的是( )A .已知点A (2,1),B(−1,2√3),若过P (1,0)的直线l 与线段AB 相交,则直线l 的倾斜角范围为[π4,2π3] B .“a =1”是“直线ax ﹣y +1=0与直线x ﹣ay ﹣2=0互相平行”的充要条件C .曲线C 1:x 2+y 2+2x =0与C 2:x 2+y 2﹣4x ﹣8y +m =0恰有四条公切线,则m 的取值范围为4<m <20D .圆x 2+y 2=2上有且仅有2个点到直线l :x ﹣y +1=0的距离都等于√22解:A 选项,k P A =1−02−1=1,所以直线P A 的倾斜角为π4, k PB =2√3−0−1−1=−√3,所以直线PB 的倾斜角为2π3, 所以直线l 的倾斜角范围为[π4,2π3],A 选项正确.B 选项,由a ×(﹣a )=(﹣1)×1,解得a =±1, 当a =1时,两直线为x ﹣y +1=0,x ﹣y ﹣2=0,两直线平行;当a =﹣1时,两直线为﹣x ﹣y +1=0.x +y ﹣2=0,即x +y ﹣1=0,x +y ﹣2=0,两直线平行, 所以a =1是直线ax ﹣y +1=0与直线x ﹣ay ﹣2=0互相平行的充分不必要条件,所以B 选项错误. C .选项,C 1:x 2+y 2+2x =0即(x +1)2+y 2=1,是圆心为C 1(﹣1,0),半径r 1=1, 圆x 2+y 2﹣4x ﹣8y +m =0,即(x ﹣2)2+(y ﹣4)2=20﹣m 要表示圆,则20﹣m >0即m <20, 此时圆心为C 2(2,4),半径为√20−m ,两圆有四条公切线,所以两圆外离,所以5>1+√20−m ,解得4<m <20,C 选项正确. D 选项,圆x 2+y 2=2的圆心为(0,0),半径为√2,圆心到直线x ﹣y +1=0的距离为√2=√22, 所以圆 x 2+y 2=2上有且仅有3个点到直线l :x ﹣y +1=0的距离都等于√22,所以D 选项错误. 故选:AC .11.如图,在多面体ABCDEP 中,P A ⊥平面ABCD ,四边形ABCD 是正方形,且DE ∥P A ,P A =AB =2DE =2,M ,N 分别是线段BC ,PB 的中点,Q 是线段DC 上的一个动点(不含端点D ,C ),则下列说法正确的是( )A .存在点Q ,使得NQ ⊥PBB .不存在点Q ,使得异面直线NQ 与PE 所成的角为30°C .三棱锥Q ﹣AMN 体积的取值范围为(13,23)D .当点Q 运动到DC 中点时,DC 与平面QMN 所成的余弦值为√66解:以A 为坐标原点,分别以AB ,AD ,AP 所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),E (0,2,1),P (0,0,2),N (1,0,1),M (2,1,0),对于A ,假设存在点Q (m ,2,0)(0<m <2),使得NQ ⊥PB , ∵NQ →=(m ﹣1,2,﹣1),PB →=(2,0,﹣2),∴NQ →⋅PB →=2(m ﹣1)+2=0,解得m =0,不合题意,故A 错误;对于B ,假设存在点Q (m ,2,0)(0<m <2),使得异面直线NQ 与PE 所成的角为30°, ∵NQ →=(m ﹣1,2,﹣1),PE →=(0,2,﹣1), ∴|cos <NQ →,PE →>|=|NQ →⋅PE →||NQ →|⋅|PE →|=5√(m−1)+5⋅√5=cos30°=√32,解得m =1±√153,不符合0<m <2, ∴不存在点Q ,使得异面直线NQ 与PE 所成角为30°,故B 正确; 对于C ,连接AQ ,AM ,AN ,DQ =m ,(0<m <2),CQ =2﹣m ,∵S △AMQ =S ABCD ﹣S △ABM ﹣S △QCM ﹣S △ADQ =4﹣1−12(2−m)−m =2−m2, 点N 到平面AMQ 的距离为d =12PA =1, ∴V Q ﹣AMN =V N ﹣AMQ =13(2−m 2)=23−m 6, ∵0<m <2,∴V Q ﹣AMN ∈(13,23),故C 正确; 对于D ,当点Q 运动到DC 中点时,Q (1,2,0), ∵N (1,0,1),M (2,1,0),∴NQ →=(0,2,﹣1),NM →=(1,1,﹣1), 设n →=(x ,y ,z )是平面QMN 的法向量,则{n →⋅NQ →=2y −z =0n →⋅NM →=x +y −z =0,令y =1,则n →=(1,1,2),∵DC →=(2,0,0),设直线DC 与平面QMN 所成的角为θ,∴sin θ=|cos <DC →,n →>|=|DC →⋅n →||DC →|⋅|n →|=22×6=√66,故D 错误. 故选:BC .12.椭圆有如下的光学性质,从椭圆的一个焦点出发的光线射到椭圆镜面后反射,反射光线经过另一个焦点.现椭圆C 的焦点在x 轴上,中心在坐标原点,左、右焦点分别为F 1、F 2.一束光线从F 1射出,经椭圆镜面反射至F 2,若两段光线总长度为6,且椭圆的离心率为√53,左顶点和上顶点分别为A ,B .则下列说法正确的是( ) A .椭圆的标准方程为x 29+y 24=1B .若点P 在椭圆上,则sin ∠F 1PF 2的最大值为19C .若点P 在椭圆上,|BP |的最大值为9√55D .过直线y =x +2上一点M 分别作椭圆的切线,交椭圆于P ,Q 两点,则直线PQ 恒过定点(−92,2) 解:选项A ,设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),焦距为2c ,由题意知,2a =6,离心率e =c a =√53, 所以a =3,c =√5,b =√a 2−c 2=2, 所以椭圆的方程为x 29+y 24=1,即选项A 正确;选项B ,当点P 位于椭圆的上或下顶点时,OP 平分∠F 1PF 2,且sin ∠OPF 2=ca =√53,cos ∠OPF 2=ba =23,所以sin ∠F 1PF 2=sin2∠OPF 2=2sin ∠OPF 2•cos ∠OPF 2=2×√53×23=4√59>19,即选项B 错误; 选项C ,设点P (x 0,y 0),其中y 0∈[﹣2,2],则x 029+y 024=1,即x 02=9(1−14y 02),而B (0,2),所以|BP |2=x 02+(y 0−2)2=9(1−14y 02)+y 02−4y 0+4=−54y 02−4y 0+13=−54(y 0+85)2+815,在[﹣2,−85]上单调递增,在[−85,2]上单调递减, 所以当y 0=−85时,|BP |2取得最大值815,此时|BP |max =√815=9√55,即选项C 正确;选项D ,设点M (x 1,y 1),则y 1=x 1+2①, 过点M 作椭圆的切线,切点弦所在的直线方程为x 1x 9+y 1y 4=1,即直线PQ 的方程为x 1x 9+y 1y 4=1②,联立①②,消去y 1可得,4x 1x +9x 1y +18y ﹣36=0,整理得,(4x +9y )x 1+18y ﹣36=0,令{18y −36=04x +9y =0,解得{x =−92y =2, 所以直线PQ 恒过定点(−92,2),即选项D 正确. 故选:ACD .三、填空题:本大题共4题,每小题5分,共计20分.13.圆C 1:x 2+y 2=1与圆C 2:(x ﹣1)2+(y +2)2=4的公共弦所在的直线方程为 x ﹣2y ﹣1=0 . 解:圆C 1:x 2+y 2=1与圆C 2:(x ﹣1)2+(y +2)2=4,两圆方程相减可得x 2+y 2﹣[(x ﹣1)2+(y +2)2]=1﹣4,即x ﹣2y ﹣1=0, 则两圆的公共弦所在直线方程为x ﹣2y ﹣1=0. 故答案为:x ﹣2y ﹣1=0.14.所有棱长都为1的平行六面体ABCD ﹣A 1B 1C 1D 1中,若M 为A 1C 1与B 1D 1的交点,∠BAD =60°,∠DAA 1=∠BAA 1=30°,则|BM →|的值为√52. 解:因为BM →=BB 1→+B 1M →=BB 1→+12(B 1A 1→+B 1C 1→)=−12AB →+12AD →+AA 1→,所以BM →2=(−12AB →+12AD →+AA 1→)2=14AB →2+14AD →2+AA 1→2−12AB →⋅AD →−AA 1→⋅AB →+AD →⋅AA 1→=14×1+14×1+1−12×1×1×cos60°−1×1×cos30°+1×1×cos30°=54, 所以|BM →|=√52. 故答案为:√52. 15.已知椭圆C :x 2a 2+y 2a 2−1=1(a >1)的左,右焦点分别为F 1,F 2,过点F 1且垂直于x 轴的直线与椭圆交于A 、B 两点,AF 2、BF 2分别交y 轴于P 、Q 两点,△PQF 2的周长为4.过F 2作∠F 2AF 1外角平分线的垂线与直线BA 交于点N ,则|ON |= √17 . 解:如图,∵PQ ∥AB ,∴|PQ||AB|=|PF 2||AF 2|=|QF 2||BF 2|=12,∵△PQF 2的周长为4,∴△ABF 2的周长|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =8 ∴a =2,∴椭圆方程为x 24+y 23=1,c 2=4﹣3=1,F 1(﹣1,0),直线AB 垂直x 轴,设A (﹣1,y 0),不妨设y 0>0, 则14+y 023=1,解得y 0=32,即A(−1,32),∴|AF 2|2=|AF 1|2+|F 1F 2|2=94+4=254,即|AF 2|=52, ∵∠F 2AF 1外角平分线AT 的垂线与直线BA 交于点N , ∴|AF 2|=|AN|=52,又|AF 1|=32, ∴|NF 1|=52+32=4,则|ON|2=|NF 1|2+|F 1O|2=42+1=17, ∴|ON|=√17, 故答案为:√17.16.已知直线l 与圆O :x 2+y 2=4交于A (x 1,y 1),B (x 2,y 2)两点,且|AB|=2√3,则|3x 1+4y 1﹣10|+|3x 2+4y 2﹣10|的最大值为 30 . 解:|3x 1+4y 1−10|5+|3x 2+4y 2−10|5的几何意义为点A ,B 到直线3x +4y ﹣10=0的距离之和,根据梯形中位线知其最大值是AB 的中点M 到直线3x +4y ﹣10=0的距离的2倍, 由题可知,圆O :x 2+y 2=4的圆心O (0,0),半径为2,|AB|=2√3, 则|OM|=√22−(232)2=1,所以AB 的中点M 的轨迹是以原点O 为圆心,1为半径的圆, 故点M 到直线3x +4y ﹣10=0的最大距离√32+42+1=3,所以|3x 1+4y 1−10|5+|3x 2+4y 2−10|5的最大值为2×3=6,则|3x 1+4y 1﹣10|+|3x 2+4y 2﹣10|的最大值为30. 故答案为:30.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)在平面直角坐标系中,已知射线OA :x ﹣y =0(x ≥0),OB :x +2y =0(x ≥0).过点P (3,0)作直线分别交射线OA ,OB 于点A ,B . (1)已知点B (6,﹣3),求点A 的坐标;(2)当线段AB 的中点为P 时,求直线AB 的方程. 解:(1)由题意知,k BP =0−(−3)3−6=−1, 因为P (3,0),所以直线BP 的方程为y =﹣(x ﹣3),即x +y ﹣3=0, 联立{x +y −3=0x −y =0(x ≥0),解得{x =32y =32,即A(32,32).(2)不妨设A (a ,a ),B (﹣2b ,b ),a >0,b <0, 则线段AB 的中点为(a−2b 2,a+b2), 因为线段AB 的中点为P ,所以{a−2b2=3a+b 2=0,解得{a =2b =−2, 所以A (2,2),B (4,﹣2),所以直线AB 的斜率为2−(−2)2−4=−2,因为直线AB 经过点P (3,0),所以直线AB 的方程为y =﹣2(x ﹣3),即2x +y ﹣6=0, 故直线AB 的方程为2x +y ﹣6=0.18.(12分)如图,ABCD 和ABEF 是不在同一平面上的两个矩形,DM →=13DB →,AN →=13AE →,记AB →=a →,AD →=b →,AF →=c →.请用基底{a →,b →,c →},表示下列向量: (1)FC →; (2)MN →.解:(1)FC →=FA →+AB →+BC →=−AF →+AB →+AD →=a →+b →−c →.(2)MN →=AN →−AM →=AN →−(AD →+DM →)=13AE →−(AD →+13DB →)=13(AB →+AF →)﹣[AD →+13(AB →−AD →)] =13(a →+c →)﹣[b →+13(a →−b →)] =(13−1)b →+13c →=−23b →+13c →. 19.(12分)已知圆C ,圆C 1:(x +3)2+y 2=9,圆C 2:(x −1)2+y 2=9,这三个圆有一条公共弦. (1)当圆C 的面积最小时,求圆C 的标准方程; (2)在(1)的条件下,直线l 同时满足以下三个条件: (i )与直线√19x +y −3=0垂直; (ii )与圆C 相切;(iii )在y 轴上的截距大于0,若直线l 与圆C 2交于D ,E 两点,求|DE |. 解:(1)依题意,由{(x +3)2+y 2=9(x −1)2+y 2=9,解得{x =−1y =−√5或{x =−1y =√5, 因此圆C 1与圆C 2的公共弦的两个端点坐标分别为M(−1,−√5),N(−1,√5), 当圆C 的面积最小时,MN 是圆C 的直径,则圆C 的圆心为(﹣1,0),半径为√5, 所以圆C 的标准方程是(x +1)2+y 2=5;(2)因为直线l 与直线√19x +y −3=0垂直,则设直线l 的方程为x −√19y +m =0, 而直线l 与圆C 相切,则有d =|−1+0+m|2√5=√5,解得m =1或m =﹣9,又因为l 在y 轴上的截距大于0,即√190,所以m =11,即直线l 的方程为x −√19y +11=0,而圆C 2的圆心C 2(1,0),半径r 2=3, 点C 2到直线l :x −√19y +11=0 的距离为d 2=|1+0+11|25=6√55,于是得|DE|=2√r 22−d 22=2√9−(655)2=6√55.20.(12分)如图,在四棱锥P﹣ABCD中,底面是边长为2的菱形,∠ABC=π3,H为BC的中点,P A=PB=PH=√2.E为PD上的一点,已知PD=4PE.(1)证明:平面P AB⊥平面ABCD;(2)求平面EAC与平面P AB夹角的余弦值.(1)证明:取AB中点O,连接PO,HO,∵P A=PB,O为AB中点,∴PO⊥AB,∵PA=√2,OA=12AB=1,∴PO=√PA2−OA2=1,∵四边形ABCD为菱形,∠ABC=π3,∴△ABC为等边三角形,∴AC=2,又O,H分别为AB,BC中点,∴OH=12AC=1,∴OH2+PO2=PH2,即PO⊥OH,∵OH∩AB=O,OH,AB⊂平面ABCD,PO⊄平面ABCD,∴PO⊥平面ABCD,∵PO⊂平面P AB,∴平面P AB⊥平面ABCD;(2)解:连接CO,由(1)知:△ABC为等边三角形,∴CO⊥AB,CO=√3,以O为坐标原点,OC、OB、OP所在直线分别为x,y,z轴,建立如图所示空间直角坐标系,则A(0,−1,0),C(√3,0,0),D(√3,−2,0),P(0,0,1),H(√32,12,0), ∴AC →=(√3,1,0),PD →=(√3,−2,−1),PH →=(√32,12,−1),PA →=(0,−1,−1), 由PD =4PE 得:PE →=(√34,−12,−14), ∴EA →=PA →−PE →=(−√34,−12,−34), 设平面EAC 的法向量为m →=(x ,y ,z),则{AC →⊥m →EA →⊥m →⇒⇒{AC →⋅m →=0EA →⋅m →=0⇒⇒{√3x +y =0−√34x −y 2−34z =0, 令z =1,解得:x =√3,y =−3,∴m →=(√3,−3,1), ∵x 轴⊥平面P AB ,∴平面P AB 的一个法向量ℎ→=(1,0,0), 设平面EAC 与平面P AB 的夹角为θ, 则cosθ=|cos <m →,ℎ→>|=|m →⋅ℎ→||m →|⋅|ℎ→|=3√13=√3913,所以平面EAC 与平面P AB 夹角的余弦值为√3913. 21.(12分)已知A(−√3,1),B ,M 是椭圆C 上的三点,其中A 、B 两点关于原点O 对称,直线MA 和MB 的斜率满足k MA •k MB =−13. (1)求椭圆C 的标准方程;(2)点Q 是椭圆C 长轴上的不同于左右顶点的任意一点,过点Q 作斜率不为0的直线l ,l 与椭圆的两个交点分别为P 、N ,若1|PQ|+1|QN|为定值,则称点Q 为“稳定点”,问:是否存在这样的稳定点?若有,试求出所有的“稳定点”,并说明理由;若没有,也请说明理由. 解:(1)设M (x ,y ),易知B(√3,−1), 由k MA ⋅k MB =−13,得x+√3⋅x−√3=−13,化简得x 26+y 22=1,故椭圆C 的标准方程为x 26+y 22=1.(2)∵点Q 是椭圆C 长轴上的不同于A 、B 的任意一点, 故可设直线PN 的方程为x =my +x 0,P (x 1,y 1),N (x 2,y 2), 由{x =my +x 0x 26+y 22=1,得(m 2+3)y 2+2mx 0y +x 02−6=0, ∴y 1+y 2=−2mx 0m 2+3,y 1y 2=x 02−6m 2+3,Δ>0恒成立.又|PQ|=√1+m 2|y 1|,|QN|=√1+m 2|y 2|, ∴1|PQ|+1|QN|=√1+m2(1|y 1|+1|y 2|)=√1+m 212−y 1y 2,=1√1+m 2√(y1+y 2)2−4y 1y 2−y 1y 2=1√1+m 2⋅√(−2mx 0m 2+3)2−4⋅x 02−6m 2+3−x 02−6m 2+3=26−x 02√6m 2−3x 02+18m 2+1=26−x 02√6(m 2+6−x 022)m 2+1, 要使其值为定值,则6−x 022=1,故当x 02=4,即x 0=±2时,1|PQ|+1|QN|=√6.综上,存在这样的稳定点Q (±2,0). 22.(12分)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的焦距为4√3,且点P(2,√3)在椭圆E 上.(1)求椭圆E 的方程;(2)若A 、B 、Q 是椭圆E 上的三点,且直线AB 与x 轴不垂直,点O 为坐标原点,OQ →=λOA →+μOB →,则当△AOB 的面积最大时,求λ2+μ2的值.解:(1)由题意得,{2c =4√34a 2+3b 2=1a 2−b 2=c 2,解之得{a 2=16b 2=4c =2√3,故椭圆E 的方程为x 216+y 24=1;(2)设A (x 1,y 1),B (x 2,y 2),Q (x 0,y 0),直线AB 的方程为y =kx +t . 将y =kx +t 代入x 216+y 24=1,整理得(1+4k 2)x 2+8ktx +4t 2﹣16=0,Δ=(8kt )2﹣4(1+4k 2)(4t 2﹣16)>0,即16k 2+4﹣t 2>0, 则x 1+x 2=−8kt 1+4k2,x 1x 2=4t 2−161+4k2,故|AB|=√1+k 2|x 1−x 2|=√1+k 2⋅√(x 1+x 2)2−4x 1x 2=√1+k 2⋅4√16k 2−t 2+41+4k2.又原点O 到直线AB 的距离为d =|t|√1+k,所以S △AOB=12|AB|×d =12⋅√1+k 2⋅4√16k 2−t 2+41+4k 2⋅|t|√1+k=2√(16k 2−t 2+4)t 21+4k 2≤16k 2+41+4k 2=4, 当且仅当16k 2﹣t 2+4=t 2,即2+8k 2=t 2……①时,等号成立. 由OQ →=λOA →+μOB →,得{x 0=λx 1+μx 2,y 0=λy 1+μy 2,代入x 0216+y 024=1,整理得λ2(x 1216+y 124)+μ2(x 2216+y 224)+2λμ(x 1x 216+y 1y 24)=1,即λ2+μ2+2λμ(x 1x 216+y 1y 24)=1⋯⋯②.而x 1x 216+y 1y 24=x 1x 216+(kx 1+t)(kx 2+t)4=(1+4k 2)x 1x 2+4kt(x 1+x 2)+4t 216=(1+4k 2)×4t 2−161+4k2+4kt×(−8kt 1+4k2)+4t216=t 2−2−8k22(1+4k 2).由①可知x 1x 216+y 1y 24=0,代入②式得λ2+μ2=1.故λ2+μ2=1的值为1.。
湖北省部分学校2023-2024学年高二下学期4月期中考试数学试题一、单选题1.书架上放有2本不同的科学类图书,3本不同的文学类图书和5本不同的历史类图书,小李从中任选1本阅读,不同的选法共有( ) A .9种B .10种C .30种D .45 种二、解答题2.已知函数()e ln xf x x x =+.(1)求曲线y =f x 在点()()1,1f 处的切线方程;(2)若a >0,b >0,且221a b +=,证明:()()e 1f a f b +<+. 3.已知数列{}n a 满足 12323.n a a a na n ++++=L (1)求{}n a 的通项公式;(2)设[]2log n n b a =-,数列 {}n b 的前n 项和为n S ,求 21n S -.(其中[]x 表示不超过x 的最大整数)4.如图,在一个33⨯的网格中填齐1至9中的所有整数,每个格子只填一个数字,已知中心格子的数字为5.(1)求满足第二横排、第二竖排的3个数字之和均为15的不同的数字填写方案种数; (2)求满足第二横排的数字从左到右依次增大,第二竖排的数字从上到下依次增大的不同的数字填写方案种数.5.已知函数()ln 2f x x ax =--. (1)讨论f x 的单调性;(2)若()0f x ≤恒成立,求a 的取值范围.6.在公差不为0的等差数列{}n a 中, 123a =,10a 是6a 与8a 的等比中项. (1)求{}n a 的通项公式;(2)记{}n a 的前n 项和为n S ,求n S 的最大值.三、填空题7.提供6种不同颜色的颜料给图中A ,B ,C ,D ,E ,F 六个区域涂色,要求相邻区域不能涂相同颜色,则不同的涂色方法共有种.8.在数列{}n a 中,12a =,25a =,且21n n n a a a ++=-,则20242023a a -=.9.已知函数()()32213f x x f x '=++,则()2f =.四、多选题10.已知数列{}n a 的前n 项和为12,n S a =,且211n nn a a a +=-+,则( ) A .{}n a 是递增数列B .使2024n S …成立的最大正整数n 的值为5C .212n n nS S S n ++=++ D .若数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,则112n T <…11.在主题为“爱我中华”的演讲比赛中,参赛者甲、乙、丙、丁、戊进入了前5名的决赛(获奖名次不重复)、甲、乙、丙三人一起去询问成绩,回答者说:“甲、乙两人之中有一人的成绩为第三人名,丙的成绩不是第五名."根据这个回答,下列结论正确的有( )A .五人名次排列的所有情况共有36种B .甲、乙的排名不相邻的所有情况共有24种C .甲、乙的排名均高于丙的排名的所有情况共有8种D .丙的排名高于甲的排名的所有情况共有24种 12.下列函数求导正确的有( )A .(sin )sin cos x x x x x '=-B .(π0'=C .()222ln 11x x x '⎡⎤+=⎣⎦+D .22111x x x '⎛⎫+=+ ⎪⎝⎭五、单选题13.已知函数()ln e mxf x x x =-对定义域内任意x 1<x 2,都有()()12121f x f x x x -<-,则正实数m 的取值范围为( )A . 0,16B .(]0,eC .1e ,⎡⎫+∞⎪⎢⎣⎭D .[)e,+∞14.银行有一种叫做零存整取的储蓄业务,即每月定时存入一笔相同数目的现金,这是零存;到约定日期可以取出全部本金与利息的和(简称本利和),这是整取.已知一年期的年利率为1.35%,规定每次存入的钱不计复利.若某人采取零存整取的方式,从今年1月开始,每月1日存入4000元,则到今年12月底的本利和为( )A .48027元B .48351元C .48574元D .48744元15.已知函数 f x 的部分图象如图所示,()f x '为 f x 的导函数,则( )A .()()()()1010f f f f '>'->B .()()()()1010f f f f >>-''C .()()()()0101f f f f >-'>'D .()()()()1100f f f f >-'>'16.“数列{n a }是等比数列”是“数列{}1n n a a +是等比数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件17.若函数()()322316f x x a x ax =-++的极小值点为1,则( )A .a >1B .a <1C .1a ≥D .1a ≤18.已知数列{}n a 是递增数列,则其通项公式可以是( )A .2n a n n =-B .39n n a n =-C .2,21,n n n a n n ⎧=⎨+⎩为奇数为偶数D .132n n n a -=-19.已知函数f x 的导函数为()f x ',若()21f ¢=,则()()Δ02Δ2limΔx f x f x→--=( )A .1B .2C .1-D .−2。
数学试卷考试时长:120分钟,满分150分一、单选题(每题5分,总分:60分)1. 在(2-x)6展开式中,含x3项的系数是 ( )A.20B.-20C.160D.-1602. 两人进行乒乓球比赛,先赢三局着获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有 ( )A.20种B.15种C.30种D.10种3. 现有甲、已、丙三个盒子,其中每个盒子中都装有标号分别为1、2、3、4、5、6的六张卡片,现从甲、已、丙三个盒子中依次各取一张卡片使得卡片上的标号恰好成等差数列的取法数为 ( )A.14B.16C.18D.204. C33+C43+C53+…+C153等于 ( )A.C154 B.C164 C.C173 D.C1745. 用1、2、3、4、5、6中的两个数分别作为对数的底数和真数,则得到的不同的对数值共有( )A.30个B.15个C.20个D.21个6. 5名师生站成一排照相留念,其中教师1人,男生2人,女生2人,则两名女生相邻而站的概率是 ( )A. 1/5B. 2/5C. 3/5D. 4/57. 若函数y=ax+b在区间[1, 2]上的平均变化率为3,则a等于 ( )A.-3B.2C.3D.-28.如图所示是y = f(x)的导数图象,则正确的判断是 ( )① f(x)在(-3, 1)上是增函数;② x=-1是f(x)的极小值点;③ f(x)在(2, 4)上是减函数,在(-1, 2)上是增函数;④ x=2是f(x)的极小值点A.① ② ③B.② ③C.③ ④D.① ③ ④9. 与直线2x-6y+1=0垂直,且与曲线f(x)=x3+3x2-1相切的直线方程是 ( )A.3x+y+2=0B.3x-y+2=0C.x+3y+2=0D.x-3y-2=010.已知奇函数f(x)在R上是增函数,g(x)=xf(x).若a=g(−log25.1),b=g(20.8),c=g(3),则a,b,c的大小关系为 ( )A.a<b<cB.c<b<aC.b<a<cD.b<c<a11.设f n(x)=1+x+x2+⋯+x n(x>0),其中n∈N,n≥2,则函数G n(x)= f n(x)−2在(12n,1)内的零点个数是 ( )A.0B.1C.2D.与n有关12.如图,一环形花坛分成A、B、C、D四个区域,现有5种不同的花供选种,要求在每个区域里种1种花,且相邻的2个区域种不同的花,则不同的种法种数为 ( )A.96B.84C.260D.320二、填空题(每题5分,总分:20分)13. 若C9x-2=C92x-1,则x=_____.14.(1-x)7的展开式中,所有含x的奇次幂的项的系数和为____________.15. 如图所示,机器人亮亮从A地移动到B地,每次只移动一个单位长度,则亮亮从A移动到B最近的走法共有____种.16.设函数f(x)的定义域为R.若存在与x无关的正常数M,使|f(x)|≤ M|x|对一切实数x均成立,则称f(x)为有界泛函.则函数:① f(x)=-3x,② f(x)=x2,③ f(x)=sin2x,④ f(x)=2x,⑤ f(x)=xcosx中,属于有界泛函的有____________.(填上所有正确的番号)三、解答题(总分:70分)17.(本题10分)某校学生会由高一年级5人,高二年级6人,高三年级4人组成.(1)选其中1人为学生会主席,有多少种不同的选法?(2)若每年级选1人为校学生会常委,有多少种不同的选法?(3)若要选出不同年级的两人参加市里组织的活动,有多少种不同的选法?18. (本题12分)求下列函数的最值:(1)f(x)=ln x−x,x∈(0,e];x3−4x+4,x∈[0,3].(2)f(x)=1319.(本题12分) 某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容立方器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的容积为80π3米,且l≥2r.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c(c>3)千元.设该容器的建造费用为y千元.(1)写出y关于r的函数解析式,并求该函数的定义域;(2)求该容器的建造费用最小时的r.20.(本题12分)设(1+x)n=a0+a1x+a2x2+...+a n x n,n≥4,n∈N∗. 已知a32=2a2a4,(1)求n的值;(2)设(1+√3)n=a+b√3,其中a,b∈N∗,求a2−3b2的值.21.(本题12分)已知函数f(x)=ax2+x−1.(1)求曲线y=f(x)在点(0,−1)处的切e x线方程;(2)证明:当a≥1时,f(x)+e≥0.22.(本题12分)设a,b∈R,|a|≤1.已知函数f(x)=x3−6x2−3a(a−4)x+b,g(x)=e x f(x).(Ⅰ)求f(x)的单调区间;(Ⅱ)已知函数y=g(x)和y=e x的图象在公共点(x0,y0)处有相同的切线, (i)求证:f(x)在x=x0处的导数等于0; (ii)若关于x的不等式g(x)≤e x在区间[x0−1,x0+1]上恒成立,求b的取值范围.高二数学答案答案1~12:DACBD BCBAC BC13:4;14:-64;15:80;16:①③⑤;17. 答案:(1)N=5+6+4=15;(2)N=5×6×4=120;(3)N=5×6+6×4+4×5=74.解:(1)选其中1人为学生会主席,各年级均可,分三类:N=5+6+4=15种;(2)每年级选1人为校学生会常委,可分步从各年级分别选择,N=5×6×4=120种;(3)要选出不同年级的两人参加市里组织的活动,首先按年级分三类“1,2年级”,“1,3年级”,“2,3年级”,再各类分步选择:N=5×6+6×4+4×5=74种.;解析:(1)选其中1人为学生会主席,各年级均可,利用分类计数原理求得结果.(2)每年级选1人为校学生会常委,可分步从各年级分别选择,利用分步计数原理求得结果.(3)首先按年级分三类“1,2年级”,“1,3年级”,“2,3年级”,再各类分步选择.18. 解:(1)f ′(x )=1x −1=1−x x,由f ′(x )>0得x <1.∴f (x )在(0,1)内单调递增,在(1,e ]内单调递减,∴当x=1时,f (x )取最大值f (1)=-1.∵当x →0时,f (x )→−∞,∴f (x )没有最小值.(2)∵f (x )=13x 3−4x +4,∴f ′(x )=x 2−4.令f ′(x )=0,得x 1=−2,x 2=2.∵f (2)=−43,f(0)=4,f(3)=1∴函数f (x )在[0,3]上最大值为4,最小值为−43.;19.解:(1).设容器的容积为V ,由题意知V =πr 2l +43πr 3=803π,故l =V−43πr 3πr2=803r 2−43r =43(20r 2−r).因为l ≥2r ,所以0<r ≤2.所以建造费用y =2πrl ×3+4πr 2c =2πr ×43(20r 2−r)×3+4πr 2c ,即y =4π(c −2)r 2+160πr,0<r ≤2.; (2).由(1)得y ′=8π(c −2)r −160πr 2=8π(c−2)r 2∙(r 3−20c−2),0<r ≤2.因为c >3,所以c-2>0.当r 3−20c−2=0时,r =√20c−23.令√20c−23=m ,则m >0,故y ′=8π(c−2)r 2(r −m )(r 2+rm +m 2).①当0<m <2,即c >92时,令y ′=0,得r =m .当r ∈(0,m)时,y ′<0;当r ∈(m ,2)时,y ′>0,故r =m 是函数y 的极小值点,也是最小值点.②当m ≥2,即3<c ≤92时,当r ∈(0,2)时,y ′≤0,函数单调递减,故r =2是函数y 的最小值点.综上所述,当3<c ≤92时,建造费用最小时r =2;当c >92时,建造费用最小时r =√20c−23.20. 解:(1)由(1+x)n =Cn0+Cn1x +Cn2x 2+...+Cnnx n ,n ≥4,可得a 2=Cn2=n(n−1)2,a 3=Cn3=n(n−1)(n−2)6,a 4=Cn4=n(n−1)(n−2)(n−3)24,a32=2a 2a 4,可得(n(n−1)(n−2)6)2=2⋅n(n−1)2⋅n(n−1)(n−2)(n−3)24,解得n =5;(2) (1+√3)5=C50+C51√3+C52(√3)2+C53(√3)3+C54(√3)4+C55(√3)5=a +b √3,由于a ,b ∈N ∗,可得a =C50+3C52+9C54=1+30+45=76,b =C51+3C53+9C55=44,可得a 2−3b 2=762−3×442=−32;;解析:(1)运用二项式定理,分别求得a 2,a 3,a 4,结合组合数公式,解方程可得n 的值;(2)运用二项式定理,结合组合数公式求得a ,b ,计算可得所求值;21.解:(Ⅰ)由f(x)=x3−6x2−3a(a−4)x+b,可得f′(x)=3x2−12x−3a(a−4)=3(x−a)(x−(4−a)),令f′(x)=0,解得x=a,或x=4−a.由|a|≤1,得a<4−a.当x变化时,f′(x),f(x)的变化情况如下:x (−∞,a)(a,4−a)(4−a,+∞)f′(x)+−+f(x)↗↘↗∴f(x)的单调递增区间为(−∞,a),(4−a,+∞),单调递减区间为(a,4−a);(Ⅱ)(i)证明:∵g′(x)=e x(f(x)+f′(x)),由题意知{g(x0)=e x0g′(x0)=e x0,∴{f(x0)e x0=e x0e x0(f(x0)+f′(x0))=e x0,解得{f(x0)=1f′(x0)=0.∴f(x)在x=x0处的导数等于0;(ii)∵g(x)≤e x,x∈[x0−1,x0+1],由e x>0,可得f(x)≤1.又∵f(x0)=1,f′(x0)=0,故x0为f(x)的极大值点,由(I)知x0=a.另一方面,由于|a|≤1,故a+1<4−a,由(Ⅰ)知f(x)在(a−1,a)内单调递增,在(a,a+1)内单调递减,故当x0=a时,f(x)≤f(a)=1在[a−1,a+1]上恒成立,从而g(x)≤e x在[x0−1,x0+1]上恒成立.由f(a)=a3−6a2−3a(a−4)a+b=1,得b=2a3−6a2+1,−1≤a≤1.令t(x)=2x3−6x2+1,x∈[−1,1],∴t′(x)=6x2−12x,令t′(x)=0,解得x=2(舍去),或x=0.∵t(−1)=−7,t(1)=−3,t(0)=1,故t(x)的值域为[−7,1].∴b的取值范围是[−7,1].; 解析:(Ⅰ)求出函数f(x)的导函数,得到导函数的零点,由导函数的零点对定义域分段,列表后可得f(x)的单调区间;(Ⅱ)(i)求出g(x)的导函数,由题意知{g(x0)=e x0g′(x0)=e x0,求解可得{f(x0)=1f′(x0)=0.得到f(x)在x=x0处的导数等于0;(ii)由(I)知x0=a.且f(x)在(a−1,a)内单调递增,在(a,a+1)内单调递减,故当x0=a时,f(x)≤f(a)=1在[a−1,a+1]上恒成立,从而g(x)≤e x在[x0−1,x0+1]上恒成立.由f(a)=a3−6a2−3a(a−4)a+b=1,得b= 2a3−6a2+1,−1≤a≤1.构造函数t(x)=2x3−6x2+1,x∈[−1,1],求出t(x)的取值范围,即可求出b的取值范围.22.答案:解:(1)f′(x)=(2ax+1)e x−(ax2+x−1)e x(e x)2=−(ax+1)(x−2)e x.∴f′(0)=2,即曲线y=f(x)在点(0,−1)处的切线斜率k=2,∴曲线y=f(x)在点(0,−1)处的切线方程方程为y−(−1)=2x,即2x−y−1=0.(2)证明:函数f(x)的定义域为:R,可得f′(x)=(2ax+1)e x−(ax2+x−1)e x(e x)2=−(ax+1)(x−2)e x,令f′(x)=0,可得x1=2,x2=−1a <0,当x∈(−∞,−1a)时,f′(x)<0,x∈(−1a,2)时,f′(x)>0,x∈(2,+∞)时,f′(x)<0.∴f(x)在(−∞,−1a ),(2,+∞)递减,在(−1a,2)递增,注意到a≥1时,函数g(x)=ax2+x−1在(2,+∞)单调递增,且g(2)=4a+1>0函数f(x)的图象如下:∵a≥1,∴1a ∈(0,1],则f(−1a)=−e1a≥−e,∴f(x) min=−e1a≥−e,∴当a≥1时,f(x)+e≥0.;解析:(1)f′(x)=(2ax+1)e x−(ax2+x−1)e x(e x)2由f′(0)=2,可得切线斜率k=2,即可得到切线方程.(2)可得f′(x)=(2ax+1)e x−(ax2+x−1)e x(e x)2=−(ax+1)(x−2)e x.可得f(x)在(−∞,−1a),(2,+∞)递减,在(−1a,2)递增,注意到a≥1时,函数g(x)=ax2+x−1在(2,+∞)单调递增,且g(2)=4a+1>0只需(x) min=−e1a≥−e,即可.。
钢城四中2021-2021学年高二数学下学期期中试题〔上〕理制卷人:打自企; 成别使; 而都那。
审核人:众闪壹; 春壹阑; 各厅…… 日期:2022年二月八日。
第I 卷〔选择题)一、单项选择题1.质点的运动方程为2s t t =+,那么其在第2秒的瞬时速度为〔 〕A .6B .5C .4D .3 2.如图是导函数)(x f y =的图象,那么函数)(x f y =在下面哪个区间是减函数〔 〕A . )(42x x ,B . )(31x x ,C . )(65x x ,D . )(64x x , 3.函数)32sin()(π-=x x f ,那么)3('πf 等于〔 〕 A .3B .23C .21 D .14.设)(')(),(')()(')(sin )(112010x f x f x f x f x f x f x x f n n ====+,,, ,N n ∈,那么=)(2019x f 〔 〕 A .x sinB .-x sinC .x cosD .-x cos5.a 为常数,那么使得e 11d a x x>⎰成立的一个充分而不必要条件是 ( ) A .0>a B .0<a C .e >a D .e <a6.假设关于的方程0333=-+-a x x 有三个不同的实数根,那么实数的取值范围是〔 〕 A .〔1,5〕 B . )1(,-∞ C .〔0,5〕 D .),(∞+5 7.)(x f 在R 上可导,)1()1()(22x f x f x F -+-=,那么=)1('F 〔 〕8.设函数)(x f 的导函数为)('x f ,且)1('2)(2xf x x f +=,那么)2('f =( ) A .0B .-4C .-2D .29. 函数a a bx ax x x f 7)(223--++=在1=x 处有极大值10,那么ba的值是〔 〕 A .-2 B .32-C .32-或者-2 D .2或者32-10.函数)(x f 的导函数)('x f 的图象如下图, 3)2()1(==-f f ,令)()1()(x f x x g -=,那么不等式33)(-≥x x g 的解集是( )A .[-1,1]∪[2,+∞)B .(-∞,-1]∪[1,2]C .(-∞,-1]∪[2,+∞)D .[-1,2] 11.55443322105)23(x a x a x a x a x a a x +++++=-,那么5432105432a a a a a a +++++ 〔 〕A .253B .248C .238D .233 12.函数x ax x x f 432)(23+-=在区间〔-2,-1〕内存在单调递减区间,实数a 的取值范围〔 〕 A . ),∞+22( B . [)∞+,22 C . ),22(--∞ D . (]22-∞-,二、填空题13.如图中的曲线为()22f x x x =-,那么阴影局部面积为__________.14.函数)(ln )(R a ax x x f ∈-=的图像与直线01=+-y x 相切,那么实数a 的值是_____ 15.函数x e x f xsin 12)(++=其导函数记为)('x f ,那么的)2016(')2016(')2016()2016(--+-+f f f f 值为______.16.对于三次函数)0()(23≠+++=a d cx bx ax x f 给出定义:设)('x f 是函数)(x f y =的导数,)(x f ''是)('x f 的导数,假设方程)(x f ''=0有实数解0x ,那么称点)(,(00x f x 为函数的“拐点〞。
湖北省钢城四中2017-2018学年高二数学下学期期中试题理(扫描版)编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(湖北省钢城四中2017-2018学年高二数学下学期期中试题理(扫描版))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为湖北省钢城四中2017-2018学年高二数学下学期期中试题理(扫描版)的全部内容。
湖北省钢城四中2019-2020学年高二数学上学期期中试题(无答案)第I卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知直线与平行,则值为()A.1或3B. 3或5C. 3D. 不存在2.若圆上的点到直线的最近距离等于1,则半径值是()A.4 B.5 C.6 D.93. 某小组有3名男生和2名女生,从中任选2名学生参加演讲比赛,下列各对事件是互斥事件的有()对①恰有1名男生和恰有2名男生②至少有1名男生和至少有1名女生③至少有1名男生和全是男生④至少有1名男生和全是女生A. 0B.1C. 2D.34. 甲乙两名选手参加歌手大赛时,5名评委打的分数用如图所示的茎叶图表示,分别表示甲、乙选手分数的标准差,则的关系是()A. B.C. D. 不能确定5. 某产品的广告费用与销售额的不完整统计数据如下表:A. 40B. 39C. 38D. 376.已知A(4,0),B(0,4),从点P(2,0)射出的光线经直线AB反射后再射到直线OB上,后经直线OB反射后又回到P点,则光线所经过的路程是()A. B.6 C. D.7.已知直线l过点(1,2),且在纵坐标轴上的截距为横坐标轴上的截距的两倍,则直线l 的方程为 ( )A. B.C. D.8.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用的时间的条形图(如图),根据条形图可得这50名学生这一天平均每人的课外阅读时间为 ( )A.0.6小时 B.0.9小时C.1.0小时 D.1.5小时9.某人有10把钥匙,其中只有一把钥匙能打开这把锁,它随机拿一把钥匙开锁(不放回),则第3次打开锁的概率为( )A. B. C. D.10. 在平面直角坐标系中,已知圆C:及点A(-1,0),B(1,2),在圆C上存在点P,使得,则点P的个数为个A.1B.2C.3D.411. 设,若直线相切,则的取值范围是( )A. B.C. D.12. 若圆上至少有三个不同的点到直线l:,则直线l的倾斜角的取值范围为( )A. B. C.D.第II卷二、填空题:本大题共4小题,每小题5分,共20分13.掷一枚均匀的硬币3次,则出现二反一正的概率为___ ___;14.天气预报说,未来三天每天下雨的概率都是0.6,用1,2,3,4表示不下雨,用5,6,7,8,9,0表示下雨,利用计算机生成下列20组随机数,则未来三天恰好有一天下雨的概率大约是757 220 582 092 103 100 181 249 414 993010 732 680 596 761 835 463 521 186 28915. 无论K为何值,直线都不可能相切,其中>0,则常数的取值范围为。
湖北省钢城四中2018-2019学年高二数学上学期期中试题理一、选择题(本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)。
1.直线经过点,且倾斜角是直线倾斜角的2倍,则以下各点在直线上的是A. B. C. D.2.已知程序框图如图,则输出i的值为A. 7 B. 9 C. 11 D. 133.执行如图所示的程序框图,如果输入的,则输出的值的取值范围是A.或 B. C.或 D.或4.某初级中学有学生270人,其中七年级108人,八、九年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按七、八、九年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270;关于上述样本的下列结论中,正确的是()A.②、③都不能为系统抽样B.②、④都不能为分层抽样C.①、④都可能为系统抽样D.①、③都可能为分层抽样5.某校进行了一次创新作文大赛,共有100名同学参赛,经过评判,这100名参赛者的得分都在之间,其得分的频率分布直方图如图,则下列结论错误的是( ) A . 得分在之间的共有40人B . 从这100名参赛者中随机选取1人,其得分在的概率为C . 这100名参赛者得分的中位数为65D . 估计得分的众数为556.甲、乙两名选手参加歌手大赛时,5名评委打的分数用如图所示的茎叶图表示,s 1,s 2分别表示甲、乙选手分数的标准差,则s 1与s 2的关系是( ).A . s 1>s 2B . s 1=s 2C . s 1<s 2D . 不确定7.已知集合M ={1,-2,3},N ={-4,5,6,-7},从两个集合中各选一个数作 为点的坐标,则这样的坐标在直角坐标系中可表示第三、四象限内不同点的个 数为( )A . 18个B . 10个C . 16个D . 14个 8.若是圆上任一点,则点到直线距离的最大值( )A . 4B . 6C .D . 9.在一个具有五个行政区域的地图上(如图),用四种颜色给这五个行政区着色,当相邻的区域不能用同一颜色时,则不同的着色方法共有( )A . 72种B . 84种C . 180种D . 390种 10.要将甲、乙、丙、丁4名同学分到、、三个班级中,要求每个班级至少分到一人,则甲被分到班的分法种数为,A .B .C .D . 11.展开式中的系数为( )A . 14B . -14C . 56D . -5612.已知()()()420122111x a a x a x -=+-+- ()()343411a x a x +-+-,则2a =( ) A . 18 B . 24 C . 36 D . 56二、填空题:本大题共4个小题,每小题5分,共20分。
武汉市钢城第四中学2019-2020学年高二数学下学期期中试题(含解析)一、单选题(每题5分,总分:60分) 1.在(2-x )6展开式中,含x 3项的系数是( ) A. 20 B. -20 C. 160 D. -160【答案】D 【解析】 【分析】先确定(2-x )6展开式的通项公式,再令x 的幂指数为3求解即可.【详解】因为(2-x )6展开式的通项公式()()66166221rrr r r rr r T C x C x --+=-=-, 令3r =,得()333334621160T C x x =-=-,含x 3项的系数是160-. 故选:D【点睛】本题主要考查二项式定理的通项公式,还考查了运算求解的能力,属于基础题. 2. 两人进行乒乓球比赛,先赢三局着获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有( ) A. 10种 B. 15种 C. 20种 D. 30种【答案】C 【解析】试题分析:第一类:三局为止,共有2种情形;第二类:四局为止,共有2326C ⨯=种情形;第三类:五局为止,共有24212C ⨯=种情形;故所有可能出现的情形共有种情形故选C.考点:1、分类计数原理;2、排列组合.【易错点睛】本题主要考查分类计数原理、排列组合,属容易题.根据题意,可得分为三种情况:三局结束比赛、四局结束比赛和五局结束比赛,故用到分类计数原理,当三局结束比赛时,三场都同一个人胜,共2种情况;当四局结束比赛时,若甲胜时,则前三局甲胜2场,最后一场甲胜,共有23C 种方法,同理乙胜利时,有23C 种方法;当五局结束比赛时,若甲胜,则前四局甲胜2场,最后一场甲胜,共有24C 种方法,同理乙胜利时,有24C 种方法;此类问题中一定要注意,若甲胜,则最后一场必须是甲胜,前面只能胜2场,否则容易出错.3.现有甲、乙、丙三个盒子,其中每个盒子中都装有标号分别为1、2、3、4、5、6的六张卡片,现从甲、乙、丙三个盒子中依次各取一张卡片使得卡片上的标号恰好成等差数列的取法数为( ) A. 14 B. 16 C. 18 D. 20【答案】C 【解析】 【分析】根据题意,若取出的卡片上的标号恰好成等差数列分三种情况,一是标号相等时,即所得的等差数列的公差为0,二是所得的等差数列公差为1或-1,三是所得的等差数列的公差为2或-2时,分别求出其不同的取法,再求和.【详解】根据题意,若取出的卡片上的标号恰好成等差数列分三种情况, 一是标号相等时,即全部为1、2、3、4、5、6时,有6种取法,二是所得的等差数列公差为1或-1,即1、2、3;3、2、1;…4、5、6;6、5、4等8种取法, 三是所得的等差数列的公差为2或-2时,即1、3、5;5、3、1;…2、4、6;6、4、2等4种取法,所以共有68418++=种. 故选:C【点睛】本题主要考查分类加法计算原理,还考查了分类讨论的思想和列举求解的能力,属于中档题.4.C 33+C 43+C 53+…+C 153等于( ) A. C 154B. C 164C. C 173D. C 174【答案】B 【解析】 【分析】利用组合数的性质求解 【详解】C 33+C 43+C 53+…+C 153,4333334456715...C C C C C C =++++++,43333556715...C C C C C =+++++, 433366715...C C C C =++++, 43437151515......C C C C =++==+, 416C =.故选:B【点睛】本题主要考查组合数的性质,还考查了运算求解的能力,属于基础题.5.用1、2、3、4、5、6中的两个数分别作为对数的底数和真数,则得到的不同的对数值共有( ) A. 30个 B. 15个C. 20个D. 21个【答案】D 【解析】 【分析】先对真数为1和不为1讨论,再对底数,真数都不为1求解,然后求和.【详解】因为1只能作真数,从其余各数中任取一数为底数,对数值为0,有1个对数式, 从1除外的其余各数中任取两数,分别作为真数和底数,共能组成5420⨯=个对数式,且值不同,所以共有12021+=个. 故选:D【点睛】本题主要考查分类加法计数原理和分步乘法计数原理,还考查了理解辨析的能力,属于基础题.6.5名师生站成一排照相留念,其中教师1人,男生2人,女生2人,则两名女生相邻而站的概率是( ) A.15B.25C.35D.45【答案】B 【解析】 【分析】这是一个古典概型,先确定5名师生站成一排站法数,记“两名女生相邻而站”为事件A ,两名女生站在一起,视为一个元素与其余3个人全排,计算出事件A 共有不同站法数,再代入公式求解.【详解】5名师生站成一排共有55120A =种站法,记“两名女生相邻而站”为事件A ,两名女生站在一起有222A =种,视为一个元素与其余3个人全排,有4424A =种排法, 则事件A 共有不同站法242448A A ⋅=种,所以()4821205p A ==, 两名女生相邻而站的概率是25. 故选:B【点睛】本题主要考查古典概型的概率,还考查了理解辨析,运算求解的能力,属于中档题. 7.如果函数()f x ax b =+在区间[1,2]上的平均变化率为3,则a =( ) A. 3- B. 2C. 3D. 2-【答案】C 【解析】根据平均变化率的定义,可知()()2321a b a b y a x +-+===- 故选C8.下图是y = f (x )的导数图象,①f (x )在(-3,1)上是增函数;②1x =-是f (x )的极小值点;③f (x )在(2,4)上是减函数,在(-1,2)上是增函数;④x =2是f (x )的极小值点;则正确的判断是( )A. ①②③B. ②③C. ③④D. ①③④【答案】B 【解析】【分析】根据导数极值点的定义以及导数的正负与函数的增减之间的关系判断.【详解】①当31x -<<-时,()0f x '<,当11x -<<时,()0f x '>,故f (x )在(-3,1)上不单调,故错误;②当31x -<<-时,()0f x '<,当11x -<<时,()0f x '>,故1x =-是f (x )的极小值点,故正确;③当24x <<时,()0f x '<,当12x -<<时,()0f x '>,所以f (x )在(2,4)上是减函数,在(-1,2)上是增函数,故正确; ④当24x <<时,()0f x '<,当12x -<<时,()0f x '>,x =2是f (x )的极大值点,故错误;故选:B 【点睛】本题主要考查极值点的定义以及导数的正负与函数的增减之间的关系,还考查了数形结合的思想和理解辨析的能力,属于基础题.9.与直线2x -6y +1=0垂直,且与曲线f (x )=x 3+3x 2-1相切的直线方程是( )A. 3x +y +2=0B. 3x -y +2=0C. x +3y +2=0D. x -3y -2=0 【答案】A 【解析】 【分析】根据f (x )=x 3+3x 2-1,求导()f x ',设切点为()00,P x y ,再根据切线与直线2x -6y +1=0垂直,求得切点,写出切线方程. 【详解】因为f (x )=x 3+3x 2-1, 所以()236f x x x '=+,设切点为()00,P x y ,又因为切线与直线2x -6y +1=0垂直,所以()2000363f x x x '=+=-,解得01x =-,01y =,所以切线方程是()131y x -=-+,即 3x +y +2=0. 故选:A【点睛】本题主要考查导数的几何意义以及两直线的位置关系,还考查了运算求解的能力,属于基础题.10.已知奇函数()f x 在R 上是增函数,()()g x xf x =.若0.82(log 5.1),(2),(3)a g b g c g =-==,则,,a b c 的大小关系为( )A. a b c <<B. c b a <<C. b a c <<D.b c a <<【答案】C 【解析】 【分析】根据奇函数()f x 在R 上是增函数可得()g x 为偶函数且在[)0,+∞上为增函数,从而可判断,,a b c 的大小.【详解】()g x 的定义域为R .()()()()()g x xf x x f x xf x g x -=--=--==⎡⎤⎣⎦,故()g x 为偶函数.因为()f x 为R 上的奇函数,故()00f =,当0x >时,因为()f x 为R 上的增函数,故()()00f x f >=. 设任意的120x x ≤<,则()()120f x f x ≤<,故()()1122x f x x f x <, 故()()12g x g x <,故()g x 为[)0,+∞上的增函数,所以 ()()22log 5.1log 5.1a g g =-=,而0.82223log 8log 5.1log 422=>>=>,故()()()0.823log 5.12g g g >>,所以c a b >>.故选C.【点睛】本题考查函数的奇函数、单调性以及指对数的大小比较,注意奇函数与奇函数的乘积、偶函数与偶函数的乘积都是偶函数,指数对数的大小比较应利用中间数和对应函数的单调性来考虑.11.设()()210nn f x x x xx =+++⋅⋅⋅+>,其中,2n N n ∈≥,则函数()()12,12n n n Gx f x ⎛⎫=- ⎪⎝⎭在内的零点个数是( )A. 0B. 1C. 2D. 与n 有关【答案】B 【解析】 【分析】先利用导数判断()f x 在()0,∞+上单调递增,再利用零点存在定理可得结果. 【详解】由()231'1234...0n n f x x x x nx-=+++++>,知()f x 在()0,∞+上单调递增,11111112222201222212n n nn n G f +⎛⎫- ⎪⎛⎫⎛⎫⎛⎫⎛⎫⎝⎭=-=-=--=-< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭-,()()()112102n n G f n n =-=->≥,根据零点存在定理可得()()2n n G x f x =-在1,12n ⎛⎫⎪⎝⎭零点的个数只有1个,故选B. 【点睛】判断函数()y f x =零点个数的常用方法:(1) 直接法: 令()0,f x =则方程实根的个数就是函数零点的个;(2) 零点存在性定理法:判断函数在区间[],a b 上是连续不断的曲线,且()()·0,f a f b <再结合函数的图象与性质(如单调性、奇偶性、周期性、对称性) 可确定函数的零点个数;(3) 数形结合法:转化为两个函数的图象的交点个数问题.12.如图,一环形花坛分成A 、B 、C 、D 四个区域,现有5种不同的花供选种,要求在每个区域里种1种花,且相邻的2个区域种不同的花,则不同的种法种数为( )A. 96B. 84C. 260D. 320【答案】C 【解析】 【分析】按照A -B -C -D 的顺序种花,分A ,C 同色与不同色两种情况求解.【详解】按照A -B -C -D 的顺序种花,当A ,C 同色时,541480⨯⨯⨯=种, 当A ,C 不同色时,5433180⨯⨯⨯=种, 所以共有260种. 故选:C【点睛】本题主要考查涂色问题,还考查了分类讨论的思想和运算求解的能力,属于中档题. 二、填空题(每题5分,总分:20分) 13.若C 9x -2=C 92x -1,则x =_____. 【答案】4 【解析】 【分析】根据组合数的性质求解. 【详解】因为C 9x -2=C 92x -1,所以2219x x -+-= 解得4x = 故答案为:4【点睛】本题主要考查组合数的性质,还考查了运算求解的能力,属于基础题. 14.(1-x )7的展开式中,所有含x 的奇次幂的项的系数和为____________. 【答案】-64 【解析】 【分析】设(1-x )7270127...a a x a x a x =++++,分别令1x =和 1x =-,两式相减求解即可. 【详解】设(1-x )7270127...a a x a x a x =++++,令1x =时,0127...0a a a a ++++=,令1x =-时,70127...2a a a a -++-=,两式相减得:()71372...2a a a +++=-,所以137...64a a a +++=-. 故答案为:64-【点睛】本题主要考查二项展开式的系数,还考查了运算求解的能力,属于基础题. 15.如图,机器人亮亮沿着单位网格,从A 地移动到B 地,每次只移动一个单位长度,则亮亮从A 移动到B 最近的走法共有____种.【答案】80 【解析】 【分析】分三步来考查,先从A 到C ,再从C 到D ,最后从D 到B ,分别计算出三个步骤中对应的走法种数,然后利用分步乘法计数原理可得出结果.【详解】分三步来考查:①从A 到C ,则亮亮要移动两步,一步是向右移动一个单位,一步是向上移动一个单位,此时有12C 种走法;②从C 到D ,则亮亮要移动六步,其中三步向右移动一个单位,三步是向上移动一个单位,此时有36C 种走法;③从D 到B ,由①可知有12C 种走法.由分步乘法计数原理可知,共有13126280C C C =种不同的走法.故答案为:80.【点睛】本题考查格点问题的处理,考查分步乘法计数原理和组合计数原理的应用,属于中等题.16.设函数f (x )的定义域为R .若存在与x 无关的正常数M ,使|f (x )|≤ M |x |对一切实数x 均成立,则称f (x )为有界泛函.则函数:① f (x )=-3x ,② f (x )=x 2,③ f (x )=sin 2x ,④ f (x )=2x,⑤ f (x )=x cos x 中,属于有界泛函的有____________.(填上所有正确的番号) 【答案】①③⑤ 【解析】 【分析】根据“f (x )为有界泛函”的定义找到符合条件的M 即可.【详解】① 因为()33f x x x =-=,要使3x M x ≤对一切实数x 均成立,只要3M ≥即可,故正确.② 因为()2f x x M x =≤,当0x ≠时,x M ≤,不存在这样的M ,使|f (x )|≤ M |x |对一切实数x 均成立,故错误.③ 因为()2sin sin f x x x x =≤≤,要使2sin x M x ≤对一切实数x 均成立,,只要1M ≥即可,故正确.④因为()2xf x =,当0x =时,()0100f M =>⋅=,不存在这样的M ,使|f (x )|≤ M |x |对一切实数x 均成立,故错误.⑤ 因为()cos f x x x x =≤,要使x M x ≤对一切实数x 均成立,,只要1M ≥即可,故正确. 故答案:①③⑤【点睛】本题主要考查函数的新定义,还考查了运算求解的能力,属于中档题. 三、解答题(总分:70分)17.某校学生会由高一年级5人,高二年级6人,高三年级4人组成. (1)选其中1人为学生会主席,有多少种不同的选法? (2)若每年级选1人为校学生会常委,有多少种不同的选法?(3)若要选出不同年级的两人参加市里组织的活动,有多少种不同的选法? 【答案】(1)15;(2)120;(3)74 【解析】 【分析】(1)选其中1人为学生会主席,各年级均可,利用分类计数原理求得结果.(2)每年级选1人为校学生会常委,可分步从各年级分别选择,利用分步计数原理求得结果.(3)首先按年级分三类“1,2年级”,“1,3年级”,“2,3年级”,再各类分步选择. 【详解】(1)选其中1人为学生会主席,各年级均可,分三类:N =5+6+4=15种; (2)每年级选1人为校学生会常委,可分步从各年级分别选择,N =5×6×4=120种; (3)要选出不同年级的两人参加市里组织的活动,首先按年级分三类“1,2年级”,“1,3年级”,“2,3年级”,再各类分步选择:N =5×6+6×4+4×5=74种.;【点睛】本题主要考查分类加法计数原理和分步乘法计数原理,还考查了分析求解问题的能力,属于中档题. 18.求下列函数的最值:(1)()ln f x x x =-,](0x e ∈,; (2)()31443f x x x =-+,[]0?3x ∈,. 【答案】(1)最大值1-,没有最小值;(2)最大值为4,最小值为43- 【解析】 【分析】 (1)求导()111xf x x x-'=-=,唯一的极值点为最值点,注意端点取不到的情况.(2)求导()24f x x '=-,求出极值,再与端点值比较,最大的值为函数的最大值,最小的值为函数的最小值. 【详解】(1)()111xf x x x-'=-=, 由()0f x '>得01x <<;由()0f x '<得1x e <<.()f x ∴在()0,1内单调递增,在(]1,e 内单调递减,∴当1x =时,()f x 取最大值()11f =-. ∵当0x →时,()f x →-∞,()f x ∴没有最小值.(2)∵()31443f x x x =-+, ∴()24f x x '=-.令()0f x '=,得1222x x =-=,.∵()423f =-,()04f =,()31f = ∴函数()f x 在[]0,3上最大值为4,最小值为43-. 【点睛】本题主要考查导数与函数的最值,还考查了运算求解的能力,属于中档题. 19.某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的容积为立方米,且.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为()千元.设该容器的建造费用为千元.(1)写出关于的函数表达式,并求该函数的定义域;(2)求该容器的建造费用最小时的.【答案】(Ⅰ);(Ⅱ)当时,建造费用最小时当时,建造费用最小时.【解析】【详解】(1)由体积V=3243r r ππ+l =803π,解得l =,∴y=2πr l ×3+4πr 2×c =6πr×+4cπr 2=2π•,又l ≥2r,即≥2r,解得0<r≤2∴其定义域为(0,2].(2)由(1)得,y′=8π(c ﹣2)r ﹣,=,0<r≤2由于c >3,所以c ﹣2>0 当r 3﹣=0时,则r=令=m ,(m >0)所以y′=①当0<m <2即c >时, 当r=m 时,y′=0当r∈(0,m )时,y′<0 当r∈(m ,2)时,y′>0所以r=m 是函数y 的极小值点,也是最小值点. ②当m≥2即3<c≤时,当r∈(0,2)时,y′<0,函数单调递减. 所以r=2是函数y 的最小值点.综上所述,当3<c≤时,建造费用最小时r=2; 当c >时,建造费用最小时r=20.设2*012(1),4,n n n x a a x a x a x n n +=++++∈N .已知23242a a a =.(1)求n 的值;(2)设(13)3n a b =+*,a b ∈N ,求223a b -的值. 【答案】(1)5n =; (2)-32.【解析】 【分析】(1)首先由二项式展开式的通项公式确定234,,a a a 的值,然后求解关于n 的方程可得n 的值; (2)解法一:利用(1)中求得的n 的值确定有理项和无理项从而可得a ,b 的值,然后计算223a b -的值即可;解法二:利用(1)中求得的n 的值,由题意得到(51的展开式,最后结合平方差公式即可确定223a b -的值.【详解】(1)因为0122(1)C C C C 4n n nn n n n x x x x n +=++++≥,,所以2323(1)(1)(2)C ,C 26n nn n n n n a a ---====, 44(1)(2)(3)C 24n n n n n a ---==. 因为23242a a a =,所以2(1)(2)(1)(1)(2)(3)[]26224n n n n n n n n n ------=⨯⨯,解得5n =.(2)由(1)知,5n =.5(1(1n +=+02233445555555C C C C C C =++++a =+解法一:因为*,a b ∈N ,所以024135555555C 3C 9C 76,C 3C 9C 44a b =++==++=,从而222237634432a b -=-⨯=-. 解法二:50122334455555555(1C C (C (C (C (C (=+++++02233445555555C C C C C C =--+-.因为*,a b ∈N ,所以5(1a =-.因此225553((1(1(2)32a b a a -=+-=+⨯=-=-.【点睛】本题主要考查二项式定理、组合数等基础知识,考查分析问题能力与运算求解能力.21.已知函数()21xax x f x e+-=. (1)求曲线()y f x =在点()0,1-处的切线方程; (2)证明:当1a ≥时,()0f x e +≥.【答案】(1)切线方程是210x y --=(2)证明见解析 【解析】 【分析】(1)求导,由导数的几何意义求出切线方程.(2)当a 1≥时,()12f x e 1x x e x x e +-+≥++-(),令12gx 1x e x x +=++-,只需证明gx 0≥即可.【详解】(1)()()2212xax a x f x e-++'-=,()02f '=.因此曲线()y f x =在点()0,1-处的切线方程是210x y --=. (2)当1a ≥时,()()211x xf x e x x ee+-+≥+-+.令()211x g x x x e+=+-+,则()121x g x x e+=++',()120x g x e+''=+>当1x <-时,()()10g x g '-'<=,()g x 单调递减;当1x >-时,()()10g x g '-'>=,()g x 单调递增;所以()g x ()1=0g ≥-.因此()0f x e +≥.【点睛】本题考查函数与导数的综合应用,由导数的几何意义可求出切线方程,第二问构造12g(x)1x e x x +=++-很关键,本题有难度.22.设,a b ∈R ,||1a ≤.已知函数32()63(4)f x x x a a x b =---+,()()xg x e f x =.(Ⅰ)求()f x 的单调区间;(Ⅱ)已知函数()y g x =和xy e =的图象在公共点(x 0,y 0)处有相同的切线,(i )求证:()f x 在0x x =处的导数等于0;(ii )若关于x 的不等式()e x g x ≤在区间00[1,1]x x -+上恒成立,求b 的取值范围.【答案】(I )单调递增区间为(,)a -∞,(4,)a -+∞,单调递减区间为(,4)a a -.(II )(i )见解析.(ii )[7,1]-. 【解析】试题分析:求导数后因式分解根据1a ≤,得出4a a <-,根据导数的符号判断函数的单调性,给出单调区间,对()g x 求导,根据函数()y g x =和xy e =的图象在公共点(x 0,y 0)处有相同的切线,解得0()0f x '=,根据()f x 的单调性可知()()1f f x a ≤=在[1,1]a a -+上恒成立,关于x 的不等式()e x g x ≤在区间00[1,1]x x -+上恒成立,得出32()63(4)1f a a a a a a b =---+=,得32261b a a =-+,11a -≤≤,求出()f a 的范围,得出b 的范围.试题解析:(I )由()()32634f x x x a a x b =---+,可得()()()()()2'3123434f x x x a a x a x a =---=---,令()'0f x =,解得x a =,或4x a =-.由1a ≤,得4a a <-. 当x 变化时,()'f x ,()f x 的变化情况如下表:所以,()f x 的单调递增区间为(),a -∞,()4,a -+∞,单调递减区间为(),4a a -.(II )(i )因为()()()()''xg x e f x f x =+,由题意知()()0000'x x g x e g x e⎧=⎪⎨=⎪⎩,所以()()()()0000000'x x x x f x e e e f x f x e ⎧=⎪⎨+=⎪⎩,解得()()001'0f x f x ⎧=⎪⎨=⎪⎩. 所以,()f x 在0x x =处的导数等于0.(ii )因为()xg x e ≤,[]001,1x x x ∈-+,由0x e >,可得()1f x ≤.又因为()01f x =,()0'0f x =,故0x 为()f x 的极大值点,由(I )知0x a =. 另一方面,由于1a ≤,故14a a +<-,由(I )知()f x 在()1,a a -内单调递增,在(),1a a +内单调递减,故当0x a =时,()()1f x f a ≤=在[]1,1a a -+上恒成立,从而()x g x e ≤在[]001,1x x -+上恒成立.由()()326341f a a a a a a b =---+=,得32261b a a =-+,11a -≤≤.令()32261t x x x =-+,[]1,1x ∈-,所以()2'612t x x x =-,令()'0t x =,解得2x =(舍去),或0x =.因为()17t -=-,()13t =-,()01t =,故()t x 的值域为[]7,1-. 所以,b 的取值范围是[]7,1-. 【考点】导数的应用【名师点睛】利用导数工具研究函数是历年高考题中的难点问题,利用导数判断函数的单调性,求函数的极值或最值,利用导数的几何意义研究曲线的切线方程以及利用导数研究函数的零点和值域也是常见考法,本题把恒成立问题转化为函数值域问题很巧妙,问题转化为借助导数研究函数在某区间上的取值范围去解决,方法灵活思维巧妙,匠心独运.。
钢城四中2021-2021学年高二数学下学期期中试题〔下〕理单位:乙州丁厂七市润芝学校时间:2022年4月12日创编者:阳芡明第I 卷〔选择题)一、单项选择题1.“61<<-x 〞是“0)3)(12(<-+x x 〞成立的 条件A .充分不必要B .必要不充分C .充分必要D .既不充分又不必要2.以下命题中错误的选项是〔 〕A .命题“假设y x =,那么y x sin sin =〞的逆否命题是真命题B .命题“1ln )0(000-=∞+∈∃x x x ,〞的否认是“1ln )0(-≠∞+∈∀x x x ,,〞C .假设q p ∨为真命题,那么q p ∧为真命题D .“00>∃x 使00bx ax >〞是“0>>b a 〞的必要不充分条件3.双曲线1422=-y x 的焦点到渐近线的间隔 为 A .1B .2C .2D .34.直线l :)2(-=x k y 与双曲线1322=-y x 仅有一个公一共点,那么实数k 的值是〔 〕A .3B .-3C .3±D .33± 5.过抛物线x y 82=的焦点作直线l 交抛物线于A 、B 两点,假设线段AB 的中点的横坐标为3,那么AB 等于〔 〕 A .8 B .10 C .12 D .146.如图,在正方体1111D C B A ABCD -中,下面结论错误的选项是( )A .11//D CB BD 平面 B .BD AC ⊥1C .111D CB AC 平面⊥ D .向量→AD 与→1CB 的夹角为 607.正方体1111D C B A ABCD -的棱长为a ,点M 在1AC 且121MC AM =,N 为B B 1的中点,那么MN 为( ) A .a 621 B .a 66 C .a 615 D .a 315 8.在四面体OABC 中,点M 在OA 上,且MA OM 2=,N 为BC 的中点,假设→→→→++=OC x OB x OA OG 4431,那么使G 与N M 、一共线的x 的值是〔 〕A .1B .2C .32D .34 9.正方形ABCD 的对角线AC 与BD 相交于E 点,将ACD ∆沿对角线折起,使得平面ADC ABC 平面⊥〔如图〕,那么以下命题中正确的选项是〔 〕 A .直线CD AB 直线⊥,且直线BD AC 直线⊥B .直线BCD AB 平面⊥,且直线BDE AC 平面⊥C .平面BDE ABC 平面⊥,且平面BDE ACD 平面⊥D .平面BCD ABD 平面⊥,且平面BDE ACD 平面⊥10.如图,在直三棱柱111C B A ABC -中, 90=∠BAC ,21===AA AC AB ,点G 与E分别是111CC B A 和的中点,点D 与F 分别是AC 和AB 上的动点.假设EF GD ⊥,那么线段DF 长度的最小值为 ( )A . 552B .553C .55D .22 11.双曲线C :1422=-y x ,21F F ,为左,右焦点,直线l 过右焦点2F ,与双曲线C 的右支交于B A ,两点,且点A 在x 轴上方,假设223BF AF =,那么直线l 的斜率为〔 〕A .1B .-2C .-1D .212.中心在坐标原点的椭圆1C 与双曲线2C 有公一共焦点,且左,右焦点分别为21F F ,,1C 与2C 在第一象限的交点为P ,21F PF ∆是以1PF 为底边的等腰三角形,假设101=PF ,1C 与2C 的离心率分别为21e e ,,那么212e e +的取值范围是A .)221(∞++,B .)35(∞+,C .)1(∞+,D .)65(∞+,二、填空题 13.过抛物线x y 42=的焦点且与对称轴垂直的弦长为______.14.60︒ 的二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB ,1AB = ,2AC =,3BD =,那么线段CD 的长为__________.15.三棱锥ABC P -中,1=====AC AB PC PB PA , 90=∠BAC ,那么直线PA 与底面ABC 所成角的大小为________________.16.21F F ,是椭圆)0(1:2222>>=+b a b y a x C 的左、右焦点,A 是C 的左顶点,点P 在过A 且斜率为73的直线上,21F PF ∆为等腰三角形, 12021=∠P F F ,那么C 的离心率为______.三、解答题 17.p 方程1322=+x m y 表示焦点在y 轴上的椭圆;:q 方程14222=--+m y m x 表示双曲线.假设“q p ∧〞为假命题,且“q p ∨〞为真命题,务实数m 的取值范围.18.如图,在四棱锥ABCD P -中,底面ABCD 是菱形,ABCD PA 平面⊥,AB AC PA ==,、F E ,分别是PD CD 、的中点. 〔1〕求证:PAE CD 平面⊥;〔2〕求异面直线PE AF 和与所成角的余弦值。
湖北省钢城四中高二数学下学期期中试题(上)理第I 卷(选择题)一、单选题1.已知质点的运动方程为2s t t =+,则其在第2秒的瞬时速度为( ) A .6 B .5 C .4 D .3 2.如图是导函数)(x f y =的图象,那么函数)(x f y =在下面哪个区间是减函数( )A . )(42x x ,B . )(31x x ,C . )(65x x ,D . )(64x x , 3.已知函数)32sin()(π-=x x f ,则)3('πf 等于( ) A .3B .23 C .21 D .14.设)(')(),(')()(')(sin )(112010x f x f x f x f x f x f x x f n n ====+,,, ,N n ∈,则=)(2019x f ( )A .x sinB .-x sinC .x cosD .-x cos5.已知a 为常数,则使得e 11d a x x>⎰成立的一个充分而不必要条件是 ( ) A .0>a B .0<a C .e >a D .e <a6.若关于的方程0333=-+-a x x 有三个不同的实数根,则实数的取值范围是( ) A .(1,5) B . )1(,-∞ C .(0,5) D .),(∞+5 7.已知)(x f 在R 上可导,)1()1()(22x f x f x F -+-=,则=)1('F ( )A. 4B.0 C-2 D.-4 8.设函数)(x f 的导函数为)('x f ,且)1('2)(2xf x x f +=,则)2('f =( ) A .0B .-4C .-2D .29. 已知函数a a bx ax x x f 7)(223--++=在1=x 处有极大值10,则ba的值为( ) A .-2 B .32-C .32-或-2D .2或32-10.已知函数)(x f 的导函数)('x f 的图象如图所示, ,令)()1()(x f x x g -=,则不等式33)(-≥x x g 的解集是( )A .[-1,1]∪[2,+∞)B .(-∞,-1]∪[1,2]C .(-∞,-1]∪[2,+∞)D .[-1,2] 11.已知55443322105)23(x a x a x a x a x a a x +++++=-,则5432105432a a a a a a +++++ ( )A .253B .248C .238D .23312.已知函数x ax x x f 432)(23+-=在区间(-2,-1)内存在单调递减区间,实数a 的取值范围( )A . ),∞+22(B . [)∞+,22C . ),22(--∞D . (]22-∞-,二、填空题13.如图中的曲线为()22f x x x =-,则阴影部分面积为__________.14.已知函数)(ln )(R a ax x x f ∈-=的图像与直线01=+-y x 相切,则实数a 的值为_____ 15.已知函数x e x f xsin 12)(++=其导函数记为)('x f ,则的 值为______.16.对于三次函数)0()(23≠+++=a d cx bx ax x f 给出定义:设)('x f 是函数)(x f y =的导数, )(x f ''是)('x f 的导数,若方程)(x f ''=0有实数解0x ,则称点)(,(00x f x 为函数的“拐点”。
经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数132)(23+-=x x x g ,则=+++)10099())1002()1001(g g g __________.三、解答题17.设二次函数t nx mx x f ++=2)(的图像过原点,)0(3)(3>-+=x bx ax x g ,)(')(')()(x g x f x g x f ,的导数为,的导函数为,且2)1('0)0('-=-=f f ,,)1(')1(')1()1(g f g f ==,(1)求函数)()(x g x f ,的解析式; (2)求的极小值;18.如图,在三棱锥ABC S -中,ABC SA 底面⊥,AB AC SA AB AC ⊥===,2,ED ,分别是BC AC ,的中点,F 在SE 上且FE SF 2=(I )求证:SBC AF 平面⊥;(II )在线段DE 上是否存在点G ,使二面角E AF G --的大小为 30,若存在,求出DG 的长;若不存在,请说明理由.19.已知函数.(1)求()f x 的单调区间;(2)若()0f x ≤在(0,)+∞上恒成立,求所有实数a 的值;20.已知函数,在点()()1,1f 处的切线方程为20y +=(1)求函数()f x 的解析式;(2)若过点()()2,2M m m ≠),可作曲线()y f x =的三条切线,求实数m 的取值范围;21.已知椭圆)0(1:2222>>=+b a by a x C ,,过点P(0,-2),离心率为22.(Ⅰ)求椭圆C 的方程;(Ⅱ)21l l ,是过点P 且互相垂直的两条直线,其中1l 交圆822=+y x 于,两点,2l 交椭圆C 于另一个点D ,求ABD ∆面积取得最大值时直线1l 的方程.22.已知函数.)0)(()(>-=a ae x e x f xx(1)讨论)(x f 极值点的个数;(2)若)(x f 有两个极值点21x x ,,且21x x <,求证:ex f 1)(211-<<-2018-2019学年度下学期5月考试高二数学(理)答案一、选择题:B,A,D,D,C;A,B,A,B,A;D,C二、填空题:13【答案】8 3【解析】由定积分的几何意义可得:()()0210448d d333S f x x f x x-⎛⎫=⎰-⎰=--=⎪⎝⎭,故答案为83.14【答案】【解析】转化为,则斜率k=1,,推出,,代入解析式中,得到,15.【答案】【解析】试题分析:由题意得,因为,所以,所以,,所以.16【答案】【解析】∵g(x )=2x3﹣3x2+1,∴g′(x )=6x2﹣6x,g''(x)=12x﹣6,由g''(x)=0,得x=,又g()=2×,∴故函数g(x)关于点(,)对称,∴g(x)+g(1﹣x)=1,∴=49×1+=49+=.故答案为:三、解答题:17.【解析】【答案】(1),;(2)的极小值为;(3)存在这样的实常数和,且解 :(1)由已知得, 则,从而,∴…………………………………………3分∴,。
由得,解得。
………………………………6分(2),求导数得。
…………9分 在(0,1)单调递减,在(1,+)单调递增,从而的极小值为。
(12)分18.( ) 19.【答案】(1)当0a ≤,)(x f 减区间为),0(+∞,当0>a 时,)(x f 递增区间为,递减区间为),(+∞a ;(2)1=a . 【解析】 试题分析:(1)求导,利用导数得出函数单调性;(2)对a 进行分类:当0≤a 时, )(x f 递减,又知0)1(=f 可得))1,0((0)(∈>x x f ;当0>a 时,只需求1ln )()(max +-==a a a a f x f ,让最大值小于等于零即可.试题解析:(1))0(1)('>-=-=x xxa x a x f , 当0≤a 时,0)('<x f ,)(x f 减区间为),0(+∞当0>a 时,由0)('>x f 得a x <<0,由0)('<x f 得a x > )(x f ∴递增区间为,递减区间为),(+∞a .(2)由(1)知:当0≤a 时,)(x f 在),0(+∞上为减区间,而0)1(=f 0)(≤∴x f 在区间),0(+∞∈x 上不可能恒成立;当0>a 时,)(x f 在上递增,在),(+∞a 上递减, 1ln )()(max +-==a a a a f x f , 令1ln )(+-=a a a a g , 依题意有0)(≤a g ,而a a g ln )('=,且0>a)(a g ∴在)1,0(上递减,在),1(+∞上递增,0)1()(min ==∴g a g ,故1=a .考点:导数的应用.20. 【答案】(1)()33f x x x '=-;(2)62m -<<;.【解析】试题分析:(1)由题意,利用导函数的几何含义及切点的实质建立a ,b 的方程,然后求解即可;(2)由题意,若过点M (2,m )(m≠2)可作曲线y=f (x )的三条切线,等价与函数在切点处导函数值等于切线的斜率这一方程有3解;21. 【答案】(1) 椭圆方程为;(2)面积取得最大值时直线的方程应该是.【解析】试题分析:(1)由条件布列关于的方程组,得到椭圆的方程;(2)设:,分类,联立方程,利用根与系数关系表示面积,,然后利用均值不等试题解析:(1)由题意得,解得,所以椭圆方程为.(2)由题知直线的斜率存在,不妨设为,则:.若时,直线的方程为,的方程为,易求得,,此时.若时,则直线:.圆心到直线的距离为.直线被圆截得的弦长为.由,得,故.所以.当时上式等号成立.因为,所以面积取得最大值时直线的方程应该是.22.( )。