大学物理习题及解答
- 格式:ppt
- 大小:1.07 MB
- 文档页数:15
大学物理习题答案 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-一、 单项选择题:1. 北京正负电子对撞机中电子在周长为L 的储存环中作轨道运动。
已知电子的动量是P ,则偏转磁场的磁感应强度为: ( C ) (A)eLP π; (B)eL P π4; (C) eLPπ2; (D) 0。
2. 在磁感应强度为B的均匀磁场中,取一边长为a 的立方形闭合面,则通过该闭合面的磁通量的大小为: ( D )(A) B a 2; (B) B a 22; (C) B a 26; (D) 0。
3.半径为R 的长直圆柱体载流为I ,电流I 均匀分布在横截面上,则圆柱体内(R r 〈)的一点P 的磁感应强度的大小为 ( B ) (A) r I B πμ20=; (B) 202R Ir B πμ=; (C) 202rIB πμ=; (D) 202RIB πμ=。
4.单色光从空气射入水中,下面哪种说法是正确的 ( A ) (A) 频率不变,光速变小; (B) 波长不变,频率变大; (C) 波长变短,光速不变; (D) 波长不变,频率不变.5.如图,在C 点放置点电荷q 1,在A 点放置点电荷q 2,S 是包围点电荷q 1的封闭曲面,P 点是S 曲面上的任意一点.现在把q 2从A 点移到B 点,则 (D )(A) 通过S 面的电通量改变,但P 点的电场强度不变;(B) 通过S 面的电通量和P 点的电场强度都改变; (C) 通过S 面的电通量和P 点的电场强度都不变; (D) 通过S 面的电通量不变,但P 点的电场强度改变。
6.如图所示,两平面玻璃板OA 和OB 构成一空气劈尖,一平面单色光垂直入射到劈尖上,当A 板与B 板的夹角θ增大时,干涉图样将 ( C )(A) 干涉条纹间距增大,并向O 方向移动; (B) 干涉条纹间距减小,并向B 方向移动; (C) 干涉条纹间距减小,并向O 方向移动; (D) 干涉条纹间距增大,并向O 方向移动.7.在均匀磁场中有一电子枪,它可发射出速率分别为v 和2v 的两个电子,这两个电子的速度方向相同,且均与磁感应强度B 垂直,则这两个电子绕行一周所需的时间之比为 ( A )(A) 1:1; (B) 1:2; (C) 2:1; (D) 4:1.8.如图所示,均匀磁场的磁感强度为B ,方向沿y 轴正向,欲要使电量为Q 的正离子沿x 轴正向作匀速直线运动,则必须加一个均匀电场E ,其大小和方向为 ( D )(A) E =νB ,E 沿z 轴正向; (B) E =vB ,E 沿y 轴正向;(C) E =B ν,E 沿z 轴正向; (D) E =B ν,E 沿z 轴负向。
1 如图所示,质量为m 的小球系在绳子的一端,绳穿过一铅直套管,使小球限制在一光滑水平面上运动。
先使小球以速度0v 。
绕管心作半径为r D 的圆周运动,然后向下慢慢拉绳,使小球运动轨迹最后成为半径为r 1的圆,求(1)小球距管心r 1时速度大小。
(2)由r D 缩到r 1过程中,力F 所作的功。
解 (1)绳子作用在小球上的力始终通过中心O ,是有心力,以小球为研究对象,此力对O 的力矩在小球运动过程中始终为零,因此,在绳子缩短的过程中,小球对O 点的角动量守恒,即10L L =小球在r D 和r 1位置时的角动量大小 1100r mv r mv = 100r r v v =(2)可见,小球的速率增大了,动能也增大了,由功能定理得力所作的功 ⎥⎦⎤⎢⎣⎡-=-=-=1)(21 21)(21 21212102020210202021r r mv mv r r mv mv mv W2 如图所示,定滑轮半径为r ,可绕垂直通过轮心的无摩擦水平轴转动,转动惯量为J ,轮上绕有一轻绳,一端与劲度系数为k 的轻弹簧相连,另一端与质量为m 的物体相连。
物体置于倾角为θ的光滑斜面上。
开始时,弹簧处于自然长度,物体速度为零,然后释放物体沿斜面下滑,求物体下滑距离l 时,物体速度的大小。
解 把物体、滑轮、弹簧、轻绳和地球为研究系统。
在物体由静止下滑的过程中,只有重力、弹性力作功,其它外力和非保守内力作功的和为零,故系统的机械能守恒。
设物体下滑l 时,速度为v ,此时滑轮的角速度为ω则 θωsin 2121210222mgl mv J kl -++= (1)又有 ωr v = (2) 由式(1)和式(2)可得 m r J kl mgl v +-=22sin 2θ本题也可以由刚体定轴转动定律和牛顿第二定律求得,读者不妨一试。
3 如右图所示,一长为l 、质量为m '的杆可绕支点O 自由转动,一质量为m 、速率为v 的子弹射入杆内距支点为a 处,使杆的偏转为︒30。
《大学物理》各章练习题及答案解析第1章 质点运动学一、选择题:1.以下五种运动中,加速度a保持不变的运动是 ( D ) (A) 单摆的运动。
(B) 匀速率圆周运动。
(C) 行星的椭圆轨道运动。
(D) 抛体运动。
(E) 圆锥摆运动。
2.下面表述正确的是( B )(A)质点作圆周运动,加速度一定与速度垂直; (B) 物体作直线运动,法向加速度必为零; (C)轨道最弯处法向加速度最大; (D)某时刻的速率为零,切向加速度必为零。
3.某质点做匀速率圆周运动,则下列说法正确的是( C )(A)质点的速度不变; (B)质点的加速度不变 (C)质点的角速度不变; (D)质点的法向加速度不变4.一运动质点在某瞬时位于矢径()y x r , 的端点处,其速度大小为( D )()()(()22⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛dt dy dt dx D C dtrd B dt drA5. 一质点在平面上运动,运动方程为:j t i t r222+=,则该质点作( B )(A)匀速直线运动 (B)匀加速直线运动(C)抛物线运动 (D)一般曲线运动6.一质点做曲线运动,r 表示位置矢量,v 表示速度,a表示加速度,s 表示路程,a t 表示切向加速度,对下列表达式,正确的是( B )(A)dt dr v = (B) dt ds v = (C) dtdv a = (D) dt vd a t=7. 某质点的运动方程为 3723+-=t t X (SI ),则该质点作 [ D ](A)匀加速直线运动,加速度沿 x 轴正方向; (B)匀加速直线运动,加速度沿 x 轴负方向; (C)变加速直线运动.加速度沿 x 轴正方向; (D)变加速直线运动,加速度沿 x 轴负方向8.一质点沿x 轴运动,其运动方程为()SI t t x 3235-=,当t=2s 时,该质点正在( A )(A)加速 (B)减速 (C)匀速 (D)静止1.D2. B3. C4.D5.B ,6B ,7A 8 A二 、填空题1. 一质点的运动方程为x =2t ,y =4t 2-6t ,写出质点的运动方程(位置矢量)j t t i t r)64(22-+=,t =1s 时的速度j i v22+=,加速度j a 8=,轨迹方程为x x y 32-=。
第一章质点运动学1、(习题:一质点在xOy 平面内运动,运动函数为2x =2t,y =4t 8-。
(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。
解:(1)由x=2t 得,y=4t 2-8 可得: y=x 2-8 即轨道曲线(2)质点的位置 : 22(48)r ti t j =+-r r r由d /d v r t =r r 则速度: 28v i tj =+r r r由d /d a v t =r r 则加速度: 8a j =r r则当t=1s 时,有 24,28,8r i j v i j a j =-=+=rr r rrrrr当t=2s 时,有 48,216,8r i j v i j a j =+=+=r r r r r rr r2、(习题): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速度为0v ,求运动方程)(t x x =.解:kv dtdv-= ⎰⎰-=t v v kdt dv v 001 t k e v v -=0t k e v dtdx-=0 dt e v dx t k tx-⎰⎰=000)1(0t k e kv x --=3、一质点沿x 轴运动,其加速度为a 4t (SI),已知t 0时,质点位于x 10 m处,初速度v0.试求其位置和时间的关系式.解: =a d v /d t 4=t d v 4=t d t ⎰⎰=vv 0d 4d tt t v 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020⎰⎰= x 2= t 3 /3+10 (SI)4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程;(3)落地前瞬时小球的d d r t v ,d d v t v,tvd d .解:(1) t v x 0= 式(1)2gt 21h y -= 式(2) 201()(h -)2r t v t i gt j =+v v v(2)联立式(1)、式(2)得 22v 2gx h y -=(3)0d -gt d rv i j t=v v v 而落地所用时间 gh2t =所以0d d r v i j t =v vd d v g j t=-v v 2202y 2x )gt (v v v v -+=+=2120212202)2(2])([gh v gh g gt v t g dt dv +=+= 5、 已知质点位矢随时间变化的函数形式为22r t i tj =+v vv,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
大学物理力学练习题及答案一、选择题(每题2分,共20分)1. 一个物体质量为2kg,受到的力是3N,该物体的加速度大小为多少?A. 0.3 m/s^2B. 1.5 m/s^2C. 6 m/s^2D. 1 N/kg答案:B2. 假设一个物体在重力作用下自由下落,那么它的重力势能和动能之间的关系是?A. 重力势能和动能相等B. 重力势能大于动能C. 重力势能小于动能D. 重力势能减少,动能增加答案:A3. 力的合成是指两个或多个力合并后的结果。
如果两个力大小相等并且方向相反,则它们的合力为A. 0B. 1C. 2D. 无法确定答案:A4. 在一个力的作用下,一个物体做匀速直线运动。
可以推断出物体的状态是A. 静止状态B. 匀速运动状态C. 加速运动状态D. 不能判断答案:B5. 牛顿运动定律中,质量的作用是用来描述物体对力的抵抗程度,质量越大,则物体对力的抵抗越小。
A. 对B. 错答案:B6. 一个物体以20 m/s的速度做匀速圆周运动,周长为40π m,物体的摩擦力大小为F,那么物体受到的拉力大小为多少?A. 0B. FC. 2FD. 4F答案:C7. 一个质量为1 kg的物体向左受到3 N的力,向右受到2 N的力,则该物体的加速度大小为多少?A. 1 m/s^2B. 2 m/s^2C. 3 m/s^2D. 5 m/s^2答案:A8. 弹力是一种常见的力,它的特点是随着物体变形而产生,并且与物体的形状无关。
A. 对B. 错答案:A9. 一个物体受到两个力,力的合力为2 N,其中一个力的大小为1 N,则另一个力的大小为多少?A. 1 NB. 0 NC. -1 ND. 无法确定答案:A10. 在竖直抛体运动过程中,物体的速度在上升过程中逐渐减小,直到达到峰值后开始增大。
A. 对B. 错答案:B二、计算题(每题10分,共40分)1. 一个物体以5 m/s的初速度被一个10 N的力加速,物体质量为2 kg,求物体在2秒后的速度。
1.如图所示,开始在状态A ,其压强为Pa100.25⨯,体积为33m 100.2-⨯,沿直线AB 变化到状态B 后,压强变为5100.1⨯Pa ,体积变为33m 100.3-⨯,求此过程中气体所作的功。
(150J )2.一定量的空气,吸收了1.71⨯103J 的热量,并保持在 1.0⨯105Pa 下膨胀,体积从1.0⨯10-2 m 3 增加到1.5⨯10-2 m 3,问空气对外作了多少功?它的内能改变了多少?(5.0×102J, 1.21×103J )3.一压强为1.0⨯105 Pa ,体积为1.0⨯10-3m 3的氧气自0 ℃加热到100 ℃。
问:(1)当压强不变时,需要多少热量?当体积不变时,需要多少热量?(2)在等压或等体过程中各作了多少功?解:根据题给初态条件得氧气的物质的量为mol1041.42111-⨯===RT V p M mn已知氧气的定压摩尔热容R C Pm 27=,定体摩尔热容R C Vm 25=(1)求Q p 、Q V等压过程氧气(系统)吸热()J8.129d 12m p,p =-=∆+=⎰T T nC E V p Q等体过程氧气(系统)吸热()J1.9312m V,V =-=∆=T T nC E Q(2)按分析中的两种方法求作功值①利用公式⎰=VV p W d )(求解。
在等压过程中,T R M mV p W d d d ==,则得⎰⎰===21J 6.36d d p T T T R M mW W而在等体过程中,因气体的体积不变,故作功为d )(p ==⎰V V p W②利用热力学第一定律WE Q +∆=求解。
氧气的内能变化为 ()J 1.9312m V,=-=∆T T C M mE由于在(1)中已求出Q p 与Q V ,则由热力学第一定律可得在等压、等体过程中所作的功分别为J7.36p p =∆-=E Q WV V =∆-=E Q W4.如图所示,系统从状态A 沿ABC 变化到状态C 的过程中,外界有326 J 的热量传递给系统,同时系统对外作功126 J 。
⼤学物理习题及解答(运动学、动量及能量)1-1.质点在Oxy 平⾯内运动,其运动⽅程为j t i t r )219(22-+=。
求:(1)质点的轨迹⽅程;(2)s .t 01=时的速度及切向和法向加速度。
1-2.⼀质点具有恒定加速度j i a 46+=,在0=t 时,其速度为零,位置⽮量i r 100=。
求:(1)在任意时刻的速度和位置⽮量;(2)质点在oxy 平⾯上的轨迹⽅程,并画出轨迹的⽰意图。
1-3. ⼀质点在半径为m .r 100=的圆周上运动,其⾓位置为342t +=θ。
(1)求在s .t 02=时质点的法向加速度和切向加速度。
(2)当切向加速度的⼤⼩恰等于总加速度⼤⼩的⼀半时,θ值为多少?(3)t 为多少时,法向加速度和切向加速度的值相等?题3解: (1)由于342t +=θ,则⾓速度212t dt d ==θω,在t = 2 s 时,法向加速度和切向加速度的数值分别为 222s 2t n s m 1030.2-=??==ωr a22s t t s m 80.4d d -=?==t r a ω(2)当2t 2n t 212a a a a +==时,有2n 2t 3a a=,即 22212)24(3)r t (tr = s 29.0s 321==t此时刻的⾓位置为 rad.t 153423=+=θ (3)要使t n a a =,则有2212)24()t (r tr =s .t 550=3-1如图所⽰,在⽔平地⾯上,有⼀横截⾯2m 20.0=S 的直⾓弯管,管中有流速为1s m 0.3-?=v 的⽔通过,求弯管所受⼒的⼤⼩和⽅向。
解:在t ?时间内,从管⼀端流⼊(或流出)⽔的质量为t vS m ?=?ρ,弯曲部分AB 的⽔的动量的增量则为()()A B A B v v t vS v v m p -?=-?=?ρ依据动量定理p I ?=,得到管壁对这部分⽔的平均冲⼒()A B v v I F -=?=Sv t ρ从⽽可得⽔流对管壁作⽤⼒的⼤⼩为N 105.2232?-=-=-='Sv F F ρ作⽤⼒的⽅向则沿直⾓平分线指向弯管外侧。
大学物理(一)复习题及解答一、选择题1.某质点的运动方程为)(6532SI t t x +-=,则该质点作( )。
A 、匀加速直线运动,加速度沿x 轴正方向;B 、匀加速直线运动,加速度沿x 轴负方向;C 、变加速直线运动,加速度沿x 轴正方向;D 、变加速直线运动,加速度沿x 轴负方向。
2.下列表述中正确的是( )。
A 、质点沿x 轴运动,若加速度0<a ,则质点必作减速运动;B 、在曲线运动中,质点的加速度必定不为零;C 、若质点的加速度为恒矢量,则其运动轨道必为直线;D 、当质点作抛体运动时,其法向加速度n a 、切向加速度t a 是不断变化的;因此, 22t n a a a +=也是不断变化的。
3.下列表述中正确的是:A 、质点作圆周运动时,加速度方向总是指向圆心;B 、质点作抛体运动时,由于加速度恒定,所以加速度的切向分量和法向分量也是恒定的;C 、质点作曲线运动时,加速度方向总是指向曲线凹的一侧;D 、质点作曲线运动时,速度的法向分量总是零,加速度的法向分量也应是零。
4.某物体的运动规律为t kv dtdv 2-=,式中的k 为大于零的常数;当t =0时,初速为0v ,则速度v 与时间t 的函数关系是( )。
A 、0221v kt v +=;B 、0221v kt v +-=;C 、02121v kt v +=;D 、02121v kt v -=。
5.质点在xoy 平面内作曲线运动,则质点速率的正确表达式为( )。
A 、dt dr v =;B 、dt r d v =;C 、dtds v =;D 、22)()(dt dy dt dx v += ;E 、dt r d v =。
6.质点作曲线运动,r表示位置矢量,s 表示路程,t a 表示切向加速度,下列表达式中,(1)a dt dv =;(2)v dt dr =;(3)v dtds =;(4)t a dt v d = |; A 、只有(1)、(4)是对的; B 、只有(2)、(4)是对的;C 、只有(2)是对的;D 、只有(3)是对的。
一、填空题 1、一质点沿y 轴作直线运动,速度j t v)43(+=,t =0时,00=y ,采用SI 单位制,则质点的运动方程为=ymt t 223+;加速度y a = 4m/s 2 。
2、一质点沿半径为R 的圆周运动,其运动方程为22t +=θ。
质点的速度大小为 2t R ,切向加速度大小为 2R 。
3、一个质量为10kg 的物体以4m/s 的速度落到砂地后经0.1s 停下来,则在这一过程中物体对砂地的平均作用力大小为 400N 。
4、在一带电量为Q 的导体空腔内部,有一带电量为-q 的带电导体,那么导体空腔的内表面所带电量为 +q ,导体空腔外表面所带电量为 Q -q 。
5、一质量为10kg 的物体,在t=0时,物体静止于原点,在作用力i x F)43(+=作用下,无摩擦地运动,则物体运动到3米处,在这段路程中力F所做的功为5J13mV 21W 2.=∆=。
6、带等量异号电荷的两个无限大平板之间的电场为0εσ,板外电场为 0 。
8、一长载流导线弯成如右图所示形状,则O 点处磁感应强度B的大小为RIR I 83400μπμ+,方向为⊗。
9、在均匀磁场B 中, 一个半径为R 的圆线圈,其匝数为N,通有电流I ,则其磁矩的大小为NIR m 2π=,它在磁场中受到的磁力矩的最大值为NIBR M 2π=。
10、一电子以v垂直射入磁感应强度B 的磁场中,则作用在该电子上的磁场力的大小为F = Bqv F 0=。
电子作圆周运动,回旋半径为qBmvR =。
11、判断填空题11图中,处于匀强磁场中载流导体所受的电磁力的方向;(a ) 向下 ;(b ) 向左 ;(c ) 向右 。
12、已知质点的运动学方程为j t i t r)1(2-+=。
试求:(1)当该质点速度的大小为15-⋅s m 时,位置矢量=r i 1;(2)任意时刻切向加速度的大小τa =1442+t t 。
16、有一球状导体A ,已知其带电量为Q 。
1. 有一弹簧,当其下端挂一质量为m 的物体时,伸长量为9.8 ⨯ 10-2 m 。
若使物体上下振动,且规定向下为正方向。
(1)t =0时,物体在平衡位置上方8.0 ⨯ 10-2 m处,由静止开始向下运动,求运动方程。
(2)t = 0时,物体在平衡位置并以0.60 m/s 的速度向上运动,求运动方程。
题1分析:求运动方程,也就是要确定振动的三个特征物理量A 、ω,和ϕ。
其中振动的角频率是由弹簧振子系统的固有性质(振子质量m 及弹簧劲度系数k )决定的,即m k /=ω,k 可根据物体受力平衡时弹簧的伸长来计算;振幅A 和初相ϕ需要根据初始条件确定。
解:物体受力平衡时,弹性力F 与重力P 的大小相等,即F = mg 。
而此时弹簧的伸长量m l 2108.9-⨯=∆。
则弹簧的劲度系数l mg l F k ∆=∆=//。
系统作简谐运动的角频率为1s 10//-=∆==l g m k ω(1)设系统平衡时,物体所在处为坐标原点,向下为x 轴正向。
由初始条件t = 0时,m x 210100.8-⨯=,010=v 可得振幅m 100.8)/(2210102-⨯=+=ωv x A ;应用旋转矢量法可确定初相πϕ=1。
则运动方程为])s 10cos[()m 100.8(121π+⨯=--t x(2)t = 0时,020=x ,120s m 6.0-⋅=v ,同理可得m 100.6)/(22202022-⨯=+=ωv x A ,2/2πϕ=;则运动方程为]5.0)s 10cos[()m 100.6(122π+⨯=--t x2.某振动质点的x -t 曲线如图所示,试求:(1)运动方程;(2)点P 对应的相位;(3)到达点P 相应位置所需要的时间。
题2分析:由已知运动方程画振动曲线和由振动曲线求运动方程是振动中常见的两类问题。
本题就是要通过x -t 图线确定振动的三个特征量量A 、ω,和0ϕ,从而写出运动方程。
1.一半径为R 的半圆细环上均匀分布电荷Q ,求环心处的电场强度。
2.两条无限长平行直导线相距为r 0,均匀带有等量异号电荷,电荷线密度为λ。
(1)求两导线构成的平面上任一点的电场强度(设该点到其中一线的垂直距离为x );(2)求每一根导线上单位长度导线受到另一根导线上电荷作用的电场力。
3.地球周围的大气犹如一部大电机,由于雷雨云和大气气流的作用,在晴天区域,大气电离层总是带有大量的正电荷,云层下地球表面必然带有负电荷。
晴天大气电场平均电场强度约为120 V ⋅m -1,方向指向地面。
试求地球表面单位面积所带的电荷。
(-1.06×10-9c/m 2)4.一无限大均匀带电薄平板,电荷面密度为σ,在平板中部有一半径为r 的小圆孔。
求圆孔中心轴线上与平板相距为x 的一点P 的电场强度。
(2202r x x+εσ)5.一无限长、半径为R 的圆柱体上电荷均匀分布。
圆柱体单位长度的电荷为λ,用高斯定理求圆柱体内距轴线距离为r 处的电场强度。
6.两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1和R 2 (R 2 > R 1),单位长度上的电荷为λ。
求离轴线为r 处的电场强度:(1)r < R 1,(2)R 1 < r < R 2,(3)r > R 27.如图所示,有三个点电荷Q 1、Q 2、Q 3沿一条直线等间距分布,已知其中任一点电荷所受合力均为零,且Q 1 =Q 3=Q 。
求在固定Q 1、Q 3的情况下,将Q 2从点O 移到无穷远处外力所作的功。
解: :由题意Q 1所受的合力为零0244031021=+)d (Q Q d Q Q πεπε 解得Q Q Q 414132-=-= 在任一点电荷所受合力均为零时Q Q 412-=。
并由电势的叠加得Q 1、Q 3在点O 电势 d Qd Q d Q V o 00301244πεπεπε=+=将Q 2从点O 推到无穷远处的过程中,外力作功 d QV Q W o 0228πε=-=8.已知均匀带电长直线附近的电场强度近似为002r rE πελ= λ为电荷线密度。
选择题_03图示单元四 刚体基本运动 转动动能 1一 选择题01. 一刚体以每分钟60转绕z 轴做匀速转动(ω沿转轴正方向)。
设某时刻刚体上点P 的位置矢量为345r i j k =++,单位210m -,以210/m s -为速度单位,则该时刻P 点的速度为: 【 B 】(A) 94.2125.6157.0v i j k =++;(B) 25.118.8v i j =-+;(C) 25.118.8v i j =--;(D) 31.4v k =。
02. 轮圈半径为R ,其质量M 均匀布在轮缘上,长为R ,质量为m 的均质辐条固定在轮心和轮缘间,辐条共有2N 根。
今若将辐条数减少N 根但保持轮对通过轮心,垂直于轮平面轴的转动惯量保持不变,则轮圈的质量为 【 D 】(A)12N m M +; (B) 6N m M +; (C) 23N m M +; (D) 3Nm M +。
03. 如图所示,一质量为m 的均质杆长为l ,绕铅直轴OO '成θ角转动,其转动惯量为 【 C 】(A)2112ml ;(B) 221sin 4ml θ;(C) 221sin 3ml θ; (D) 213ml 。
04. 关于刚体对轴的转动惯量,下列说法中正确的是 【 C 】 (A) 只取决于刚体的质量,与质量的空间分布和轴的位置无关; (B) 取决于刚体的质量和质量的空间分布,与轴的位置无关; (C) 取决于刚体的质量、质量的空间分布和轴的位置;(D) 只取决于转轴的位置,与刚体的质量和质量的空间分布无关。
05. 两个匀质圆盘A 和B 的密度分别为A ρ和B ρ,若A B ρρ>,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为A J 和B J ,则 【 B 】(A) A B J J >; (B) B A J J >;(C) A B J J =; (D) A J 和B J 哪个大,不能确定。