2016年线性代数期中考试试卷
- 格式:doc
- 大小:1.22 MB
- 文档页数:9
西交16年《线性代数》作业考核试题一、单选题(共 30 道试题,共 60 分。
)1.A.B.C.[正确]D.满分:2 分2.A.B.[正确]C.D.满分:2 分3.[正确]A.B.C.D.满分:2 分4.A.B.[正确]C.D.满分:2 分5.A.B.[正确]C.D.满分:2 分6.A.B.C.[正确]D.满分:2 分7.A.B.[正确]C.D.满分:2 分8.[正确]A.B.C.D.满分:2 分9.A.B.[正确]C.D.满分:2 分10.[正确]A.B.C.D.满分:2 分11.[正确]A.B.C.D.满分:2 分12.A.B.[正确]C.D.满分:2 分13.A.[正确]B.C.D.满分:2 分14.A.B.C.[正确]D.满分:2 分15.A.[正确]B.C.D.满分:2 分16.[正确]A.B.C.D.满分:2 分17.[正确]A.B.C.D.满分:2 分18.A.B.[正确]C.D.满分:2 分19.A.B.[正确]C.D.满分:2 分20.A.B.[正确]C.D.满分:2 分21.A.B.C.[正确]D.满分:2 分22.A.[正确]B.C.D.满分:2 分23.A.B.[正确]C.D.满分:2 分24.[正确]A.B.C.D.满分:2 分A.[正确]B.C.D.满分:2 分26.A.[正确]B.C.D.满分:2 分27.A.[正确]B.C.D.满分:2 分A.B.C.[正确]D.满分:2 分29.[正确]A.B.C.D.满分:2 分30.[正确]A.B.C.D.满分:2 分二、判断题(共 20 道试题,共 40 分。
)1.A. 错误[正确]B. 正确满分:2 分2.A. 错误[正确]B. 正确满分:2 分3.A. 错误[正确]B. 正确满分:2 分4.A. 错误[正确]B. 正确满分:2 分5.A. 错误[正确]B. 正确满分:2 分6.[正确]A. 错误B. 正确满分:2 分7.A. 错误[正确]B. 正确满分:2 分8.[正确]A. 错误B. 正确满分:2 分9.[正确]A. 错误B. 正确满分:2 分10.A. 错误[正确]B. 正确满分:2 分11.A. 错误[正确]B. 正确满分:2 分12.A. 错误[正确]B. 正确满分:2 分13.[正确]A. 错误B. 正确满分:2 分14.[正确]A. 错误B. 正确满分:2 分15.[正确]A. 错误B. 正确满分:2 分16.A. 错误[正确]B. 正确满分:2 分17.A. 错误[正确]B. 正确满分:2 分18.[正确]A. 错误B. 正确满分:2 分19.A. 错误[正确]B. 正确满分:2 分20.A. 错误[正确]B. 正确满分:2 分。
线性代数期中考试试题+答案.⼀、填空题(共30分,每填对⼀空得3分)1、函数23u xy z =在点(1,1,1)P 处沿⽅向(1,2,3)有最⼤⽅向导数,最⼤⽅向导数等于.2、设arctan x y z x y -=+,则 z x ?=?22y x y+, 22z x ?=?()2222xyx y -+..3、函数(,)z z x y =由⽅程230zx y z e ++-=确定;则 z x ?=?21z x e -, z y ?=?231z y e -.4、微分⽅程d 2d y xy x=的通解为2x y ce =;0d ()d yx y x xx -=>的通解为 ln y x x cx =+..5、设函数(,)f x y 连续,(,)(,)d d Df x y xy f u v u v =+??,其中D 由直线0y =,1x =和y x =所围,则(,)d d Df u v u v =??14,(,)f x y =14xy +.⼆、单项选择题(共20分,每题4分)=+,则点=的全微分d d dz f x yO(D) .(0,0)(A) 不是(,)f x y的连续点;(B) 不是(,)f x y的极值点;(C) 是(,)f x y的极⼤值点;(D) 是(,)f x y的极⼩值点...2、设函数(,)f x y =,则 (B) .(A) (0,0)x f '存在,(0,0)y f '不存在; (B) (0,0)x f '不存在,(0,0)y f '存在; (C) (0,0)x f '和(0,0)y f '都存在; (D) (0,0)x f '和(0,0)y f '都不存在..3、设积分域D :221x y +≤,221sin()d d DI x y x y =+??,332sin()d d DI x y x y =+??,443sin()d d DI x y x y =+??,则 (B) . (A) 123I I I >>; (B) 132I I I >>; (C) 213I I I >>; (D) 231I I I >>..4、设函数()f u 连续,D ={}22(,)2x y x y y +≤,则()d d D.(A)11d ()d x f xy y -??; (B) 2002d ()d y f xy x ??;(C) 2sin 20d (sin cos )d f r r πθθθθ??; (D)2sin 2d (sin cos )d r f r r πθθθθ??..5、函数(,)f x y 在点(0,0)O 处可微的⼀个充分条件是 (D) . (A) (,)(0,0)lim(,)(0,0)x y f x y f →=;(B) 0(,0)(0,0)lim 0x f x f x →-=, 0(0,)(0,0)lim 0y f y f y→-=;(C) 0lim (,0)(0,0)x x x f x f →''= 且 0lim (0,)(0,0)y y y f y f →''=;(D) (,)(0,0)(,)(0,0)0x y f x y f →-=..三、(10分)求微分⽅程 2(34)xy y x e ''-=+ 通解.解特征⽅程 210λ-=,特征根 121,1λλ=-=;------2分对应的齐次⽅程的通解 12x xy c e c e -=+ -----5分设原⽅程的特解* 2()xy ax b e =+并代⼊原⽅程,解得: *2xy xe = -----9分原⽅程的通解: 212xxxy c e c e xe -=++ -----10分四、(10分)求曲线L:2226x y zx y z++=++=在点(1,2,1)P-处的切线和法平⾯⽅程.解对x求导,得2220 10x yy zzy z''++=?''在点(1,2,1)P-处,211y zy z''-+=-''+=-,得0y'=,1z'=-------6分切线⽅程:121101x y z-+-==------8分法平⾯⽅程:0x z-=-----10分..五、(10分)计算⼆重积分 2(3)d d DI x y x y =+??,其中D :221x y +≤.22(96)d d (9)d d DDI x y xy x y x y x y =++=+(奇偶性+对称性)-------2分2222221(9)(9)d d 5()d d 2D Dx y x y x y x y x y ??=+++=+ (轮换对称性) -------4分213055d d 2r r πθπ==?------10分.六、(10分)在曲⾯S :22221x y z ++=上求距离平⾯26x y z +-=的最近点、最远点.解点(,,)x y z 到平⾯的距离26x y z +--,---2分设 2222(,,,)(26)(21)L x y z x y z x y z λλ=+--+++-------2分.令 2224(26)402(26)202(26)20210xyz L x y z x L x y z y L x y z z L x y z λλλλ'=+--+=??'=+--+=??'=-+--+=??'=++-=? ------6分解得最近点1111(,,)222P -,最远点2111(,,)222P -- -----10分.六、(10分)在曲⾯S :22221x y z ++=上求距离平⾯∏:26x y z +-=的最近点、最远点.解令 0000(,,)P x y z S ∈, 椭球⾯S 过0P 切平⾯⽅程1000:2 1.x x y y z z ∏++=令12//∏∏,有:0002211x y z ==-, (1)⼜: 22221x y z ++=, (2)解得最近点1111(,,)222P -,最远点2111(,,)222P --.定理设0000(,,)P x y z S ∈,⽽S 为实⼆次曲⾯22222 2 A x B xy C x z Dy E y z F z +++++2 2 20,G x H y I z J ++++=若 Ax 0 + By 0 + Cz 0 + G,Bx 0 + Dy 0 + Ez 0 + H, Cx 0 + Ey 0 + Fz 0 + I ,不全为零, P 0 称为S 的寻常点. 则⼆次曲⾯S 在0000(,,)P x y z 处的切平⾯⽅程为:()()()00000000 A x x B x y xy C x z x z Dy y E y z y z +++++++()()()0000 0.F z z G x x H y y I z z J ++++++++=.七、(10分)设函数()f u 在(0,)+∞内⼆阶连续可微,(1)0f =,(1)1f '=,且z f =满⾜22220z zx y+=,求()f u .解u =,则()z xf u x u'=,222232()()z y x f u f u x u u ?'''=+?; ()z y f u y u'=,222232()()z x y f u f u y u u ?'''=+?. --4分.代⼊原⽅程并化简,得 1()()0f u f u u'''+=,即()()(())0u f u f u u f u '''''+==, ------5分从⽽ 1()u f u c '=。
线性代数期终考试卷一、 试卷一1)填空题(每小题4分,共20分)(1)设A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡300220111,则A T A= (2)在分块矩阵A=⎥⎦⎤⎢⎣⎡O C B O 中,已知1-B 、1-C 存在,则=-1A(3)设A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡963042321,B 为三阶非零矩阵,满足AB=O ,则r(B)= (4)若⎥⎦⎤⎢⎣⎡3152X=⎥⎦⎤⎢⎣⎡-1264,则X= (5)三次代数方程321842184211111x x x--=0的根是2)选择题(每小题3分,共15分)(1)设A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡333231332221131211a a a a a a a a a ,B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++133312321131131211232221a a a a a a a a a a a a P 1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001010,P 2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101010001,则必有( ) (A)AP 1P 2=B (B)AP 2P 1=B(C)P 1P 2A=B (D)P 2P 1A=B(2)设A 是三阶矩阵,A*是其转置伴随矩阵,又k 为常数k ≠0,1±,则(kA)*=( ) (A)kA* (B)k 2A* (C)k 3A* (D)31A* (3)若r(A)=r<n,则n 元线性代数方程Ax=b ( ) (A ) 又无穷多个解 (B)有唯一解 (C)无解 (D)不一定有解(4)下列说法中正确的是( )(A )对向量组kαα,,1Λ,若有全不为零的数k c c ,,1Λ使011=++k k c c ααΛ,则k αα,,1Λ线性无关(B) 若有全不为零的数k c c ,,1Λ使011≠++k k c c ααΛ,则kαα,,1Λ线性无关(C)若向量组kαα,,1Λ线性相关,則其中每个向量皆可由其余向量线性表示 (D)任何n+2个n 维向量必线性相关(5)矩阵A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100的特征值是( ) (A)1,1,0 (B)-1,1,1 (C)1,1,1 (D) 1,-1,-13)(每小题6分,共12分)(1)计算行列式D= ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+-+y y x x1111111111111111 (2)已知q 1=T⎥⎦⎤⎢⎣⎡313131,q 2=T⎥⎦⎤⎢⎣⎡-21021,求q 3,使Q=[]321q q q为正交阵。
2009年10月全国自考线性代数历年真题一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.A.-3B.-2C. 2D. 3答案:D2.下列矩阵中不是初等矩阵的为()A. AB. BC. CD. D答案:C3.A. AB. BC. CD. D答案:A 4.A. AB. BC. CD. D 答案:A5.A. AB. BC. CD. D 答案:C6.A. AB. BC. CD. D答案:B7.A. AB. BC. CD. D答案:C8.A. AB. BC. CD. D答案:D9.A. AB. BC. CD. D答案:D10.A. 1B. 2C. 3D. 4答案:B二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
错填、不填均无分。
1. 图中空白处应为:___答案:-12. 图中空白处应为:___答案:3.图中空白处应为:___答案:4.图中空白处应为:___答案:5.图中空白处应为:___答案:26.图中空白处应为:___答案:17.图中空白处应为:___答案:-18.图中空白处应为:___答案:-19.图中空白处应为:___答案:2410.图中空白处应为:___答案:-3<a<1三、计算题(本大题共6小题,每小题9分,共54分)1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:四、证明题(本题6分)1.答案:以下是附加文档,不需要的朋友下载后删除,谢谢顶岗实习总结专题13篇第一篇:顶岗实习总结为了进一步巩固理论知识,将理论与实践有机地结合起来,按照学校的计划要求,本人进行了为期个月的顶岗实习。
这个月里的时间里,经过我个人的实践和努力学习,在同事们的指导和帮助下,对村的概况和村委会有了一定的了解,对村村委会的日常工作及内部制度有了初步的认识,同时,在与其他工作人员交谈过程中学到了许多难能可贵经验和知识。
线性代数期中考试试卷H班级 学号 姓名 成绩 一、填空题(每小题3分共15分)1.已知4阶行列式D 中的第3行元素为3,3,1,1--,其对应的余子式的值为1,2,5,4,则行列式D = 。
2.211203101311112x x ----的展开式中2x 的系数为 。
3.已知,A B 均为n 阶方阵且B O ≠,若AB O =,则||A = 。
4.设123A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,()321B =,k 是正整数,若P AB =,则k P = 。
5.设A 是n 阶方阵,且||2A =,则1*|4|A A --= 。
二、选择题(每小题3分共15分)1.0001002003004000=( )。
A .24-; B .24; C .0; D .12。
2.设,A B 为同阶方阵,且AB O =,则( )。
A .A O =;B .B O =;C .||,||A B 中至少有一个为0;D .,A B 中至少有一个为O 。
3.设111213212223313233a a a A a a a a a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭,212223111213311132123313a a a B a a a a a a a a a ⎛⎫ ⎪= ⎪ ⎪+++⎝⎭,1010100001P ⎛⎫⎪= ⎪⎪⎝⎭,2100010101P ⎛⎫ ⎪= ⎪ ⎪⎝⎭则( )。
A .12APPB =; B .21AP P B =;C .12PP A B =;D .21P PA B =。
4.设D 为n 行列式,则D ( )写成n 个n 阶行列式之和。
A .一定能;B .不一定能;C .不能;D .只能。
5.设111212122212n n n n nn a a a a a a A a a a ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭。
111212122212n n n n nn A A A A A A B A A A ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,其中ij A 是||A 中元素ij a 的代数余子式(,1,2,,)i j n =,若||1A =,则下列等式不成立的是( )。
线性代数期中测验一、 选择题1.设行列式==1111034222,1111304zy x zy x 则行列式( ) A.32 B.1C.2D.38 2.已知2阶行列式2211b a b a =m ,2211c b c b =n ,则222111c a b c a b ++=( )A.m-nB.n-mC.m+nD.-(m+n )3.设3阶方阵A 的行列式为2,则12A -=( ) A.-1 B.14-C.14D.1 4.设A 为3阶方阵,B 为4阶方阵,且行列式|A |=1,|B |=-2,则行列式||B |A |之值为( )A.-8B.-2C.2D.85.已知A=⎪⎪⎪⎭⎫ ⎝⎛333231232221131211a a a a a a a a a ,B =⎪⎪⎪⎭⎫ ⎝⎛333231232221131211333a a a a a a a a a ,P =⎪⎪⎪⎪⎭⎫ ⎝⎛100030001,Q =⎪⎪⎪⎪⎭⎫ ⎝⎛100013001,则B =( ) A.P A B.AP C.QA D.AQ6.已知A 是一个3×4矩阵,下列命题中正确的是( )A.若矩阵A 中所有3阶子式都为0,则秩(A )=2B.若A 中存在2阶子式不为0,则秩(A )=2C.若秩(A )=2,则A 中所有3阶子式都为0D.若秩(A )=2,则A 中所有2阶子式都不为07.设A =⎥⎦⎤⎢⎣⎡4321,则|2A *|=( )A.-8 B.-4C.4 D.8 8.设3阶方阵A=[α1,α2,α3],其中αi (i=1,2,3)为A 的列向量,若|B |=|[α1+2α2,α2,α3]|=6,则|A |=( )A.-12 B.-6 C.6 D.129.设α1,α2,α3,α4都是3维向量,则必有A. α1,α2,α3,α4线性无关B. α1,α2,α3,α4线性相关C. α1可由α2,α3,α4线性表示D. α1不可由α2,α3,α4线性表示10.若A 为6阶方阵,齐次线性方程组Ax =0的基础解系中解向量的个数为2,则R (A )=( )A .2 B. 3 C .4 D .511.设向量组α1=(1,2), α2=(0,2),β=(4,2),则 ( )A. α1, α2,β线性无关B. β不能由α1, α2线性表示C. β可由α1, α2线性表示,但表示法不惟一D. β可由α1, α2线性表示,且表示法惟一12.设A 为3阶实对称矩阵,A 的全部特征值为0,1,1,则齐次线性方程组(E-A)x=0的基础解系所含解向量的个数为( )A.0B.1C.2D.313.设α1,α2,α3,α4,α5是四维向量,则( )A .αl ,α2,α3,α4,α5一定线性无关B .αl ,α2,α3,α4,α5一定线性相关C .α5一定可以由α1,α2,α3,α4线性表出D .α1一定可以由α2,α3,α4,α5线性表出二、 填空题1.设行列式304222,532D =-其第3行各元素的代数余子式之和为__________.2.设方程组123123123000x x x x x x x x x λλλ++=⎧⎪++=⎨⎪++=⎩有非零解,且数0,λ<则λ=__________.3.行列式111123149=___________.4.设A =⎪⎪⎭⎫ ⎝⎛1101,k 为正整数,则A k = . 5.设2阶可逆矩阵A 的逆矩阵A -1=⎪⎪⎭⎫ ⎝⎛4321,则矩阵A =__________. 6.设同阶方阵A ,B 的行列式分别为-3,5,则det (AB )=_________.7.三元方程x 1+x 2+x 3=0的结构解是________.8.齐次线性方程组⎩⎨⎧=+-=++0320321321x x x x x x 的基础解系所含解向量的个数为________________. 9.设A 为n 阶矩阵,B 为n 阶非零矩阵,若B 的每一个列向量都是齐次线性方程组Ax =0的解,则|A |=__________________.10.已知向量组α1,=(1,2,3),α2=(3,-1,2), α3=(2,3,k)线性相关,则数k=_________.三、 解答题1.求行列式D=.0120101221010210的值2.计算行列式D =333222c c b b a a c b a cb a +++的值。
一、填空题(每小题5分,共30分)1、三阶方阵A=1230 0 0 0 0 0λλλ⎛⎫ ⎪⎪ ⎪⎝⎭(其中1230 λλλ≠)的逆矩阵A -1 = 。
2、已知A= 3 5 01-1 -2 02 0 0 2⎛⎫ ⎪ ⎪ ⎪⎝⎭,A*是矩阵A 的伴随矩阵,则 (A*)-1 = 。
3、n 阶方阵A ,B 满足A+B=AB ,则B-E 可逆且(B-E )-1 = 。
4、A 为三阶方阵, 1A =,则 1*(2) A A -- =________ 。
5、A 为n 阶可逆方阵,将A 的第i 行和第j 行对调得到矩阵B ,则 AB -1 = 。
6、111213212223313233a a a A a a a a a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭,121111132221212332313133 a a a a B a a a a a a a a +⎛⎫ ⎪=+ ⎪ ⎪+⎝⎭,10 1 01 0 00 0 1P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,2 1 0 10 1 00 0 1P ⎛⎫⎪= ⎪ ⎪⎝⎭,则B = 。
(用12,,A P P 表示B )答案:1、⎪⎪⎪⎭⎫ ⎝⎛0 0 /10 1/ 0 1/ 0 0 123λλλ 2、⎪⎪⎪⎭⎫⎝⎛-2 0 0 0 2- 1-0 5 3 2 3、A-E 4、-1/8 5、E n (i,j ) 6、A P 2P 1二、(30分)1、计算行列式123410123110125D =--- (10分)解:7014101231107-25D =---327 1 4 (1)(1) 1 1 2 7 -2 -5+=-- 6 0 21 1 2 9 0 -1=226 2(1)-249 -1+=-=2、计算行列式D n = a a a b a a b aa b a a b a a a----(a ≠-b ) (10分)解:将第2、3、…、n 列同时加到第一列,并提取公因子,得n 1 a a b 1 a b aD [(n 1)a b] .................................1 b a a 1 a a a--=---0 0 0 -b-a 0 0 -b-a 0[(n 1)a b] .................................0 -b-a 0 0 1 a a a=--n(n 1)n 1n 12(1)(1)(b a)[(n 1)a b]---=--+--(n 1)(n 2)n 12(1)(a b)[(n 1)a b]-+-=-+--3、求下列矩阵的逆矩阵(10分)11000130000020********001A ⎛⎫⎪- ⎪⎪=- ⎪⎪ ⎪⎝⎭答案: 341400014140000012000001200001-⎛⎫⎪⎪ ⎪-⎪- ⎪ ⎪⎝⎭三、(40分)1. 已知011111010A ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,112113B -⎛⎫⎪= ⎪ ⎪⎝⎭,且满足AX +B =X ,用初等变换法求X (10分) 解:由AX +B =X 知 B =X -AX =(E -A )X()100011111010111101001010011E A --⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-=--=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭且10E A -=≠所以E -A 可逆,由此得1()XE A B -=-()111111012101113E A B ---⎛⎫ ⎪-=- ⎪⎪⎝⎭010121012101113---⎛⎫⎪−−→-⎪⎪⎝⎭ 010121002200101---⎛⎫ ⎪−−→⎪ ⎪⎝⎭ 100220101200101⎛⎫ ⎪−−→ ⎪⎪⎝⎭2、已知矩阵A =0 1 01 2 00 0 -1⎛⎫ ⎪ ⎪ ⎪⎝⎭,A *是矩阵A 的伴随矩阵,若矩阵B 满足(B-E )-1 =A *-E , 求矩阵B 。
2016年4月全国自考公共课线性代数(经管类)真题试卷(题后含答案及解析)题型有:1. 单项选择题 2. 填空题 3. 计算题 4. 证明题单项选择题在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.多项式f(x)=的常数项是( )A.一14B.一7C.7D.14正确答案:D解析:将多项式f(x)的行列式按第一行展开得到f(x)=(一1)(1+1)x.(2×4—3×5)+(一1)(1+2)(一1).[2×4—3×(一2)]=一7x+14.答案为D.2.设A为n阶矩阵,如果A=E,则|A|= ( )A.B.C.D.2正确答案:A解析:由于A=.答案为A。
3.设A为3阶矩阵,且|A|=a≠0,将A按列分块为A=(α1,α2,α3),若矩阵B=(α1—α2,2α2,α3),则|B|= ( )A.0B.aC.2aD.3a正确答案:C解析:由行列式性质可知,|B|=1(α1,2α2,α3)|+|(α2,2α2,α3)|=2|(α1,α2,α3)|=2|A|=2a.答案为C。
4.若向量组α1,α2,…,αs可由向量组β1,β2,…,βs线性表出,则必有( )A.s≤tB.s>tC.秩(α1,α2,…,αs)≤秩(β1,β2,…,βt)D.秩(α1,α2,…,αs)>秩(β1,β2,…,βt)正确答案:C解析:n维向量组R={α1,α2,…,αr}和S={β1,β2,…,βs},若S 可由R线性表出,则有r(s)≤r(R).答案为C。
5.与矩阵A=合同的矩阵是( )A.B.C.D.正确答案:C解析:对于实对称矩阵A,必有A=P-1AP,P为正交矩阵,PT=P-1.即,特征方程|λE—A|=(λ一1)2(λ+1),λ1=1,λ2=λ3=一1.答案为C。
填空题请在每小题的空格中填上正确答案。
错填、不填均无分。
6.行列式=__________.正确答案:0解析:行列式由第一行展开得:0×(一1)2.[0×0一a.(一a)]+(—c)(一1)3.[c ×0一(—a).b]+(—b)(一1)4.(a.c一0.b)=0.7.若行列式=__________ .正确答案:一1解析:8.设矩阵A=,则ABT=__________.正确答案:解析:ABT=.9.设矩阵,则(A—E)-1=__________.正确答案:解析:令B=A—E=.10.设矩阵A=,则A*=__________.正确答案:解析:A*=,A11=0,A12=(一1)3.3=一3,A21=(一1)3×2=一2,A22=0,A*=11.若向量β=(一1,1,k)可由向量α1=(1,0,一1),α2=(1,一2,一1)线性表示,则数k=__________.正确答案:1解析:可设β=k1α1+k2α2,即12.齐次线性方程组的基础解系中解向量的个数为________.正确答案:2解析:A=,r(A)=2,n=4,基础解系向量个数为n—r=2.13.设A为3阶矩阵,αi为3维非零列向量,且满足Aαi=iαi(i=1,2,3),则r(A)= __________.正确答案:3解析:Aα=iαi(i=1,2,3),则A有3个不同特征值,r(A)=3.14.设λ0=一2是n阶矩阵A的一个特征值,则A2+E的一个特征值是__________.正确答案:5解析:Aα=一2α,左乘A得A2α=一2Aα=4α,(A2+E)α=5α,A2+E 的一个特征值为5.15.二次型f(x1,x2,x3)=x12—2x1x3+x2x3的矩阵为__________.正确答案:解析:f(x1,x2,x3)=xTAx,A=(aij)3×3,f(x1,x2,x3)=aijxixj,由f(x1,x2,x3)=x12—x1x3—x2x3的各项系数可得出A=.计算题16.计算行列式D=正确答案:D=a2=(a2b2一c2d2)(a1b1一c1d1).17.设矩阵A,B,C满足关系式AC=CB,其中B=,求矩阵A与AT。
2016年线性代数期中考试试卷
A 卷 考试日期: 2016.5 第 2 页 共 9 页 考试时间120分钟
中国民航大学《线性代数》期中试题A 卷 一、填空、选择题(每题3分,共24分) 1、 设自然数从小到大为标准次序,则排列32514的逆序数是_______________ 2、矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--452301143的伴随阵=*A _______________ 3、矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-174532321的秩为_______________ 4、若44535231a a a a a j i 是5阶行列式中带正号的一项,则i,j 的值为( ) A 、i=1,j=3 B 、i=2,j=3 C 、i=1,j=2 D 、i=2,j=1
第 3 页共 9 页考试时间120分钟
第 4 页 共 9 页 考试时间120分钟
求444342414226A A A A +-+
3、设A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--111111111,B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--150421321,求AB 3及B A T
4,求方阵A =⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡---011145223的逆矩阵。
第 5 页 共 9 页 考试时间120分钟
三、(8分)计算n 阶行列式
x
a a a x a
a a x D n
.
第 6 页 共 9 页 考试时间120分钟
四、(8分)设100,,421,312A ab A b a T 求=⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=
五、(10分)设 .,82),1,2,1(B E BA BA A diag A 求矩阵-=-=*
第 7 页 共 9 页 考试时间120分钟
六、(10分)解线性方程组 ⎪⎪⎩⎪⎪⎨⎧=+++=-++=++=+-+1142722629342432143213214321x x x x x x x x x x x x x x x
第 8 页 共 9 页 考试时间120分钟
七、(8分)证明线性方程组⎪⎪⎩⎪⎪⎨⎧=-=-=-=-4
14343
232121b x x b x x b x x b x x 有解的充要条件是 .
04321=+++b b b b
八、(8分)设阶
n矩阵A满足阶单位阵,
为n
E
E
A,
()().n
+
+
证明:
-
A
E
R
E
R=
A
第 9 页共 9 页考试时间120分钟。