2021版八年级数学下册 第六章 平行四边形 6.2 平行四边形的判定(3)学案(全国通用版)人教版
- 格式:doc
- 大小:282.00 KB
- 文档页数:5
人教版八下18.1.2平行四边形判定(第3课时)教学设计教学流程图地位与作用本节内容是在学习平行四边形性质与判定后进行的,是平行四边形性质的应用.在研究平行四边形性质时,我们借助三角形的有关知识进行研究,在学习了平行四边形后,也可以利用平行四边形来研究三角形,体现了辩证与联系的思想.三角形中位线定理是三角形中重要的定理,它揭示了连结三角形任意两边中点所得的线段与第三边的位置关系和倍分关系,与相似等内容有着密切的联系,在图形证明和计算中具有广泛的应用.概念解析三角形的中位线平行于第三边并且等于等三边的一半,在同一个题设下,有两个结论,一个结论表明位置关系,另一个结论表明数量关系,两者在这里得到完美呈现.应用这个定理时,不一定同时用到两个结论,有时用到平行关系,有时用到倍分关系,根据具体情况,灵活使用.思想方法三角形的中位线定理的探索和证明,可以完整地体现“合情推理,提出猜想——演绎推理,证明猜想”的几何探究过程,引导学生经历这样的过程,有利于他们体会两种推理功能不同、相辅相成;三角形中位线定理的发现和证明过程体现了归纳、类比、转化等思想方法,核心是通过构造平行四边形,把三角形的问题转化为平行四边形问题.知识类型三角形中位线定理属于原理与规则类知识,需要学生在经历探索、猜想、证明的过程中理解新知识,在联系与应用中将知识转化为能力.教学重点基于以上分析,本课的教学重点是:探索并证明三角形的中位线定理.教学目标解析教学目标1.通过作图、猜想、验证等得出三角形的中位线定理,并能给出证明.2.会利用三角形的中位线定理解决有关问题.目标解析达成目标1的标志是:理解三角形中位线的概念,明确三角形中位线与中线的区别;能通过作图测量等手段猜想三角形中位线与第三边的数量关系与位置关系;能抓住中点这个关键信息,利用对角线互相平分构造平行四边形进行定理的证明.达成目标2的标志是:明确三角形中位线定理的条件与结论;对于题目中存在两个中点的问题能自动联想中位线定理是否可用;在只有一个中点的情况下,根据题目信息(包括结论信息)添加辅助线;能在复杂图形中能敏捷感知中位线并灵活运用三角形中位线定理解决问题.教学问题诊断分析具备的基础学生已经掌握了三角形全等、平行线、平行四边形的性质和判定等知识,在前面的学习中积累了较丰富的几何猜想与论证的经验,并且具备一定的分析思维能力.与本课目标的差距分析八年级学生知识的迁移能力有限,数学思想方法的运用也不够灵活,三角形的中位线定理既要证明线段的位置关系,又要证明线段的倍分关系,对于几何逻辑思维尚不成熟的八年级学生来讲,难度较大.存在的问题三角形的中位线定理的证明的突破口在于添加辅助线,学生在前面的学习中,添加辅助线的练习相对较少,因此,如何适当添加辅助线、是学生的困难所在.应对策略教学中,教师让学生通过观察和动手测量,作出初步猜想,再引导学生去证明猜想,重点分析辅助线是如何想到的.通过问题串的策略让学生意识到所证明的结论既有平行关系,又有数量关系,结合结论与条件的中点信息,联想已学过的知识,在追问与交流中发现构造平行四边形来证明的方法,同时及时回顾与多种证法来深化认识加深体会.教学难点基于以上分析,本课的教学难点是:证明三角形的中位线定理时添加辅助线.教学支持条件分析可印发练习纸以便于学生构造不同的平行四边形添加辅助线,可用实物投影或希沃授课软件展示学生的成果;用ppt展示定理的证明;可用常用统计软件统计显示测评结果;根据测评结果,对没有达标的部分内容、没有达标的部分同学,用点对点技术推送相应的训练资源.教学支持条件分析可印发练习纸以便于学生构造不同的平行四边形添加辅助线,可用实物投影或希沃授课软件展示学生的成果;用ppt展示定理的证明;可用常用统计软件统计显示测评结果;根据测评结果,对没有达标的部分内容、没有达标的部分同学,用点对点技术推送相应的训练资源.教学过程设计课前检测1.四边形ABCD中,对角线AC,BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD,从中任选两个条件,能使四边形ABCD为平行四边形的选法有()A.3种B.4种C.5种D.6种答案:B2.A,B,C是平面内不在同一条直线上的三点,点D是平面内任意一点,若A,B,C,D四点恰能构成一个平行四边形,则在平面内符合这样条件的点D有() A.1个B.2个C.3个D.4个答案:C3.如图,在四边形ABCD中,E是BC边的中点,连结DE并延长,交AB的延长线于点F,AB=BF.添加一个条件,使四边形ABCD是平行四边形.你认为下面四个条件中可选择的是()A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDE答案:D4.四个点A,B,C,D在同一平面内,现有下列四个条件:①AB=CD;②AD=BC;③AB∥CD;④AD∥BC,从这些条件中任选两个能使四边形ABCD是平行四边形的选法有()A.3种B.4种C.5种D.6种答案:B5.如图,在△ABC中,点D、E分别是边AB,BC的中点.若△DBE的周长是6,则△ABC的周长是()A. 8B. 10C. 12D. 14答案:C设计意图:本组课前检测题主要检查学生对于平行四边形判定掌握的情况.前4题是关于平行四边形的判定,最后一题是关于三角形中位线定理的问题,设计此问题的意图是检查学生对于三角形中位线定理的直观感知.这些知识都是本节课学生所需要的,如果学生这些知识不完整,必将影响本节的学习,需要进行适当的复习.新课学习1.掌握概念,明确区别如图1,△ABC中,D,E分别是边AB,AC的中点,连接DE.像DE这样,连接三角形两边中点的线段叫做三角形的中位线.问题1:(1)三角形有几条中位线?(2)三角形的中位线与中线有什么区别?师生活动设计:教师直接提出问题,让学生通过作图,观察得出中位线与中线的区别:三角形的中位线的两端点都是三角形边的中点,而三角形的中线只有一个端点是边的中点,另一个端点是三角形的一个顶点.设计意图:让学生理解三角形中位线的概念,明确三角形中位线与中线的区别.2.提出问题,观察猜想问题2:观察图1,你能发现△ABC的中位线DE与边BC的位置关系吗?度量一下,DE与BC之间有什么数量关系?师生活动设计:教师直接提出问题,让学生通过观察和动手测量DE,BC的长度,作出初步猜想.设计意图:让学生通过观察测量,提出猜想.3.分析问题,寻找思路问题3:要确定猜想正确,必须进行证明,这首先要对照图形写出已知、求证.请试一试!(已知:在△ABC中,D、E分别是AB、AC的中点.求证:DE∥BC且DE=BC)追问1:怎样分析证明思路?师生活动设计:教师引导学生分析,判断两直线平行,可以用平行线的判定,也可以用平行四边形性质,由于已知条件是线段关系(中点导致出现线段相等),而从线段相等出发证线段平行,应该用平行四边形判定,图中没有平行四边形,因此需要构造一个平行四边形.另外证明线段的倍分可以进行截长或补短.根据以上分析,让学生构造不同的平行四边形如图2(1)---(5).设计意图:让学生运用化三角形问题为平行四边形问题的思想,构造出不同的联系条件和结论的几何模型——平行四边形,形成不同的解题方案.追问2:请各自试一试,上面的五种方案是否都可行,如可行,说出辅助线的画法,如不可行,请说明原因.师生活动设计:学生在独立思考的基础上分小组讨论,教师进行必要的启发.设计意图:在上述方案中,图2中的(1)(2)(3)无法实施,因为根据现有的知识无法判定平行四边形.而方案(4)(5)可行.让学生经历从失败到成功的过程,让学生体会数学问题的解决过程伴随着挫折,需要持之以恒地理性思考.4.推理论证,形成定理问题4:请用适当的方法证明猜想.师生活动设计1:教师引导学生针对方案4,5进行证明.方案4有以下两种证明方法(方案5证明方法与方案4相类似).方法1:如图3,延长DE到F,使EF=DE,连接CF,由△ADE≌△CFE,可得AD∥FC,且AD=FC,因此有BD∥FC,BD=FC,所以四边形BCFD是平行四边形.所以DF∥BC,DF=BC,因为DE=DF,所以DE∥BC且DE=BC.(也可以过点C作CF∥AB交DE的延长线于F点,证明方法与上面大体相同)方法2:如图4,延长DE到F,使EF=DE,连接CF、CD和AF,又AE=EC,所以四边形ADCF是平行四边形.所以AD∥FC,且AD=FC.因为AD=BD,所以BD∥FC,且BD=FC.所以四边形BCFD是平行四边形.所以DF∥BC,且DF=BC,因为DE=DF,所以DE∥BC且DE=BC.问题5 :请用自己的语言说出得到的结论.师生活动设计:教师引导学生用文字语言和符号语言描述定理内容:(1)三角形的中位线平行于第三边,并且等于第三边的一半.(2)结合图形给出数学表达形式:在△ABC中,D、E分别是边AB、AC的中点,∴DE∥BC,且DE=BC .设计意图:用演绎推理证明结论,培养学生严谨的科学态度.由学生讨论得到添加辅助线的方法,提升学生分析与解决问题的能力.目标检测1:如图5,△ABC中,∠C=90°,∠A=30°,AB=8,D,E,F,分别是边BC,AC,AB的中点,斜边上的中线是线段_______,直角△ABC的中位线分别是____________,∠CED=______°,四边形AEDF的周长为__________.设计意图:辨别三角形中位线与中线的区别,能直接应用中位线定理.如果学生能够顺利完成,则进行例1的教学,如果存在问题,则引导学生结合图形再次理解三角形中位线定理.5.尝试运用,掌握定理例1 已知:在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.师生活动设计:教师引导学生分析,因为已知点E、F、G、H分别是线段的中点,可以设法应用三角形中位线性质找到四边形EFGH的边之间的关系.由于四边形的对角线可以把四边形分成两个三角形,所以添加辅助线,连接AC或BD,构造“三角形中位线”的基本图形后,此题便可得证.证明:如图6,连结AC,△DAC中,∵AH=HD,CG=GD,∴HG∥AC,HG=AC(三角形中位线性质).同理EF∥AC,EF=AC.∴HG∥EF,且HG=EF.∴四边形EFGH是平行四边形.设计意图:例1是三角形中位线性质与平行四边形的判定的综合应用,通过巧妙构造三角形,并运用三角形的中位线定理来解题,体会三角形中位线定理的魅力,巩固新知识.可以借助与多媒体或教具把辅助线的添加方法讲清楚,证明完成后,可得出一般认识:顺次连结四边形四条边的中点,所得的四边形是平行四边形.这个结论今后也会经常会用到.目标检测2:如图7,点D、E、F分别是△ABC的边AB、BC、CA的中点.求证:(1)∠A=∠DEF;(2)四边形AFED的周长等于AB+AC.设计意图:能运用三角形中位线定理以及平行四边形的判定解决有关问题.如果学生能顺利完成,则展开追问1,如果存在困难,则引导学生关注“点D、E、F分别是△ABC的边AB、BC、CA的中点.”这个条件,从而应用三角形中位线定理解决问题.追问1:图中有哪些平行四边形?设计意图:通过找平行四边形让学生进一步巩固新知识.课堂小结问题6:通过本节课的研究,你感悟到什么?还有什么疑惑?师生活动设计:让学生回顾课堂中学到的知识,并畅谈由此受到的启发,教师在倾听学生的回答的同时注意适时的归纳总结.设计意图:学生自主小结,提高学生的数学概括表达能力,增强学生学习过程中的反思意识.有助于学生在归纳过程中把所学的知识条理化、系统化.目标检测设计1.如图,A,B两点被池塘隔开,在AB外选一点C,连接AC和BC,并分别找出AC 和BC的中点M,N,如果测得MN=20m,那么A,B两点间的距离是____m.2.如图,在△ABC中,点D,E分别是AB,AC的中点,∠A=50°,∠ADE=60°,则∠C的度数为()A.50°B.60°C.70°D.80°3.一个三角形的周长是120cm,过三角形各边的中点作对边的平行线,则这三条平行线所组成的三角形的周长是_______cm.4.如图,AD是△ABC的中线,EF是中位线. 求证:AD与EF互相平分.5.已知:如图,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH 是平行四边形.。
平行四边形的判定方法
平行四边形是指具有两组对边分别平行的四边形,它是几何学中的基本图形之一。
在日常生活和工程实践中,我们经常需要判定一个四边形是否为平行四边形。
下面将介绍几种判定平行四边形的方法。
1. 对角线互相平分。
判定一个四边形是否为平行四边形的一个简单方法是检查其对角线。
如果一个四边形的对角线互相平分,即相交于中点,那么这个四边形就是平行四边形。
这是因为平行四边形的对角线互相平分是其特征之一。
2. 对边互相平行。
平行四边形的定义就是具有两组对边分别平行的四边形。
因此,判定一个四边形是否为平行四边形的方法之一就是检查其对边是否互相平行。
如果一个四边形的对边分别平行,则它就是平行四边形。
3. 对角线长度相等。
另一个判定平行四边形的方法是检查其对角线的长度。
如果一个四边形的对角线长度相等,那么它就是平行四边形。
这是因为平行四边形的对角线长度相等是其特征之一。
4. 内角相等。
最后一个判定平行四边形的方法是检查其内角是否相等。
如果一个四边形的内角相等,那么它就是平行四边形。
这是因为平行四边形的内角相等是其特征之一。
综上所述,判定一个四边形是否为平行四边形有多种方法,可以根据具体情况选择合适的方法进行判定。
在实际应用中,可以结合多种方法进行判定,以确保结果的准确性。
希望以上介绍能够帮助您更好地理解和判定平行四边形。
6.2.1平行四边形的判定(1)一.教材分析:6.2.1《平行四边形的判定》是九年义务教育北师大版数学教材八年级下册第六章。
本节课的内容是将来学习菱形、矩形、正方形及梯形等其它数学知识的重要基础,是对全等三角形、平行四边形定义及性质的回顾延伸,对学生的思维能力及逻辑推理能力的培养上有所帮助。
二.学情分析:初二下半学期,学生已经学习了初中阶段的全等三角形的性质判定在内的绝大多数几何概念及定理。
抽象思维能力、逻辑推理能力已经逐步形成,学生对新鲜的知识也充满了好奇心和强烈的求知欲望,而平行四边形的判定条件中,又有许多颇有思考价值的问题。
因此由教师组织教学,让学生全开放自主探索平行四边行的判定定理,让学生的综合能力得到一次检验和再提升。
三.教法与学法:1.教法:教师启发讲授2.学法:学生探究学习四.教学目标:知识与技能:1、运用类比的方法,通过学生的合作探究,得出平行四边形的三个判定方法。
2、理解平行四边形的判定方法,并学会简单运用。
数学思考:1、通过类比、观察、实验、猜想、验证、推理、交流等教学活动,进一步培养学生的动手能力及合情推理能力。
2、在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展学生的逻辑思维能力和推理论证的表达能力。
解决问题:1、使学生学会将平行四边形的问题转化为三角形的问题,渗透化归意识。
2、通过对平行四边形三个判定方法的探究,提高学生解决问题的能力。
情感态度与价值观:通过对平行四边形三个判定方法的探究和运用,使学生感受数学思考过程中的合理性、数学证明的严谨性,认识事物的相互联系、相互转化,学会用辨证的观点分析事物。
五.教学重点、难点:重点:探究平行四边形的判定定理的过程需要经过对逆命题的猜想、图形验证、逻辑证明三个过程,需要让学生体验并逐步掌握这种发现数学结论的方法,因此判定定理的探究过程是本节课的重点。
难点:学习完平行四边形的判定后,根据题目给出的条件,如何灵活准确的选择性质定理和判定定理是本节课的难点。
第六章平行四边形
一、平行四边形的性质
1、定义:两组对边分别平行的四边形叫做平行四边形。
2、平行四边形的性质(1)平行四边形的对边平行且相等。
(2)平行四边形的邻角互补(3)平行四边形的对角相等(4)平行四边形的对角线互相平分。
二、平行四边形的判定
1、平行四边形的判定
(1)定义:两组对边分别平行的四边形是平行四边形
(2)定理1:两组对边分别相等的四边形是平行四边形
(3)定理2:两条对角线互相平分的四边形是平行四边形
(4)定理3:一组对边平行且相等的四边形是平行四边形
2、两条平行线的距离两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。
平行线间的距离处处相等。
3、平行四边形的面积:S平行四边形=底×高=ah
三、三角形的中位线
1、概念:连接三角两边中点的线段叫做三角的中位线(共三条中位线)
2、三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半
四、多边形的内角和与外角和
1、多边形的内角和定理:n边形的内角和等于(n-2)·180°;
多边形的外角和定理:任意多边形的外角和等于360°。
2、正多边形的每个内角都等于(n-2)·180°/n
3、中心对称图形:线段、平行四边形、矩形、菱形、正方形,边数为偶数的正多边形
不是中心对称图形:四边形、三角形、梯形、边数为奇数的正多边形等4、常4、常见的轴对称图形:等腰三角形、等腰梯形、矩形、菱形、正方形。
青岛版数学八年级下册6.2《平行四边形的判定》教学设计1一. 教材分析《平行四边形的判定》是青岛版数学八年级下册第六章第二节的内容。
本节课的主要内容是让学生掌握平行四边形的判定方法,能够运用这些方法判断一个四边形是否为平行四边形。
教材通过引入平行四边形的定义和性质,引导学生探究并发现平行四边形的判定方法,从而提高学生的空间想象能力和逻辑思维能力。
二. 学情分析学生在学习本节课之前,已经学习了四边形的性质,对四边形有了一定的了解。
同时,学生已经掌握了平行线的性质,能够熟练地画出平行线。
但是,学生对平行四边形的判定方法可能还不够熟悉,需要通过本节课的学习来进一步掌握。
三. 教学目标1.让学生掌握平行四边形的判定方法,能够运用这些方法判断一个四边形是否为平行四边形。
2.培养学生的空间想象能力和逻辑思维能力。
3.提高学生的合作交流能力,培养学生的团队精神。
四. 教学重难点1.重点:平行四边形的判定方法。
2.难点:如何运用判定方法判断一个四边形是否为平行四边形。
五. 教学方法1.采用问题驱动的教学方法,引导学生探究并发现平行四边形的判定方法。
2.利用多媒体辅助教学,展示平行四边形的判定过程,提高学生的空间想象能力。
3.采用小组合作交流的方式,让学生在探究过程中互相学习,共同进步。
4.通过练习题巩固所学知识,提高学生的应用能力。
六. 教学准备1.多媒体教学设备。
2.练习题。
3.平行四边形的模型或图片。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的平行四边形图片,引导学生观察并思考:这些图形有什么共同特征?你能否用已学的知识解释这些特征?2.呈现(10分钟)介绍平行四边形的定义和性质,引导学生发现并总结平行四边形的判定方法。
3.操练(15分钟)让学生分组合作,运用判定方法判断一些给定的四边形是否为平行四边形。
每组选出一个代表进行讲解,其他组进行评价。
4.巩固(10分钟)让学生独立完成一些判断题,检验是否掌握了平行四边形的判定方法。
通用版)人教版
边形的判定(3)学案(全国通用版)人教版
课题内容 6.2平行四边形的判定(3)
学习目标知识技能目标
1.了解两条平行线之间距离的意义,能度两两条平行线之间的距离。
2.综合应用平行四边形性质和判定定理。
过程与方法目标
1.通过实例认识“平行线之间距离”,探索并证明“夹在平行线之间的平行线段相等”这一性质。
2.在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展学生的逻辑思维能力和推理论证的几何表达能力.
情感态度价值观目标
在探索过程中,培养了学生的创新思维和探索精神。
学习重点平行四边形性质和判定方法的综合运用.
学习难点平行四边形的性质和判定的综合运用
学法指导合作探究
1.复习旧知说一说
(1)平行四边形的定义是----------------------------------------------。
(2)平行四边形性质-----------------------------------------------------------------------------------------(3)判定四边形是平行四边形的方法有-------------------------------------------------------------------- 2.读P146----P14 填空
------------------------------------------------------------------------------------------------称为平行线之间距离。
-
列出我的疑惑
二、探究案
通用版)人教版。
1、出示学习目标
2、问题探究,拓展提升:
问题2
在笔直的铁轨上,夹在铁轨之间的平行枕木是否一样长?
你能说明理由吗?与同伴交流
已知,直线a//b,过直线a上任两点A,B分别向直线b作垂线,交直线b于点C,点D,如图,(1)线段AC,BD所在直线有什么样的位置关系?
(2)比较线段AC,BD的长。
A.(学生思考、交流)
B.(师生归纳)
解(1)由AC⊥b,BD⊥b,得AC//BD。
(2)a//b,AC//BD,→四边形ACDB是平行四边形
→AC=BD
归纳:
若两条直线平行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线间即平行线间的距离相等。
[议一议]:
夹在平行线之间的平行线段一定相等吗?
结论是:---------------------------------------------.
做一做:
通用版)人教版
如图6-15,以方格纸的格点为顶点画出几个平行四边形,并说明的画得方法和其中的道理.
例4 .如图6-16,在平行四边形ABCD中,点M、N 分别是AD、BC上的两点,点E、F在对角线BD上,且DM=BN,BE=DF.
求证:
证明:
课堂小结
(1)平行线之间距离定义
(2)平行线之间距离相等,平行线之间平行线段相等。
(3)灵活运用平行线的性质和判定定理。
作业:P148—1题,2题,3题
我的知识网络图
三、训练案
通用版)人教版
2.P147(随堂练习)
1. 如图:平行四边形ABCD中,∠ABC=700,∠ABC的平分线交AD于点E,过D作BE的平行线交BC于点F , 求∠CDF的度数
2.如图Ⅰ,AB//CD,点 E,F在 AB上,点 M,N,在 CD上,则S△MNE与S△MNF-----------..
(1号,2号完成以下两题)
1.如图,在Rt△ABC中,∠B=90∘,点 D为 AC的中点,以 AB为一边向外作等边三角形 ABE,连结 DE. (1)证明:DE//CB; (2)探索 AC与 AB满足怎样的数量关系时,四边形 DCBE是平行四边形.
通用版)人教版
2已知:如图,在▱ ABCD中,延长 AB到 E,使得 BE=AB,连接 BD、 CE. (1)求证:BD//CE;
(2)请在所给的图中,用直尺和圆规作点 F(不同于图中已给的任何点 ),使对 F、 B、 E、 C为顶点的四边形是平行四边形 ((只作一个,保留痕迹,不写作法 )).
教学反思。