IntelHEX格式简介
- 格式:doc
- 大小:37.50 KB
- 文档页数:4
如何读懂hex⽂件什么是Intel HEX ⽂件格式Intel HEX ⽂件是遵循Intel HEX ⽂件格式的ASCII ⽂本⽂件。
在Intel HEX ⽂件的每⼀⾏都包含了⼀个HEX 记录。
这些记录是由⼀些代表机器语⾔代码和常量的16进制数据组成的。
Intel HEX ⽂件常⽤来传输要存储在ROM 或者EPROM 中的程序和数据。
⼤部分的E PROM 编程器能使⽤Intel HEX ⽂件。
Intel HEX由任意数量的⼗六进制记录组成。
每个记录包含5个域,它们按以下格式排列:Start Code每个Intel HEX 记录都由冒号开头Byte count是数据长度域,它代表记录当中数据字节的数量Address是地址域,它代表记录当中数据的起始地址Record type是代表HEX记录类型的域,它可能是以下数据当中的⼀个:00-数据记录01-⽂件结束记录02-扩展段地址记录03-开始段地址记录04-扩展线性地址记录05-开始线性地址记录Data是数据域,⼀个记录可以有许多数据字节.记录当中数据字节的数量必须和数据长度域中指定的数字相符Checksum是校验和域,它表⽰这个记录的校验和.校验和的计算是通过将记录当中所有⼗六进制编码数字对的值相加,以256为模进⾏以下补⾜。
HEX⽂件以⾏为单位。
每⾏以字符‘:’ (0x3a)开头,以回车换⾏符0x0d, 0x0a为结束。
每⾏开始和结束之间的所有内容,都是以字符形式表现的。
例如数据如果是 0x1A ,那么转换到HEX格式的⾏⾥⾯就是0x31 0x41。
如果数据是16bit的,例如地址,则先显⽰⾼位,后显⽰底位。
例如 0x1234,转换成HEX格式⽂件后变成 0x31 0x32 0x33 0x34,显⽰出来以后就是1234。
将数据部分内容每2个字符看做⼀个HEX数据,例如::020*********FA , 我把它看做 0x02 0x00 0x00 0x04 0x00 0x00 0xFA第⼀个 0x02 为数据长度。
Intel HEX格式你熟悉吗?——HEX格式介绍及分析程序来源:21ic 作者:LPC900栏目:MCU技术INTEL HEX格式你熟悉吗?——HEX格式介绍及分析程序用Keil C51编程时,可以自动生成INTEL HEX格式的程序文件。
INTEL HEX文件通常由若干个记录组成,每个记录都具有如下的形式::ll AAAA ttdd...ddcc其中:开头的冒号“:”是记录起始标志。
“ll”是记录的有效数据长度。
“AAAA”是装入地址。
“tt”是记录类型。
00表示数据记录,01表示结束。
“dd...dd”是记录中的有效数据。
数据个数必须与“ll”一致。
“cc”校验和。
将它的值与记录中所有字节(冒号“:”除外)内容相加,其结果应为00,否则出错。
举例:某行记录的内容是“:05012000B5412B215543”,则数据长度ll是05H,装入地址是0120H,记录类型是数据记录,有效数据是B5H、41H、2BH、21H、55H,校验和为43H。
在文件的最后一行,总是“:00000001FF”,表示无任何有效数据,装入地址为0000H(没有用处),记录类型为01H,表示结束,校验和当然是FFH了。
以下是一个分析INTEL HEX记录的简单程序:/*INTEL HEX.h分析处理INTEL HEX格式记录的头文件*/#ifndef _INTEL_HEX_H_#define _INTEL_HEX_H_#include <ctype.h>#include <string.h>//定义INTEL HEX记录的结构struct{unsigned CHAR ll; //长度unsigned int AAAA; //地址unsigned CHAR tt; //记录类型,0-数据,1-终止CHAR dd[16]; //数据CHAR cc; //校验和}INTEL HEX;/*函数:AnalyseHEX()功能:分析一条HEX记录(把INTEL HEX记录的文本转换成INTEL HEX结构)参数:hex[]是记录的文本一行内容转换后的结果保存在INTEL HEX结构中返回:0-转换成功1-HEX记录文本中有错误*/bit AnalyseHEX(CHAR hex[]){unsigned CHAR i;unsigned CHAR j;unsigned CHAR t;unsigned CHAR n;unsigned CHAR cc;unsigned int x;//检查冒号if ( hex[0] != ':' ) return 1;//检查长度t = (toint(hex[1])<<4) + toint(hex[2]);if ( t > 16 ) return 1;n = 2 * t + 11;if ( n != strlen(hex) ) return 1;INTEL HEX.ll = t;cc = t;//提取地址t = (toint(hex[3])<<4) + toint(hex[4]);cc += t;x = (unsigned int)t;x <<= 8;t = (toint(hex[5])<<4) + toint(hex[6]);cc += t;x += (unsigned int)t;INTEL HEX.AAAA = x;//提取记录类型t = (toint(hex[7])<<4) + toint(hex[8]);if ( (t==0) || (t==1) ){cc += t;INTEL HEX.tt = t;}else{return 1;}//提取数据i = 9;if ( t == 0 ){j = 0;n = INTEL HEX.ll;do{t = (toint(hex[i++])<<4);t += toint(hex[i++]);cc += t;INTEL HEX.dd[j++] = t;} while ( --n != 0 );}//提取校验和t = (toint(hex[i++])<<4);t += toint(hex[i++]);cc += t;INTEL HEX.dd[j++] = t;//检查校验if ( cc == 0 )return 0;elsereturn 1;}#endif。
hex 格式解析HEX格式是一种常用的二进制文件格式,主要用于存储程序和数据。
它是一种文本文件,由一行行符合HEX文件格式的文本组成。
在这些文本中,每一行包含一个HEX记录。
这些记录由对应机器语言码和/或常量数据的十六进制编码字节组成。
HEX文件通常用于传输将被存储在ROM或EPROM中的程序和数据。
大多数EPROM编程器或仿真器使用HEX文件。
HEX文件格式主要有两种:Intel HEX和Motorola SREC(也称为Mot)。
Intel HEX文件由一行行符合Intel HEX文件格式的文本组成。
在Intel HEX文件中,每一行包含一个HEX记录。
这些记录由对应机器语言码和/或常量数据的十六进制编码字节组成。
Motorola SREC文件则是另一种HEX格式,它按照不同的编码方式组织数据。
要解析HEX文件,可以将其拆分成以下几个部分:1. 文件头:文件头包含文件类型、版本和起始地址等信息。
文件头通常位于文件的开头,用于指示文件的类型和结构。
2. 数据记录:数据记录是HEX文件中的基本单元,包含机器语言码和/或常量数据的十六进制编码字节。
每一行都是一个数据记录,它们按照顺序排列在文件中。
3. 数据记录之间的分隔符:HEX文件中的数据记录之间使用分隔符进行分隔。
常见的分隔符有:空格、制表符(TAB)、换行符(CR)等。
4. 文件尾:文件尾是HEX文件的最后一个部分,它表示文件的结束。
文件尾通常包含一个表示文件结束的特定字符或字节序列。
在解析HEX文件时,需要关注以下几个方面:1. 确定文件类型和格式:根据文件头信息,判断文件的类型和格式。
2. 提取数据记录:从文件中提取数据记录,解析记录中的机器语言码和常量数据。
3. 处理记录之间的分隔符:去除记录之间的分隔符,以便将数据记录合并为一个连续的数据流。
4. 检查文件尾:确认文件是否完整,以及文件尾是否正确。
5. 分析数据:根据解析出的数据记录,分析文件中的程序和数据。
Intel HEX文件是记录文本行的ASCII文本文件,在Intel HEX文件中,每一行是一个HEX记录,由十六进制数组成的机器码或者数据常量。
Intel HEX文件经常被用于将程序或数据传输存储到ROM、EPROM,大多数编程器和模拟器使用Int el HEX文件。
很多编译器的支持生成HEX格式的烧录文件,尤其是Keil c。
但是编程器能够下载的往往是BIN格式,因此HEX转BIN是每个编程器都必须支持的功能。
HEX格式文件以行为单位,每行由“:”(0x3a)开始,以回车键结束(0x0d, 0x0a)。
行内的数据都是由两个字符表示一个16进制字节,比如”01”就表示数0 x01;”0a”,就表示0x0a。
对于16位的地址,则高位在前低位在后,比如地址0x010a,在HEX格式文件中就表示为字符串”010a”。
下面为HEX文件中的一行::10000000FF0462FF051EFF0A93FF0572FF0A93FFBC“:”表示一行的开始。
“:”后的第1,2个字符“10”表示本行包含的数据的长度,这里就是0x10即16个。
第3,4,5,6个字符“0000”表示数据存储的起始地址,这里表示从0x0000地址开始存储16个数据,其中高位地址在前,低位地址在后。
第7,8个字符“00”表示数据的类型。
该类型总共有以下几种:00 ----数据记录01 ----文件结束记录02 ----扩展段地址记录04 ----扩展线性地址记录这里就是0x00即为普通数据记录。
自后的32个字符就是本行包含的数据,每两个字符表示一个字节数据,总共有16个字节数据跟行首的记录的长度相一致。
最后两个字符表示校验码。
每个HEX格式的最后一行都是固定为::00000001FF以上的信息其实就足够进行HEX转BIN格式的程序的编写。
首先我们只处理数据类型为0x00及0x01的情况。
0x02表示对应的存储地址超过了64K,由于我的编程器只针对64K以下的单片机,因此在次不处理,0x04也是如此。
hex,bin,axf,elf的区别一、HEX 和 BINHex文件,这里指的是Intel标准的十六进制文件,也就是机器代码的十六进制形式,并且是用一定文件格式的ASCII码来表示.具体格式介绍如下: Intel hex 文件格式Intel hex 文件常用来保存单片机或其他处理器的目标程序代码。
它保存物理程序存储区中的目标代码映象。
一般的编程器都支持这种格式。
Intel hex 文件全部由可打印的ASCII字符组成,如下例所示::2000000012014c75a800e4f508f509780a7a78e4f608dafcd283fcfded240af9a 7050dbd81:2000200000010ced2488ec34ff50edc283e4fcfded240af9e76d7013ed33e43c7 00d0dbd2a:2000400000010ced2488ec34ff50e50509e50970020508e50924a8e50834fd50a ee4f50874Intel hex 由一条或多条记录组成,每条记录都由一个冒号“:”打头,其格式如下::CCAAAARR...ZZ其中:CC本条记录中的数据字节数AAAA本条记录中的数据在存储区中的起始地址RR记录类型:00 数据记录 (data record)01 结束记录 (end record)02 段记录 (paragraph record)03 转移地址记录 (transfer address record)...数据域ZZ数据域校验和Intel hex文件记录中的数字都是16进制格式,两个16进制数字代表一个字节。
CC域是数据域中的实际字节数,地址、记录类型和校验和域没有计算在内。
校验和是取记录中从数据字节计数域(CC)到数据域(...)最后一个字节的所有字节总和的2的补码。
Bin文件是最纯粹的二进制机器代码,没有格式,或者说是"顺序格式"按assembly code顺序翻译成binary machine code.Bin是直接的内存映象的表示。
Intel的hex格式含义Intel HEX file(文件名.hex)是具有约定格式的ASCII文本文件。
文件中每一行包含一个HEX 记录(record)。
记录由十六进制数组成,这些数字代表机器指令码或常量。
Intel HEX files 用来向ROM中传递代码和数据,即它和Bin文件类似,指导下载程序或仿真器将指令码和数据下载到ROM存储器特定的位置上。
Intel HEX file可以包含任意多行记录(record),每个record主要由5个部分(域)组成,每部分至少包含两个十六进制字符,即一个字节(8位),其具体形式为“:llaaaatt[dd...]cc ”其中:“:”表示record的开始“ll”表示record中数据位(dd)的长度(几个字节)“aaaa”表示record中的数据存储起始地址“tt”表示record类型,可以为00(数据record),01(文件结束record),02(扩展段地址record),04(扩展线性地址record)“dd”表示record数据的一位,一个record可能包含多个数据字节,数据字节的数量必须与ll中指定的相一致“cc”表示record的校验域,下面给出一个实例:10008000AF5F67F0602703E0322CFA92007780C361:1000900089001C6B7EA7CA9200FE10D2AA00477D81:0B00A00080FA92006F3600C3A00076CB:00000001FF第一行,":"符号表明记录的开始. 后面的两个字符表明记录的长度,这里是10h. 后面的四个字符给出调入的地址,这里是0080h. 后面的两个字符表明记录的类型;0 数据记录 1 记录文件结束 2 扩展段地址记录 3 开始段地址记录 4 扩展线性地址记录 5开始线性地址记录后面则是真正的数据记录, 最后两位是校验和检查,它加上前面所有的数据和为0.最后一行特殊,总是写成这个样子.扩展Intel Hex的格式(最大1M): 由于普通的Intel的Hex记录文件只能记录64K的地址范围, 所以大于64K的地址数据要靠扩展Intel Hex格式的文件来记录.对于扩展形式Hex文件,在每一个64K段的开始加上扩展的段地址规定,下面的数据地址均在这个段内,除非出现新的段地址定义.一个段地址定义的格式如下:起始符长度起始地址扩展段标示扩展段序号无用累加和: 02 0000 02 3000 EC段地址的标识符是第四组数据02,表示扩展地址段的定义,再后面的以为HEX数表示段的数目, 上面的定义为3,表示段地址是3,所以下面的数据地址是3 + XX(XX是64K段内的地址)目标文件.HEX的各部分具体含义.HEX是Intel的目标文件格式。
HEX文件格式详解Hex文件是可以烧录到MCU中,被MCU执行的一种文件格式。
如果用记事本打开可发现,整个文件以行为单位,每行以冒号开头,内容全部为16进制码(以ASCII码形式显示)。
Hex文件可以按照如下的方式进行拆分来分析其中的内容:例如“:1000080080318B1E0828092820280B1D0C280D2854”可以被看作“0x10 0x00 0x08 0x00 0x80 0x31 0x8B 0x1E 0x08 0x28 0x09 0x28 0x20 0x28 0x0B 0x1D 0x0C 0x28 0x0D 0x28 0x54” 第一个字节0x10表示本行数据的长度;第二、三字节0x00 0x08表示本行数据的起始地址;第四字节0x00表示数据类型,数据类型有:0x00、0x01、0x02、0x03、0x04、0x05。
'00' Data Rrecord:用来记录数据,HEX文件的大部分记录都是数据记录'01' End of File Record: 用来标识文件结束,放在文件的最后,标识HEX文件的结尾'02' Extended Segment Address Record: 用来标识扩展段地址的记录'03' Start Segment Address Record:开始段地址记录'04' Extended Linear Address Record: 用来标识扩展线性地址的记录'05' Start Linear Address Record:开始线性地址记录然后是数据,最后一个字节0x54为校验和。
校验和的算法为:计算0x54前所有16进制码的累加和(不计进位),检验和= 0x100 - 累加和在上面的后2种记录,都是用来提供地址信息的。
每次碰到这2个记录的时候,都可以根据记录计算出一个“基”地址。
HEX格式内容含义HEX文件格式是我们经常遇到的一种文件格式,因为几乎所有的编程烧录文件都为HEX格式。
首先,HEX文件中是包含了地址信息的。
这和BIN文件不同,BIN文件中只包含了数据信息。
所以我们在烧写或者下载HEX文件的时候,一般不需要我们指定地址,但是在烧写BIN 文件的时候,用户是一定要指定地址信息的。
二、HEX文件都是由记录组成的。
它的每一行都是一个记录来的。
它是由任意数量的十六进制数组成。
每个记录包含五个域,它们以以下格式排列的::aabbbbcc[dd…]ee上面每一组不同的字母代表不同的一个域,每个字母代表一个十六进制的数字,每一个域至少由两个十六进制编码数字组成,每两个十六进制编码数字组成一个字节。
具体描述如下:1、每个HEX记录都由冒号开头;2、aa表示这个记录中的数据长度域,它代表记录当中数据字节[dd…]的字节数量。
3、bbbb是地址域,它代表记录当中数据的起始地址。
4、cc 是代表HEX记录类型的域,它可能是以下数据当中的一个:00 –数据记录01 –文件结束记录02 –扩展段地址记录04 –扩展线性地址记录5、dd 是数据域,它代表一个字节的数据,一个记录可以有许多数据字节。
记录当中数据字节的数量必须和数据长度域(aa)中指定的数字相符。
6、ee 是校验和域,它表示这个记录的校验和。
校验和的计算是通过将记录当中所有十六进制编码数字对的值相加,以256为模进行以下补足。
比如:前面AduC7026的LED实验中的HEX文件内容为::020*********F2 。
1:1000000018F09FE518F09FE518F09FE518F09FE5C0 。
2:1000100018F09FE50000A0E118F09FE518F09FE5BB:100020004000080074030800700308006C03080017:100030006803080000000000640308006003080073:1000400078009FE50110A0E3041480E50110A0E30F:10005000081480E5F410A0E30C1480E560009FE52F:10006000DBF021E300D0A0E1040040E2D7F021E37F:1000700000D0A0E1040040E2D1F021E300D0A0E1F3:10008000040040E2D2F021E300D0A0E1800040E291:10009000D3F021E300D0A0E1040040E210F021E31E:1000A00000D0A0E11C009FE5010010E318E09F05CF:1000B00018E09F1510FF2FE1FEFFFFEAFEE7C046A4:1000C0000000FFFF900401003D010800B800080097:1000D000BD0008000000000000000000000000005B:1000E00000000000AA2108480160012107480160C2:1000F0005522074802600748016000210648016058:10010000F4210648016070471004FFFF1404FFFF4C:100110001804FFFF0404FFFF0804FFFF0C04FFFFA7:1001200004E005490A1C0139002AFBD1011C0138F1:100130000029F6D17047C046E8030000664806C8AB:100140000B1C134305D000230B70491C9142FBD1BB:10015000F5E76248C01C0323984306C80B1C1343F1:1001600006D00378401C0B70491C9142F9D1F1E78D:1001700000B5FFF7B7FFF0235948016899430160C4:10018000584A59480168114301600F2457480168D3:10019000A1430160564C5748016821430160534810:1001A0000168994301605348016811430160524A54:1001B0004E48016891430160504A4E48016811431E:1001C00001604F4A49480168914301604D4A4948DE:1001D0000168114301604C4A4C4801689143016039:1001E0004B4A4C480168114301604B4A474801683B:1001F00091430160494A4748016811430160484AF8:100200004248016891430160464A424801681143EF:1002100001604549454801604548FFF781FF454970:10022000454801604248FFF77BFF3F494248016073:100230003F48FFF775FF41493F4801603C48FFF7E1:100240006FFF3F493C4801603948FFF769FF3D496E:100250003D4801603648FFF763FF3C493A4801607A:100260003348FFF75DFF3A49374801603048FFF7F0:1002700057FF2D49374801602D48FFF751FF2D49A1:10028000354801602A48FFF74BFF27493248016093:100290002748FFF745FF29492F4801602448FFF709:1002A0003FFF27492C4801602148FFF739FF2549C6:1002B0002A4801601E48FFF733FF244927480160A0:1002C0001B48FFF72DFF2249244801601848FFF71B:1002D00027FF9EE700BDC046D4000800DC000800F0:1002E00000F4FFFF0000000220F4FFFF0CF4FFFF0A:1002F0000000000150F4FFFF000F000000000004A8:1003000000F000000000000800000F0008F4FFFFEC:100310000000001040F4FFFF0000F000000000208B:100320000000000F000000400000020024F4FFFF66:100330002C0100000000010054F4FFFF0000040045:10034000000008000000100044F4FFFF000020003F:100350000000400028F4FFFF58F4FFFF48F4FFFFBF:10036000FEFFFFEAFEFFFFEAFEFFFFEAFEFFFFEAF5:08037000FEFFFFEAFEFFFFEAB9:00000001FF它的第二行为::1000000018F09FE518F09FE518F09FE518F09FE5C0容易知道:它的ee为:C0,计算过程如下:C0=0x01+ not(0x10+0x00+0x00+0x00+0x18+0xF0+…+0xE5)文件结束(EOF)记录Intel HEX文件必须以文件结束(EOF)记录结束.这个记录的记录类型域的值必须是01.EOF记录外观总是如下::00000001FF其中:00 是记录当中数据字节的数量。
什么是Intel HEX格式?
Intel HEX文件是记录文本行的ASCII文本文件,在Intel HEX文件中,每一行是一个HEX记录
由十六进制数组成的机器码或者数据常量,Intel HEX文件经常被用于将程序或数据传输
存储到ROM.EPROM,大多数编程器和模拟器使用Intel HEX文件.
记录格式
一个Intel HEX文件可以包含任意多的十六进制记录,每条记录有五个域,下面是一个记录的格式.
:llaaaatt[dd...]cc
每一组字母是独立的一域,每一个字母是一个十六进制数字,每一域至少由两个十六进制数字组成,下面是字节的描述.
:冒号是每一条Intel HEX记录的开始
ll 是这条记录的长度域,他表示数据(dd)的字节数目.
aaaa 是地址域,他表示数据的起始地址
<如果是数据记录,这表示将要烧录的这条记录中的数据在EPROM中的偏移地址,
对于不支持扩展段地址和扩展线性地址的,如89C51,这就是此条记录的起始地址>
tt 这个域表示这条HEX记录的类型,他有可能是下面这几种类型
00 ----数据记录
01 ----文件结束记录
02 ----扩展段地址记录
04 ----扩展线性地址记录
dd 是数据域,表示一个字节的数据,一个记录可能有多个数据字节,字节数目可以
查看ll域的说明
cc 是效验和域,表示记录的效验和,计算方法是将本条记录冒号开始的所有字母对
<不包括本效验字和冒号> 所表示的十六进制数字
<一对字母表示一个十六进制数,这样的一个十六进制数为一个字节>
都加起来然后模除256得到的余数最后求出余数的补码即是本效验字节cc.
<例如:
:0300000002005E9D
cc=0x01+NOT((0x03+0x00+0x00+0x00+0x02+0x00+0x5E)%0x100)=0x01+0x 9C=0x9D
C语言描述:
UCHAR cc;
cc=(UCHAR)~(0x03+0x00+0x00+0x00+0x02+0x00+0x5E);
cc++;
>
数据记录
Intel HEX文件由若干个数据记录组成,一个数据记录以一个回车和一个换行结束
<回车为0x0d换行为0x0a>
比如下面的一条数据记录
:10246200464C5549442050524F46494C4500464C33
10 是此行记录数据的字节数目
2462 是数据在内存<将要烧写的eprom地址>中的起始地址
00 是记录类型00(是一个数据记录)
464C 到464C 是数据
33 是此行记录的效验和
扩展线性地址记录(HEX386)
扩展线性地址记录也可称为32位地址记录和HEX386记录,这个纪录包含高16(16-31位)位数据地址,这种扩展的线性记录总是有两个字节数据,像下面这样:
:02000004FFFFFC
02 是记录的数据字节数目
0000 是地址域这在扩展地址记录中总是0000
04 是记录类型04(扩展地址记录)
FFFF 是高16位地址
FC 是记录效验和,计算方法如下:
01h + NOT(02h + 00h + 00h + 04h + FFh + FFh)
当一个扩展线性地址记录被读到后,扩展线性地址记录的数据区域将被保存
并应用到后面从Intel HEX文件中读出的记录,这个扩展线性记录一直有效,
直到读到下一个扩展线性记录.
绝对内存地址= 数据记录中的地址+ 移位后的扩展线性地址
下面举例说明这个过程
从数据记录的地址域得到地址2462
从扩展线性地址记录的地址域得到地址FFFF
绝对内存地址FFFF2462
扩展段地址记录(HEX86)
扩展段地址记录也被称为HEX86记录, 包含4-19位的数据地址段,
这个扩展段地址记录总是有两字节数据,如下:
:020*********EA
02 是记录中的数据字节数目
0000 是地址域,在扩展段地址记录中,这个域总是0000
02 是记录类型02(扩展段地址的标示)
1200 是该段的地址
EA 是效验和
计算如下:
01h + NOT(02h + 00h + 00h + 02h + 12h + 00h).
当扩展段地址记录被读后,扩展段地址将被存储并应用到以后从Intel HEX文件读出的记录,这个段地址一直有效直到读到下一个扩展段地址记录
绝对内存地址= 数据记录中的地址+ 移位后的扩展段地址
数据记录中的地址域移位后扩展段地址记录中的地址域
下面举例说明这个过程
从数据记录的地址域得到地址 2 4 6 2
从扩展段地址记录的地址域得到地址 1 2 0 0
绝对内存地址0 0 0 1 4 4 6 2
文件结束记录(EOF)
一个Intel HEX文件必须有一个文件结束记录,这个记录的类型域必须是01, 一个EOF记录总是这样:
:00000001FF
00是记录中数据字节的数目
0000这个地址对于EOF记录来说无任何意义
01记录类型是01(文件结束记录标示)
FF是效验和计算如下
01h + NOT(00h + 00h + 00h + 01h).
========================
总结
形如
:BBAAAATTHHHH...HHHHCC
BB: Byte
AAAA:数据记录的开始地址,高位在前,地位在后
因为这个格式只支持8bits,地址被倍乘
所以,为了得到实际的PIC的地址,需要将地址除以2
TT: Type
00 数据记录
01 记录结束
04 扩展地址记录(表示32位地址的前缀,当然这种只能在INHX32) HHHH:一个字(Word)的数据记录,高Byte在前,低Byte在后
TT之后,总共有BB/2 个字的数据
CC: 一个Byte的CheckSum
因为PIC16F873A只有4K的程序空间
所以,不会有TT=04的Linear Address Record。