工程光学-下篇物理光学第13章光的衍射+详解
- 格式:pdf
- 大小:4.64 MB
- 文档页数:144
1θ2θ2mm3011mm 30第十三章习题解答波长nm 500=λ的单色光垂直入射到边长为3cm 的方孔,在光轴(它通过孔中心并垂直方孔平面)附近离孔z 处观察衍射,试求出夫琅和费衍射区的大致范围。
解: 夫琅和费衍射应满足条件 π<<+1max 21212)(Z y x k)(900)(50021092)(2)(72max 2121max 21211m cm a y x y x k Z =⨯⨯==+=+>λλπ波长为500nm 的平行光垂直照射在宽度为0.025mm 的单逢上,以焦距为50cm的会聚透镜将衍射光聚焦于焦面上进行观察,求(1)衍射图样中央亮纹的半宽度;(2)第一亮纹和第二亮纹到中央亮纹的距离;(3)第一亮纹和第二亮纹相对于中央亮纹的强度。
解: 20sin ⎪⎭⎫⎝⎛=ααI I θλπαs i n 22a f y ka kal ⋅=⋅==(1))(02.010025.05006rad a=⨯==∆λθ )(10rad d =(2)亮纹方程为αα=tg 。
满足此方程的第一次极大πα43.11= 第二次极大πα459.22=x a k l a θλπαs i n 2⋅⋅==a x πλαθ=sin 一级次极大)(0286.010025.043.1500sin 6rad x x =⨯⨯⨯=≈ππθθ ()mm x 3.141=二级次极大)(04918.010025.0459.2500sin 6rad x x =⨯⨯⨯=≈ππθθ ()mm x 59.241=(3)0472.043.143.1sin sin 2201=⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=ππααI I01648.0459.2459.2s i n s i n 2202=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=ππααI I10.若望远镜能分辨角距离为rad 7103-⨯的两颗星,它的物镜的最小直径是多少?同时为了充分利用望远镜的分辨率,望远镜应有多大的放大率?解:D λθ22.10= )(24.21031055022.179m D =⨯⨯⨯=--⨯-=⨯⨯⨯⨯⨯=''=Γ969310180606060067πϕ11. 若要使照相机感光胶片能分辨m μ2线距,(1)感光胶片的分辨率至少是没毫米多少线;(2)照相机镜头的相对孔径f D至少是多大?(设光波波长550nm ) 解:)(50010213mm N 线=⨯=-3355.01490=≈'NfD12. 一台显微镜的数值孔径为0。
高中物理:光学-光的衍射光的衍射是光学中的经典知识点,其在多个领域都有着广泛的应用,例如显微镜、天文望远镜等。
本文将详细介绍光的衍射的基本概念、衍射定理、夫琅禾费衍射以及常见的实验方法。
一、光的衍射的基本概念光的衍射是指光通过一个孔或者通过物体表面的缝隙后,光波会扩散成为一组新的光波,这种现象被称为光的衍射。
在光的衍射中,光波会形成一些明暗交替的区域,这些区域被称为衍射图样,其形状和孔或者缝隙的大小和形状有关。
二、衍射定理衍射定理是光学中最重要的定理之一,它是描述从一个孔或者一个光源丝的发射的光经过另一个孔或者缝隙后产生的光的波前的变化情况。
衍射定理可以用来计算衍射图案的形状,以及通过使用光的衍射图案来确定物体的大小和形状。
衍射定理的公式如下所示:sinθ = nλ/d其中,θ是衍射角,n是衍射序数,λ是光的波长,d是孔或者缝隙的宽度。
三、夫琅禾费衍射夫琅禾费衍射是一种典型的衍射现象,它是一种发生在单缝或双缝上的衍射现象。
夫琅禾费衍射的衍射图样是一组纵向的亮暗条纹。
夫琅禾费衍射的公式如下所示:dsinθ = nλ其中,d是缝隙的大小,θ是衍射角,n是衍射序数,λ是光的波长。
四、实验方法实验方法是研究光的衍射现象的重要手段。
常见的光的衍射实验方法包括单缝衍射实验、双缝干涉实验、格点衍射实验等。
(1)单缝衍射实验单缝衍射实验是研究光的衍射现象的最简单的实验方法之一,它可以通过一个狭窄的孔洞使光波扩散成为一个圆形的波前来观察光的衍射现象。
(2)双缝干涉实验双缝干涉实验是研究光的干涉现象的重要实验方法,它可以通过两个狭缝使光波扩散成为一组具有干涉现象的亮暗条纹。
(3)格点衍射实验格点衍射实验是一种研究光的衍射现象的实验方法,它可以通过一个光栅来使光波扩散成为一组具有规律的亮暗条纹。
五、练习题1. 一束波长为500nm的光穿过一个宽度为0.3mm的单缝后,经过距离1m的观察屏时,其衍射图样的第五个主极大的位置距离中心线的距离是多少?参考答案:0.30mm2. 光通过一组双缝(缝距为0.1mm,缝宽为0.05mm),在距离屏幕40cm处出现了一组亮暗条纹。
光学光的衍射现象及衍射公式解析光学领域是研究光的传播、干涉和衍射等现象的学科。
光的衍射现象是光学中一项重要的现象,它是光通过一个或多个孔或物体后所产生的偏离直线传播方向的现象。
在本文中,我们将详细介绍光的衍射现象以及相关的衍射公式。
一、光的衍射现象光的衍射现象是由于光传播过程中的波动性导致的。
当光通过一个孔或物体时,由于它的衍射现象,光束会出现偏折和扩散。
这种现象可以用两个经典的衍射实验来进行说明。
1. 杨氏双缝干涉实验杨氏双缝干涉实验是用来观察光的衍射现象的经典实验之一。
在实验中,一束单色光通过两个相邻的狭缝,然后在屏幕上形成一系列交替的明暗条纹。
这些条纹是由光波传播过程中的衍射现象引起的,通过观察这些条纹的位置和间距,我们可以研究光的波长和干涉特性。
2. 单缝衍射实验单缝衍射实验也是常用的观察光的衍射现象的实验之一。
在实验中,一束单色光通过一个狭缝后,在屏幕上形成一个中央亮度较大的主极大,以及两侧亮度逐渐减弱的次级极大。
这些亮度的变化是由光波经过狭缝后形成的波前衍射引起的。
二、光的衍射公式光的衍射现象可以用一些数学公式来描述和分析。
在实际应用中,我们常用的两个衍射公式是夫琅禾费衍射公式和菲涅尔衍射公式。
1. 夫琅禾费衍射公式夫琅禾费衍射公式是用来描述光通过一个狭缝或一个圆孔后的衍射现象的公式。
根据夫琅禾费衍射公式,通过一个狭缝或圆孔的光衍射角度与光的波长和狭缝(或圆孔)的尺寸有关。
2. 菲涅尔衍射公式菲涅尔衍射公式是用来描述光通过一个平面透光物体后的衍射现象的公式。
通过菲涅尔衍射公式,我们可以计算出经过平面透光物体后的光的强度分布,并且可以通过调整物体的形状和尺寸来控制光的传播和衍射特性。
三、应用与研究通过对光的衍射现象和衍射公式的研究,人们可以更好地理解和应用光学现象。
在实际生活和工业应用中,光的衍射现象广泛应用于光学显微镜、光学成像、光纤通信等领域。
同时,光的衍射现象也是研究光波性质和计算光传播的基础之一。
光的衍射与干涉知识点总结光的衍射和干涉现象是光学中非常重要的概念,它们揭示了光的波动性本质,在现代科学和技术中有着广泛的应用。
接下来,让我们一起深入了解光的衍射与干涉的相关知识点。
一、光的衍射光的衍射是指光在传播过程中遇到障碍物或小孔时,偏离直线传播而进入几何阴影区域,并在屏上出现光强不均匀分布的现象。
衍射现象可以用惠更斯菲涅耳原理来解释。
该原理指出,波阵面上的每一点都可以看作是一个新的次波源,这些次波源发出的次波在空间相遇时会相互叠加,从而形成新的波面。
衍射的类型主要有菲涅耳衍射和夫琅禾费衍射。
菲涅耳衍射是指光源和观察屏距离衍射屏都较近的情况,这时需要考虑倾斜因子的影响。
夫琅禾费衍射则是指光源和观察屏距离衍射屏都无限远(或相当于无限远)的情况,计算相对简单。
单缝衍射是一种常见的衍射现象。
当一束平行光垂直照射在宽度为a 的单缝上时,在屏幕上会出现明暗相间的条纹。
中央条纹最亮最宽,两侧条纹亮度逐渐减弱,且间距逐渐增大。
其光强分布可以用公式表示,其中暗纹位置满足a sinθ =kλ(k = ±1,±2,),而明纹位置满足a sinθ =(2k + 1)λ/2 (k = ±1,±2,)。
圆孔衍射的特点是中央是一个明亮的圆斑,称为艾里斑。
艾里斑的大小与圆孔的直径和光的波长有关。
衍射光栅是由大量等宽等间距的平行狭缝组成的光学元件。
通过衍射光栅,光会发生多缝干涉和单缝衍射的综合效应,从而在屏幕上形成明亮而狭窄的谱线。
二、光的干涉光的干涉是指两束或多束光在相遇区域内,光强重新分布,形成稳定的明暗相间条纹的现象。
产生干涉的条件有三个:两束光的频率相同、振动方向相同以及相位差恒定。
杨氏双缝干涉实验是证明光的干涉现象的经典实验。
在杨氏双缝实验中,屏幕上会出现等间距的明暗相间的条纹,其条纹间距与双缝间距、双缝到屏幕的距离以及光的波长有关,可以用公式Δx =λL/d 来计算,其中Δx 为条纹间距,L 为双缝到屏幕的距离,d 为双缝间距,λ 为光的波长。
光学光的衍射和干涉光学:光的衍射和干涉在光学领域,光的衍射和干涉是重要的研究内容,它们展示了光的波动性质以及干涉现象的产生和应用。
光的衍射和干涉不仅在科学研究中有着广泛的应用,还在光学仪器设计和技术发展中发挥着重要作用。
本文将分析光的衍射和干涉的基本原理以及其在日常生活和科学研究中的应用。
一、光的衍射光的衍射是指光线通过一个较小孔隙或在物体边缘形成的小孔隙时,发生与直线传播不同的现象。
光线通过小孔隙后不再是直线传播,而是发生弯曲并产生一系列明暗相间的圆环或条纹。
这种现象可以通过菲涅尔衍射公式来描述。
菲涅尔衍射公式是描述光通过小孔隙时的干涉效应的数学表达式。
根据该公式,当光通过孔径较小的障碍物时,形成的衍射图样由中央明亮的主极大区域和周围一系列暗纹和明纹组成。
这一现象是由光的波动性质决定的,表明光是一种波动性质的电磁辐射。
光的衍射在光学研究中有着广泛应用。
例如,光的衍射可以用于显微镜和望远镜等光仪器的设计中,以增强光学成像的分辨率。
此外,在天文学领域,光的衍射还被用于测量星星的角直径和确定星体的位置等重要观测任务中。
光的衍射还被应用于红外线光谱学和生物医学成像等其他领域。
二、光的干涉光的干涉是指两束或多束光线相遇形成的明暗条纹的现象。
当光线从不同方向或不同路径到达一个点时,会出现互相增强或互相抵消的干涉效应,形成明暗相间的干涉纹。
光的干涉在两种典型情况下可以发生:干涉薄膜和杨氏干涉。
干涉薄膜是指薄膜表面反射的两束光线相遇形成的干涉现象。
当光线从介质中斜入射到薄膜表面上时,部分光线被反射,部分光线被透射,形成两束相干光线。
这两束光线再次相遇时,会发生干涉现象。
根据薄膜的厚度和光的波长,干涉纹的亮暗变化可以被用来分析薄膜的厚度和光的性质。
杨氏干涉是由两束光线的干涉引起的现象,其中一束光线通过一个狭缝,而另一束光线是绕过狭缝的。
当这两束光线再次相遇时,会形成干涉条纹。
杨氏干涉现象被广泛应用于科学研究和实验中,例如用于测量光的波长、质量和测量材料的折射率。