《层次分析法简介》
- 格式:ppt
- 大小:208.50 KB
- 文档页数:21
层次分析法一、层次分析法概述层次分析法(Analytic Hierarchy Process )是美国运筹学家T. L. Saaty教授于20世纪70年代初期提出的一种简便、灵活而又实用的多方案或多目标的决策方法,它是一种定性和定量相结合的、系统化的、层次化的分析方法,是一种具有定性分析与定量分析相结合的决策方法,可将决策者对复杂对象的决策思维过程系统化、模型化、数量化。
其基本思想是通过分析复杂问题包含的各种因素及其相互关系,将问题所研究的全部元素按不同的层次进行分类,标出上一层与下层元素之间的联系,形成一个多层次结构。
在每一层次,均按某一准则对该层元素进行相对重要性判断,构造判断矩阵,并通过解矩阵特征值问题,确定元素的排序权重,最后再进一步计算出各层次元素对总目标的组合权重,为决策问题提供数量化的决策依据。
层次分析法特别适用于无结构问题的建模。
自1982年被介绍到我国以来,由于它在处理复杂的决策问题上的实用性和有效性,以及其系统灵活简洁的优点,迅速地在我国社会经济各个领域内,如能源系统分析、城市规划、经济管理、科研评价行为科学、军事指挥、运输、农业、教育、人才、医疗、环境保护、冲突求解及决策预报等领域得到了广泛的重视和应用。
二、层次分析法的基本思想基本思想层次分析法的采用先分解后综合的系统思想,整理、综合人们的主观判断,将所要分析的问题层次化,根据问题的性质和要达到的总目标,将问题分解成不同的组成因素,按照因素间的相互关系及隶属关系,将因素按不同层次聚集组合,形成一个多层分析结构模型,最终归结为最低层(方案、措施、指标等)、中间层(准则层)、最高层(总目标)。
把实际问题转化为分析同层因素间相对重要程度的权重值或相对优劣次序的问题,使定性分析与定量分析有机结合,实现定量化决策。
三、确定权重值的基本原理人们在进行社会、经济以及科学管理领域问题的系统分析中,面临的常常是一个相互关联、相互制约的众多因素构成的复杂而往往缺少定量数据的系统。
层次分析法1. 简介层次分析法(Analytic Hierarchy Process,AHP)是一种常用的定性与定量相结合的多标准决策分析方法。
它由美国学者托马斯·L·萨亨于1970年提出,被广泛应用于各种决策问题中。
2. 原理层次分析法的基本思想是将复杂的决策问题分解为一系列具有层次结构的子问题,然后通过对这些子问题的比较与权重评估,最终得出整体问题的决策结果。
2.1 层次结构在层次分析法中,决策问题被组织成一个层次结构。
层次结构通常包括三个层次:目标层、准则层和方案层。
•目标层:表示决策问题的最终目标,通常只有一个。
•准则层:用于评价方案的一组准则,通常包括两个或更多的准则。
•方案层:表示可选择的方案,每个方案都和准则层有关联。
每个层次下面还可以有更多的子层次,形成一个完整的层次结构。
2.2 权重评估层次分析法通过对准则层的权重评估,来确定各个准则的重要性。
权重评估通常采用两两比较的方式,即对准则层中的两个准则进行比较,判断它们的相对重要性。
对两个准则的比较通常使用1至9的九分比较法,其中1表示相同重要性,3表示轻微重要性差异,5表示中等重要性差异,7表示强烈重要性差异,9表示极端重要性差异。
通过两两比较得到的比较矩阵可以利用特征向量法计算权重向量,从而确定准则层的权重。
2.3 方案评估在确定了准则层的权重后,可以利用这些权重对方案进行评估和排序。
通常使用两两比较法将方案与准则进行比较,得到方案层的比较矩阵。
然后,利用准则层的权重和方案层的比较矩阵计算加权矩阵,最终得到方案层的权重。
3. 应用场景层次分析法在各个领域中都有广泛的应用,尤其适用于以下情况:•多准则决策问题:当决策问题涉及到多个准则时,层次分析法可以帮助决策者合理权衡各个准则的重要性,从而做出最佳决策。
•项目评估与选择:当需要评估和选择多个候选项目时,层次分析法可以通过对项目的多个准则进行比较和权重评估,为项目选择提供科学依据。
层次分析法层次分析法是一种应用广泛的决策分析方法,它通过构建层次结构和比较矩阵,来对不同因素进行排序和权重分配,帮助决策者做出合理的决策。
本文将介绍层次分析法的基本原理、应用领域以及一些实际案例。
一、层次分析法的基本原理层次分析法由美国运筹学家托马斯·L·塞蒂提出,它是一种定性和定量相结合的分析方法,能够综合考虑多个因素的重要性和相互关系。
它的基本原理如下:1. 层次结构:将决策问题分解成多个层次,从上至下逐级细化。
顶层是目标层,中间层是准则层,最底层是方案层。
2. 比较矩阵:在每个层次内,通过构建比较矩阵来判断各因素之间的重要性。
比较矩阵是一个n×n的正互反矩阵,其中n是该层次因素的个数。
通过对各因素进行两两比较,得出相对重要性的判断。
3. 加权优先向量:通过对比较矩阵进行特征向量的计算,可以得到各个因素的权重。
特征向量是对比较矩阵的主特征值对应的特征向量,也称为特征向量法。
4. 一致性检验:通过一致性指标和一致性比率的计算,判断构建的比较矩阵是否合理。
一致性指标表示了矩阵的内部一致性程度,一致性比率则是对一致性指标进行归一化,判断是否满足一致性。
5. 综合评价:通过计算得出的权重,进行乘积运算和累加运算,得到方案的综合评价值。
综合评价值越高,方案越优。
二、层次分析法的应用领域层次分析法在许多领域都有广泛的应用,包括经济学、管理学、环境科学、社会科学等。
下面是一些常见的应用领域:1. 投资决策:在投资决策中,可以将不同的投资方案作为方案层,通过比较各个方案的风险性、收益性等因素,来确定投资方向。
2. 供应链管理:在供应链管理中,可以将供应商的价格、质量、交货周期等因素作为准则层,通过比较不同供应商的重要性,来选择合适的供应商。
3. 项目评估:在项目评估中,可以将项目的成本、时限、风险等因素作为准则层,通过比较各个因素的重要性,来评估项目的可行性和优先级。
4. 人才选拔:在人才选拔中,可以将候选人的学历、工作经验、专业技能等因素作为准则层,通过比较各个因素的重要性,来确定最佳人选。
价值评价方法之层次分析法简介一、层次分析法简介层次分析法(Analytic Hierarchy Process 简计为AHP),是一种定性分折与定量分折相结合的决策分析方法,由美国学者Saaty在70年代提出。
它将决策者对复杂对象的决策思维过程系统化、模型化、数学化,可用于求解多目标、多准则的决策问题。
特别是它将决策者的经验判断予以量化,并能在一定程度上检验主观影响,使得评价更趋合理。
AHP法广泛适用于目标(因素)结构复杂且缺乏必要的数据,甚至是没有明确结构的问题。
二、应用范围1、决定影响某一目标的多因素的权重或优先顺序:如宏观预警检测系统,房地产价格评估(确定影响地价主要因素的权重),城市土地利用效果等。
方法:选择达成总目标的几个准则,再就每个准则选择若干个指标甚至在此基础上分解成为更低层次的指标,最终得出最低层次的指标相对于总目标的权重或优先次序。
2、在应用1的基础上,评价可达成某一目标的多个备选方案的优劣:如房地产投资方案的选择,规划方案的选择等。
就每个方案对最低层次的指标打分,再对每个方案的总分进行比较。
三、层次分析法SAATY模型应用步骤用层次分析法作系统分析,首先将问题层次化,根据问题的性质和要达到的目标,将问题分解为不同的组成因素,并按照因素间的相互关系将因素按不同层次聚集组合,形成一个多层次的分析结构模型,最终把系统分析归结为低层相对于最高层的相对重要性权值的确定或相对优劣次序的排序问题。
具体步骤如下: 1、建立层次结构模型。
把复杂的问题分解为称之为元素的各个组成部分,并按元素间的相互关系及隶属关系形成不同的层次。
一般最高层次即问题的总目标。
层次数与问题的复杂程度和需分析的详尽程度有关。
假定有三层,A层(一个因素),B层(m个因素),C层(n个因素),并假定C层的各因素都受到B层各因素的支配。
2、构造两两比较的判断矩阵。
建立层次结构后,上下层之间元素的隶属关系就被确定了,假定上一层次的元素Bk作为准则,对下一层元素CI,C2.………Cn有支配关系.我们的目的是要在准则Bl下按它们的相对重要性赋予C1,C2,………cn相应的权重。