(完整word版)2018年上海高考数学试卷
- 格式:doc
- 大小:250.63 KB
- 文档页数:6
2018年普通高等学校招生全国统一考试(上海卷)数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、填空题(本大题共有12题,满分54分第1-6题每题4分,第7-12题每题5分)1. 行列式的值为2.双曲线的渐近线方程为______3.的二项展开式中的系数为(结果用数值表示)4.设常数,函数,若的反函数的图像经过点,则=5.已知复数满足,(是虚数单位),则6.记等差数列的前项和为,若,则7.已知.若函数为奇函数,且在上递减,则8.在平面直角坐标系中,已知点是轴上的两个动点,且,则最小值为9.有编号互不相同的五个砝码,期中5克,3克,1克砝码各两个,从中随机挑选三个,则这三个砝码的总质量为9克的概率为___________(结果用最简分数表示) 10.设等比数列的通项公式为,前项和为,若,则___________11.已知常数,函数的图像经过点,若,则= 12.已知实数1212,,,x x y y 满足:22221122121211,1,2x y x y x x y y ,则11221122x y x y 的最大值为_____二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑. 13.设p 是椭圆22153x y 上的动点,则p 到该椭圆的两个焦点的距离之和为( )A.22B.23C.25D.4214.已知a R ,则“1a ”是“11a ”的( )。
绝密★启用前2017年普通高等学校招生全国统一考试(上海卷)数学试卷(满分150分,考试时间120分钟)1、考生注意2、1.本场考试时间120分钟,试卷共4页,满分150分,答题纸共2页.3、2.作答前,在答题纸正面填写姓名、准考证号,反面填写姓名,将核对后的条形码贴在答题纸指定位置.4、3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.5、4.用2B 铅笔作答选择题目,用黑色字迹钢笔、水笔或圆珠笔作答非选择题目.一.填空题目(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分)1.已知集合{1,2,3,4}A ,集合{3,4,5}B ,则A B ∩2.若排列数6654m P ,则m3.不等式11x x 的解集为4.已知球的体积为36 ,则该球主视图的面积等于5.已知复数z 满足30z z,则||z6.设双曲线22219x y b(0)b 的焦点为1F 、2F ,P 为该双曲线上的一点,若1||5PF ,则2||PF7.如图,以长方体1111ABCD A B C D 的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若1DB 的坐标为(4,3,2),则1AC的坐标为8.定义在(0,) 上的函数()y f x 的反函数为1()y f x ,若31,0()(),0x x g x f x x为奇函数,则1()2f x 的解为9.已知四个函数:①y x ;②1y x;③3y x ;④12y x .从中任选2个,则事件“所选2个函数的图像有且仅有一个公共点”的概率为10.已知数列{}n a 和{}n b ,其中2n a n ,*n N ,{}n b的项是互不相等的正整数,若对于任意*n N ,{}n b 的第na 项等于{}n a 的第nb 项,则149161234lg()lg()b b b b b b b b11.设1a 、2a R ,且121122sin 2sin(2) ,则12|10| 的最小值等于12.如图,用35个单位正方形拼成一个矩形,点1P、2P 、3P 、4P 以及四个标记为“”的点在正方形的顶点处,设集合1234{,,,}P P P P ,点P ,过P 作直线P l ,使得不在P l 上的“”的点分布在P l 的两侧.用1()P D l 和2()P D l 分别表示P l 一侧和另一侧的“”的点到P l 的距离之和.若过P 的直线P l 中有且只有一条满足12()()P P D l D l ,则 中所有这样的P 为二.选择题目(本大题共4题,每题5分,共20分)13.关于x 、y 的二元一次方程组50234x y x y的系数行列式D 为()A.0543 B.1024 C.1523 D.605414.在数列{}n a 中,1(2nn a ,*n N ,则lim n n a ()A.等于12B.等于0C.等于12D.不存在15.已知a 、b 、c 为实常数,数列{}n x 的通项2n x an bn c ,*n N ,则“存在*k N ,使得100kx 、200kx 、300kx 成等差数列”的一个必要条件是()A.0aB.0b C.0c D.20a b c 16.在平面直角坐标系xOy 中,已知椭圆221:1364x y C 和222:19y C x .P 为1C 上的动点,Q 为2C 上的动点,w 是OP OQ的最大值.记{(,)|P Q P 在1C 上,Q 在2C 上,且}OP OQ w,则 中元素个数为()A.2个B.4个C.8个D.无穷个三.解答题(本大题共5题,共14+14+14+16+18=76分)17.如图,直三棱柱111ABC A B C 的底面为直角三角形,两直角边AB 和AC 的长分别为4和2,侧棱1AA 的长为5.(1)求三棱柱111ABC A B C 的体积;(2)设M 是BC 中点,求直线1A M 与平面ABC 所成角的大小.18.已知函数221()cos sin 2f x x x,(0,)x .(1)求()f x 的单调递增区间;(2)设△ABC 为锐角三角形,角A所对边a ,角B 所对边5b ,若()0f A ,求△ABC 的面积.19.根据预测,某地第n *()n N 个月共享单车的投放量和损失量分别为n a 和n b (单位:辆),其中4515,1310470,4n n n a n n,5n b n ,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n 个月底的单车容纳量24(46)8800n S n (单位:辆).设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?20.在平面直角坐标系xOy 中,已知椭圆22:14x y ,A 为 的上顶点,P 为 上异于上、下顶点的动点,M 为x 正半轴上的动点.(1)若P在第一象限,且||OP ,求P的坐标;(2)设83(,)55P ,若以A 、P 、M 为顶点的三角形是直角三角形,求M 的横坐标;(3)若||||MA MP ,直线AQ 与 交于另一点C ,且2AQ AC ,4PQ PM ,求直线AQ 的方程.21.设定义在R 上的函数()f x 满足:对于任意的1x 、2x R ,当12x x 时,都有12()()f x f x .(1)若3()1f x ax ,求a 的取值范围;(2)若()f x 为周期函数,证明:()f x 是常值函数;(3)设()f x 恒大于零,()g x 是定义在R 上、恒大于零的周期函数,M 是()g x 的最大值.函数()()()h x f x g x .证明:“()h x 是周期函数”的充要条件是“()f x 是常值函数”.2017年普通高等学校招生全国统一考试上海--数学试卷考生注意1.本场考试时间120分钟,试卷共4页,满分150分,答题纸共2页.2.作答前,在答题纸正面填写姓名、准考证号,反面填写姓名,将核对后的条形码贴在答题纸指定位置.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用2B 铅笔作答选择题目,用黑色字迹钢笔、水笔或圆珠笔作答非选择题目.一、填空题目(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)考生应在答题纸的相应位置直接填写结果.1.已知集合1,2,3,4,3,4,5A B ,则A B ∩.【解析】本题考查集合的运算,交集,属于基础题【答案】3,42.若排列数6P 654m ,则m .【解析】本题考查排列的计算,属于基础题【答案】33.不等式11x x 的解集为.【解析】本题考查分式不等式的解法,属于基础题【答案】,0 4.已知球的体积为36 ,则该球主视图的面积等于.【解析】本题考查球的体积公式和三视图的概念,343633R R ,所以29S R ,属于基础题【答案】95.已知复数z 满足30z z,则z .【解析】本题考查复数的四则运算和复数的模,2303z z z设z a bi ,则22230,a b abi a b,z【答案】6.设双曲线 222109x y b b 的焦点为12F F 、,P为该双曲线上的一点.若15PF ,则2PF.【解析】本题考查双曲线的定义和性质,1226PF PF a (舍),2122611PF PF a PF 【答案】117.如图,以长方体1111ABCD A B C D 的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系.若1DB 的坐标为(4,3,2),则1AC的坐标是.【解析】本题考查空间向量,可得11(400)(03,2)(432)A C AC,,,,,,,属于基础题【答案】(432) ,,8.定义在(0,) 上的函数()y f x 的反函数-1()y f x .若31,0,()(),0x x g x f x x 为奇函数,则-1()=2f x 的解为.【解析】本题考查函数基本性质和互为反函数的两个函数之间的关系,属于中档题10,0,()31()()13x x x x g x g x g x,所以1()13x f x,当2x 时,8()9f x,所以18(29f【答案】9x9.已知四个函数:①y x ;②1y x;③3y x ;④12y x .从中任选2个,则事件“所选2个函数的图像有且仅有一个公共点”的概率为.【解析】本题考查事件的概率,幂函数的图像画法和特征,属于基础题总的情况有:42C 6种,符合题意的就两种:①和③,①和④【答案】1310.已知数列na 和 nb ,其中2,N na n n , nb 的项是互不相等的正整数.若对于任意N n n b ,中的第n a 项等于 n a 中的第n b 项,则149161234lg lg b b b b b b b b.【解析】本题考查数列概念的理解,对数的运算,属于中档题由题意可得:222222114293164(),,,n n a b n n b a b b b b b b b b b b ,所以214916123412341234lg lg =2lg lg b b b b b b b b b b b b b b b b 【答案】211.设12R ,,且121122sin 2sin(2) ,则1210 的最小值等于.【解析】考查三角函数的性质和值域,121111,1,12sin 32sin(2)3,,要使121122sin 2sin(2) ,则111122221=122sin 2,,1=12sin(2)4k k k Z k1212min min31010(2)44k k,当122=11k k 时成立【答案】412.如图,用35个单位正方形拼成一个矩形,点1234,,,P P P P 以及四个标记为“▲”的点在正方形的顶点处.设集合1234=,,,P P P P ,点P .过P 作直线P l ,使得不在P l 上的“▲”的点分布在P l 的两侧.用1()P D l 和2()P D l 分别表示P l 一侧和另一侧的“▲”的点到P l 的距离之和.若过P 的直线P l 中有且只有一条满足12()=()P P D l D l ,则 中所有这样的P 为.【解析】本题考查有向距离,以左下角的顶点为原点建立直角坐标系。
2018年北京市高考数学试卷(理科)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.(5分)已知集合A={x||x|<2},B={﹣2,0,1,2},则A∩B=()A.{0,1}B.{﹣1,0,1}C.{﹣2,0,1,2} D.{﹣1,0,1,2} 2.(5分)在复平面内,复数的共轭复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)执行如图所示的程序框图,输出的s值为()A.B.C.D.4.(5分)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为()A. f B. f C. f D.f5.(5分)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1 B.2 C.3 D.46.(5分)设,均为单位向量,则“|﹣3|=|3+|”是“⊥”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.(5分)在平面直角坐标系中,记d为点P(cosθ,sinθ)到直线x﹣my﹣2=0的距离.当θ、m变化时,d的最大值为()A.1 B.2 C.3 D.48.(5分)设集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2},则()A.对任意实数a,(2,1)∈A B.对任意实数a,(2,1)∉AC.当且仅当a<0时,(2,1)∉A D.当且仅当a≤时,(2,1)∉A二、填空题共6小题,每小题5分,共30分。
9.(5分)设{a n}是等差数列,且a1=3,a2+a5=36,则{a n}的通项公式为.10.(5分)在极坐标系中,直线ρcosθ+ρsinθ=a(a>0)与圆ρ=2cosθ相切,则a=.11.(5分)设函数f(x)=cos(ωx﹣)(ω>0),若f(x)≤f()对任意的实数x都成立,则ω的最小值为.12.(5分)若x,y满足x+1≤y≤2x,则2y﹣x的最小值是.13.(5分)能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是.14.(5分)已知椭圆M:+=1(a>b>0),双曲线N:﹣=1.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为;双曲线N的离心率为.三、解答题共6小题,共80分。
2018年高考真题—物理学科<上海卷)解读版本试卷共7页,满分l50分,考试时间l20分钟。
全卷包括六大题,第一、二大题为单项选择题,第三大题为多项选择题,第四大题为填空题,第五大题为实验题,第六大题为计算题。
考生注意:1、答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号,并将核对后的条形码贴在指定位置上,在答题纸反面清楚地填写姓名。
2、第一、第二和第三大题的作答必须用28铅笔涂在答题纸上相应区域内与试卷题号对应的位置,需要更改时,必须将原选项用橡皮擦去,重新选择。
第四、第五和第六大题的作答必须用黑色的钢笔或圆珠笔写在答题纸上与试卷题号对应的位置(作图可用铅笔> 。
3、第30、31、32、33题要求写出必要的文字说明、方程式和重要的演算步骤。
只写出最后答案,而未写出主要演算过程的,不能得分。
有关物理量的数值计算问题,答案中必须明确写出数值和单位。
一.单项选择题(共16分,每小题2分。
每小题只有一个正确选项。
>1.电磁波与机械波具有的共同性质是(A>都是横波(B>都能传输能量(C>都能在真空中传播(D>都具有恒定的波速答案:B解读:电磁波与机械波具有的共同性质是都能传输能量,选项B正确。
2.当用一束紫外线照射锌板时,产生了光电效应,这时(A>锌板带负电(B>有正离子从锌板逸出(C>有电子从锌板逸出(D>锌板会吸附空气中的正离子答案:C解读:当用一束紫外线照射锌板时,产生了光电效应,有电子从锌板逸出,锌板带正电,选项C正确ABD错误。
3.白光通过双缝后产生的干涉条纹是彩色的,其原因是不同色光的(A>传播速度不同(B>强度不同(C>振动方向不同(D>频率不同答案:D解读:白光通过双缝后产生的干涉条纹是彩色的,其原因是不同色光的频率不同。
4.做简谐振动的物体,当它每次经过同一位置时,可能不同的物理量是(A>位移(B>速度(C>加速度(D>回复力答案:B解读:做简谐振动的物体,当它每次经过同一位置时,位移相同,加速度相同,位移相同,可能不同的物理量是速度,选项B正确。
一、填空题(每空2分,共20分)1、最优估计量应具有的性质为 、 和 最优估计量主要针对观测值中仅含 误差而言。
2、间接平差中,未知参数的选取要求满足 、 。
3已知条件平差的法方程为024322421=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡k k ,则PV V T = ,μ= , 1k p = ,2k p = 。
4、已知某平差问题,观测值个数为79,必要观测量个数为35,则按间接平差进行求解时,误差方程式个数为 ,法方程式个数为 。
5、已知某平差问题观测值个数为50,必要观测量个数为22,若选6个独立参数按具有参数的条件平差进行求解,则函数模型个数为 ,联系数法方程式的个数为 ;若在22个独立参数的基础上,又选了4个非独立参数按具有条件的参数平差进行求解,则函数模型个数为 ,联系数法方程式的个数为 。
6、条件平差中条件方程的个数等于________________,所选参数的个数等于_______________。
7、已知真误差向量1⨯∆n 及其权阵P ,则单位权中误差公式为 ,当权阵P 为 此公式变为中误差公式。
二、计算题(每题2分,共20分)1、条件平差的法方程等价于:A 、0=+W K Q KB 、0=+W Q K WC 、0=+W P K WD 、0=+W P K K答:______2、水准测量中,10km 观测高差值权为8,则5km 高差之权为:A 、2B 、4C 、8D 、16答:______3、已知⎥⎦⎤⎢⎣⎡=∆3112P ,则2L p 为:A 、2B 、3C 、25D 、35答:______4、间接平差中,L Q ˆ为:A 、TA AN 1- B 、A N A T1-C 、T A AN P11--- D 、A N A P T 11---答:______5、观测条件是指:A)产生观测误差的几个主要因素:仪器,观测者,外界条件等的综合B)测量时的几个基本操作:仪器的对中,整平,照准,度盘配置,读数等要素的综合 C)测量时的外界环境:温度,湿度,气压,大气折光……等因素的综合. D)观测时的天气状况与观测点地理状况诸因素的综合答:______ 6、已知观测向量()L L L T=12的协方差阵为D L =--⎛⎝ ⎫⎭⎪3112,若有观测值函数Y 1=2L 1,Y 2=L 1+L 2,则σy y 12等于?(A)1/4 (B)2 (C)1/2 (D)4 答:_____ 7、已知观测向量()L L L T=12的权阵P L =--⎛⎝ ⎫⎭⎪2113,单位权方差σ025=,则观测值L 1的方差σL 12等于:(A)0.4 (B)2.5 (C)3 (D)253答:____ 8、已知测角网如下图,观测了各三角形的内角,判断下列结果,选出正确答案。
2018年上海市高考数学试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果. 1.(4分)(2018?上海)行列式的值为18 .【考点】OM:二阶行列式的定义.菁优网版权所有【专题】11 :计算题;49 :综合法;5R :矩阵和变换.【分析】直接利用行列式的定义,计算求解即可.【解答】解:行列式=4×5﹣2×1=18.故答案为:18.【点评】本题考查行列式的定义,运算法则的应用,是基本知识的考查.2.(4分)(2018?上海)双曲线﹣y2=1的渐近线方程为±.【考点】KC:双曲线的性质.菁优网版权所有【专题】11 :计算题.【分析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.【解答】解:∵双曲线的a=2,b=1,焦点在x轴上而双曲线的渐近线方程为y=±∴双曲线的渐近线方程为y=±故答案为:y=±【点评】本题考察了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想3.(4分)(2018?上海)在(1+x)7的二项展开式中,x2项的系数为21 (结果用数值表示).【考点】DA:二项式定理.菁优网版权所有【专题】38 :对应思想;4O:定义法;5P :二项式定理.【分析】利用二项式展开式的通项公式求得展开式中x2的系数.【解答】解:二项式(1+x)7展开式的通项公式为T r+1=?x r,令r=2,得展开式中x2的系数为=21.故答案为:21.【点评】本题考查了二项展开式的通项公式的应用问题,是基础题.4.(4分)(2018?上海)设常数a∈R,函数f (x)=1og2(x+a).若f(x)的反函数的图象经过点(3,1),则a= 7 .【考点】4R:反函数.菁优网版权所有【专题】11 :计算题;33 :函数思想;4O:定义法;51 :函数的性质及应用.【分析】由反函数的性质得函数f(x)=1og2(x+a)的图象经过点(1,3),由此能求出a.【解答】解:∵常数a∈R,函数f(x)=1og2(x+a).f(x)的反函数的图象经过点(3,1),∴函数f(x)=1og2(x+a)的图象经过点(1,3),∴log2(1+a)=3,解得a=7.故答案为:7.【点评】本题考查实数值的求法,考查函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.5.(4分)(2018?上海)已知复数z满足(1+i)z=1﹣7i(i是虚数单位),则|z|= 5 .【考点】A8:复数的模.菁优网版权所有【专题】38 :对应思想;4A :数学模型法;5N :数系的扩充和复数.【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,再由复数求模公式计算得答案.【解答】解:由(1+i)z=1﹣7i,得,则|z|=.故答案为:5.【点评】本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.6.(4分)(2018?上海)记等差数列{a n}的前n 项和为S n,若a3=0,a6+a7=14,则S7= 14 .【考点】85:等差数列的前n项和.菁优网版权所有【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】利用等差数列通项公式列出方程组,求出a1=﹣4,d=2,由此能求出S7.【解答】解:∵等差数列{a n}的前n项和为S n,a3=0,a6+a7=14,∴,解得a1=﹣4,d=2,∴S7=7a1+=﹣28+42=14.故答案为:14.【点评】本题考查等差数列的前7项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.7.(5分)(2018?上海)已知α∈{﹣2,﹣1,﹣,1,2,3},若幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,则α=﹣1 .【考点】4U:幂函数的概念、解析式、定义域、值域.菁优网版权所有【专题】11 :计算题;34 :方程思想;4O:定义法;51 :函数的性质及应用.【分析】由幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,得到a是奇数,且a<0,由此能求出a的值.【解答】解:∵α∈{﹣2,﹣1,,1,2,3},幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,∴a是奇数,且a<0,∴a=﹣1.故答案为:﹣1.【点评】本题考查实数值的求法,考查幂函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.8.(5分)(2018?上海)在平面直角坐标系中,已知点A(﹣1,0)、B(2,0),E、F是y轴上的两个动点,且||=2,则的最小值为﹣3 .【考点】9O:平面向量数量积的性质及其运算.菁优网版权所有【专题】11 :计算题;35 :转化思想;41 :向量法;5A :平面向量及应用.【分析】据题意可设E(0,a),F(0,b),从而得出|a﹣b|=2,即a=b+2,或b=a+2,并可求得,将a=b+2带入上式即可求出的最小值,同理将b=a+2带入,也可求出的最小值.【解答】解:根据题意,设E(0,a),F(0,b);∴;∴a=b+2,或b=a+2;且;∴;当a=b+2时,;∵b2+2b﹣2的最小值为;∴的最小值为﹣3,同理求出b=a+2时,的最小值为﹣3.故答案为:﹣3.【点评】考查根据点的坐标求两点间的距离,根据点的坐标求向量的坐标,以及向量坐标的数量积运算,二次函数求最值的公式.9.(5分)(2018?上海)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是(结果用最简分数表示).【考点】CB:古典概型及其概率计算公式.菁优网版权所有【专题】11 :计算题;34 :方程思想;49 :综合法;5I :概率与统计.【分析】求出所有事件的总数,求出三个砝码的总质量为9克的事件总数,然后求解概率即可.【解答】解:编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,3个数中含有1个2;2个2,没有2,3种情况,所有的事件总数为:=10,这三个砝码的总质量为9克的事件只有:5,3,1或5,2,2两个,所以:这三个砝码的总质量为9克的概率是:=,故答案为:.【点评】本题考查古典概型的概率的求法,是基本知识的考查.10.(5分)(2018?上海)设等比数列{a n}的通项公式为a n=q n﹣1(n∈N*),前n项和为S n.若=,则q= 3 .【考点】8J:数列的极限.菁优网版权所有【专题】11 :计算题;34 :方程思想;35 :转化思想;49 :综合法;55 :点列、递归数列与数学归纳法.【分析】利用等比数列的通项公式求出首项,通过数列的极限,列出方程,求解公比即可.【解答】解:等比数列{a n}的通项公式为a=q n ﹣1(n∈N*),可得a=1,1因为=,所以数列的公比不是1,,a n+1=q n.可得====,可得q=3.故答案为:3.【点评】本题考查数列的极限的运算法则的应用,等比数列求和以及等比数列的简单性质的应用,是基本知识的考查.11.(5分)(2018?上海)已知常数a>0,函数f(x)=的图象经过点P(p,),Q(q,).若2p+q=36pq,则a= 6 .【考点】3A:函数的图象与图象的变换.菁优网版权所有【专题】35 :转化思想;51 :函数的性质及应用.【分析】直接利用函数的关系式,利用恒等变换求出相应的a值.【解答】解:函数f(x)=的图象经过点P (p,),Q(q,).则:,整理得:=1,解得:2p+q=a2pq,由于:2p+q=36pq,所以:a2=36,由于a>0,故:a=6.故答案为:6【点评】本题考查的知识要点:函数的性质的应用,代数式的变换问题的应用.12.(5分)(2018?上海)已知实数x1、x2、y1、y2满足:x12+y12=1,x22+y22=1,x1x2+y1y2=,则+的最大值为+.【考点】7F:基本不等式及其应用;IT:点到直线的距离公式.菁优网版权所有【专题】35 :转化思想;48 :分析法;59 :不等式的解法及应用.【分析】设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由圆的方程和向量数量积的定义、坐标表示,可得三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d2之和,由两平行线的距离可得所求最大值.【解答】解:设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由x12+y12=1,x22+y22=1,x1x2+y1y2=,可得A,B两点在圆x2+y2=1上,且?=1×1×cos∠AOB=,即有∠AOB=60°,即三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d2之和,显然A,B在第三象限,AB所在直线与直线x+y=1平行,可设AB:x+y+t=0,(t>0),由圆心O到直线AB的距离d=,可得2=1,解得t=,即有两平行线的距离为=,即+的最大值为+,故答案为:+.【点评】本题考查向量数量积的坐标表示和定义,以及圆的方程和运用,考查点与圆的位置关系,运用点到直线的距离公式是解题的关键,属于难题.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.(5分)(2018?上海)设P是椭圆=1上的动点,则P到该椭圆的两个焦点的距离之和为()A.2 B.2 C.2 D.4【考点】K4:椭圆的性质.菁优网版权所有【专题】11 :计算题;49 :综合法;5D :圆锥曲线的定义、性质与方程.【分析】判断椭圆长轴(焦点坐标)所在的轴,求出a,接利用椭圆的定义,转化求解即可.【解答】解:椭圆=1的焦点坐标在x轴,a=,P是椭圆=1上的动点,由椭圆的定义可知:则P到该椭圆的两个焦点的距离之和为2a=2.故选:C.【点评】本题考查椭圆的简单性质的应用,椭圆的定义的应用,是基本知识的考查.14.(5分)(2018?上海)已知a∈R,则“a>1”是“<1”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分又非必要条件【考点】29:充分条件、必要条件、充要条件.菁优网版权所有【专题】11 :计算题;34 :方程思想;4O:定义法;5L :简易逻辑.【分析】“a>1”?“”,“”?“a>1或a<0”,由此能求出结果.【解答】解:a∈R,则“a>1”?“”,“”?“a>1或a<0”,∴“a>1”是“”的充分非必要条件.故选:A.【点评】本题考查充分条件、必要条件的判断,考查不等式的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.15.(5分)(2018?上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()A.4 B.8 C.12 D.16【考点】D8:排列、组合的实际应用.菁优网版权所有【专题】11 :计算题;38 :对应思想;4R:转化法;5O :排列组合.【分析】根据新定义和正六边形的性质可得答案.【解答】解:根据正六边形的性质,则D1﹣A1ABB1,D1﹣A1AFF1满足题意,而C1,E1,C,D,E,和D1一样,有2×6=12,当A1ACC1为底面矩形,有2个满足题意,当A1AEE1为底面矩形,有2个满足题意,故有12+2+2=16故选:D.【点评】本题考查了新定义,以及排除组合的问题,考查了棱柱的特征,属于中档题.16.(5分)(2018?上海)设D是含数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是()A.B.C.D.0【考点】3A:函数的图象与图象的变换.菁优网版权所有【专题】35 :转化思想;51 :函数的性质及应用;56 :三角函数的求值.【分析】直接利用定义函数的应用求出结果.【解答】解:由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合.我们可以通过代入和赋值的方法当f(1)=,,0时,此时得到的圆心角为,,0,然而此时x=0或者x=1时,都有2个y与之对应,而我们知道函数的定义就是要求一个x只能对应一个y,因此只有当x=,此时旋转,此时满足一个x只会对应一个y,因此答案就选:B.故选:B.【点评】本题考查的知识要点:定义性函数的应用.三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(14分)(2018?上海)已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的大小.【考点】LM:异面直线及其所成的角;L5:旋转体(圆柱、圆锥、圆台);LF:棱柱、棱锥、棱台的体积.菁优网版权所有【专题】11 :计算题;31 :数形结合;41 :向量法;5F :空间位置关系与距离;5G :空间角.【分析】(1)由圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4能求出圆锥的体积.(2)以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,利用向量法能求出异面直线PM与OB所成的角.【解答】解:(1)∵圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4,∴圆锥的体积V===.(2)∵PO=4,OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,∴以O为原点,OA为x轴,OB为y轴,OP 为z轴,建立空间直角坐标系,P(0,0,4),A(2,0,0),B(0,2,0),M(1,1,0),O(0,0,0),=(1,1,﹣4),=(0,2,0),设异面直线PM与OB所成的角为θ,则cosθ===.∴θ=arccos.∴异面直线PM与OB所成的角的为arccos.【点评】本题考查圆锥的体积的求法,考查异面直线所成角的正切值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.18.(14分)(2018?上海)设常数a∈R,函数f(x)=asin2x+2cos2x.(1)若f(x)为偶函数,求a的值;(2)若f()=+1,求方程f(x)=1﹣在区间[﹣π,π]上的解.【考点】GP:两角和与差的三角函数;GS:二倍角的三角函数.菁优网版权所有【专题】11 :计算题;38 :对应思想;4R:转化法;58 :解三角形.【分析】(1)根据函数的奇偶性和三角形的函数的性质即可求出,(2)先求出a的值,再根据三角形函数的性质即可求出.【解答】解:(1)∵f(x)=asin2x+2cos2x,∴f(﹣x)=﹣asin2x+2cos2x,∵f(x)为偶函数,∴f(﹣x)=f(x),∴﹣asin2x+2cos2x=asin2x+2cos2x,∴2asin2x=0,∴a=0;(2)∵f()=+1,∴asin+2cos2()=a+1=+1,∴a=,∴f(x)=sin2x+2cos2x=sin2x+cos2x+1=2sin (2x+)+1,∵f(x)=1﹣,∴2sin(2x+)+1=1﹣,∴sin(2x+)=﹣,∴2x+=﹣+2kπ,或2x+=π+2kπ,k∈Z,∴x=﹣π+kπ,或x=π+kπ,k∈Z,∵x∈[﹣π,π],∴x=或x=或x=﹣或x=﹣【点评】本题考查了三角函数的化简和求值,以及三角函数的性质,属于基础题.19.(14分)(2018?上海)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S中的成员仅以自驾或公交方式通勤.分析显示:当S中x%(0<x<100)的成员自驾时,自驾群体的人均通勤时间为f(x)=(单位:分钟),而公交群体的人均通勤时间不受x影响,恒为40分钟,试根据上述分析结果回答下列问题:(1)当x在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族S的人均通勤时间g(x)的表达式;讨论g(x)的单调性,并说明其实际意义.【考点】5B:分段函数的应用.菁优网版权所有【专题】12 :应用题;33 :函数思想;4C :分类法;51 :函数的性质及应用.【分析】(1)由题意知求出f(x)>40时x 的取值范围即可;(2)分段求出g(x)的解析式,判断g(x)的单调性,再说明其实际意义.【解答】解;(1)由题意知,当30<x<100时,f(x)=2x+﹣90>40,即x2﹣65x+900>0,解得x<20或x>45,∴x∈(45,100)时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;(2)当0<x≤30时,g(x)=30?x%+40(1﹣x%)=40﹣;当30<x<100时,g(x)=(2x+﹣90)?x%+40(1﹣x%)=﹣x+58;∴g(x)=;当0<x<32.5时,g(x)单调递减;当32.5<x<100时,g(x)单调递增;说明该地上班族S中有小于32.5%的人自驾时,人均通勤时间是递减的;有大于32.5%的人自驾时,人均通勤时间是递增的;当自驾人数为32.5%时,人均通勤时间最少.【点评】本题考查了分段函数的应用问题,也考查了分类讨论与分析问题、解决问题的能力.20.(16分)(2018?上海)设常数t>2.在平面直角坐标系xOy中,已知点F(2,0),直线l:x=t,曲线Γ:y2=8x(0≤x≤t,y≥0).l 与x轴交于点A、与Γ交于点B.P、Q分别是曲线Γ与线段AB上的动点.(1)用t表示点B到点F的距离;(2)设t=3,|FQ|=2,线段OQ的中点在直线FP上,求△AQP的面积;(3)设t=8,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上?若存在,求点P的坐标;若不存在,说明理由.【考点】KN:直线与抛物线的位置关系.菁优网版权所有【专题】35 :转化思想;4R:转化法;5D :圆锥曲线的定义、性质与方程.【分析】(1)方法一:设B点坐标,根据两点之间的距离公式,即可求得|BF|;方法二:根据抛物线的定义,即可求得|BF|;(2)根据抛物线的性质,求得Q点坐标,即可求得OD的中点坐标,即可求得直线PF的方程,代入抛物线方程,即可求得P点坐标,即可求得△AQP的面积;(3)设P及E点坐标,根据直线k PF?k FQ=﹣1,求得直线QF的方程,求得Q点坐标,根据+=,求得E点坐标,则()2=8(+6),即可求得P点坐标.【解答】解:(1)方法一:由题意可知:设B (t,2t),则|BF|==t+2,∴|BF|=t+2;方法二:由题意可知:设B(t,2t),由抛物线的性质可知:|BF|=t+=t+2,∴|BF|=t+2;(2)F(2,0),|FQ|=2,t=3,则|FA|=1,∴|AQ|=,∴Q(3,),设OQ的中点D,D(,),k QF==﹣,则直线PF方程:y=﹣(x﹣2),联立,整理得:3x2﹣20x+12=0,解得:x=,x=6(舍去),∴△AQP的面积S=××=;(3)存在,设P(,y),E(,m),则k PF==,k FQ=,直线QF方程为y=(x﹣2),∴y Q=(8﹣2)=,Q(8,),根据+=,则E(+6,),∴()2=8(+6),解得:y2=,∴存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上,且P(,).【点评】本题考查抛物线的性质,直线与抛物线的位置关系,考查转化思想,计算能力,属于中档题.21.(18分)(2018?上海)给定无穷数列{a n},若无穷数列{b n}满足:对任意n∈N*,都有|b n ﹣a n|≤1,则称{b n}与{a n}“接近”.(1)设{a n}是首项为1,公比为的等比数列,b n=a n+1+1,n∈N*,判断数列{b n}是否与{a n}接近,并说明理由;(2)设数列{a n}的前四项为:a1=1,a2=2,a3=4,a4=8,{b n}是一个与{a n}接近的数列,记集合M={x|x=b i,i=1,2,3,4},求M中元素的个数m;(3)已知{a n}是公差为d的等差数列,若存在数列{b n}满足:{b n}与{a n}接近,且在b2﹣b1,b3﹣b2,…,b201﹣b200中至少有100个为正数,求d的取值范围.【考点】8M:等差数列与等比数列的综合.菁优网版权所有【专题】34 :方程思想;48 :分析法;54 :等差数列与等比数列.【分析】(1)运用等比数列的通项公式和新定义“接近”,即可判断;(2)由新定义可得a n﹣1≤b n≤a n+1,求得b i,i=1,2,3,4的范围,即可得到所求个数;(3)运用等差数列的通项公式可得a n,讨论公差d>0,d=0,﹣2<d<0,d≤﹣2,结合新定义“接近”,推理和运算,即可得到所求范围.【解答】解:(1)数列{b n}与{a n}接近.理由:{a n}是首项为1,公比为的等比数列,可得a n=,b n=a n+1+1=+1,则|b n﹣a n|=|+1﹣|=1﹣<1,n∈N*,可得数列{b n}与{a n}接近;(2){b n}是一个与{a n}接近的数列,可得a n﹣1≤b n≤a n+1,数列{a n}的前四项为:a1=1,a2=2,a3=4,a4=8,可得b1∈[0,2],b2∈[1,3],b3∈[3,5],b4∈[7,9],可能b1与b2相等,b2与b3相等,但b1与b3不相等,b4与b3不相等,集合M={x|x=b i,i=1,2,3,4},M中元素的个数m=3或4;(3){a n}是公差为d的等差数列,若存在数列{b n}满足:{b n}与{a n}接近,可得a n=a1+(n﹣1)d,①若d>0,取b n=a n,可得b n+1﹣b n=a n+1﹣a n=d >0,则b2﹣b1,b3﹣b2,…,b201﹣b200中有200个正数,符合题意;②若d=0,取b n=a1﹣,则|b n﹣a n|=|a1﹣﹣a1|=<1,n∈N*,可得b n+1﹣b n=﹣>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中有200个正数,符合题意;③若﹣2<d<0,可令b2n﹣1=a2n﹣1﹣1,b2n=a2n+1,则b2n﹣b2n﹣1=a2n+1﹣(a2n﹣1﹣1)=2+d>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中恰有100--WORD格式--专业资料--可编辑---个正数,符合题意;④若d≤﹣2,若存在数列{b n}满足:{b n}与{a n}接近,即为a n﹣1≤b n≤a n+1,a n+1﹣1≤b n+1≤a n+1+1,可得b n+1﹣b n≤a n+1+1﹣(a n﹣1)=2+d≤0,b2﹣b1,b3﹣b2,…,b201﹣b200中无正数,不符合题意.综上可得,d的范围是(﹣2,+∞).【点评】本题考查新定义“接近”的理解和运用,考查等差数列和等比数列的定义和通项公式的运用,考查分类讨论思想方法,以及运算能力和推理能力,属于难题.--。
试卷类型:A2018年高职高考第一次模拟考试数 学 试 题注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的,答案无效。
4.考生必须保持答题卡的整洁。
考试结束后,将答题卡交回。
一、选择题:本大题共15小题,每小题5分,满分75分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合{}2,A a =,{}4B =,且{}1,2,4A B =U 则a =( )A .4B .3C .2D .12.函数0.2log (1)x -的定义域为( )A (1,2)B ](1,2C []1,2D )1,2⎡⎣3.已知,a b 是实数,则“0a =”是“()30a b -=”的( )A .充分非必要条件B .必要非充分条件C .充分必要条件D .非充分非必要条件4.不等式2560x x --≤的解集是( )A . {}23x x -≤≤B .{}61x x -≤≤C . {}16x x -≤≤D .{}16x x x ≥≤或5.下列函数中,在区间(0,+∞)上为增函数的是( )A .y =x +1B .y =(x -1)2C .y =2-xD .y =log 0.5(x +1)6.函数cos 2y x ⎛⎫=- ⎪⎝⎭π在区间,43ππ⎡⎤⎢⎥⎣⎦上的最大值是( ) A .1 B .3 C .2 D .127.已知向量a r =(3,1),b r =(-2,1),则2a b -r r =( )。
2018年高考理数真题试卷(全国Ⅱ卷)一、选择题1.1+2i1−2i=( )A. −45−35i B. −45+35i C. −35−45i D. −35+45i2.已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z}.则A中元素的个数为()A. 9B. 8C. 5D. 43.函数f(x)=e x−e−xx2的图像大致为( )A. B.C. D.4.已知向量a→,b→满足|a→|=1, a→⋅b→=−1 ,则a→·(2a→-b→)=()A. 4B. 3C. 2D. 05.双曲线x2a2−y2b2=1(a>0,b>0)的离心率为√3,则其渐近线方程为()A. y=±√2xB. y=±√3xC. y=±√22x D. y=±√32x6.在ΔABC中,cos C2=√55,BC=1,AC=5则AB=()A. 4√2B. √30C. √29D. 2√57.为计算S=1−12+13−14+⋅⋅⋅+199−1100,设计了右侧的程序框图,则在空白框中应填入()A. i=i+1B. i=i+2C. i=i+3D. i=i+48.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )A. 112 B. 114 C. 115 D. 1189.在长方形ABCD-A 1B 1C 1D 1中,AB=BC=1,AA 1= √3 ,则异面直线AD 1与DB 1所成角的余弦值为( ) A. 15 B. √56C. √55D. √2210.若 f(x)=cosx −sinx 在 [−a,a] 是减函数,则a 的最大值是( ) A. π4 B. π2 C. 3π4 D. π11.已知 f(x) 是定义为 (−∞,+∞) 的奇函数,满足 f(1−x)=f(1+x) 。
2018 年一般高等学校招生全国一致考试( Ⅰ卷 )文科数学注意事项:1.答卷前,考生务势必自己的九名、考生号等填写在答题卡和试卷指定地点上.2.回答选择题时,选出每题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需变动,用橡皮擦洁净后,再选涂其余答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题(此题共 12 小题,每题 5 分,共60 分.在每题给出的四个选项中,只有一项是切合题目要求的.)1.已知会合 A 0,2 ,B 2 , 1,0 ,1,2 ,则AIB ()A. 0,2 B. 1,2 C. 0 D. 2, 1,0 ,1,21 i,则 z ()2.设z 2i1 iA.0 B.1C. 1 D. 2 23.某地域经过一年的新乡村建设,乡村的经济收入增添了一倍.实现翻番.为更好地认识该地域乡村的经济收入变化状况,统计了该地域新乡村建设前后乡村的经济收入组成比率.获得以下饼图:则下边结论中不正确的选项是()A.新乡村建设后,栽种收入减少B.新乡村建设后,其余收入增添了一倍以上C.新乡村建设后,养殖收入增添了一倍D.新乡村建设后,养殖收入与第三家产收入的总和超出了经济收入的一半4.记 S n为等差数列a n的前n项和.若 3S3 S2 S4, a1 2 ,则 a3 ()A.12 B.10 C.10 D. 125.设函数 f x x 3a 1 x 2ax .若 f x 为奇函数, 则曲线 yf x 在点 0 ,0 处的切线方程为()A . y2xB . y xC . y 2xD . y x6.在 △ ABC 中, AD 为 BC 边上的中线,uuurE 为 AD 的中点,则 EB ()A . 3 uuur1 uuurB . 1 uuur 3 uuur4 AB4 AC 4 AB AC4 C . 3 uuur 1 uuur D . 1 uuur 3 uuur 4 AB4 AC4 AB AC47.某圆柱的高为 2,底面周长为 16,其三视图以下图,圆柱表面上的点 M 在正视图上的对应点为 A ,圆柱表面上的点 N 在左视图上的对应点为 B ,则在此圆柱 侧面上,从 M 到 N的路径中,最短路径的长度为( )A .2 17B .2 5C .3D .28.设抛物线 C :y24 x 的焦点为 F ,过点2 ,0 且斜率为2的直线与 C 交于 M , N 两点,3uuuur uuur ()则FM FNA .5B . 6C .7D . 89.已知函数 f xx, ≤0 , f xf x x a (),若 g x 存在 2 个零点, 则 a 的exln x ,x 0取值范围是A . 1,0B . ,C . 1,D . 1,10.下列图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆组成,三个半圆的直径分别为直角三角形ABC 的斜边 BC ,直角边 AB , AC , △ ABC 的三边所围成的地区记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1 , p 2 , p 3 ,则( )A . p 1 p 2B . p 1 p 3C . p 2 p 3D . p 1 p 2p 3211.已知双曲线 C :xy 2 1 , O 为坐标原点, F 为 C 的右焦点,过 F 的直线与 C 的两条渐 3近线的交点分别为 M , N .若 △ OMN 为直角三角形,则 MN () A .3B . 3C .2 3D . 4212.设函数 f x2 x, ≤ 0,则知足 f x 1f 2x 的 x 的取值范围是()x 01,yA .,1B . 0,C . 1,0D . ,0二、填空题(此题共 4 小题,每题 5 分,共 20 分)13.已知函数 f xlog 2 x 2 a ,若 f 31 ,则 a________.x 2 y 2 ≤ 014.若 x ,y 知足拘束条件x ≥ 0 ,则 z3x 2 y 的最大值为 ________.y 1y ≤ 015.直线 y x 1 与圆 x 2y 2 2 y 3 0 交于 A ,B 两点,则 AB________ .16. △ ABC 的内角 A ,B ,C 的对边分别为 a ,b ,c ,已知 b sinC csin B4asin Bsin C ,b 2c 2 a 2 8 ,则 △ ABC 的面积为 ________.三、解答题(共70 分。
⎨ ⎩ 2 2020 年全国高考数学真题试卷及解析(上海卷)一、填空题(本大题共有 12 题,满分 54 分,第 1-6 题每题 4 分,第 7-12 题每题 5 分)1. 已知集合 A = {1 ,2, 4} ,集合 B = {2 ,4, 5} ,则 AB = .2. 计算: limn + 1= .n →∞3n -13. 已知复数 z = 1 - 2i (i 为虚数单位),则| z |=.4. 已知函数 f (x ) = x 3 , f '(x ) 是 f (x ) 的反函数,则 f '(x ) = .⎧x + y - 2 05. 已知 x 、 y 满足⎪x + 2 y - 3… 0 ,则z = y - 2x 的最大值为 .⎪ y 01 6. 已知行列式2 a ba b c d = 6 ,则 =.3 0 0c d7. 已知有四个数 1,2, a , b ,这四个数的中位数是 3,平均数是 4,则ab =.8. 已知数列{a } 是公差不为零的等差数列,且a + a = a ,则 a 1 + a 2 +⋯+ a 9= .n 1 10 9a 109. 从 6 个人挑选 4 个人去值班,每人值班一天,第一天安排 1 个人,第二天安排 1 个人,第三天安排 2 个人,则共有 种安排情况.2 10. 已知椭圆C : x + y= 1 的右焦点为 F ,直线l 经过椭圆右焦点 F ,交椭圆C 于 P 、Q 两4 3点(点 P 在第二象限),若点Q 关于 x 轴对称点为Q ' ,且满足PQ ⊥ FQ ' ,求直线l 的方程是 .11. 设a ∈ R ,若存在定义域为 R 的函数 f (x ) 同时满足下列两个条件: (1) 对任意的 x ∈ R , f (x ) 的值为 x 或 x 2 ;⎨ y = -1 - 4t⎨y = -1 + 3t ⎨y = -1 + 4t⎨y = 1 - 3t (2) 关于 x 的方程 f (x ) = a 无实数解,则 a 的取值范围是 .12.已知a 1 ,a 2 ,b 1 ,b 2 , ,b k (k ∈ N *) 是平面内两两互不相等的向量,满足| a 1 - a 2 |= 1 ,且| a i - b j |∈{1 , 2} (其中i = 1 ,2, j = 1 ,2, , k ) ,则k 的最大值是.二、选择题(本大题共 4 题,每题 5 分,共 20 分)13.下列等式恒成立的是( )A. a 2 + b 2… 2abB. a 2 + b 2…- 2abC. a + b …2D. a 2 + b 2…- 2ab14.已知直线方程3x + 4 y + 1 = 0 的一个参数方程可以是( )A. ⎧ x = 1 + 3t⎩ (t 为参数) B . ⎧x = 1 - 4t ⎩ (t 为参数)C . ⎧x = 1 - 3t ⎩ (t 为参数)D . ⎧x = 1 + 4t (t 为参数) ⎩15.在棱长为 10 的正方体 ABCD - A 1B 1C 1D 1 中,P 为左侧面 ADD 1 A 1 上一点,已知点 P 到 A 1 D 1的距离为 3, P 到 AA 1 的距离为 2,则过点 P 且与 A 1C 平行的直线相交的面是()A. AA 1 B 1 BB . BB 1C 1CC . CC 1D 1 DD . ABCD16.命题 p :存在a ∈ R 且a ≠ 0 ,对于任意的 x ∈ R ,使得 f (x + a ) < f (x ) + f (a );| ab |命题q1: f (x) 单调递减且f (x) > 0 恒成立;命题q2 : f (x) 单调递增,存在x< 0 使得f (x) = 0 ,则下列说法正确的是( )A.只有q1 是p 的充分条件B.只有q2是p 的充分条件C.q1 ,q2都是p 的充分条件D.q1,q2都不是p 的充分条件三、解答题(本大题共5 题,共14+14+14+16+18=76 分)17.(14 分)已知ABCD 是边长为1 的正方形,正方形ABCD 绕AB 旋转形成一个圆柱.(1)求该圆柱的表面积;(2)正方形ABCD 绕AB 逆时针旋转π至ABC D ,求线段CD 与平面ABCD 所成的角.2 1 1 118.(14 分)已知函数f (x) = sin ωx ,ω> 0 .(1)f (x) 的周期是4π,求ω,并求f (x) =1的解集;2(2)已知ω= 1 ,g(x) =f 2 (x) + 3 f (-x) f (π-x) ,x ∈[0 ,π] ,求g(x) 的值域.246 ⎨19.(14 分)在研究某市场交通情况时,道路密度是指该路段上一定时间内通过的车辆数除以时间,车辆密度是该路段一定时间内通过的车辆数除以该路段的长度,现定义交通流量为 v = q, x 为道路密度, q 为车x 辆密度.⎧100 - 135 (1)x , 0 < x < 40 v = f (x ) = ⎪3. ⎪⎩-k (x - 40) + 85, 40剟x 80(1) 若交通流量v > 95 ,求道路密度 x 的取值范围;(2) 已知道路密度 x = 80 ,交通流量v = 50 ,求车辆密度q 的最大值.x 2 y 2 Γ2 2 220.(16 分)已知双曲线Γ1 : 4 - = 1与圆 b2 2 : x + y = 4 + b (b > 0) 交于点 A (x A , y A ) (第一象限),曲线Γ 为Γ1 、Γ2 上取满足 x >| x A | 的部分.(1) 若 x A = ,求b 的值;(2) 当b=5 ,Γ2 与 x 轴交点记作点 F 1 、F 2 ,P 是曲线Γ 上一点,且在第一象限,且| PF 1 |= 8 ,求∠F 1 PF 2 ;(3) 过点 D (0, b 2+ 2) 斜率为- b的直线l 与曲线Γ 只有两个交点,记为 M 、 N ,用b 表示2OM ON ,并求OM ON 的取值范围.21.(18 分)已知数列{a n } 为有限数列,满足| a 1 - a 2 |剟| a 1 - a 3 | ⋯? | a 1 - a m | ,则称{a n } 满足性质 P .(1) 判断数列 3、2、5、1 和 4、3、2、5、1 是否具有性质 P ,请说明理由;(2) 若a 1 = 1 ,公比为q 的等比数列,项数为 10,具有性质 P ,求q 的取值范围;(3) 若{a n } 是 1,2,3, ,m 的一个排列(m …4) ,{b n } 符合b k = a k +1 (k = 1,2, ,m - 1) ,{a n } 、{b n } 都具有性质 P ,求所有满足条件的数列{a n } .212 + (-2)2 5 5 3 y 3 x ⎨ ⎩4. 3 x参考答案1. {2 , 4}【解析】因为 A = {1 ,2, 3} , B = {2 ,4, 5} ,则 A B = {2 , 4} .故答案为:{2 , 4} .2.13【解析】lim n + 1 = lim1 + 1 n =1 + lim 1 n →∞ n = 1 + 0 = 1,故答案为: 1.n →∞ 3n -1 n →∞ 3 -1 n3 - lim 1 n →∞ n 3 - 0 3 33.【解析】由 z = 1 - 2i ,得| z |= = .故答案为: .【解析】由 y = f (x ) = x 3 ,得 x = ,把 x 与 y 互换,可得 f (x ) = x 3 的反函数为 f -1(x ) = .故答案为: 3 x .5.-1⎧x + y - 2 0【解析】由约束条件⎪x + 2 y - 3… 0 作出可行域如图阴影部分,⎪ y …0 5⎨x + 2 y - 3 = 0 ⎨y = 1化目标函数 z = y - 2x 为 y = 2x + z ,由图可知,当直线 y = 2x + z 过 A 时,直线在 y 轴上的截距最大,联立⎧x + y - 2 = 0 ⎩ ,解得⎧x = 1 ,即 A (1,1) .⎩z 有最大值为1- 2⨯1 = -1.故答案为: -1 .6.21 【解析】行列式 2a b c d = 6 ,可得3a b= 6 ,解得 a b= 2 . 3 0 0c d c d故答案为:2.7.36【解析】因为四个数的平均数为 4,所以a + b = 4 ⨯ 4 - 1 - 2 = 13 ,因为中位数是 3,所以 2 + a = 3 ,解得a = 4 ,代入上式得b = 13 - 4 = 9 ,2所以ab = 36 ,故答案为:36.8.278【解析】根据题意,等差数列{a n } 满足a 1 + a 10 = a 9 ,即a 1 + a 1 + 9d = a 1 + 8d ,变形可得a 1 = -d ,所以 a 1+ a 2 +⋯+ a 9 =9a 1 + 9 ⨯ 8d 2=9a 1 + 36d = -9d + 36d = 27 .a 10a 1 + 9da 1 + 9d -d + 9d86 5 4 2 故答案为:27 .89.180【解析】根据题意,可得排法共有C 1C 1C 2=180 种.故答案为:180.10. x + y - 1 = 02【解析】椭圆C :x+y= 1 的右焦点为 F (1, 0) ,4 3直线l 经过椭圆右焦点 F ,交椭圆C 于 P 、Q 两点(点 P 在第二象限),若点Q 关于 x 轴对称点为Q ' ,且满足 PQ ⊥ FQ ' ,可知直线l 的斜率为-1 ,所以直线l 的方程是: y = -(x - 1) ,即 x + y - 1 = 0 . 故答案为: x + y - 1 = 0 .11. (-∞ , 0) ⋃(0 ,1) ⋃(1 , +∞)【解析】根据条件(1)可得 f (0) = 0 或 f (1) =1, 又因为关于 x 的方程 f (x ) = a 无实数解,所以a ≠ 0 或 1,故 a ∈ (-∞ , 0) ⋃(0 ,1) ⋃(1 , +∞) , 故答案为: (-∞ , 0) ⋃(0 ,1) ⋃(1 , +∞) .12.6OA 2 = a 2 ⎨y = -1 - 4t⎩⎩ 【解析】如图,设OA 1 = a 1 , ,由| a 1 - a 2 |= 1 ,且| a i - b j |∈{1 , 2} ,分别以 A 1 , A 2 为圆心,以 1 和 2 为半径画圆,其中任意两圆的公共点共有 6 个.故满足条件的k 的最大值为 6.故答案为:6. 13.B【解析】 A .显然当a < 0 , b > 0 时,不等式a 2 + b 2… 2ab 不成立,故 A 错误;B . (a + b )2…0 ,∴ a 2 + b 2 + 2ab …0 ,∴ a 2 + b 2…- 2ab ,故 B 正确;C .显然当a < 0 , b < 0 时,不等式a + b …2 不成立,故C 错误;D .显然当a > 0 , b > 0 时,不等式a 2 + b 2… - 2ab 不成立,故 D 错误.故选: B .14.B【解析】⎧ x = 1 + 3t ⎩ (t 为参数)的普通方程为: x -1 =- 3 ,即4x + 3y - 1 = 0 ,不正确;y + 1 4⎧x = 1 - 4t⎨y = -1 + 3t (t 为参数)的普通方程为: x -1 =- 4 ,即3x + 4 y + 1 = 0 ,正确; y + 1 3⎧x = 1 - 3t⎨y = -1 + 4t(t 为参数)的普通方程为: x -1 =- 3 ,即4x + 3y - 1 = 0 ,不正确; y + 1 4 | ab |FM ⎩ ⎧x = 1 + 4t (t 为参数)的普通方程为:x -1 =- 4,即3x + 4 y - 7 = 0 ,不正确;故选: B . ⎨y = 1 - 3ty -1 315.D【解析】如图,由点 P 到 A 1 D 1 的距离为 3, P 到 AA 1 的距离为 2,可得 P 在△ AA 1D 内,过 P 作EF / / A 1 D ,且 EF AA 1 于 E , EF AD 于 F ,在平面 ABCD 中,过 F 作 FG / /CD ,交 BC 于G ,则平面 EFG / / 平面 A 1DC .连接 AC ,交FG 于 M ,连接 EM , 平面 EFG / / 平面 A DC ,平面 A AC ⋂平面 A DC = AC , 1111平面 A AC ⋂平面 EFM = EM ,∴ EM / / AC .11在∆EFM 中,过 P 作 PN / / EM ,且 PN 于N ,则 PN / / A 1C .线段 FM 在四边形 ABCD 内, N 在线段 FM 上,∴ N 在四边形 ABCD 内.∴过点 P 且与 A 1C 平行的直线相交的面是 ABCD .故选: D .16.C【解析】对于命题 q 1 :当 f (x ) 单调递减且 f (x ) > 0 恒成立时,当 a > 0 时,此时 x + a > x ,又因为 f (x ) 单调递减,所以 f (x + a ) < f (x )2 3 1 又因为 f (x ) > 0 恒成立时,所以 f (x ) < f (x ) + f (a ),所以 f (x + a ) < f (x ) + f (a ),所以命题 q 1 ⇒ 命题 p ,对于命题q 2 :当 f (x ) 单调递增,存在 x 0 < 0 使得 f (x 0 ) = 0 ,当 a = x 0 < 0 时,此时 x + a < x , f (a ) = f (x 0 ) = 0 ,又因为 f (x ) 单调递增,所以 f (x + a ) < f (x ) ,所以 f (x + a ) < f (x ) + f (a ),所以命题 p 2 ⇒ 命题 p ,所以 q 1 , q 2 都是 p 的充分条件,故选: C .17.【解析】(1)该圆柱的表面由上下两个半径为 1 的圆面和一个长为2π 、宽为 1 的矩形组成,∴ S = 2 ⨯ π ⨯12 + 2π ⨯1 = 4π .故该圆柱的表面积为4π . (2) 正方形 ABC 1 D 1 ,∴ AD 1 ⊥ AB ,又∠DAD = π,∴ AD ⊥ AD ,121AD AB = A ,且 AD 、 AB ⊂ 平面 ADB ,∴ AD 1 ⊥ 平面 ADB ,即 D 1 在面 ADB 上的投影为 A ,连接CD 1 ,则∠D 1CA 即为线段CD 1 与平面 ABCD 所成的角,而cos ∠D CA = AC = =6 ,∴线段CD 与平面 ABCD 所成的角为arccos 6 . CD 1 3 318.【解析】(1)由于 f (x ) 的周期是4π ,所以ω =2π= 1 ,所以 f (x ) = sin 1x . 4π 2 2令sin 1 x = 1 ,故 1 x = 2k π + π 或2k π + 5π ,整理得 x = 4k π + π 或 x = 4k π + 5π.22266 33故解集为{x | x = 4k π +π或 x = 4k π + 5π , k ∈ Z }.33(2)由于ω = 1 ,所以 f (x ) = sin x .所以g (x ) = sin 2 x + 3 sin(-x ) s in(π - x ) =1 - cos 2x - 3 sin 2x = - 3 sin 2x - 1 cos 2x + 1 = 1 - sin(2x + π) 2 2 2 2 2 2 2 61(1)x> 95 36 135 ( ) ⎨ A A由于 x ∈[0 , π ],所以 π 剟2x +π2π .46 631 剟sin(2x + π ) 1 ,故-1剟- sin(2x + π ) - 1 ,故- 1剟g (x ) 0 . 2 6 6 2 2所以函数 g (x ) 的值域为[- 1, 0] .219. 【解析】(1) ,∴v 越大, x 越小,∴v = f (x ) 是单调递减函数, k > 0 ,当 40剟x 80 时, v 最大为 85,于是只需令100 -135 ,解得x > 3 ,故道路密度 x 的取值范围为(3, 40) .(2)把 x = 80 , v = 50 代入v = f (x ) = -k (x - 40) + 85 中,得50 = -k 40 + 85 ,解得k = 7.8⎧100x - 1 x x , 0 < x < 40 ∴ q = vx = ⎪ ⎪- 7 ⎪⎩ 83 , (x - 40)x + 85x , 40剟x 80当0 < x < 40 时, q 单调递增, q < 100 ⨯ 40 -135 ⨯ (1)40⨯ 40 ≈ 4000 ; 3当 40剟x 80 时, q 是关于 x 的二次函数,开口向下,对称轴为 x =480 ,7此时q 有最大值,为- 7 ⨯ (480)2 + 120 ⨯ 480 = 28800> 4000 . 87 7 7故车辆密度q 的最大值为28800 .7⎧ x 2 y 2⎪ A - A= 1 20. 【解析】(1)由 x A = ,点 A 为曲线Γ1 与曲线Γ2 的交点,联立⎨ 4 b2,解 ⎪⎩x 2 + y 2 = 4 + b 2 v = qx2 5 1 + b 244 + b 2 得 y A = , b = 2 ;(2) 由题意可得 F 1 , F 2 为曲线Γ1 的两个焦点,由双曲线的定义可得| PF 1 | - | PF 2 |= 2a ,又| PF 1 |= 8 , 2a = 4 ,所以| PF 2 |= 8 - 4 = 4 ,因为b = ,则c = = 3 ,| PF |2 + | PF |2 - | F F |2所以| FF |= 6 ,在△ PF F 中,由余弦定理可得cos ∠F PF =121 21 2 1 22 | PF 1 | | PF 2 |= 64 + 16 - 36 = 11 ,由0 < ∠F PF< π ,可得∠F PF = arccos 11 ;2 ⨯ 8 ⨯ 4 16 121 2 16b 4 + b 24 + b 2| | (3) 设直线l : y = - x +,可得原点O 到直线l 的距离d = 2 2 2 = ,所以直线l 是圆的切线,设切点为 M ,所以k= 2 ,并设OM : y = 2 x 与圆x 2 + y 2 = 4 + b 2 联立,可得 x 2 + 4x 2 = 4 + b 2 , OMb b b 2可得 x = b , y = 2 ,即 M (b , 2) ,注意直线l 与双曲线的斜率为负的渐近线平行,所以只有当 y A > 2 时,直线l 才能与曲线Γ 有两个交点,⎧ x 2 y 2⎪ A - A= 12 b 4 由⎨ 4 b 2 ,可得 y A = , ⎪ 22 2 a + b 2 ⎩x A + y A = 4 + b所以有4 < b 44 + b 2,解得b 2 > 2 + 2 5 或b 2 < 2 - 2(舍去),因为OM 为 在OM 上的投影可得, OM ON = 4 + b 2 ,所以OM ON = 4 + b 2 > 6 + 2 ,则OM ON ∈(6 + 2 , +∞) .4 +5 5 ON 5 5 1 221.【解析】(1)对于数列3,2,5,1,有| 2 - 3 |= 1 ,| 5 - 3 |= 2 ,| 1 - 3 |= 2 ,满足题意,该数列满足性质P ;对于第二个数列4、3、2、5、1,| 3 - 4 |= 1 ,| 2 - 4 |= 2 ,| 5 - 4 |= 1.不满足题意,该数列不满足性质P .(2)由题意:| a -a q n|…|a -a q n-1 | ,可得:| q n-1| …| q n-1-1| ,n ∈{2 ,3,,9} ,1 1 1 1两边平方可得:q2n- 2q n+1…q2n-2- 2q n-1+1,整理可得:(q -1)q n-1[q n-1(q +1) -2]…0,当q…1时,得q n-1(q +1) -2…0此时关于n 恒成立,所以等价于n = 2 时,q(q + 1) -2…0 ,所以,(q + 2)(q -1)…0,所以q… - 2 ,或q…1,所以取q…1,当0 <q… 1时,得q n-1(q +1) - 2… 0 ,此时关于n 恒成立,所以等价于n = 2 时,q(q +1) - 2… 0 ,所以(q + 2)(q -1)… 0 ,所以-2剟q1,所以取0 <q… 1.当-1… q < 0 时:q n-1[q n-1(q +1) -2]… 0,当n 为奇数时,得q n-1(q +1) - 2… 0 ,恒成立,当n 为偶数时,q n-1(q +1) -2…0,不恒成立;故当-1… q < 0 时,矛盾,舍去.当q <-1 时,得q n-1[q n-1(q +1) - 2]… 0 ,当n 为奇数时,得q n-1(q +1) - 2… 0 ,恒成立,当n 为偶数时,q n-1(q +1) -2…0,恒成立;故等价于n = 2 时,q(q +1) -2…0,所以(q + 2)(q -1)…0,所以q…-2 或q…1,所以取q…-2 ,综上q ∈ (-∞,-2] (0, +∞) .(3)设a1=p ,p ∈{3 ,4,,m - 3 ,m - 2} ,因为a 1 = p , a 2 可以取 p - 1 ,或 p + 1 , a 3 可以取 p - 2 ,或 p + 2 ,如果a 2 或 a 3 取了 p - 3 或 p + 3 ,将使{a n } 不满足性质 P ;所以{a n } 的前 5 项有以下组合:① a 1 = p , a 2 = p - 1 ; a 3 = p + 1 ; a 4 = p - 2 ; a 5 = p + 2 ;② a 1 = p , a 2 = p - 1 ; a 3 = p + 1 ; a 4 = p + 2 ; a 5 = p - 2 ;③ a 1 = p , a 2 = p + 1 ; a 3 = p - 1 ; a 4 = p - 2 ; a 5 = p + 2 ;④ a 1 = p , a 2 = p + 1 ; a 3 = p - 1 ; a 4 = p + 2 ; a 5 = p - 2 ;对于①, b 1 = p - 1 , | b 2 - b 1 |= 2 , | b 3 - b 1 |= 1 ,与{b n } 满足性质 P 矛盾,舍去;对于②, b 1 = p - 1 , | b 2 - b 1 |= 2 , | b 3 - b 1 |= 3 , | b 4 - b 1 |= 2 与{b n } 满足性质 P 矛盾,舍去;对于③, b 1 = p + 1, | b 2 - b 1 |= 2 , | b 3 - b 1 |= 3 , | b 4 - b 1 |= 1 与{b n } 满足性质 P 矛盾,舍去;对于④ b 1 = p + 1, | b 2 - b 1 |= 2 , | b 3 - b 1 |= 1 ,与{b n } 满足性质 P 矛盾,舍去;所以 P ∈{3 ,4, , m - 3 , m - 2} ,均不能同时使{a n } 、{b n } 都具有性质P .当 p = 1 时,有数列{a n }:1,2,3, , m - 1 , m 满足题意.当 p = m 时,有数列{a n }: m , m -, ,3,2,1 满足题意.当 p = 2 时,有数列{a n }: 2 ,1,3, , m - 1 , m 满足题意.当 p = m - 1 时,有数列{a n }: m -1 , m , m - 2 , m - 3 , ,3,2,1 满足题意.所以满足题意的数列{a n } 只有以上四种。
2018年普通高等学校招生全国统一考试
上海 数学试卷
时间120分钟,满分150分
一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)
1.行列式41
25的值为_________.
2.双曲线2
214
x y -=的渐近线方程为_________. 3.在7(1)x +的二项展开式中,2x 项的系数为_________.(结果用数值表示)
4.设常数a R ∈,函数2()log ()f x x a =+。
若()f x 的反函数的图像经过点(3,1),则 a =_________.
5.已知复数z 满足(1)17i z i +=-(i 是虚数单位),则z =_________.
6.记等差数列{}n a 的前n 项和为n S ,若30a =,6714a a +=,则7S =_________.
7.已知12,1,,1,2,32α⎧
⎫∈---⎨⎬⎩⎭。
若幂函数()f x x α=为奇函数,且在(0,)+∞上递减,则 α=_________.
8.在平面直角坐标系中,已知点(1,0)A -,(2,0)B ,E 、F 是y 轴上的两个动点,且2EF =u u u r ,则AE BF •u u u r u u u r 的最小值为_________.
9.有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个。
从中随机选取三个,则这三个砝码的总质量为9克的概率是_________.(结果用最简分数表示)
10.设等比数列{}n a 的通项公式为1n n a q
-=(*n ∈N ),前n 项和为n S 。
若1
1lim 2n n n S a →+∞+=,则q =_________. 11.已知常数0a >,函数2()2x x f x ax =+的图像经过点6,5P p ⎛⎫ ⎪⎝⎭、1,5Q q ⎛⎫- ⎪⎝
⎭。
若236p q pq +=,则a =_________.
12.已知实数1x 、2x 、1y 、2y 满足:22111x y +=,22221x y +=,121212
x x y y +=
,则的最大值为_________.
二、选择题(本大题共有4题,满分20分,每题5分)
13.设P 是椭圆22
153
x y +=上的动点,则P 到该椭圆的两个焦点的距离之和为( ) (A
) (B
) (C
) (D
)14.已知a ∈R ,则“1a >”是“11a <”的( ) (A )充分非必要条件 (B )必要非充分条件
(C )充要条件 (D )既非充分又非必要条件
15.《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马。
设1AA 是正六棱柱的一条侧棱,如图。
若阳马以该正六棱柱的顶点为顶点、以1AA 为底面矩形的一边,则这样的阳马的个数是( )
(A )4 (B )8 (C )12 (D )16
16.设D 是含数1的有限实数集,()f x 是定义在D 上的函数。
若()f x 的图像绕原点逆时针旋转6
π后与原图像重合,则在以下各项中,(1)f 的可能取值只能是( ) A 1
(A
(B
)2 (C
)3
(D )0 三、解答题(本大题共有5题,满分76分)
17.(本题满分14分,第1小题满分6分,第2小题满分8分)
已知圆锥的顶点为P ,底面圆心为O ,半径为2.
(1)设圆锥的母线长为4,求圆锥的体积;
(2)设4PO =,OA 、OB 是底面半径,且90AOB ∠=︒,M 为线段AB 的中点,如图,求异面直线PM 与OB 所成的角的大小。
18.(本题满分14分,第1小题满分6分,第2小题满分8分)
设常数a ∈R ,函数2()sin 22cos f x a x x =+。
(1)若()f x 为偶函数,求a 的值;
(2
)若()14
f π
=
,求方程()1f x =-[,]ππ-上的解。
B
19.(本题满分14分,第1小题满分6分,第2小题满分8分)
某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时。
某地上班族S 中的成员仅以自驾或公交方式通勤。
分析显示:当S 中%x (0100x <<)的成员自驾时,自驾群体的人均通勤时间为
30,030,()1800290,30100x f x x x x <≤⎧⎪=⎨+-<<⎪⎩
(单位:分钟) 而公交群体的人均通勤时间不受x 影响,恒为40分钟。
试根据上述分析结果回答下列问题:
(1)当x 在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?
(2)求该地上班族S 的人均通勤时间()g x 的表达式;讨论()g x 的单调性,并说明其实际意义。
20.(本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分) 设常数2t >,在平面直角坐标系xOy 中,已知点(2,0)F ,直线l :x t =,曲线
Γ:28y x =(0x t ≤≤,0y ≥)
,l 与x 轴交于点A ,与Γ交于点B 。
P 、Q 分别是曲线Γ与线段AB 上的动点。
(1)用t 表示点B 到点F 的距离;
(2)设3t =,2FQ =,线段OQ 的中点在直线FP 上,求AQP △的面积;
(3)设8t =,是否存在以FP 、FQ 为邻边的矩形FPEQ ,使得点E 在Γ上?若存在,求点P 的坐标;若不存在,说明理由。
21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分) 给定无穷数列{}n a ,若无穷数列{}n b 满足:对任意*n ∈N ,都有1n n b a -≤,则称{}n b 与{}n a “接近”。
(1)设{}n a 是首项为1,公比为12
的等比数列,11n n b a +=+,*n ∈N 。
判断数列{}n b 是否与{}n a 接近,并说明理由;
(2)设数列{}n a 的前四项为:11a =,22a =,34a =,48a =,{}n b 是一个与{}n a 接近的数列,记集合{|,1,2,3,4}i M x x b i ===,求M 中元素的个数m ;
(3)已知{}n a 是公差为d 的等差数列。
若存在数列{}n b 满足:{}n b 与{}n a 接近,且在21b b -,32b b -,…,201200b b -中至少有100个为正数,求d 的取值范围。