常微分方程第二章
- 格式:doc
- 大小:1.13 MB
- 文档页数:24
常微分方程与动力系统第二章习题参考答案 1.证明:因为()t Φ是线性齐次系统(LH )的一个基本解矩阵,由定理2.5知()t Φ在区间J 上满足矩阵微分系统()M LH ,即.()()()t A t t Φ=Φ,.1()()()A t t t -=ΦΦ所以由()A t 确定的线性齐次系统(LH )必唯一。
2.证明:因为()t ϕ,()t ψ分别是.()x A t x=和.()T x A t x =-的解,所以111()()()nk k k nnk k k a d t A t t dt a ϕϕϕϕ==⎛⎫ ⎪ ⎪== ⎪ ⎪⎪ ⎪⎝⎭∑∑ ,11211111122222*121()()()nn k k k n n kn kn n n nnk a a a a a a a d t A t t dta a a a ψψψψψψ==⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=-ψ=-=- ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭∑∑ 因而1111112211(,)(,)(,),,nnk k k k k k nnkn k k nk k n n k a a d d d dt dt dt a a ψϕϕψψϕϕψϕψψϕψϕψϕ====⎡⎤⎛⎫⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥ ⎪-⎢⎥ ⎪⎪ ⎪⎢⎥ ⎪⎢⎥ ⎪ ⎪ ⎪⎢⎥=+= ⎪+⎢⎥ ⎪ ⎪ ⎪⎢⎥ ⎪-⎢⎥ ⎪⎪ ⎪⎢⎥⎪⎝⎭⎢⎥⎝⎭⎝⎭ ⎪⎣⎦⎢⎥⎝⎭⎣⎦∑∑∑∑ 11111111()0nnn n nnnnn n nnm m m m i ij j i ij j i mk k km k mk k km m m m m i j i j k k k k a a a a a a ϕψψϕϕψϕψϕψϕψ============-=+=-=-=∑∑∑∑∑∑∑∑∑∑∑∑所以(),()()()1nt t t t k kk ϕψϕψ≡≡∑=常数。
3.证明:设)t Φ(为系统.()x A t x=的一个基本解矩阵,则由定理2.11知[]1()Tt -Φ是系统.()Tx At x =-的基本解矩阵,由定理2.4知系统.()x A t x=满足初始条件00()x t x =的特解为100()))t t t x ϕ-=Φ(Φ(,[)0,0,t t ∈+∞由题可知)t Φ(与[]1()Tt -Φ在[)0,+∞上有界,从而由定理2.24知110()0k k t ∃=>和220()0k k t =>使得10120(),(),T t k t t t k t t -⎧Φ≤≤<+∞⎪⎨Φ≤≤<+∞⎪⎩,利用常数变易法公式(2.32),可知式.()()y A t y B t y=+的初始条件为00()y t y =的解满足1()()()()()()tt y t t t s B s y s ds ϕ-=+ΦΦ⎰因为1111()()(Ttttt---ΦΦ≤Φ所以12120()()(),tt y t k kx k k B s y s≤+≥⎰,利用格朗瓦尔不等式有12()120().tt k k B s dsy t k k x e⎰≤记12()12tt k k B s dsC k k e ⎰=设0()B t dt M +∞=<+∞⎰则()()tt B s ds B t dt M+∞≤=⎰⎰有1212k k MCk k e≤从而00(),y t C x t t ≤≥所以系统.()()y A t y B t y =+的一切解都在[)0,+∞上有界。
习题2-41.求解下列微分方程:(1)yx xy y --='22;解:令ux y =,则原方程化为uu u dx du x --=+212,即x dxdu u u =--122,积分得:c x u u u +=--+-ln 1ln 2111ln2 还原变量并化简得:3)()(y x c x y +=-(2)4252--+-='y x x y y ;解:由⎩⎨⎧=--=+-042052y x x y 得 ⎩⎨⎧-==21y x令2,1+=-=y v x u , 则有vu u v du dv --=22,由第一题的结果知此方程解为3)()(v u c u v +=-, 还原变量并化简得:.)1(33++=+-y x c x y(3)14212-+++='y x y x y ;解:令y x v 2+=, 则1212121-++=+=v v dx dy dx dv , 即1214-+=v v dx dv ,此方程为变量分离方程, 分离变量并积分得:c x v v +=+-14ln 8321,还原变量并化简得:c y x x y =++--184ln 348. (4)xy y x y -='33.解:①当0≠y 时,方程两边同时乘以32--y ,则233222--+-='-xy x y y , 令2-=y z , 则322x xz dxdz-=, 此方程为一阶线性方程,由公式得:122++=x ce z x还原变量得:122)1(2-++=x ce y x . ②0=y 也是方程的解.2. 利用适当的变换,求解下列方程: (1))cos(y x y -=';解:令y x u -=,则u dx dy dx du cos 11-=-=, ①当1cos ≠u 时,有dx udu =-cos 1, 即 dx u du=2sin 22,两边积分得:c x uctg +=221还原变量化简得:2sin 2sin 22cos yx c y x x y x -+-=-. ②当1cos =u 时,即πk x y 2+=)(Z k ∈也是方程的解. (2)0)()3(22=+++dv uv u du v uv ; 解:方程两边同时乘以u 则原方程化为:0)()3(2322=+++dv v u u du uv v u ,即 0)()3(2232=+++vdv u du uv dv u vdu u 此方程为全微分方程,则原方程的解为:c v u v u =+22321. (3))2(2)3(222yx y x dx dy y x -=++;解:原方程即为324222222++-=y x x y xdx ydy ,令u y v x ==22,,则324++-=v u vu dv du ,由⎩⎨⎧=++=-03024v u v u 得⎩⎨⎧-=-=21v u , 令⎩⎨⎧+=+=21v n u m ,则有n m n m dn dm +-=24令z n m=,则zn m =, 124+-=+=z z z n dn dz dn dm , 则有1)2)(1(+--=z z z n dn dz ,此方程为变量分离方程, 分离变量并积分得:n c zz ln 2)1(ln32+=--,还原变量并化简得:322222)32()1(-+-=+-y x c y x .(4)yy y x xxy x dx dy 8237323223-+-+=. 解:原方程即为823732222222-+-+=y x y x xdx ydy ,令22,x v y u ==,则823732-+-+=u v u v dv du ,由⎩⎨⎧=++=-+08230732u v u v ⎩⎨⎧==⇒21v u , 令⎩⎨⎧-=-=21v n u m , 则m n m n dn dm 2332++=,令z n m=,可将方程化为变量分离形方程, n dn dz zz =-+)2223(2,两边积分得:c n z z z +=---+ln 1ln 2111ln 432, 还原变量并化简得:)3()1(22522-+=--y x c y x .3. 求解下列微分方程: (1).2241xy y --='; 解:令xy z =, 则原方程可化为:)41(12-+-=z z x dx dz , ①当21≠z 时,即21≠xy 时方程为x dxdz z =--2)21(1 ,此方程为变量分离方程, 两边积分得:c x z +=-ln 211还原变量并化简得:cxx x x y ++=ln 121; ②当21=z 时,xy 21=是方程的特解. (2).1222++='xy y x y x ; 解:原方程即为:221x x y y y ++=', 令xy z =,则2)1(1+=z xdx dz ,此方程为变量分离方程, 分离变量积分得:c x z +=+-ln 11, 还原变量并化简得:cxx x x y +--=ln 11. 4. 试把二阶微分方程0)()(=+'+''y x q y x p y 化为一个黎卡提方程. 解:令⎰=udxe y , 则⎰='udxue y ,+⎰=''udxe u y 2⎰'udxe u ,代入原方程可得:=+'+''y x q y x p y )()(+⎰udxe u 2⎰'udxe u +)()(x q ue x p udx+⎰⎰udxe =0,即有:0)()(2=++'+x q u x p u u ,此方程为一个黎卡提方程.5. 求一曲线,使得过这一曲线上任一点的切线与该点向径的夹角等于45.解:设此曲线为)(x y y =,由题意得:1451==+-tg xy dx dy x y dx dy ,化简得:y x y x dx dy -+=, 此方程为齐次方程,解之得:c y x x y arctg =+-)ln(2122.6. 探照灯的反光镜(旋转面)应具有何种形状,才能使点光源发射的光束反射成平行线束?解:取点光源所在处为坐标原点,而x 轴平行于光的反射方向,建立三维坐标系.设所求曲面由曲线⎩⎨⎧==0)(z x f y 绕x 轴旋转而成,则求反射镜面问题归结为求 xy 平面上的曲线y=f(x)的问题.由题意及光的反射定律,可得到函数)(x f y =所应满足的微分方程式:22yx x ydx dy ++=,此方程为齐次方程, 解之得:)2(2x c c y +=,(其中c 为任意正常数).)2(2x c c y +=就是所求的平面曲线,它是抛物线,因此反射镜面的形状为旋转抛物面)2(22x c c z y +=+.习题2-51.求解下列微分方程:(1).0)()23(2232=++++dy y x dx y xy y x ;解:方程两边同乘xe33, 则)33()369(233323323=++++dy y e dx y e dy x e xydx e ydx x e x x x x x ,此方程为全微分方程,即 c y e y x e x x =+33233. (2).0)2(2=-+-dy e xy ydx y ;解:方程两边同乘y e y 21, 则 0)12(22=-+dy yxe dx e y y即01)2(22=-+dy ydy xe dx e yy 此方程为全微分方程,即有 c y xe y =-ln 2 .(3).0)3()63(2=+++dy xyy x dx y x ;解:方程两边同乘 xy , 则0)3()63(232=+++dy y x dx x y x即 0)36()3(232=+++dy y xdx dy x ydx x 此方程为全微分方程,即有c x y y x =++2333 .(4).22()0ydx x y x dy -++=; 解:方程两边同乘221y x +, 则 022=-+-dy yx xdyydx , 此方程为全微分方程,即 c y yxarctg=- (5).0)1(2223=-+dy y x dx xy ;解:方程两边同乘21y , 则0)1(222=-+dy y x xydx , 此方程为全微分方程,即c y x y=+21. (6).0)1(=-+xd y dx xy y ;解:方程两边同乘21y , 则0)1(2=-+dy y xdx y xdx , 此方程为全微分方程,即c x y x =+221. (7)0)(2223=-+dy xy x dx y ;解:方程两边同乘y x 21, 则 02)2(22=+-dy y dy x y dx x y , 此方程为全微分方程,即 c y xy =+-ln 22(8).0)c o s2(=++dy y y ctgy e dx e xx解:方程两边同乘y sin , 则02sin )cos sin (=++ydy yc ydy e ydx e x x ,此方程为全微分方程,即 11cos cos 2sin 224xe y y y y c -+=. 2. 证明方程(5.1)有形如)),((y x φμμ=的积分因子的充要条件是)),((y x f yP P x Q Q xQy P φ=∂∂-∂∂∂∂-∂∂,并写出这个积分因子。
第二章 一阶微分方程的解的存在定理§2.1 一阶微分方程解的基本理论主要内容一 导数已解出方程初值问题解的存在唯一性定理 考虑导数已解出的一阶DE 的初值问题()()00,y f x y y x y '=⎧⎪⎨=⎪⎩(2.1)(2.2)这里()y x f ,是在闭矩形域R : a x x ≤-0,b y y ≤-0上的连续函数。
定义2.1 如果存在常数0>L ,使得对于所有的点()1,y x ,()2,y x R ∈,都有不等式()()2121,,y y L y x f y x f -≤-成立,则称函数()y x f ,在R 上关于y 满足李普希兹(Lipschitz )条件。
1定理2.1 (毕卡存在唯一性定理) 如果()y x f ,在R 上满足条件: 1)连续;2)关于y 满足李普希兹条件,则初值(2.1)和(2.2)在区间h x x ≤-0上存在唯一解()x y y =,其中()M b a h ,m in=,()y x f M R y x ,max ),(∈=。
注1 取数h 的意义。
注意到()y x f M R y x ,max ),(∈=,从而积分曲线()x y y =在任一点()()R x y x ∈,处的切线斜率()M x y ≤'。
于是从点()o y x p ,0引两条斜率分别为M 和M -的直线1l 和2l ,便知过点P 的积分曲线必限制在图2.1和图2.2的阴影区域内。
而直线1l 和2l 相交情形有如下两种可能。
(i )若相交成如图 2.1所示的情况,则a Mb>,积分曲线()x y y =在a x x ≤-0上不越出R ,从而应取a h =。
(ii )若相交成如图 2.2所示的情况,则a Mb >,积分曲线()x y y =在Mb x x ≤-0上不越出R ,从而应取Mb h =。
总之,取()M ba h ,min =,就是为了使初值问题(2.1)和(2.2)的解在h x x ≤-0上总存在。
习 题 2-1判断下列方程是否为恰当方程,并且对恰当方程求解: 1.0)12()13(2=++-dy x dx x解:13),(2-=x y x P , 12),(+=x y x Q ,则0=∂∂y P ,2=∂∂x Q , 所以 xQy P ∂∂≠∂∂ 即 原方程不是恰当方程.2.0)2()2(=+++dy y x dx y x解:,2),(y x y x P += ,2),(y x y x Q -=则,2=∂∂y P ,2=∂∂x Q 所以xQy P ∂∂=∂∂,即 原方程为恰当方程 则,0)22(=-++ydy xdy ydx xdx两边积分得:.22222C y xy x =-+ 3.0)()(=+++dy cy bx dx by ax (a,b 和c 为常数). 解:,),(by ax y x P += ,),(cy bx y x Q +=则,b y P =∂∂,b x Q =∂∂ 所以xQy P ∂∂=∂∂,即 原方程为恰当方程 则,0=+++cydy bxdy bydx axdx两边积分得:.2222C cy bxy ax =++ 4.)0(0)()(≠=-+-b dy cy bx dx by ax解:,),(by ax y x P -= ,),(cy bx y x Q -=则,b y P -=∂∂,b x Q =∂∂ 因为 0≠b , 所以xQ y P ∂∂≠∂∂,即 原方程不为恰当方程5.0sin 2cos )1(2=++udt t udu t解:,cos )1(),(2u t u t P += u t u t Q sin 2),(=则,cos 2u t t P =∂∂,cos 2u t x Q =∂∂ 所以xQy P ∂∂=∂∂,即 原方程为恰当方程则,0cos )sin 2cos (2=++udu udt t udu t两边积分得:.sin )1(2C u t =+ 6.0)2()2(2=++++dy xy e dx y e ye x x x解: xy e y x Q y e ye y x P x x x 2),(,2,(2+=++=,则,2y e y P x +=∂∂,2y e x Q x +=∂∂ 所以xQy P ∂∂=∂∂,即 原方程为恰当方程则,0])2()[(22=++++dy xy e dx y ye dx e x x x 两边积分得:.)2(2C xy e y x =++7.0)2(ln )(2=-++dy y x dx x xy解:,2ln ),(),(2y x y x Q x xy y x P -=+=则,1x y P =∂∂,1x x Q =∂∂ 所以xQy P ∂∂=∂∂,即 原方程为恰当方程则02)ln (2=-++ydy dx x xdy dx xy两边积分得:23ln 3y x y x -+.C = 8.),(0)(22为常数和c b a cxydy dx by ax =++解:,),(,),(22cxy y x Q by ax y x P =+=则,2by y P =∂∂,cy x Q =∂∂ 所以 当xQy P ∂∂=∂∂,即 c b =2时, 原方程为恰当方程则0)(22=++cxydy dx by dx ax两边积分得:233bxy ax +.C = 而当c b ≠2时原方程不是恰当方程.9.01222=-+-dt ts s ds t s 解:,),(,12),(22ts s s t Q t s s t P -=-= 则,212t s t P -=∂∂,212t s s Q -=∂∂ 所以xQ y P ∂∂=∂∂, 即原方程为恰当方程,两边积分得:C ts s =-2.10.,0)()(2222=+++dy y x yf dx y x xf 其中)(⋅f 是连续的可微函数.解:),(),(),(),(2222y x yf y x Q y x xf y x P +=+=则,2f xy y P '=∂∂,2f xy x Q '=∂∂ 所以xQy P ∂∂=∂∂, 即原方程为恰当方程,两边积分得:22()f xy dx C +=⎰,即原方程的解为C y x F =+)(22 (其中F 为f 的原积分).习 题 2-2. 1. 求解下列微分方程,并指出这些方程在平面上的有意义 的区域::(1)yx dx dy 2=解:原方程即为:dx x ydy 2= 两边积分得:0,2332≠=-y C x y .(2))1(32x y x dx dy += 解:原方程即为:dx xx ydy 321+=两边积分得:1,0,1ln 2332-≠≠=+-x y C x y .(3)0sin 2=+x y dxdy解: 当0≠y 时原方程为:0sin 2=+xdx y dy两边积分得:0)cos (1=++y x c .又y=0也是方程的解,包含在通解中,则方程的通解为0)cos (1=++y x c .(4)221xy y x dxdy+++=; 解:原方程即为:2(1)1dyx dx y=++ 两边积分得:c x x arctgy ++=22, 即 )2(2c x x tg y ++=. (5)2)2cos (cos y x dxdy= 解:①当02cos ≠y 时原方程即为:dx x y dy 22)(cos )2(cos = 两边积分得:2222sin 2tg y x x c --=. ②y 2cos =0,即42ππ+=k y 也是方程的解. (N k ∈) (6)21y dxdyx-= 解:①当1±≠y 时 原方程即为:xdx y dy =-21 两边积分得:c x y =-ln arcsin . ② 1±=y 也是方程的解.(7).yxe y e x dx dy +-=- 解.原方程即为:dx e x dy e y xy)()(--=+两边积分得:c e x e y x y ++=+-2222, 原方程的解为:c e e x y x y =-+--)(222.2. 解下列微分方程的初值问题.(1),03cos 2sin =+ydy xdx 3)2(ππ=y ;解:两边积分得:c yx =+-33sin 22cos , 即 c x y =-2cos 33sin 2因为 3)2(ππ=y , 所以 3=c .所以原方程满足初值问题的解为:32cos 33sin 2=-x y .(2).0=+-dy ye xdx x, 1)0(=y ;解:原方程即为:0=+ydy dx xe x,两边积分得:c dy y dx e x x=+-2)1(2, 因为1)0(=y , 所以21-=c , 所以原方程满足初值问题的解为:01)1(22=++-dy y dx e x x .(3).r d dr=θ, 2)0(=r ; 解:原方程即为:θd rdr=,两边积分得:c r =-θln , 因为2)0(=r , 所以2ln =c ,所以原方程满足初值问题的解为:2ln ln =-θr 即θe r 2=.(4).,1ln 2yx dx dy+= 0)1(=y ; 解:原方程即为:dx x dy y ln )1(2=+,两边积分得:3ln 3y y x x x c ++-=, 因为0)1(=y , 所以1=c ,所以原方程满足初值为:3ln 13y y x x x ++-=(5).321xy dxdyx=+, 1)0(=y ; 解:原方程即为:dx xx y dy 231+=, 两边积分得:c x y ++=--22121, 因为1)0(=y , 所以23-=c ,所以原方程满足初值问题的解为:311222=++yx .1. 解下列微分方程,并作出相应积分曲线的简图. (1).x dxdycos = 解:两边积分得:c x y +=sin . 积分曲线的简图如下:(2).ay dxdy=, (常数0≠a ); 解:①当0≠y 时,原方程即为:dx aydy= 积分得:c x y a +=ln 1,即 )0(>=c ce y ax②0=y 也是方程的解. 积分曲线的简图如下:y(3).21y dxdy-=; 解:①当1±≠y 时,原方程即为:dx y dy =-)1(2 积分得:c x yy+=-+211ln ,即 1122+-=x x ce ce y .②1±=y 也是方程的解.积分曲线的简图如下:(4).n y dx dy =, )2,1,31(=n ; 解:①0≠y 时,ⅰ)2,31=n 时,原方程即为 dx ydyn =, 积分得:c y n x n=-+-111.ⅱ)1=n 时,原方程即为dx ydy=积分得:c x y +=ln ,即)0(>=c ce y x.②0=y 也是方程的解.积分曲线的简图如下:4. 跟踪:设某A 从xoy 平面上的原点出发,沿x 轴正方向前进;同时某B 从点开始跟踪A ,即B 与A 永远保持等距b .试求B 的光滑运动轨迹.解:设B 的运动轨迹为)(x y y =,由题意及导数的几何意义,则有22yb ydx dy --=,所以求B 的运动轨迹即是求此微分方程满足b y =)0(的解.解之得:222222ln 21y b y b b y b b b x ----++=.5. 设微分方程)(y f dxdy=(2.27),其中f(y) 在a y =的某邻域(例如,区间ε<-a y )内连续,而且a y y f =⇔=0)(,则在直线a y =上的每一点,方程(2.27)的解局部唯一,当且仅当瑕积分∞=⎰±εa ay f dy)((发散). 证明:(⇒)首先经过域1R :,+∞<<∞-x a y a <≤-ε 和域2R :,+∞<<∞-x ε+≤<a y a内任一点(00,y x )恰有方程(2.13)的一条积分曲线, 它由下式确定00)(x x y f dyyy-=⎰. (*) 这些积分曲线彼此不相交. 其次,域1R (2R )内的所有 积分曲线c x y f dy +=⎰)(都可由其中一条,比如0)(c x y f dy+=⎰ 沿着 x 轴的方向平移而得到。
常微分⽅程考研讲义第⼆章⼀阶微分⽅程的初等解法第⼆章、⼀阶微分⽅程的初等解法[教学⽬标]1. 理解变量分离⽅程以及可化为变量分离⽅程的类型(齐次⽅程),熟练掌握变量分离⽅程的解法。
2. 理解⼀阶线性微分⽅程的类型,熟练掌握常数变易法及伯努⼒⽅程的求解。
3. 理解恰当⽅程的类型,掌握恰当⽅程的解法及简单积分因⼦的求法。
4. 理解⼀阶隐式⽅程的可积类型,掌握隐式⽅程的参数解法。
[教学重难点] 重点是⼀阶微分⽅程的各类初等解法,难点是积分因⼦的求法以及隐式⽅程的解法。
[教学⽅法] 讲授,实践。
[教学时间] 14学时[教学内容] 变量分离⽅程,齐次⽅程以及可化为变量分离⽅程类型,⼀阶线性微分⽅程及其常数变易法,伯努利⽅程,恰当⽅程及其积分因⼦法,隐式⽅程。
[考核⽬标]1.⼀阶微分⽅程的初等解法:变量分离法、⼀阶线性微分⽅程的常数变易法、恰当⽅程与积分因⼦法、⼀阶隐⽅程的参数解法。
2.会建⽴⼀阶微分⽅程并能求解。
§1 变量分离⽅程与变量变换1、变量分离⽅程1) 变量分离⽅程形如()()dyf xg y dx= (或1122()()()()0M x N y dx M x N y dy +=) (2.1)的⽅程,称为变量分离⽅程,其中函数()f x 和()g y 分别是,x y 的连续函数. 2) 求解⽅法如果()0g y ≠,⽅程(2.1)可化为,()()dyf x dxg y = 这样变量就分离开了,两边积分,得到()()dyf x dx cg y =+??(2.2)把,()()dy f x dx g y ??分别理解为1,()()f x y ?的某⼀个原函数. 容易验证由(2.2)所确定的隐函数(,)y x c ?=满⾜⽅程(2.1).因⽽(2.2)是如果存在0y 使0()0g y =,可知0y y =也是(2.1)的解.可能它不包含在⽅程的通解(2.2)中,必须予以补上.3) 例题例1 求解⽅程dy x dx y=- 解将变量分离,得到ydy xdx =- 两边积分,即得22222y x c=-+ 因⽽,通解为22x y c += 这⾥的c 是任意的正常数. 或解出显式形式y =例2 解⽅程2cos dyy x dx= 并求满⾜初始条件:当0x =时.1y =的特解.解将变量分离,得到 2cos dyxdx y= 两边积分,即得1sin x c y-=+因⽽,通解为1sin y x c=-+这⾥的c 是任意的常数.此外,⽅程还有解0y =.为确定所求的特解,以0x =.1y =代⼊通解中确定常数c ,得到 1c =- 因⽽,所求的特解为11sin y x=-例3 求⽅程 ()dyP x y dx的通解,其中()P x 是x 的连续函数.解将变量分离,得到 ()dyP x dx y= 两边积分,即得ln ()y P x dx c =+?这⾥的c 是任意常数.由对数的定义,即有 ()P x dx cy e +?=即()P x dxc y e e ?=±令ce c ±=,得到()P x dxy ce ?=(2.4)此外,0y =也是(2.3)的解.如果在(2.4)中允许0c =,则0y =也就包括在(2.4)中,因⽽,(2.3)的通解为(2.4),其中c 是任意常数. 注: 1.常数c 的选取保证(2.2)式有意义.2.⽅程的通解不⼀定是⽅程的全部解,有些通解包含了⽅程的所有解,有些通解不能包含⽅程的所有解.此时,还应求出不含在通解中的其它解, 即将遗漏的解要弥补上.3.微分⽅程的通解表⽰的是⼀族曲线,⽽特解表⽰的是满⾜特定条件00()y x y =的⼀个解,表⽰的是⼀条过点00(,)x y 的曲线.2、可化为变量分离⽅程的类型1).形如 dy y g dx x ??=(2.5)的⽅程,称为齐次⽅程,这⾥的()g u 是u 的连续函数. 另外,ⅰ)对于⽅程(,)(,)dy M x y dx N x y = 其中函数(,)M x y 和(,)N x y 都是x 和y 的m 次齐次函数,即对0t >有(,)(,)m M tx ty t M x y ≡ (,)(,)m N tx ty t N x y ≡事实上,取1t x=,则⽅程可改写成形如(2.5)的⽅程. (1,)(1,)(1,)(1,)m m y y== ⅱ)对⽅程(,)dyf x y dx= 其中右端函数(,)f x y 是x 和y 的零次齐次函数,即对0t >有(,)(,)f tx ty f x y =则⽅程也可改写成形如(2.5)的⽅程(1,)dy y f dx x= 对齐次⽅程(2.5)利⽤变量替换可化为变量分离⽅程再求解. 令yu x= (2.6)即y ux =,于是dy du x u dx dx=+ (2.7)将(2.6)、(2.7)代⼊(2.5),则原⽅程变为 ()dux u g u dx+= 整理后,得到()du g u udx x-=(2.8)⽅程(2.8)是⼀个可分离变量⽅程,按照变量分离法求解,然后将所求的解代回原变量,所得的解便是原⽅程(2.5)的解.例4 求解⽅程dy y y tg dx x x=+ 解这是齐次⽅程,以,y dy duu x u x dx dx==+代⼊,则原⽅程变为 dux u u tgu dx+=+ 即du tgudx x=(2.9)分离变量,即有dx= 两边积分,得到ln sin ln u x c =+ 这⾥的c 是任意的常数,整理后,得到sin u cx = (2.10)此外,⽅程(2.9)还有解0tgu =,即sin 0u =. 如果(2.10)中允许0c =,则sin 0u =就包含在(2.10)中,这就是说,⽅程(2.9)的通解为(2.10).代回原来的变量,得到原⽅程的通解为sinycx x =例5 求解⽅程(0).dyxy x dx+=<解将⽅程改写为(0)dy y x dx x=<这是齐次⽅程,以,y dy du u x u x dx dx==+代⼊,则原⽅程变为dux dx=(2.11)分离变量,得到dxx = 两边积分,得到(2.11)的通解ln()x c =-+ 即2[ln()](ln()0)u x c x c =-+-+>(2.12)这⾥的c 是任意常数.此外,(2.11)还有解0u = 注意,此解不包括在通解(2.12)中.原⽅程的通解还可表为2[ln()],ln()0,0,x x c x c y ?-+-+>=?它定义于整个负半轴上.注:1.对于齐次⽅程dy y g dx x ??=的求解⽅法关键的⼀步是令y u x =后,解出y ux =,再对两边求关于x 的导数得dy duu x dx dx=+,再将其代⼊齐次⽅程使⽅程变为关于,u x 的可分离⽅程.2.齐次⽅程也可以通过变换xv y=⽽化为变量分离⽅程.这时x vy =,再对两边求关于y 的导数得dx dv v y dy dy =+,将其代⼊齐次⽅程dxx f dy y ??=使⽅程变为,v y 的可分离⽅程⼩结:这⼀讲我们主要讲解了⼀阶微分⽅程的可分离变量法和齐次⽅程的dy y g dx x ??=形状的解法.⽽这⼀齐次⽅程通过变量替换任然可化为可分离⽅程,因⽽,⼀定要熟练掌握可分离⽅程的解法. 2)形如111222a xb yc dy dx a x b y c ++=++ (2.13)的⽅程经变量变换化为变量分离⽅程,这⾥的121212,,,,,a a b b c c 均为常数.分三种情况来讨论(1)120c c ==情形. 这时⽅程(2.13)属齐次⽅程,有1122a x b y dy y g dx a x b y x +??== ?+??此时,令yu x=,即可化为变量可分离⽅程. (2)0a b a b =,即1122a b a b =的情形. 设1122a b k a b ==,则⽅程可写成22122222()()()k a x b y c dy f a x b y dx a x b y c ++==+++ 令22a x b y u +=,则⽅程化为22()dua b f u dx=+ 这是⼀变量分离⽅程.(3)1112220,a b c c a b ≠及不全为零的情形. 这时⽅程(2.13)右端的分⼦、分母都是,x y 的⼀次式,因此 1112220a xb yc a x b y c ++=??++=?(2.14)代表xy 平⾯上两条相交的直线,设交点为(,)αβ.显然,0α≠或0β≠,否则必有120c c ==,这正是情形(1)(只需进⾏坐标平移,将坐标原点(0,0)移⾄(,)αβ就⾏了,若令X x Y y αβ=-??=-?(2.15)则(2.14)化为11220a X bY a X b y +=??+=?从⽽(2.13)变为 1122a X bY dY Y g dX a X b Y X +??== ?+??(2.16)因此,得到这种情形求解的⼀般步骤如下:(1)解联⽴代数⽅程(2.14),设其解为,x y αβ==; (2)作变换(2.15)将⽅程化为齐次⽅程(2.16); (3)再经变换Y将(2.16)化为变量分离⽅程; (4)求解上述变量分离⽅程,最后代回原变量可得原⽅程(2.13)的解. 上述解题的⽅法和步骤也适⽤于⽐⽅程(2.13)更⼀般的⽅程类型111222a x b y c dyf dx a x b y c ??+== ?++??()dyf ax by c dx++ ()()0y xy dx xg xy dy += 2()dyx f xy dx= 2dy y xf dx x= ?以及(,)()(,)()0M x y xdx ydy N x y xdy ydx ++-=(其中,M N 为,x y 的齐次函数,次数可以不相同)等⼀些⽅程类型,均可通过适当的变量变换化为变量分离⽅程.例6 求解⽅程13dy x y dx x y -+=+- (2.17)解解⽅程组 1030x y x y -+=??+-=? 得1, 2.x y ==令12x X y Y =+??=+?代⼊⽅程(2.17),则有 dY X YdX X Y-=+ (2.18)再令Yu X= 即 Y uX = 则(2.18)化为2112dX u22ln ln 21X u u c=-+-+22(21)c X u u e +-=± 记1,c e c ±=并代回原变量,就得2212Y XY X c +-= 221(2)2(1)(2)(1)y x y x c -+----= 此外,易验证2210u u +-= 即2220Y XY X +-= 也就是(2.18)的解.因此⽅程(2.17)的通解为22262y xy x y x c +---= 其中c 为任意的常数.3、应⽤举例例7 电容器的充电和放电如图(2.1)所⽰的R C -电路,开始时电容C 上没有电荷,电容两端的电压为零.把开关K 合上“1”后,电池E 就对电容C 充电,电容C 两端的电压C u 逐渐升⾼,经过相当时间后,电容充电完毕,再把开关K 合上“2”,这时电容就开始放电过程,现在要求找出充、放电过程中,电容C 两端的电压C u 随时间t 的变化规律.解对于充电过程,由闭合回路的基尔霍夫第⼆定理,c u RI E += (2.19)对于电容C 充电时,电容上的电量Q 逐渐增多,根据C Q Cu =,得到 ()C C du dQ dI Cu C dt dt dt=== (2.20)将(2.20)代⼊(2.19),得到c u 满⾜的微分⽅程 cc du RC u E dt+= (2.21)这⾥R 、C 、E 都是常数.⽅程(2.21)属于变量分离⽅程.将(2.21)分离变量,得到C C du dtu E RC=-- 两边积分,得到11ln C u E t c RC-=-+ 即1112t t c RCRCC u E e e c e---=±=这⾥12c c e =±为任意常数.将初始条件:0t =时,0C u =代⼊,得到2c E =-. 所以 1(1)t RC C u E e -=-这就是R C -电路充电过程中电容C 两端的电压的变化规律.由(2.22)知道,电压C u 从零开始逐渐增⼤,且当t →+∞时,C u E →,在电⼯学中,通常称RC τ=为时间常数,当3t τ=时,0.95C u E =,就是说,经过3τ的时间后,电容C 上的电压已达到外加电压的95%.实⽤上,通常认为这时电容C 的充电过程已基本结束.易见充电结果C u E =.对于放电过程的讨论,可以类似地进⾏.例8 探照灯反射镜⾯的形状在制造探照灯的反射镜⾯时,总是要求将点光源射出的光线平⾏地射出去,以保证照灯有良好的⽅向性,试求反射镜⾯的⼏何形状.解取光源所在处为坐标原点,⽽x 轴平⾏于光的反射⽅向,设所求曲⾯由曲线()y f x z =??=?(2.23)绕x 轴旋转⽽成,则求反射镜⾯的问题归结为求xy 平⾯上的曲线()y f x =的问题,仅考虑0y >的部分,过曲线()y f x =上任⼀点(,)M x y 作切线NT ,则由光的反射定律:⼊射⾓等于反射⾓,容易推知12αα= 从⽽OM ON = 注意到2dy MP tg dx NPα==及,,OP x MP y OM ===就得到函数()y f x =所应满⾜的微分⽅程式dy dx =(2.24)这是齐次⽅程.由2.12知引⼊新变量xu y=可将它化为变量分离⽅程.再经直接积分即可求得⽅程的解.对于⽅齐次⽅程(2.24)也可以通过变换xv y=⽽化为变量分离⽅程也可由x yv =得dx dvv y dy dy=+代⼊(2.24)得到sgn dvv y v y dysgn dy y y =(2.25)积分(2.25)并代回原来变量,经化简整理,最后得2(2)y c c x =+(2.26)其中c 为任意常数.(2.26)就是所求的平⾯曲线,它是抛物线,因此,反射镜⾯的形状为旋转抛物⾯22(2)y z c c x +=+ (2.27)⼩结: 本节我们主要讨论了⼀阶可分离微分⽅程和齐次微分⽅程的求解问题.将各种类型的求解步骤记清楚的同时要注意对解的讨论.§2 线性⽅程与常数变易法1、⼀阶线性微分⽅程()()()0dya xb x yc x dx++= 在()0a x ≠的区间上可以写成()()dyP x y Q x dx=+ (2.28)对于()a x 有零点的情形分别在()0a x ≠的相应区间上讨论.这⾥假设(),()P x Q x 在考虑的区间上是x 的连续函数.若()0Q x ≡,(2.28)变为 ()dyP x y dx= (2.3)称为⼀阶齐线性⽅程.若()0Q x ≠,(2.28)称为⼀阶⾮齐线性⽅程.2、常数变易法(2.3)是变量分离⽅程,已在例3中求得它的通解为 ()P x dxy ce ?=(2.4)这⾥c 是任意的常数.下⾯讨论⼀阶⾮齐线性⽅程(2.28)的求解⽅法.⽅程(2.3)与⽅程(2.28)两者既有联系⼜有区别,设想它们的解也有⼀定的联系,在(2.4)中c 恒为常数时,它不可能是(2.28)的解,要使(2.28)具有形如(2.4)的解, c 不再是常数,将是x 的待定函数()c x ,为此令 ()()P x dx(2.29)两边微分,得到()()()()()P x dxP x dx dy dc x e c x P x e dx dx=+ (2.30)将(2.29)、(2.30)代⼊(2.28),得到()()()()()()()()()P x dxP x dx P x dx dc x e c x P x e P x c x e Q x dx+=+ 即()()()P x dx dc x Q x e dx-?= 积分后得到()()()P x dxc x Q x e dx c -?=+?(2.31)这⾥c 是任意的常数..将(2.31)代⼊(2.29),得到()()()()()() =()P x dxP x dx P x dx P x dx P x dxy e Q x e dx c ce e Q x e dx--=+ +(2.32)这就是⽅程(2.28)的通解.这种将常数变易为待定函数的⽅法,通常称为常数变易法.实际上常数变易法也是⼀种变量变换的⽅法.通过变换(2.29)可将⽅程(2.28)化为变量分离⽅程.注: ⾮齐线性⽅程的通解是它对应的齐线性⽅程的通解与它的某个特解之和. 例1 求⽅程1(1)(1)x n dy x ny e x dx++-=+的通解,这⾥的n 为常数. 解将⽅程改写为 (1)1x n dy n y e x dx x -=++ (2.33)先求对应的齐次⽅程01dy n y dx x -=+ 的通解,得令 ()(1)n y c x x =+ (2.34)微分之,得到()(1)(1)()n dy dc x x n x c x dx dx=+++ (2.35)以(2.34)、(2.35)代⼊(2.33),再积分,得 ()x c x e c =+ 将其代⼊公式(2.34),即得原⽅程的通解 (1)()n x y x e c =++ 这⾥c 是任意的常数. 例2 求⽅程22dy ydx x y=-的通解. 解原⽅程改写为2dx x y dy y=- (2.36)把x 看作未知函数,y 看作⾃变量,这样,对于x 及dxdy来说,⽅程(2.36)就是⼀个线性⽅程了.先求齐线性⽅程2dx x dy y= 的通解为2x cy = (2.37)令2()x c y y =,于是 2()2()dx dc y y c y y dy dy=+ 代⼊(2.36),得到()ln c y y c =-+ 从⽽,原⽅程的通解为2(ln )x y c y =-这⾥c 是任意的常数,另外0y =也是⽅程的解. 特别的,初值问题00()()()dyP x y Q x dxy x y ?=+=? 的解为00()()()=()xxsx x x P d P d P d xx y ceeQ s eds ττττττ-+?例3 试证(1)⼀阶⾮齐线性⽅程(2.28)的任两解之差必为相应的齐线性⽅程(2.3)之解;(2)若()y y x =是(2.3)的⾮零解,⽽()y y x =是(2.28)的解,则(2.28)的通解可表为()()y cy x y x =+,其中c 为任意常数.(3)⽅程(2.3)任⼀解的常数倍或两解之和(或差)仍是⽅程(2.3)的解. 证(1)设12,y y 是⾮齐线性⽅程的两个不同的解,则应满⾜⽅程使1122()(1)()(2)dy py Q x dxdy py Q x dx=+=+(1)—(2)有1212()()d y y p y y dx-=-说明⾮齐线性⽅程任意两个解的差12y y -是对应的齐次线性⽅程的解.(2)因为(()())()()(()()()()d cy x y x dy x d y x c p cy p y Q x p cy y Q x dx dx dx+=+=++=++故结论成⽴.(3)因为12121212()()()(),(),()d y y d y y d cy p cy p y y p y y dx dx dx+-==+=- 故结论成⽴.3、Bernoulli ⽅程。
第二章目录内容提要及其它 (1)第二章一阶微分方程的初等解法(初等积分) (2)第一节变量分离方程与变量变换 (2)一、变量分离方程 (2)二、可化为变量分离方程的类型 (6)1、齐次方程 (6)2、可化为变量分离方程 (7)三、应用例题选讲 (10)第二节线性方程与常数变易法 (11)第三节恰当方程与积分因子 (15)一、恰当方程 (15)二、积分因子 (20)第四节一阶隐含方程与参数表示 (23)一、可以解出y(或x)的方程 (24)二、不显含y(或x)的方程 (25)本章小结及其它 (27)内容提要及其它授课题目(章、节)第二章:一阶微分方程的初等解法教材及主要参考书(注明页数)教材:常微分方程(第三版),王高雄等,高等教育出版社,2006年,p30-74主要参考书:[1]常微分方程,东北师范大学微分方程教研室编,高等教育出版社,2005,p1-70[2]常微分方程教程,丁同仁等编,高等教育出版社,1991,p1-20[3]偏微分方程数值解法(第2版),陆金甫关治,清华大学出版社,2004,p1-12[4]常微分方程习题解,庄万主编,山东科学技术出版社,2003,p28-169[5]微分方程模型与混沌,王树禾编著,中国科学技术大学出版社,1999,p15-158[6]差分方程和常微分方程,阮炯编著,复旦大学出版社,2002,p38-124目的与要求:掌握变量分离方程、齐次方程、线性方程、伯努利方程和恰当方程的解法.理解变量变换思想方法和积分因子方法,并能应用于求解一些特殊的常微分方程.掌握四类典型的一阶隐方程的解法.能熟练求解变量分离方程、齐次方程、线性方程、伯努利方程、恰当方程和四类典型的一阶隐方程.领会变量变换思想方法和积分因子方法,并能应用于求解一些特殊的常微分方程.教学内容与时间安排、教学方法、教学手段:教学内容:第1节变量分离方程与变量变换;第2节线性方程与常数变易法;第3节恰当方程与积分因子;第4节一阶隐方程与参数表示:可以解出(或y x)的方程、不显含(或y x)的方程.时间安排:8学时教学方法:讲解方法教学手段:传统教学方法与多媒体教学相结合。
第二章 基本定理我们在第一章主要学习了初等积分法,掌握了几类常微分方程的解法.但是这些解法只适用于某些特殊的类型,很多其它的常微分方程不能用初等解法进行求解.1841年,法国数学家刘维尔(Liouville )证明了里卡蒂(Riccati )方程)0)(()()()(2≠++=x p x r y x q y x p dydx 除了某些特殊的类型外,一般不能用初等积分法求解.例如,很简单的里卡蒂方程22y x dxdy +=就不能用初等积分法求解.自然地,如果一个常微分方程不能用初等积分法求解,那么应该如何处理呢?是否存在解呢?如果存在解,它的解是否唯一呢?解的存在区间是什么呢?初值的微小误差对解有什么影响呢?这些问题在理论的研究和实际应用中,都有着重要的意义.本章将解决这些基本问题. 本章主要介绍解的存在唯一性定理、解的延展定理与比较定理、解对初值的连续依赖性定理以及解对初值的可微性定理,这些定理就回答了我们刚才的疑问,有效的处理解的存在性、唯一性、存在区间、初值对解的影响等问题,为我们使近似解法奠定理论基础,同时这些定理也是常微分方程理论的基础内容,对进一步的学习奠定基础.2.1 解的存在唯一性定理对于一般的常微分方程),(y x f dxdy = (2.1) 如果给出了初始条件00)(y x y =,我们就得到了柯西初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy (2.2) 这时,在什么样的条件下,柯西初值问题的解存在且唯一呢?解的存在区间是什么呢?我们有如下的解的存在唯一性定理.2.1.1 存在唯一性定理的叙述定理2.1(存在唯一性定理)如果方程(2.1)的右端函数),(y x f 在闭矩形区域b y y b y a x x a x R +≤≤-+≤≤-00002,:上满足如下条件:(1)在2R 上连续;(2)在2R 上关于变量y 满足李普希兹(Lipschitz )条件,即存在常数N ,使对于2R 上的任何一对点),(y x 和),(x 有不等式:y y N y x f y x f -≤-),(),(则初值问题(2.2)在区间],[0000h x h x +-上存在唯一解00)(),(y x x y ==ϕϕ 其中),(max ),,min(),(0y x f M Mb a h R y x ∈==. 在给出定理2.1的证明之前,我们先对定理2.1的条件和结论做些说明:1、在两个条件中,条件(2),即李普希兹条件比较难于验证,因为李普希兹常数N 难以确定.但是,我们可以将该条件加强,替换为:如果函数),(y x f 在闭矩形区域2R 关于y 的偏导数),(y x f y '存在且有界.这样,可以推出李普希兹条件成立.事实上,因为),(y x f y '有界,故设N y x f y ≤'),(,对2),(),,(R x y x ∈∀,由拉格朗日中值定理得:y y N y y x f y x f y x f y -≤-'=-),(),(),(ξ我们验证),(y x f y '在闭矩形区域2R 上有界也不容易,可以进一步将条件加强为:),(y x f y '在闭矩形区域2R 上连续.由闭区域上连续函数的性质知:),(y x f y '在闭矩形区域2R 上有界,所以李普希兹条件成立.因此,有如下的关系式:),(y x f y '在2R 上连续⇒),(y x f y '在2R 上存在且有界⇒李普希兹条件2、在定理2.1的结论中,解)(x y ϕ=的存在区间为],[0000h x h x +-,其中 ),(max ),,min(),(0y x f M Mb a h R y x ∈==.为什么解的存在区间不是],[00a x a x +-呢?这是因为我们研究问题的范围为闭矩形区域2R ,方程的解)(x y ϕ=不能超出2R 的范围,又因为),(max ),(y x f M Ry x ∈=,所以M y x f M ≤≤-),( 即 M dxdy M ≤≤- 由⎪⎩⎪⎨⎧=-=00)(y x y M dx dy 和⎪⎩⎪⎨⎧==00)(y x y M dx dy 得:001)()(y x x M x y +--=,002)()(y x x M x y +-= 因此)()()(21x y x y x y ≤=≤ϕ,即)(x y ϕ=夹在)(1x y 与)(2x y 之间.又,)(1x y 与)(2x y 在2R 上的存在区间为],[0000h x h x +-,故)(x y ϕ=的存在区间也是],[0000h x h x +-.2.1.2 存在性的证明首先,我们给出柯西初值问题(2.2)的等价转化,即求(2.2)的解)(x y ϕ=,等价于求解积分方程⎰+=xx d y f y y 0))(,(0ξξξ (2.3) 事实上,如果)(x y ϕ=是初值问题(2.2)的解,即有))(,()(x x f x ϕϕ='且00)(y x =ϕ从0x 到x 积分得:⎰+=xx d f y x 0))(,()(0ξξϕξϕ 即)(x y ϕ=是积分问题(2.3)的解.反过来,如果)(x y ϕ=是积分问题(2.3)的解,即有⎰+=xx d f y x 0))(,()(0ξξϕξϕ 则00)(y x =ϕ且))(,()(x x f x ϕϕ='即)(x y ϕ=是初值问题(2.2)的解.经过等价转化,我们将初值问题(2.2)的求解,转化为积分问题(2.3)的求解.下面用皮卡(Picard )逐次逼近来证明积分问题(2.3)的解的存在性,分为三个步骤:1、构造近似函数列{})(x n ϕ任取一个满足初值条件00)(y x y =的函数)(0x y ϕ=作为首项(初始项),并要求在2R 上的存在区间为:],[0000h x h x +-,简单起见,取00)(y x =ϕ,将它代入方程(2.3)的右端,所得到的函数用)(1x ϕ表示,并称为一次近似,即⎰+=xx d f y x 0))(,()(001ξξϕξϕ 再将)(1x ϕ代入方程(2.3)的右端就得到二次近似⎰+=xx d f y x 0))(,()(102ξξϕξϕ 序行此法,可以得到n 次近似⎰-+=xx n n d f y x 0))(,()(10ξξϕξϕ 为了保证上述的逐次逼近过程可以一直进行下去,必须有2))(,(R x x n ∈ϕ,即当],[0000h x h x x +-∈时,有,2,1)(0=≤-n b y x n ϕ 下面用数学归纳法证明b y x n ≤-0)(ϕ.显然,当],[0000h x h x x +-∈时,有b y y y x ≤=-=-0)(0000ϕ假设,当],[0000h x h x x +-∈时,有b y x n ≤--01)(ϕ,那么,对于)(x n ϕ有⎰-=-xx n n d f y x 0))(,()(10ξξϕξϕ 从而有b Mb M Mh x x M d f y x xx n n =≤≤-≤≤-⎰-00100))(,()(ξξϕξϕ 由数学归纳法知,当],[0000h x h x x +-∈时,有,2,1)(0=≤-n b y x n ϕ这样,我们就可以得到一个近似函数列{})(x n ϕ.2、证明近似函数列{})(x n ϕ在区间],[0000h x h x +-上一致收敛.由于无法得到{})(x n ϕ的通项公式,只知道首项和递推关系式,直接证明函数列{})(x n ϕ的收敛性比较困难,为此我们构造函数项级数+-++-+-)]()([)]()([)(1010x x x x x n n ϕϕϕϕϕ (2.4) 它的部分和是)()]()([)]()([)()(10101x x x x x x x S n n n n ϕϕϕϕϕϕ=-++-+=-+因此,证明{})(x n ϕ的收敛性转化为证明级数(2.4)的收敛性,下面我们证明级数(2.4)在区间],[0000h x h x +-上一致收敛.首先研究级数(2.4)的通项)(x n μ⎰=-xx d f x x 0))(,()()(001ξξϕξϕϕ 即⎰=-xx d y f y x 0),()(001ξξϕ 所以00010),()(x x M d y f y x x x -≤≤-⎰ξξϕ 因为⎰+=x x d f y x 0))(,()(001ξξϕξϕ,⎰+=x x d f y x 0))(,()(102ξξϕξϕ,所以 ⎰-≤-x x d f f x x 0))(,())(,()()(0112ξξϕξξϕξϕϕ由李普希兹条件,得 !2)()()()(200011200x x MN d x MN d N x x x x x x -=-≤-≤-⎰⎰ξξξξϕξϕϕϕ 下面用数学归纳法证明!)()(011n x x MN x x nn n n -≤---ϕϕ 显然,2,1=n 的时候,不等式成立(上面已经给出), 假设!)()(011n x x MN x x n n n n -≤---ϕϕ成立,那么对于1+n 的情形有 )!1(!)()())(,())(,()()(100111000+-=-≤-≤-≤-+--+⎰⎰⎰n x x MN d n x MN d N d f f x x n n x x n n xx n n x x n n n n ξξξξϕξϕξξϕξξϕξϕϕ由数学归纳法知,对一切自然数n ,均有!)()(011n x x MNx x nn n n -≤---ϕϕ 又00h x x ≤-,所以级数(2.4)的通项满足: !)(011n h MN v x n n n n -+=≤μ ( ,2,1=n ) 利用比式判别法,可知以n v 为通项的级数收敛,从而以)(x n μ为通项的级数(2.4)绝对收敛且一致收敛.又,每一个)(x n μ是连续的,所以级数(2.4)的和函数也是连续的,记为)(x ϕ,其存在区间也是],[0000h x h x +-.因此函数列{})(x n ϕ就收敛于)(x ϕ.3、证明)(lim )(x x n n ϕϕ∞→=是积分问题(2.3)的解,从而也是初值问题(2.2)的解.在⎰-+=x x n n d f y x 0))(,()(10ξξϕξϕ两端取极限,得到 ⎰-∞→∞→+=xx n n n n d f y x 0))(,(lim )(lim 10ξξϕξϕ 即⎰+=xx d f y x 0))(,()(0ξξϕξϕ 所以)(x ϕ是积分问题(2.3)的解,从而也是初值问题(2.2)的解.2.1.3 唯一性的证明下面我们证明解的唯一性.在证明唯一性之前,先介绍一个重要的不等式,即贝尔曼(Bellman )不等式.贝尔曼引理 设)(x y 为区间],[b a 上的非负连续函数,b x a ≤≤0.若存在,0≥δ 0≥k ,使得)(x y 满足不等式],[,)()(0b a x d y k x y xx ∈+≤⎰ττδ (2.5) 则有],[,)(0b a x e x y x x k ∈≤-δ证明 仅证明0x x ≥的情形,0x x ≤的情形类似.令)(x y 的原函数为⎰=xx d y x R 0)()(ττ,代入(2.5)得 δ≤-')()(x kR x R两边同时乘以积分因子)(0x x k e --,得)()(00)]()([x x k x x k e x kR x R e ----≤-'δ从0x 到x 积分得)()(00)(x x k x x k e e x kR -----≤δδ即)(0)(x x k e x kR -≤+δδ 由(2.5)知,)()(x kR x y +≤δ,所以],[,)(0b a x e x y x x k ∈≤-δ下面证明积分问题(2.3)的解的唯一性.假设积分问题(2.3)有两个解)(1x y 和)(2x y ,我们只需要证明:)(1x y )(2x y ≡,],[0000h x h x x +-∈事实上,因为⎰+=x x d y f y x y 0))(,()(101ξξξ,⎰+=xx d y f y x y 0))(,()(202ξξξ 所以有⎰-≤-xx d y f y f x y x y 0))(,())(,()()(2121ξξξξξ由李普希兹条件知⎰-≤-xx d y y N x y x y 0)()()()(2121ξξξ 令N k x y x y x y ==-=,0,)()()(21δ,由贝尔曼引理可知,0)(=x y ,即)(1x y )(2x y ≡. 这样,我们就完成了解的存在性与唯一性的证明.2.1.4 三点说明为了更好的理解和掌握解的存在唯一性定理,我们对该定理再做三点说明.1、在存在性的证明过程中,我们利用逐次逼近法构造了近似函数列{})(x n ϕ,其中首项为:00)(y x =ϕ,递推关系式为:⎰-+=xx n n d f y x 0))(,()(10ξξϕξϕ.该方法实际上给出了我们一种求初值问题(2.2)的近似解的方法,当用n 次近似解逼近精确解时,需要给出它的误差估计.事实上,有∑∑∞+=∞=+-≤-≤-101!)()()()(n k k k nk k k n k x x N N M x x x x ϕϕϕϕ 0)!1()(!)!1()(!10001010Nh n k k k n n k k k e n Nh N M k h N n Nh N M k h N N M +=+<≤+∞=+∞+=∑∑ 2、如果方程(2.1)是线性方程,即)()(x q y x p dxdy +-= 其中)(x p 和)(x q 在区间],[b a 上连续,这时,初值问题(2.2)在带型区域+∞<<-∞≤≤y b x a R ,:2满足定理2.1的条件.事实上,)()(),(x q y x p y x f +-=在2R 上连续,而且)(),(x p y x f y -='在2R 上也连续,所以),(y x f 关于变量y 满足李普希兹条件.这时,初值问题(2.2)的解存在且唯一,存在区间为],[b a .3、定理2.1中的李普希兹条件是保证解唯一的充分条件,那么这个条件是不是必要条件呢?回答是否定的,即李普希兹条件是解唯一的充分非必要条件.下面我们给出一个例子来说明李普希兹条件是解唯一的非必要条件,也就是说,即使李普希兹条件不成立,初值问题(2.2)的解也可能是唯一的.例1 试证方程0,ln ,0≠=⎩⎨⎧=y y y y dx dy 经过xOy 平面上任一点的解都是唯一的.证明 由00,ln ,0≠=⎩⎨⎧=y y y y dx dy 可得:0=y 或x Ce e y ±=. 任给xOy 平面上的一个点),(00y x ,只会对应0=y 或xCe e y ±=中的一个解,也就是说,过xOy 平面上任一点的解都是唯一的.但是,我们有0ln ln )0,(),(-==-y y y y x f y x f 因为+∞=→y y ln lim 0,所以找不到0>N ,使得 0)0,(),(-≤-y N x f y x f从而方程右端函数在0=y 的任何邻域上不满足李普希兹条件,但是初值问题(2.2)的解却是唯一的,这说明李普希兹条件是非必要条件.习 题 2.11.试判断方程y x dx dy tan =在区域 (1)π≤≤≤≤-y x R 0,11:1;(2)44,11:2ππ≤≤-≤≤-y x R上是否满足定理2.1的条件?2.讨论方程3123y dx dy =在怎样的区域中满足定理2.1的条件.并求通过)0,0(的一切解.3.试用逐次逼近法求方程2y x dxdy -=满足初值条件0)0(=y 的近似解: )(),(),(),(3210x x x x ϕϕϕϕ并在闭矩形区域11,11:2≤≤-≤≤-y x R 给出三次近似的误差估计.4.利用逐次逼近法求方程22x y dxdy -=适合初值条件1)0(=y 的近似解: )(),(),(210x x x ϕϕϕ并在闭矩形区域111,11:2≤-≤-≤≤-y x R 给出二次近似的误差估计.5.试证明定理2.1中的n 次近似解)(x n ϕ与精确解)(x ϕ有如下的误差估计式:10)!1()()(+-+≤-n n n x x n MN x x ϕϕ 6.在条形区域+∞<≤≤y b x a ,内,假设方程(2.1)的所有解都唯一,对其中任意两个解)(),(21x y x y ,如果有)()(0201x y x y <,则必有b x x x y x y ≤≤<021),()(.7.讨论方程323y dx dy = 解的唯一性.2.2 延展定理和比较定理由解的存在唯一性定理,我们知道,初值问题(2.2)的解在满足一定条件的情况下存在且唯一,但是解的存在区间不是],[00a x a x +-,而是],[0000h x h x +- 其中),(max ),,min(),(0y x f M Mb a h R y x ∈==.如果M 比较大的话,则解的存在区间就非常小,这对我们研究解的性质产生了很大的局限性,只能在很小的范围内有解,当x 超出这个范围时,解的情况就不清楚了.为了解决这个问题,我们有下面的延展定理.2.2.1 延展定理定理2.2(延展定理)如果方程(2.1)的右端函数在区域R R D ⨯⊂上连续,且关于变量y 满足局部的李普希兹条件,即对于D 内的任一闭矩形区域都满足李普希兹条件,则对任何一点D y x ∈),(00,初值问题(2.2)的解)(x y ϕ=可以向左右无限延展,直到))(,(x x ϕ任意接近区域D 的边界.在给出定理的证明之前,先对“))(,(x x ϕ任意接近区域D 的边界”进行说明.当区域D 有界时,积分曲线向左右延展可以任意接近;当区域D 无界时,积分曲线向左、右延展,或者任意接近区域D 的边界(边界存在的话),或者无限远离坐标原点.证明 首先证明区域D 有界的情形.设区域D 的边界为D D L -=(D 为D 的闭包).对于任意给定的正数ε,记L 的ε邻域为εU ,记L 的2ε邻域为2εU ,记L 的4ε邻域为4εU .则集合22εεU D D -=为闭集,且D D ⊂2ε,所以2εD 有界. 只要证明积分曲线可以到达2εD 的边界2εL ,由ε的任意性知,积分曲线就可以任意接近区域D 的边界L .事实上,以2εD 中的任意一点为中心,以4ε为半径的闭圆区域均包含在区域D 的内部.且在闭区域44εεU D D -=之内.从而,以2εD 中的任意一点为中心,以4221ε=a 为边长的正方形也在闭区域4εD 之内.记 ),(max 4),(1y x f M D y x ε∈= 则过2εD 的任意一点),(**y x 的积分曲线,必至少可在区间],[**h x h x +-上存在,其中)82,82min(),min(1111M M a a h εε==. 于是,过点),(00y x 的积分曲线)(x y ϕ=每向左或向右延展一次,其存在区间就伸长一个确定的正数h ,由于2εD 有界,)(x y ϕ=经过有限次延展后一定可以达到2εD的边界2εL .于是也就可以任意接近区域D 的边界L .其次考虑区域D 为无界的情形.这时,我们可以用闭圆区域,2,1},),{(222=≤+=n n y x y x S n与区域D 取交集,令n n S D D =,则 ∞==1n n D D .由于n D 为有界的区域,根据前面的证明,我们可知,过n D 内任一点的积分曲线能够任意接近n D 的边界.因此,过点),(00y x 的积分曲线)(x y ϕ=可以无限接近区域D 的边界.延展定理的证明,关键是第一步证明,也就是区域D 有界的时候,过点),(00y x 的积分曲线)(x y ϕ=向左向右延展的时候,一定要做等速延展,即延展步幅h 是不变的. 例1 试讨论方程2y dxdy=通过点)1,1(的解和通过点)1,3(-的解的存在区间. 解 该题目中研究问题的区域D 为整个坐标平面xOy .方程右端函数满足延展定理的条件.由2y dxdy=可以解得方程的通解为 xC y -=1代入1)1(=y 得:2=C .故通过点)1,1(的解为xy -=21 它可以向左无限延展,而当-→2x 时,+∞→y ,所以通过点)1,1(的解xy -=21的存在区间为)2,(-∞.代入1)3(-=y 得:2=C .故通过点)1,3(-的解为xy -=21它可以向右无限延展,而当+→2x 时,-∞→y ,所以通过点)1,3(-的解xy -=21的存在区间为),2(+∞.这个例子说明,尽管),(y x f 在整个坐标平面上满足延展定理的条件,解上的点))(,(x x ϕ也能无限接近区域D 的边界,但是延展的方向却不一定是无限向右和向左,可能是向上或向下,从而导致解的存在区间不是),(+∞-∞. 例2 试证明:对任意的0x 及满足条件100<<y 的0y ,方程221)1(y x y y dx dy ++-=的满足条件00)(y x y =的解)(x y y =在),(+∞-∞上存在.证明:令221)1(),(y x y y y x f ++-=,则222222)1(122),(y x x y y x y y x f y ++--++=' 显然),(),,(y x f y x f y '在xOy 平面上连续,满足解的存在唯一性条件及延展定理的条件,而1,0==y y 是),(y x f dxdy=的解, 因此,满足00)(y x y =,100<<y 的解存在,而且可以无限延展到xOy 平面的边界,且不能穿过1,0==y y ,故只能向左右无限延展,所以,)(x y y =在),(+∞-∞上存在.该例题说明,),(y x f 在整个坐标平面上满足延展定理的条件,当方程的解不能穿过1,0==y y 时,它就不能向上向下无限延展了,只能向左、向右延展,所以解的存在区间就是),(+∞-∞.在这里,1,0==y y 控制了解的延展方向,使它按照我们的要求进行延展,因此就有了下面的比较定理. 2.2.2 比较定理我们在使用延展定理的时候,通常会和比较定理配合使用,从而起到控制延展方向的作用.下面介绍一下比较定理.我们在考察方程(2.1)),(y x f dxdy=时,通常将右端函数),(y x f 进行放缩的处理,比如),(),(),(21y x F y x f y x F <<这时,我们可以同时考察),(1y x F dx dy =和),(2y x F dxdy = 我们有如下的比较定理:定理2.3 (第一比较定理)设定义在某个区域D 上的函数),(y x f ,),(1y x F 和),(2y x F 满足条件:(1)在D 满足解的存在唯一性定理及延展定理的条件,即在D 上连续,在D 上关于变量y 满足李普希兹条件;(2)在D 上有不等式),(),(),(21y x F y x f y x F <<设初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dxdy ,⎪⎩⎪⎨⎧==001)(),(y x y y x F dx dy 和⎪⎩⎪⎨⎧==002)(),(y x y y x F dx dy的解分别为)(x y ϕ=,)(1x y Φ=和)(2x y Φ=,则在它们的共同存在区间上有下列不等式:021),()()(x x x x x >Φ<<Φϕ 021),()()(x x x x x <Φ>>Φϕ证明 仅证当0x x >时,)()(2x x Φ<ϕ,其它的情形相类似. 由比较定理的条件(1),初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dxdy 和⎪⎩⎪⎨⎧==002)(),(y x y y x F dx dy的解在0x 的某一邻域内存在且唯一,分别记为)(x y ϕ=和)(2x y Φ=,它们满足0020)()(y x x =Φ=ϕ令)()()(2x x x h ϕ-Φ=,则0)()()(0020=-Φ=x x x h ϕ且0))(,())(,()()()(0002020020>-Φ='-Φ'='x x f x x F x x x h ϕϕ所以函数)(x h 在0x 的某一右邻域内是严格单调增加的.如果在0x x >时,0)(>x h 不是总成立,则至少存在一点01x x >,使得0)(1=x h ,且当10x x x <<时,0)(>x h ,因此在点1x 的左导数0)0(1≤-'x h ,这与0))(,())(,()()()(1112121121>-Φ='-Φ'='x x f x x F x x x h ϕϕ矛盾.因此当0x x >时,0)(>x h 总成立,即)()(2x x Φ<ϕ.比较定理的应用,关键是),(1y x F 和),(2y x F 的选取,因为初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dxdy的解)(x y ϕ=的存在区间的延展,受到)(1x y Φ=和)(2x y Φ=的控制,即)(x y ϕ=夹在)(1x y Φ=和)(2x y Φ=之间.因此,我们必须能确定出)(1x y Φ=和)(2x y Φ=的存在区间,这就是我们选取),(1y x F 和),(2y x F 的标准,即⎪⎩⎪⎨⎧==001)(),(y x y y x F dxdy 和⎪⎩⎪⎨⎧==002)(),(y x y y x F dx dy的解)(1x y Φ=和)(2x y Φ=必须能够求得. 下面我们给出第二比较定理.定理2.4 (第二比较定理)设定义在某个区域D 上的函数),(y x f ,),(1y x F 和),(2y x F 满足条件:(1)在D 满足解的存在唯一性定理及延展定理的条件,即在D 上连续,在D 上关于变量y 满足李普希兹条件;(2)在D 上有不等式),(),(),(21y x F y x f y x F ≤≤设初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dxdy ,⎪⎩⎪⎨⎧==001)(),(y x y y x F dx dy 和⎪⎩⎪⎨⎧==002)(),(y x y y x F dx dy的解分别为)(x y ϕ=,)(1x y Φ=和)(2x y Φ=,则在它们的共同存在区间上有下列不等式:021),()()(x x x x x >Φ≤≤Φϕ 021),()()(x x x x x <Φ≥≥Φϕ习 题 2.21.设方程为),()(22y x f a y dxdy-= 假设),(y x f 及),(y x f y '在xOy 平面上连续,试证明:对于任意的0x 及a y <0,方程满足00)(y x y =的解都在),(+∞-∞上存在.2.指出方程2)1(2xy e y dxdy -=的每一个解的最大存在区间,以及当x 趋于这个区间的右端点时解的极限.3.讨论方程xx dx dy 1cos 12-= 解的存在区间.4.设),(y x f 在整个平面上连续有界,对y 有连续偏导数,试证明方程),(y x f dxdy=的任一解)(x y ϕ=在区间+∞<<∞-x 上有定义. 5.讨论方程212-=y dx dy 的通过点)0,0(的解,以及通过点)3,2(ln -的解的存在区间.6.在方程)(y f dxdy=中,如果)(y f 在),(+∞-∞上连续可微,且 )0(0)(≠<y y yf ,求证方程满足00)(y x y =的解)(x y 在区间),[0+∞x 上存在,且有0)(lim =+∞→x y x .2.3 解对初值的连续依赖性定理和解对初值的可微性定理通过前两节的存在唯一性定理和延展定理,加上比较定理,我们知道了初值问题(2.2)在什么样的条件下,解是存在的,是唯一的,而且存在区间比较小的时候,通过延展定理和比较定理可以将解的存在区间变大,从而在实际问题中可以达到我们的要求.但是,在实际问题中,还有一个问题需要解决,那就是误差问题.我们的初始条件00)(y x y =如果产生了微小的偏差,这个偏差对我们的初值问题(2.2)的解)(x y ϕ=会有什么影响呢?下面我们来解决这个问题. 我们在研究初值问题(2.2)的时候,习惯上把0x 和0y 当作常数来看待,这样初值问题(2.2)的解)(x y ϕ=被看作x 的函数.实际上,如果0x ,0y 变化,初值问题(2.2)的解)(x y ϕ=也会发生变化.例如方程xydx dy = 经过点),(00y x 的解为x x y y 0=,可以看作00,,y x x 的函数.对于一般的情形,初值问题(2.2)的解也可以看作00,,y x x 的函数,记为),,(00y x x y ϕ=,代入00)(y x y = 得:0000),,(y y x x =ϕ.如果我们的初始条件00)(y x y =发生了微小的误差,变为了**0)(y x y =,初值问题(2.2)的解也变化不大的话,称解连续依赖于初值.下面我们给出连续依赖性的严格定义.定义2.1 设初值问题⎪⎩⎪⎨⎧==**0)(),(y x y y x f dxdy的解),,(*0*0y x x y ϕ=在区间],[b a 上存在,如果对于任意给定的正数ε,存在正数δ (δ的选取与,ε**0,y x 有关),使得对于满足δδ<-<-*00*00,y y x x (2.2)的解),,(00y x x y ϕ=都在],[b a 上存在,且有],,[,),,(),,(*0*000b a x y x x y x x ∈<-εϕϕ则称初值问题(2.2)的解),,(00y x x y ϕ=在点),(*0*0y x 连续依赖于初值,0x 0y .定理2.4 (解对初值的连续依赖性定理)设),(y x f 在区域D 内连续,且关于变量y 满足李普希兹条件.如果D y x ∈),(*0*0,初值问题(2.2)有解),,(*0*0y x x y ϕ=,且当b x a ≤≤时,D y x x x ∈)),,(,(*0*0ϕ,则对任意的正数ε,存在0>δ,使对于满δδ<-<-*00*00,y y x x的任意),(00y x ,初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dxdy的解),,(00y x x y ϕ=也在区间],[b a 上存在,且有εϕϕ<-),,(),,(*0*000y x x y x x证明 对于任意给定的正数ε,取εδ<<10,使得闭区域}),,(,),{(1*0*0δϕ≤-≤≤=y x x y b x a y x U整个含在区域D 内,这是可以做到的,因为区域D 是开区域,且当b x a ≤≤时,D y x x x ∈)),,(,(*0*0ϕ,所以,只要1δ的选取足够小,以曲线),,(*0*0y x x y ϕ=为中线,宽度为12δ的带形开区域U 就整个包含在区域D 内, 选取δ满足)(110a b N e M--+<<δδ其中N 为李普希兹常数,),(max ),(y x f M Uy x ∈=,同时还要求δ的选取,必须保证闭正方形δδ≤-≤-*0*02,:y y x x R含于带形开区域U 内.由存在唯一性定理知,对于任一200),(R y x ∈,初值问题(2.2)在0x 的某邻域上存在唯一解),,(00y x x y ϕ=,而且),,(00y x x y ϕ=在0x 的该邻域上可以表示为ττϕτϕd y x f y y x x xx )),,(,(),,(000000⎰+=而),,(*0*0y x x y ϕ=可以表示为ττϕτϕd y x f y y x x xx )),,(,(),,(*0*0*0*0*0*⎰+=对上述两式做差得:ττϕτττϕτϕϕd y x f d y x f y y y x x y x x xx x x )),,(,()),,(,(),,(),,(*0*000*00*0*000*⎰⎰-+-=-ττϕτττϕτϕϕd y x f d y x f y y y x x y x x xx xx )),,(,()),,(,(),,(),,(*0*000*00*0*000*0⎰⎰-+-≤-ττϕτττϕττϕτd y x f d y x f y x f y y x x xx |)),,(,(||)),,(,()),,(,(|0000*0*0*00**0⎰⎰+-+-≤δττϕττϕτδM d y x f y x f xx +-+≤⎰|)),,(,()),,(,(|00*0*0*0ττϕτϕδd y x y x N M xx |),,(),,(|)1(00*0*0*0-++≤⎰由贝尔曼引理,得εδδδϕϕ<<+≤+≤---1)(*0*000)1()1(),,(),,(*a b N x x N e M e M y x x y x x因此,只要在),,(00y x x y ϕ=有定义的区间上,就有εϕϕ<-),,(),,(*0*000y x x y x x .下面我们证明:),,(00y x x y ϕ=在区间],[b a 上有定义.事实上,因为εϕϕ<-),,(),,(*0*000y x x y x x即解),,(00y x x y ϕ=夹在εϕ+=),,(*0*0y x x y 和εϕ-=),,(*0*0y x x y 之间,而且,初值问题(2.2)满足延展定理的条件,所以,解),,(00y x x y ϕ=可以向左向右无限延展,直到无限接近区域D 的边界,于是,它在延展的时候,必须由直线a x =和直线b x =穿出区域U ,从而),,(00y x x y ϕ=在区间],[b a 上有定义.解对初值的连续依赖性说明,初值),(00y x 无法准确得到,但是我们能得到测量数据),(*0*0y x ,只要误差比较小,即δδ<-<-*00*00,y y x x .我们就可以用),(*0*0y x 代替),(00y x 去计算,得到初值问题的解),,(*0*0y x x y ϕ=,这个解可以非常接近真实解),,(00y x x y ϕ=,即εϕϕ<-),,(),,(*0*000y x x y x x .同理,如果方程的右端函数),(y x f 不能准确得到,只能得到),(y x f 的近似函数),(~y x f ,即)),((,),(),(~D y x y x f y x f ∈<-δ我们就可以用),(~y x f 代替),(y x f 去计算,得到初值问题⎪⎩⎪⎨⎧==00~)(),(y x y y x f dxdy 的解),,(00~y x x y ϕ=,那么),,(00~y x x y ϕ=能否代替),,(00y x x y ϕ=呢?我们有下面的解的连续依赖性定理.定理2.5 (解对被积函数的连续依赖性定理)在区域D 上,),(y x f 和),(~y x f 都连续,而且关于变量y 满足李普希兹条件, 若初值问题⎪⎩⎪⎨⎧==00~)(),(y x y y x f dxdy 在b x a ≤≤上有解),,(00~y x x y ϕ=,则对任意给定的正数ε,存在0>δ,只要),(y x f 满足)),((,),(),(~D y x y x f y x f ∈<-δ则初值问题(2.2)的解),,(00y x x y ϕ=在b x a ≤≤上存在,且有εϕϕ<-),,(),,(00~00y x x y x x .证明 由解的存在唯一性定理知,初值问题⎪⎩⎪⎨⎧==00~)(),(y x y y x f dxdy 的解),,(00~y x x y ϕ=存在,设其存在区间为],[b a ,且有⎰+=xx d y x f y y x x 0))],,(,([),,(00~~000~ξξϕξϕ而初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dxdy的解),,(00y x x y ϕ=也存在,且可以表示为⎰+=xx d y x f y y x x 0))],,(,([),,(00000ξξϕξϕ则⎰⎰-=-xx xx d y x f d y x f y x x y x x 0))],,(,([))],,(,([),,(),,(0000~~0000~ξξϕξξξϕξϕϕ从而有⎰-≤-xx d y x f y x f y x x y x x 0|)),,(,()),,(,(|),,(),,(0000~~0000~ξξϕξξϕξϕϕ⎰-+-=xx d y x f y x f y x f y x f 0|)),,(,()),,(,()),,(,()),,(,(|0000~00~00~~ξξϕξξϕξξϕξξϕξ ⎰-+-≤xx d y x f y x f y x f y x f 0|)),,(,()),,(,(||)),,(,()),,(,(|0000~00~00~~ξξϕξξϕξξϕξξϕξ⎰+-≤xx d y x y x N 0)|),,(),,((|0000~ξδξϕξϕ ⎰-+-≤xx d y x y x N a b 0|),,(),,(|)(0000~ξξϕξϕδ由贝尔曼引理,得)(0000~)(),,(),,(a b N e a b y x x y x x --≤-δϕϕ取)(a b N e ab ---<εδ,则εϕϕ<-),,(),,(0000~y x x y x x .且解),,(00y x x y ϕ=在b x a ≤≤上存在. 例1 考虑方程,ln ,0≠=⎩⎨⎧-=y y y y dx dy 解的情况.解 显然1,1,0-===y y y 是方程的解,当1,1,0-≠≠≠y y y 时,有y y dxdyln -= 这时解得上半平面的通解为x Ce e y -=,下半平面的通解为xCe e y --=.可以看到,对于Ox 轴上的初值)0,(0x ,在任意有限闭区间上解对初值连续依赖,但是,在),0[+∞上,无论),(00y x ,00≠y 如何接近)0,(0x ,只要x 充分大,过),(00y x 的积分曲线就不能与过)0,(0x 的积分曲线(即0=y )任意接近了.这个例子说明,解在有限闭区间上对初值连续依赖,不能推广到无限区间,即,在无限区间上解对初值的连续依赖定理就不成立了.我们有时不仅要求解对初值连续依赖,而且还要知道解),,(00y x x y ϕ=对初值00,y x 的偏导数00,y x ∂∂∂∂ϕϕ是否存在.下面给出解对初值的可微性定理. 定理2.6 (解对初值的可微性定理)如果函数),(y x f 以及),(y x f y '在区域D 内连续,则初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy 的解),,(00y x x y ϕ=在它有定义的区间上有连续偏导数00,y x ∂∂∂∂ϕϕ.并且有 ⎰-=∂∂'x x y d y x f e y x f x y x x 000)),,(,(00000),(),,(ττϕτϕ 及⎰=∂∂'xx y d y x f e y y x x 000)),,(,(000),,(ττϕτϕ 习 题 2.31.若函数),(y x f ,),(y x R 在区域D 内连续且满足李普希兹条件,设初值问题⎪⎩⎪⎨⎧=+=*0*0)(),(),(y x y y x R y x f dx dy 的解为),,(*0*0~y x x y ϕ=,存在区间为],[b a .对任意的正数ε,存在0>δ,使对于满足)),((,),(D y x y x R ∈<δ的),(y x R ,以及满足δδ<-<-*00*00,y y x x的任意),(00y x ,初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy 的解),,(00y x x y ϕ=也在区间],[b a 上存在,且有εϕϕ<-),,(),,(*0*0~00y x x y x x 2.已知方程)sin(xy dxdy = 试求0000000),,(==⎥⎦⎤⎢⎣⎡∂∂y x x y x x y 和0000000),,(==⎥⎦⎤⎢⎣⎡∂∂y x y y x x y 3.设),,(00y x x ϕ是初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy 的解,试证明0),(),,(),,(00000000=∂∂+∂∂y x f y y x x x y x x ϕϕ 2.4 欧拉折线法在第一章,我们介绍了方程的初等解法,即用微积分的知识求得常微分方程的函数解.但是绝大多数的方程不能用初等方法求解,在第二章的前三节中,我们给出了柯西初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy 在什么样的条件下,解存在且唯一;在什么条件下,解的存在区间可以延展;在什么条件下连续依赖于初值;在什么条件下,解对初值是可微的.有了这些准备,我们就可以研究柯西初值问题的近似解.下面我们介绍求近似解的方法,欧拉折线法.假定函数),(y x f 在区域:+∞<<-∞≤≤y b x a ,上连续,且关于变量y 满足李普希兹条件,求柯西初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy 在区间],[0b x 上的近似解,我们采用的方法是:(1)等分区间],[0b x ,分点为n k kh x x k ,,1,0,0 =+=;小区间长度nx b h 0-=, (2)第一个小区间上用切线段逼近曲线:))(,(0000x x y x f y y -+=,(3)求出1x 所对应的纵坐标))(,(010001x x y x f y y -+=,(4)依次重复(2),(3)得到每个小区间上的线段,从而得到欧拉折线. 这样,我们就用欧拉折线作为柯西初值问题在区间],[0b x 近似解.欧拉折线法的前提是:柯西初值问题的解存在且唯一,而且解的存在区间是],[0b x .例1试用欧拉折线法,取步长1.0=h ,求初值问题⎪⎩⎪⎨⎧=+=1)1(22y y x dx dy 的解在4.1=x 时的近似值.解 令22),(y x y x f +=,2)1,1(=f ,这时12-=x y ,代入1.11=x 得:2.11=y ,65.2)2.1,1.1(=f ,这时2.1)1.1(65.2+-=x y , 代入2.12=x 得:465.12=y ,586225.3)465.1,2.1(=f ,这时465.1)2.1(586225.3+-=x y , 代入3.13=x 得:8236225.13=y ,0155990225.5)8236225.1,3.1(=f ,这时8236225.1)3.1(0155990225.5+-=x y ,代入4.14=x 得:53251824022.24=y 习 题 2.41. 试用欧拉折线法,取步长1.0=h ,求初值问题⎪⎩⎪⎨⎧=-=0)0(22y y x dx dy 的解在5.1=x 时的近似值.2.试用欧拉折线法,取步长1.0=h ,求初值问题 ⎪⎩⎪⎨⎧=+=2)1(22y y x dx dy 在区间]4.1,1[上的近似解.。