数学讲义:三角函数的基本关系
- 格式:doc
- 大小:199.69 KB
- 文档页数:3
初三数学三角函数相互关系三角函数是初中数学中的重要内容,它们之间存在着紧密的相互关系。
在学习三角函数时,理解和掌握不同三角函数之间的关系是非常重要的。
本文将探讨正弦、余弦以及正切三个主要的三角函数之间的相互关系。
在初中数学中,三角函数主要分为正弦函数、余弦函数和正切函数三种。
它们都是以一个角度作为自变量,输出一个与角度相关的数字。
具体来说,正弦函数(sin)表示一个角的对边与斜边之比,余弦函数(cos)表示一个角的邻边与斜边之比,而正切函数(tan)则表示一个角的对边与邻边之比。
首先,我们来探讨正弦函数与余弦函数的相互关系。
正弦函数和余弦函数可以看作是互为补角关系。
所谓补角,指的是两个角的和为90°。
当两个角互为补角时,它们的正弦和余弦函数之间存在着一种相互关系。
具体来说,对于任意角A,如果角B是角A的补角,则有以下关系成立:sin(A) = cos(B)cos(A) = sin(B)这意味着,如果我们知道一个角的正弦值,我们可以通过求其补角的余弦值来得到相同的结果,反之亦然。
这种相互关系在解三角函数的问题中非常有用,可以通过简化问题的方式来求解。
其次,我们来研究正切函数与正弦、余弦函数的相互关系。
正切函数与正弦、余弦函数之间存在着以下关系:tan(A) = sin(A) / cos(A)这个关系可以通过正弦函数和余弦函数的定义推导得出,当余弦值不为零时,两者之间存在着一个倒数关系。
这意味着,如果我们知道一个角的正弦值和余弦值,我们可以通过相除得到该角的正切值。
同样地,如果我们知道一个角的正切值和余弦值,我们也可以通过相除得到该角的正弦值。
在实际问题中,我们常常需要利用这种相互关系来求解三角函数的值。
例如,当我们已知一个角的正弦值和余弦值时,可以通过求两者之商来求得该角的正切值。
这种相互关系的应用可以帮助我们更快地解决三角函数的相关问题。
总结起来,正弦函数、余弦函数和正切函数之间存在着紧密的相互关系。
三角函数的基本关系三角函数是高中数学中的重要内容,它们描述了角度和边长之间的关系。
三角函数的基本关系是指正弦、余弦和正切三个基本三角函数之间的关系。
一、正弦函数的基本关系正弦函数(sin)是指一个角的正弦值与该角的对边与斜边的比值之间的关系。
我们可以通过一个直角三角形来理解正弦函数。
假设在直角三角形ABC中,∠B为直角,BC为斜边,AC为对边,AB为邻边。
根据正弦函数的定义,sin∠A = AC/BC。
我们可以进一步推导出一些正弦函数的基本关系:1. sin(π/2 - θ) = cosθ:这个关系是由于余弦函数(cos)定义为邻边与斜边的比值,因此sin(π/2 - θ) = AC/BC = cosθ。
2. sin(π + θ) = -sinθ:这个关系是由于对于同一个角度,其正弦值在每个周期内是对称的,即sin(π + θ) = AC/BC = -sinθ。
3. sin(2π - θ) = sinθ:这个关系是由于正弦函数具有周期性,即sin(2π - θ) = AC/BC = sinθ。
二、余弦函数的基本关系余弦函数(cos)是指一个角的余弦值与该角的邻边与斜边的比值之间的关系。
同样地,在直角三角形ABC中,∠B为直角,BC为斜边,AC为对边,AB为邻边。
根据余弦函数的定义,cos∠A = AB/BC。
我们可以进一步推导出一些余弦函数的基本关系:1. cos(π/2 - θ) = sinθ:这个关系是由于正弦函数的定义,sin(π/2 - θ)= AC/BC = sinθ。
2. cos(π + θ) = -cosθ:这个关系是由于余弦函数的定义,cos(π + θ) = AB/BC = -cosθ。
3. cos(2π - θ) = cosθ:这个关系是由于余弦函数具有周期性,cos(2π- θ) = AB/BC = cosθ。
三、正切函数的基本关系正切函数(tan)是指一个角的正切值与该角的对边与邻边的比值之间的关系。
高中数学竞赛教材讲义 第六章 三角函数讲义一、基础知识定义1 角,一条射线绕着它的端点旋转得到的图形叫做角。
若旋转方向为逆时针方向,则角为正角,若旋转方向为顺时针方向,则角为负角,若不旋转则为零角。
角的大小是任意的。
定义2 角度制,把一周角360等分,每一等价为一度,弧度制:把等于半径长的圆弧所对的圆心角叫做一弧度。
360度=2π弧度。
若圆心角的弧长为L ,则其弧度数的绝对值|α|=rL ,其中r 是圆的半径。
定义3 三角函数,在直角坐标平面内,把角α的顶点放在原点,始边与x 轴的正半轴重合,在角的终边上任意取一个不同于原点的点P ,设它的坐标为(x ,y ),到原点的距离为r,则正弦函数s in α=r y ,余弦函数co s α=r x ,正切函数tan α=xy,余切函数cot α=y x ,正割函数se c α=xr,余割函数c s c α=.y r定理1 同角三角函数的基本关系式,倒数关系:tan α=αcot 1,s in α=αcsc 1,co s α=αsec 1;商数关系:tan α=αααααsin cos cot ,cos sin =;乘积关系:tan α×co s α=s in α,cot α×s in α=co s α;平方关系:s in 2α+co s 2α=1, tan 2α+1=se c 2α, cot 2α+1=c s c 2α.定理2 诱导公式(Ⅰ)s in (α+π)=-s in α, co s(π+α)=-co s α, tan (π+α)=tan α, cot (π+α)=cot α;(Ⅱ)s in (-α)=-s in α, co s(-α)=co s α, tan (-α)=-tan α, cot (-α)=cot α; (Ⅲ)s in (π-α)=s in α, co s(π-α)=-co s α, tan =(π-α)=-tan α, cot (π-α)=-cot α; (Ⅳ)s in ⎪⎭⎫⎝⎛-απ2=co s α, co s ⎪⎭⎫ ⎝⎛-απ2=s in α, tan ⎪⎭⎫⎝⎛-απ2=cot α(奇变偶不变,符号看象限)。
§4.2 同角三角函数基本关系式及诱导公式考试要求 1.理解同角三角函数的基本关系式sin 2α+cos 2α=1,sin αcos α=tan α.2.掌握诱导公式,并会简单应用.知识梳理1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1.(2)商数关系:sin αcos α=tan α⎝⎛⎭⎫α≠π2+k π,k ∈Z . 2.三角函数的诱导公式公式 一 二 三 四 五 六 角 2k π+α (k ∈Z ) π+α -α π-α π2-α π2+α 正弦 sin α -sin α -sin α sin α cos α cos α 余弦 cos α -cos α cos α -cos α sin α -sin α 正切 tan αtan α-tan α-tan α口诀奇变偶不变,符号看象限常用结论同角三角函数的基本关系式的常见变形 sin 2α=1-cos 2α=(1+cos α)(1-cos α); cos 2α=1-sin 2α=(1+sin α)(1-sin α); (sin α±cos α)2=1±2sin αcos α. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)若α,β为锐角,则sin 2α+cos 2β=1.( × ) (2)若α∈R ,则tan α=sin αcos α恒成立.( × )(3)sin(π+α)=-sin α成立的条件是α为锐角.( × ) (4)若sin ⎝⎛⎭⎫3π2-α=13,则cos α=-13.( √ )教材改编题1.已知α是第二象限角,sin α=55,则cos α的值为 . 答案 -255解析 ∵sin α=55,α是第二象限角, ∴cos α=-1-sin 2α=-255.2.已知sin α-2cos α3sin α+5cos α=-5,那么tan α的值为 .答案 -2316解析 由sin α-2cos α3sin α+5cos α=-5,知cos α≠0,等式左边分子、分母同时除以cos α,可得tan α-23tan α+5=-5,解得tan α=-2316.3.化简cos ⎝⎛⎭⎫α-π2sin ⎝⎛⎭⎫5π2+α·sin(α-π)·cos(2π-α)的结果为 . 答案 -sin 2α解析 原式=sin αcos α·(-sin α)·cos α=-sin 2α.题型一 同角三角函数基本关系例1 (1)已知cos α=-513,则13sin α+5tan α= .答案 0解析 ∵cos α=-513<0且cos α≠-1,∴α是第二或第三象限角. ①若α是第二象限角,则sin α=1-cos 2α=1-⎝⎛⎭⎫-5132=1213, ∴tan α=sin αcos α=1213-513=-125.此时13sin α+5tan α=13×1213+5×⎝⎛⎭⎫-125=0. ②若α是第三象限角, 则sin α=-1-cos 2α=-1-⎝⎛⎭⎫-5132 =-1213,∴tan α=sin αcos α=-1213-513=125,此时,13sin α+5tan α=13×⎝⎛⎭⎫-1213+5×125=0. 综上,13sin α+5tan α=0.(2)已知tan α=12,则sin α-3cos αsin α+cos α= ;sin 2α+sin αcos α+2= .答案 -53 135解析 已知tan α=12,所以sin α-3cos αsin α+cos α=tan α-3tan α+1=-53.sin 2α+sin αcos α+2 =sin 2α+sin αcos αsin 2α+cos 2α+2=tan 2α+tan αtan 2α+1+2=⎝⎛⎭⎫122+12⎝⎛⎭⎫122+1+2=135.(3)已知sin θ+cos θ=713,θ∈(0,π),则tan θ= .答案 -125解析 由sin θ+cos θ=713,得sin θcos θ=-60169,因为θ∈(0,π),所以sin θ>0,cos θ<0, 所以sin θ-cos θ=1-2sin θcos θ=1713, 联立⎩⎨⎧sin θ+cos θ=713,sin θ-cos θ=1713,解得⎩⎨⎧sin θ=1213,cos θ=-513,所以tan θ=-125.教师备选1.(2022·锦州联考)已知sin α+3cos α3cos α-sin α=5,则cos 2α+12sin 2α等于( )A.35 B .-35C .-3D .3答案 A解析 由sin α+3cos α3cos α-sin α=5,得tan α+33-tan α=5,可得tan α=2,则cos 2α+12sin 2α=cos 2α+sin αcos α=cos 2α+sin αcos αcos 2α+sin 2α=1+tan α1+tan 2α=35. 2.若α∈(0,π),sin(π-α)+cos α=23,则sin α-cos α的值为( ) A.23B .-23 C.43 D .-43答案 C解析 由诱导公式得sin(π-α)+cos α=sin α+cos α=23, 所以(sin α+cos α)2=1+2sin αcos α=29,则2sin αcos α=-79<0,因为α∈(0,π),所以sin α>0, 所以cos α<0,所以sin α-cos α>0, 因为(sin α-cos α)2=1-2sin αcos α=169,所以sin α-cos α=43.思维升华 (1)应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.(2)注意公式逆用及变形应用:1=sin 2α+cos 2α,sin 2α=1-cos 2α,cos 2α=1-sin 2α. 跟踪训练1 (1)(2021·新高考全国Ⅰ)若tan θ=-2,则sin θ(1+sin 2θ)sin θ+cos θ等于( )A .-65B .-25 C.25 D.65答案 C解析 方法一 因为tan θ=-2, 所以角θ的终边在第二或第四象限,所以⎩⎨⎧sin θ=25,cos θ=-15或⎩⎨⎧sin θ=-25,cos θ=15,所以sin θ(1+sin 2θ)sin θ+cos θ=sin θ(sin θ+cos θ)2sin θ+cos θ=sin θ(sin θ+cos θ) =sin 2θ+sin θcos θ =45-25=25.方法二 (弦化切法)因为tan θ=-2, 所以sin θ(1+sin 2θ)sin θ+cos θ=sin θ(sin θ+cos θ)2sin θ+cos θ=sin θ(sin θ+cos θ) =sin 2θ+sin θcos θsin 2θ+cos 2θ=tan 2θ+tan θ1+tan 2θ=4-21+4=25.(2)已知α是三角形的内角,且tan α=-13,则sin α+cos α的值为 .答案 -105解析 由tan α=-13,得sin α=-13cos α,将其代入sin 2α+cos 2α=1,得109cos 2α=1,所以cos 2α=910,易知cos α<0,所以cos α=-31010,sin α=1010,故sin α+cos α=-105. 题型二 诱导公式例2 (1)已知sin ⎝⎛⎭⎫α-π4=13,则cos ⎝⎛⎭⎫π4+α的值为( ) A.223B .-223C.13 D .-13答案 D解析 cos ⎝⎛⎭⎫π4+α=cos ⎣⎡⎦⎤π2+⎝⎛⎭⎫α-π4 =-sin ⎝⎛⎭⎫α-π4=-13.延伸探究 本例(1)改为已知θ是第二象限角,且sin ⎝⎛⎭⎫θ+π4=45,则tan ⎝⎛⎭⎫θ-π4= . 答案 34解析 ∵θ是第二象限角,且sin ⎝⎛⎭⎫θ+π4=45, ∴θ+π4为第二象限角,∴cos ⎝⎛⎭⎫θ+π4=-35, ∴tan ⎝⎛⎭⎫θ-π4=sin ⎝⎛⎭⎫θ-π4cos ⎝⎛⎭⎫θ-π4 =sin ⎣⎡⎦⎤⎝⎛⎭⎫θ+π4-π2cos ⎣⎡⎦⎤⎝⎛⎭⎫θ+π4-π2 =-cos ⎝⎛⎭⎫θ+π4sin ⎝⎛⎭⎫θ+π4=-⎝⎛⎭⎫-3545=34. (2)tan (π-α)cos (2π-α)sin ⎝⎛⎭⎫-α+3π2cos (-α-π)sin (-π-α)的值为( )A .-2B .-1C .1D .2 答案 B解析 原式=-tan α·cos α·(-cos α)cos (π+α)·[-sin (π+α)]=tan α·cos 2α-cos α·sin α =-sin αcos α·cos αsin α=-1.教师备选1.已知函数f (x )=a x -2+2(a >0且a ≠1)的图象过定点P ,且角α的始边与x 轴的正半轴重合,终边过点P ,则cos ⎝⎛⎭⎫11π2-αsin ⎝⎛⎭⎫9π2+α+sin 2αcos ⎝⎛⎭⎫π2+αsin (-π-α)等于( )A.23 B .-23C.32 D .-32答案 B解析 易知函数f (x )=a x -2+2(a >0且a ≠1)的图象过定点P (2,3), 故tan α=32,则cos ⎝⎛⎭⎫11π2-αsin ⎝⎛⎭⎫9π2+α+sin 2αcos ⎝⎛⎭⎫π2+αsin (-π-α)=cos ⎝⎛⎭⎫3π2-αsin ⎝⎛⎭⎫π2+α+sin 2αcos ⎝⎛⎭⎫π2+αsin α=-sin αcos α+2sin αcos α-sin αsin α=-cos αsin α=-1tan α=-23.2.若sin x =3sin ⎝⎛⎭⎫x -π2,则cos x ·cos ⎝⎛⎭⎫x +π2等于( ) A.310 B .-310C.34 D .-34答案 A解析 易知sin x =3sin ⎝⎛⎭⎫x -π2=-3cos x , 所以tan x =-3, 所以cos x cos ⎝⎛⎭⎫x +π2 =-sin x cos x =-sin x cos xsin 2x +cos 2xtan 2x +110思维升华 (1)诱导公式的两个应用①求值:负化正,大化小,化到锐角为终了; ②化简:统一角,统一名,同角名少为终了. (2)诱导公式的应用步骤任意负角的三角函数――――――→利用诱导公式三或一任意正角的三角函数――――――→利用诱导公式一0~2π内的角的三角函数――――――→利用诱导公式二或四或五或六锐角三角函数. 跟踪训练2 (1)已知cos(75°+α)=13,求cos(105°-α)+sin(15°-α)= .答案 0解析 因为(105°-α)+(75°+α)=180°, (15°-α)+(α+75°)=90°,所以cos(105°-α)=cos[180°-(75°+α)] =-cos(75°+α)=-13,sin(15°-α)=sin[90°-(α+75°)] =cos(75°+α)=13.所以cos(105°-α)+sin(15°-α)=-13+13=0.(2)(2022·盐城南阳中学月考)设tan(5π+α)=2,则sin (-3π+α)+cos (α-π)cos ⎝⎛⎭⎫α-112π+sin ⎝⎛⎭⎫9π2+α= .答案 3解析 由已知tan(5π+α)=tan α=2, sin (-3π+α)+cos (α-π)cos ⎝⎛⎭⎫α-112π+sin ⎝⎛⎭⎫9π2+α=sin (π+α)+cos (π-α)cos ⎝⎛⎭⎫α+π2+sin ⎝⎛⎭⎫π2+α-sin α+cos α=sin α+cos αsin α-cos α=tan α+1tan α-1=3. 题型三 同角三角函数基本关系式和诱导公式的综合应用 例3 已知f (α)=sin (α-3π)cos (2π-α)sin ⎝⎛⎭⎫-α+3π2cos (-π-α)sin (-π-α).(1)化简f (α);(2)若α=-31π3,求f (α)的值;(3)若cos ⎝⎛⎭⎫-α-π2=15,α∈⎣⎡⎦⎤π,3π2,求f (α)的值. 解 (1)f (α)=sin (α-3π)cos (2π-α)sin ⎝⎛⎭⎫-α+3π2cos (-π-α)sin (-π-α)=-sin α×cos α×(-cos α)-cos α×sin α=-cos α. (2)若α=-31π3,则f (α)=-cos ⎝⎛⎭⎫-31π3=-cos π3=-12. (3)由cos ⎝⎛⎭⎫-α-π2=15, 可得sin α=-15,因为α∈⎣⎡⎦⎤π,3π2, 所以cos α=-265,所以f (α)=-cos α=265.教师备选设f (α)=2sin (π+α)cos (π-α)-cos (π+α)1+sin 2α+cos ⎝⎛⎭⎫3π2+α-sin 2⎝⎛⎭⎫π2+α(1+2sin α≠0). (1)化简f (α);(2)若α=-23π6,求f (α)的值. 解 (1)f (α)=(-2sin α)·(-cos α)-(-cos α)1+sin 2α+sin α-cos 2α=2sin αcos α+cos α2sin 2α+sin α=cos α(2sin α+1)sin α(2sin α+1)=cos αsin α=1tan α. (2)当α=-23π6时, f (α)=f ⎝⎛⎭⎫-23π6=1tan ⎝⎛⎭⎫-23π6 =1tan ⎝⎛⎭⎫-4π+π6 =1tan π6=133= 3. 思维升华 (1)利用同角三角函数关系式和诱导公式求值或化简时,关键是寻求条件、结论间的联系,灵活使用公式进行变形.(2)注意角的范围对三角函数符号的影响.跟踪训练3 (1)(2022·聊城模拟)已知α为锐角,且2tan(π-α)-3cos ⎝⎛⎭⎫π2+β+5=0,tan(π+α)+6sin(π+β)-1=0,则sin α的值是( )A.355B.377C.31010D.13答案 C解析 由已知得⎩⎪⎨⎪⎧3sin β-2tan α+5=0,tan α-6sin β-1=0. 消去sin β,得tan α=3,∴sin α=3cos α,代入sin 2α+cos 2α=1,化简得sin 2α=910,则sin α=31010(α为锐角). (2)已知-π<x <0,sin(π+x )-cos x =-15,则sin 2x +2sin 2x 1-tan x= . 答案 -24175解析 由已知,得sin x +cos x =15, 两边平方得sin 2x +2sin x cos x +cos 2x =125, 整理得2sin x cos x =-2425. ∴(sin x -cos x )2=1-2sin x cos x =4925, 由-π<x <0知,sin x <0,又sin x cos x =-1225<0, ∴cos x >0,∴sin x -cos x <0,故sin x -cos x =-75. ∴sin 2x +2sin 2x 1-tan x =2sin x (cos x +sin x )1-sin x cos x=2sin x cos x (cos x +sin x )cos x -sin x=-2425×1575=-24175.课时精练1.cos ⎝⎛⎭⎫-19π3等于( ) A .-32 B .-12 C.12D.32 答案 C解析 cos ⎝⎛⎭⎫-19π3=cos 19π3=cos ⎝⎛⎭⎫6π+π3=cos π3=12. 2.若cos 165°=a ,则tan 195°等于( )A.1-a 2B.1-a 2aC .-1-a 2aD .-a 1-a 2 答案 C解析 若cos 165°=a ,则cos 15°=cos(180°-165°)=-cos 165°=-a ,sin 15°=1-a 2,所以tan 195°=tan(180°+15°)=tan 15°=sin 15°cos 15°=-1-a 2a. 3.若cos ⎝⎛⎭⎫α-π5=513,则sin ⎝⎛⎭⎫7π10-α等于( ) A .-513B .-1213 C.1213 D.513答案 D解析 因为7π10-α+⎝⎛⎭⎫α-π5=π2,所以7π10-α=π2-⎝⎛⎭⎫α-π5,所以sin ⎝⎛⎭⎫7π10-α=cos ⎝⎛⎭⎫α-π5=513.4.(2022·天津西青区模拟)已知sin α+cos α=-2,则tan α+1tan α等于() A .2 B.12 C .-2 D .-12答案 A解析 由已知得1+2sin αcos α=2,∴sin αcos α=12,∴tan α+1tan α=sin αcos α+cos αsin α=sin 2α+cos 2αsin αcos α=112=2.5.(多选)在△ABC 中,下列结论正确的是( )A .sin(A +B )=sin CB .sin B +C 2=cos A 2C .tan(A +B )=-tan C ⎝⎛⎭⎫C ≠π2D .cos(A +B )=cos C答案 ABC解析 在△ABC 中,有A +B +C =π,则sin(A +B )=sin(π-C )=sin C ,A 正确.sin B +C 2=sin ⎝⎛⎭⎫π2-A 2=cos A 2,B 正确.tan(A +B )=tan(π-C )=-tan C ⎝⎛⎭⎫C ≠π2,C 正确.cos(A +B )=cos(π-C )=-cos C ,D 错误.6.(多选)已知α∈(0,π),且sin α+cos α=15,则( ) A.π2<α<π B .sin αcos α=-1225C .cos α-sin α=75D .cos α-sin α=-75答案 ABD解析 ∵sin α+cos α=15, 等式两边平方得(sin α+cos α)2=1+2sin αcos α=125, 解得sin αcos α=-1225,故B 正确; ∵α∈(0,π),sin αcos α=-1225<0, ∴α∈⎝⎛⎭⎫π2,π,故A 正确;cos α-sin α<0,且(cos α-sin α)2=1-2sin αcos α=1-2×⎝⎛⎭⎫-1225=4925, 解得cos α-sin α=-75,故D 正确. 7.cos 1°+cos 2°+cos 3°+…+cos 177°+cos 178°+cos 179°= .答案 0解析 因为cos(180°-α)=-cos α,于是得cos 1°+cos 2°+cos 3°+…+cos 89°+cos 90°+cos 91°+…+cos 177°+cos 178°+cos 179° =cos 1°+cos 2°+cos 3°+…+cos 89°+cos 90°-cos 89°-…-cos 3°-cos 2°-cos 1° =cos 90°=0.8.设f (θ)=2cos 2θ+sin 2(2π-θ)+sin ⎝⎛⎭⎫π2+θ-32+2cos 2(π+θ)+cos (-θ),则f ⎝⎛⎭⎫17π3= . 答案 -512解析 ∵f (θ)=2cos 2θ+sin 2θ+cos θ-32+2cos 2θ+cos θ=cos 2θ+cos θ-22cos 2θ+cos θ+2,又cos 17π3=cos ⎝⎛⎭⎫6π-π3=cos π3=12,∴f ⎝⎛⎭⎫17π3=14+12-212+12+2=-512.9.(1)已知cos α是方程3x 2-x -2=0的根,且α是第三象限角,求sin ⎝⎛⎭⎫-α+3π2cos ⎝⎛⎭⎫3π2+αtan 2(π-α)cos ⎝⎛⎭⎫π2+αsin ⎝⎛⎭⎫π2-α的值;(2)已知sin x +cos x =-713(0<x <π),求cos x -2sin x 的值.解 (1)因为方程3x 2-x -2=0的根为x 1=1,x 2=-23,又α是第三象限角,所以cos α=-23,所以sin α=-53,tan α=52.所以原式=-cos αsin αtan 2α-sin αcos α=tan 2α=54.(2)∵sin x +cos x =-713(0<x <π),∴cos x <0,sin x >0,即sin x -cos x >0,把sin x +cos x =-713,两边平方得1+2sin x cos x =49169, 即2sin x cos x =-120169, ∴(sin x -cos x )2=1-2sin x cos x =289169, 即sin x -cos x =1713, 联立⎩⎨⎧ sin x +cos x =-713,sin x -cos x =1713,解得sin x =513,cos x =-1213, ∴cos x -2sin x =-2213. 10.(2022·衡水模拟)已知角α的终边经过点P (3m ,-6m )(m ≠0).(1)求sin (α+π)+cos (α-π)sin ⎝⎛⎭⎫α+π2+2cos ⎝⎛⎭⎫α-π2的值; (2)若α是第二象限角,求sin 2⎝⎛⎭⎫α+3π2+sin(π-α)cos α-cos ⎝⎛⎭⎫π2+α的值. 解 (1)∵m ≠0,∴cos α≠0,即sin (α+π)+cos (α-π)sin ⎝⎛⎭⎫α+π2+2cos ⎝⎛⎭⎫α-π2 =-sin α-cos αcos α+2sin α=-tan α-11+2tan α. 又∵角α的终边经过点P (3m ,-6m )(m ≠0),∴tan α=-6m 3m=-2, 故sin (α+π)+cos (α-π)sin ⎝⎛⎭⎫α+π2+2cos ⎝⎛⎭⎫α-π2=-tan α-11+2tan α =2-11+2×(-2)=-13. (2)∵α是第二象限角,∴m <0,则sin α=-6m (3m )2+(-6m )2 =-6m 35|m | =255, cos α=3m(3m )2+(-6m )2 =3m 35|m | =-55, ∴sin 2⎝⎛⎭⎫α+3π2+sin(π-α)cos α-cos ⎝⎛⎭⎫π2+α =cos 2α+sin αcos α+sin α=⎝⎛⎭⎫-552+255×⎝⎛⎭⎫-55+255=-1+255.11.(多选)已知角α满足sin α·cos α≠0,则表达式sin (α+k π)sin α+cos (α+k π)cos α(k ∈Z )的取值可能为( )A .-2B .-1或1C .2D .-2或2或0答案 AC解析 当k 为奇数时,原式=-sin αsin α+-cos αcos α=(-1)+(-1)=-2;当k 为偶数时,原式=sin αsin α+cos αcos α=1+1=2. ∴原表达式的取值可能为-2或2.12.(2022·河北六校联考)若sin α是方程5x 2-7x -6=0的根,则sin ⎝⎛⎭⎫-α-3π2sin ⎝⎛⎭⎫3π2-αtan 2(2π-α)cos ⎝⎛⎭⎫π2-αcos ⎝⎛⎭⎫π2+αsin (π+α)等于( )A.35B.53C.45D.54答案 B解析 方程5x 2-7x -6=0的两根为x 1=-35,x 2=2,则sin α=-35. 原式=cos α(-cos α)tan 2αsin α(-sin α)(-sin α)=-1sin α=53. 13.曲线y =e x +x 2-23x 在x =0处的切线的倾斜角为α,则sin ⎝⎛⎭⎫2α+π2= . 答案 45解析 由题意得y ′=f ′(x )=e x +2x -23, 所以f ′(0)=e 0-23=13, 所以tan α=13, 所以α∈⎝⎛⎭⎫0,π2, 所以cos α=310, 所以sin ⎝⎛⎭⎫2α+π2 =cos 2α=2cos 2α-1=2×910-1=45. 14.函数y =log a (x -3)+2(a >0且a ≠1)的图象过定点Q ,且角α的终边也过点Q ,则3sin 2α+2sin αcos α= .答案 75解析 由题意可知点Q (4,2),所以tan α=12, 所以3sin 2α+2sin αcos α=3sin 2α+2sin αcos αsin 2α+cos 2α =3tan 2α+2tan α1+tan 2α=3×14+2×121+14=75.15.(多选)已知f (α)=2sin αcos α-2sin α+cos α+1⎝⎛⎭⎫0≤α≤π2,则下列说法正确的是() A .f (α)的最小值为- 2B .f (α)的最小值为-1C .f (α)的最大值为2-1D .f (α)的最大值为1- 2答案 BD解析 设t =sin α+cos α=2sin ⎝⎛⎭⎫α+π4,由0≤α≤π2,得π4≤α+π4≤3π4,则1≤t ≤2,又由(sin α+cos α)2=t 2,得2sin αcos α=t 2-1,所以f (α)=g (t )=t 2-1-2t +1=t -1-2t +1,又因为函数y =t -1和y =-2t +1在[1,2]上单调递增,所以g (t )=t -1-2t +1在[1,2]上单调递增, g (t )min =g (1)=-1,g (t )max =g (2)=1- 2.16.已知关于x 的方程2x 2-(3+1)x +m =0的两根分别是sin θ和cos θ,θ∈(0,2π),求:(1)sin 2θsin θ-cos θ+cos θ1-tan θ的值; (2)m 的值;(3)方程的两根及此时θ的值.解 (1)原式=sin 2θsin θ-cos θ+cos θ1-sin θcos θ=sin 2θsin θ-cos θ+cos 2θcos θ-sin θ=sin 2θ-cos 2θsin θ-cos θ=sin θ+cos θ.由已知得sin θ+cos θ=3+12, 所以sin 2θsin θ-cos θ+cos θ1-tan θ=3+12. (2)由已知得sin θcos θ=m 2, 因为1+2sin θcos θ=(sin θ+cos θ)2,所以1+m =⎝⎛⎭⎪⎫3+122, 解得m =32. (3)联立⎩⎪⎨⎪⎧ sin θ+cos θ=3+12,sin θcos θ=34,解得⎩⎨⎧ sin θ=32,cos θ=12 或⎩⎨⎧ sin θ=12,cos θ=32.因为θ∈(0,2π),所以θ=π3或π6.。
高中数学公式大全正弦余弦和正切的基本关系高中数学公式大全: 正弦、余弦和正切的基本关系在高中数学学习中,正弦、余弦和正切是三角函数中最基本的三个函数。
它们之间存在着紧密的关系,通过这些关系可以更好地理解和应用三角函数。
1. 正弦(Sin)的定义:在直角三角形中,正弦是指对边与斜边之比,即sinA = 对边/斜边2. 余弦(Cos)的定义:在直角三角形中,余弦是指邻边与斜边之比,即cosA = 邻边/斜边3. 正切(Tan)的定义:在直角三角形中,正切是指对边与邻边之比,即tanA = 对边/邻边4. 正弦、余弦和正切之间的基本关系:根据勾股定理和定义,可以得到以下关系式:sin^2A + cos^2A = 1以及tanA = sinA / cosA5. 三角函数的周期性:正弦、余弦和正切都是周期函数,其周期为360°或2π。
也就是说,对于任意角度A,有以下关系:sin(A + 360°) = sinAcos(A + 360°) = cosAtan(A + 360°) = tanA6. 三角函数的基本性质:(1)正弦和余弦函数的值域在[-1, 1]之间,即-1 ≤ sinA, cosA ≤ 1(2)正切函数的值域是所有实数,即tanA ∈ R7. 一些常用的角度-弧度转换关系:π弧度 = 180°角度A对应的弧度值= (π/180) * A8. 三角函数的图像:正弦函数的图像呈现周期性波浪形,以原点为中心对称;余弦函数的图像也呈现周期性波浪形,但与正弦函数相比,相位相差90°;正切函数的图像则呈现周期性的射线形。
9. 三角函数的应用:正弦、余弦和正切在几何、物理、工程等领域中有广泛的应用。
例如,在三角测量中,我们可以利用正弦、余弦和正切的关系来解决实际问题,如测量不可达高度、角度等。
总结:正弦、余弦和正切是高中数学中最基本的三角函数。
它们之间存在着紧密的关系,通过这些关系可以更好地理解和应用三角函数。
千里之行,始于足下。
完整版)三角函数知识点总结三角函数是高中数学中的重要部分,它与几何图形的性质、三角形的边角关系、周期函数等有着密切的联系。
以下是三角函数的一些重要的知识点总结:一、三角函数的定义:1. 正弦函数(sin):在直角三角形中,对于一个锐角的角度,正弦函数的值等于对边长度与斜边长度的比值。
2. 余弦函数(cos):在直角三角形中,对于一个锐角的角度,余弦函数的值等于邻边长度与斜边长度的比值。
3. 正切函数(tan):在直角三角形中,对于一个锐角的角度,正切函数的值等于对边长度与邻边长度的比值。
二、三角函数的重要性质:1. 三角函数的周期性:sin、cos、tan函数的周期都是2π。
2. 三角函数的奇偶性:(1)正弦函数是奇函数,即sin(-x)=-sin(x)。
(2)余弦函数是偶函数,即cos(-x)=cos(x)。
(3)正切函数是奇函数,即tan(-x)=-tan(x)。
3. 三角函数的界值:(1)正弦函数的取值范围在[-1, 1]之间,即-1≤sin(x)≤1。
(2)余弦函数的取值范围也在[-1, 1]之间,即-1≤cos(x)≤1。
(3)正切函数的取值范围为全体实数。
三、三角函数的基本关系与恒等式:1. 余弦与正弦的基本关系:cos(x)=sin(x+π/2)。
2. 正切与正弦、余弦的关系:tan(x)=sin(x)/cos(x)。
3. 三角函数的和差公式:第1页/共2页锲而不舍,金石可镂。
(1)sin(x±y)=sin(x)cos(y)±cos(x)sin(y)。
(2)cos(x±y)=cos(x)cos(y)∓sin(x)sin(y)。
4. 三角函数的倍角公式:(1)sin(2x)=2sin(x)cos(x)。
(2)cos(2x)=cos^2(x)-sin^2(x)。
(3)tan(2x)=(2tan(x))/(1-tan^2(x))。
5. 三角函数的半角公式:(1)sin(x/2)=√[(1-cos(x))/2]。
三角函数相关知识点总结一、三角函数的定义。
1. 锐角三角函数。
- 在直角三角形中,设一个锐角为α。
- 正弦sinα=(对边)/(斜边)。
例如,在直角三角形ABC中,∠ C = 90^∘,∠A=α,BC为∠ A的对边,AB为斜边,则sinα=(BC)/(AB)。
- 余弦cosα=(邻边)/(斜边),对于上述三角形,AC为∠ A的邻边,cosα=(AC)/(AB)。
- 正切tanα=(对边)/(邻边)=(BC)/(AC)。
2. 任意角三角函数(单位圆定义)- 设角α终边上一点P(x,y),r=√(x^2)+y^{2}。
- sinα=(y)/(r)。
- cosα=(x)/(r)。
- tanα=(y)/(x)(x≠0)。
二、三角函数的基本性质。
1. 定义域。
- y = sin x和y=cos x的定义域都是R(全体实数)。
- y=tan x的定义域是<=ft{xx≠ kπ+(π)/(2),k∈ Z}。
2. 值域。
- y = sin x和y=cos x的值域都是[ - 1,1]。
- y=tan x的值域是R。
3. 周期性。
- y = sin x和y=cos x的最小正周期都是2π。
即sin(x + 2kπ)=sin x,cos(x +2kπ)=cos x,k∈ Z。
- y=tan x的最小正周期是π,tan(x + kπ)=tan x,k∈ Z。
4. 奇偶性。
- y=sin x是奇函数,因为sin(-x)=-sin x。
- y = cos x是偶函数,因为cos(-x)=cos x。
- y=tan x是奇函数,因为tan(-x)=-tan x。
5. 单调性。
- y=sin x在<=ft[-(π)/(2)+2kπ,(π)/(2)+2kπ](k∈ Z)上单调递增,在<=ft[(π)/(2)+2kπ,(3π)/(2)+2kπ](k∈ Z)上单调递减。
- y=cos x在[2kπ-π,2kπ](k∈ Z)上单调递增,在[2kπ,2kπ + π](k∈ Z)上单调递减。
三角函数基础知识和主要公式三角函数是数学中重要的分支,它研究的是三角形中角的度量和与其相关的函数关系。
在三角函数中,最基础的三个函数是正弦函数(sin)、余弦函数(cos)和正切函数(tan)。
正弦函数定义为一个角的对边与斜边的比值,通常用sin表示。
余弦函数定义为一个角的邻边与斜边的比值,通常用cos表示。
正切函数定义为一个角的对边与邻边的比值,通常用tan表示。
三角函数有许多重要的性质和公式,下面我将介绍其中一些。
1. 周期性:正弦函数和余弦函数都是周期函数,周期为2π。
即对于任意实数x,有sin(x+2π) = sin(x)和cos(x+2π) = cos(x)。
正切函数也具有周期性,但周期为π。
2. 加法公式:sin(x+y) = sin(x)cos(y) + cos(x)sin(y),cos(x+y) = cos(x)cos(y) - sin(x)sin(y)。
这两个公式描述了两个角的和的正弦值和余弦值与它们的正弦值和余弦值之间的关系。
3. 减法公式:sin(x-y) = sin(x)cos(y) - cos(x)sin(y),cos(x-y) = cos(x)cos(y) + sin(x)sin(y)。
这两个公式描述了两个角的差的正弦值和余弦值与它们的正弦值和余弦值之间的关系。
4. 倍角公式:sin(2x) = 2sin(x)cos(x),cos(2x) = cos^2(x) -sin^2(x) = 2cos^2(x) - 1 = 1 - 2sin^2(x)。
这两个公式描述了一个角的两倍角的正弦值和余弦值与它的正弦值和余弦值之间的关系。
5. 平方和公式:sin^2(x) + cos^2(x) = 1、这个公式描述了一个角的正弦值和余弦值的平方和等于1,这也是三角恒等式中最重要的一条。
6. 倒数关系:tan(x) = 1/cot(x),cot(x) = 1/tan(x)。
这个公式描述了正切函数和余切函数之间的倒数关系。
三角函数1.同角三角函数的基本关系式:1cos sin 22=+αα αααtan cos sin = 2.诱导公式 (奇变偶不变,符号看象限)ααπsin )sin(-=+ ααπcos )cos(-=+ ααπtan )tan(=+ ααπsin )sin(=- ααπcos )cos(-=- ααπtan )tan(-=-ααπcos )2sin(=+ ααπsin )2cos(-=+ ααπcos )2sin(=-ααπsin )2cos(=- ααsin )sin(-=- ααcos )cos(=- 3.两角和与差的公式βαβαβαsin cos cos sin )sin(+=+ βαβαβαsin cos cos sin )sin(-=- βαβαβαsin sin cos cos )cos(-=+ βαβαβαsin sin cos cos )cos(+=- βαβαβαtan tan 1tan tan )tan(-+=+ βαβαβαtan tan 1tan tan )tan(+-=-4.倍角公式 αααcos sin 22sin = 1cos 2sin 21sin cos 2cos 2222-=-=-=αααααααα2tan 1tan 22tan -=5.降幂公式 22cos 1sin 2αα-= 22cos 1cos 2αα+= ααα2sin 21cos sin =6.幅角公式 x b x a ωωcos sin +)sin(22ϕω++=x b a ,其中ab=ϕtan8.补充公式 ααααα2sin 1cos sin 21)cos (sin 2±=±=±, 2cos2sinsin 1ααα±=±知识点睛说明:表格中的k 都是属于Z ,在选择“代表”的区间或点时,先尽量选择离坐标原点近的,再尽量选择正的。
正切函数x y tan =的图象与性质:定义域为},2|{Z k k x x ∈+≠ππ,值域为R最小正周期是π,在)2,2(ππππ+-k k 上单调增没有对称轴,对称中心为)0,2(πk ,奇函数二.正弦型函数)sin(ϕω+=x A y )0,0(>>ωA 的图象 方法一:先平移变换后伸缩变换平移变换:将x y sin =图象向左)0(>ϕ或向右)0(<ϕ平移ϕ个单位,得到)sin(ϕ+=x y 的图象; 伸缩变换:纵坐标不变,将)sin(ϕ+=x y 图象上所有点的横坐标缩短)1(>ω或伸长)10(<<ω到原来的ω1倍,得到)sin(ϕω+=x y 的图象,此时函数周期为ωπ2=T ;振幅变换:横坐标不变,将)sin(ϕω+=x y 图象上所有点的纵坐标伸长)1(>A 或缩短)10(<<A 到原来的A 倍,得到)sin(ϕω+=x A y 的图象,此时函数的最值分别为A 、A -;方法二:先伸缩变换后平移变换伸缩变换:纵坐标不变,将x y sin =图象上所有点的横坐标缩短)1(>ω或伸长)10(<<ω到原来的ω1倍,所得函数x y ωsin =的图象,此时函数的周期为ωπ2=T ;平移变换:将x y ωsin =图象向左)0(>ϕ或向右)0(<ϕ平移ωϕ个单位,得到)sin(ϕω+=x y 的图象 振幅变换:同上解三角形1.解三角形:(1)边的关系:c b a >+,b c a >+,a c b >+(或满足:两条较短的边长之和大于较长边) (2)角的关系:π=++C B A ,π<<C B A 、、0,0sin >A ,C B A sin )sin(=+, C B A cos )cos(-=+,2cos 2sin C B A =+,2sin 2cos CB A =+,ππ<-<-B A 2.正弦定理:R CcB b A a 2sin sin sin ===,其中R 为ABC ∆的外接圆半径 3.余弦定理:在ABC ∆中,角C B A 、、的对边分别为c b a 、、,则有余弦定理:⎪⎩⎪⎨⎧-+=-+=-+=C ab b a c B ac c a b A bc c b a cos 2cos 2cos 2222222222 , 其变式为:⎪⎪⎪⎩⎪⎪⎪⎨⎧-+=-+=-+=ab c b a C ac b c a B bc a c b A 2cos 2cos 2cos 2222222224.三角形的面积公式:B ac A bc C ab S ABC sin 21sin 21sin 21===∆三角恒等变换例题精讲点评:利用同角三角函数的基本关系式能够做到三角函数值“知一求二”,但要注意正负符号的确定点评:如果根据αtan 的值求αsin 、αcos 的值,则需考虑α的象限,这里把1写成αα22cos sin +构造关于αsin 、αcos 的齐次式,解法干净利索点评:此题主要考查诱导公式的使用,关于诱导公式希望大家牢记:互补的两个角正弦值相等,余弦值、正切值互为相反数,互余的两个角正弦值、余弦值互换。
教案用纸
提要
教 学 内 容、方 法 和 过 程
观察单位圆(如图(2)):由于角α的终边与单位圆的交点为(cos ,sin )P αα,根据
三角函数的定义和勾股定理,可以得到
sin tan cos y x ααα
==, 222sin cos 1r αα+==. *巩固知识 典型例题
例1 已知4sin 5
α=,且α是第二象限的角, 求cos α和tan α. 分析 知道正弦函数值,可以利用平方关系,求出余弦函数值;然后利用商数关系,求出正切函数值.
解 由22sin cos 1αα+=,可得2cos 1sin αα=±-.
又因为α是第二象限的角,故cos 0α<.所以
2243cos 1sin 1()55
αα=--=--=-; 4
sin 5tan 3cos 5
ααα==-=43
-. 注意:利用平方关系22sin cos 1αα+=求三角函数值时,需要进行开方运算,所以必须要明确α所在的象限.本例中给出了α为第二象限的角的条件,如果没有这个条件,就需要对α进行讨论.
*运用知识 强化练习
教材练习5.4.1
1.已知1cos 2
α=,且α是第四象限的角, 求sin α和tan α. 2.已知3sin 5
α=-,且α是第三象限的角, 求cos α和tan α.。
三角函数之间的关系公式1. 同角三角函数的基本关系:倒数关系:tanα•cotα=1 sinα•cscα=1 cosα•secα=1商的关系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=csc α/secα平方关系:sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α)平常针对不同条件的常用的两个公式:sin²α+cos²α=1 tan α*cot α=12. 一个特殊公式:(sina+sinθ)*(sina+sinθ)=sin(a+θ)*sin (a-θ)证明:(sina+sinθ)*(sina+sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)*sin(a-θ)3. 锐角三角函数公式正弦:sin α=∠α的对边/∠α的斜边余弦:cos α=∠α的邻边/∠α的斜边正切:tan α=∠α的对边/∠α的邻边余切:cot α=∠α的邻边/∠α的对边4. 二倍角公式正弦sin2A=2sinA•cosA余弦1.Cos2a=Cos^2(a)-Sin^2(a) =2Cos^2(a)-1 =1-2Sin^2(a) 2.Cos2a=1-2Sin^2(a)3.Cos2a=2Cos^2(a)-1正切tan2A=(2tanA)/(1-tan^2(A))5. 三倍角公式sin3α=4sinα•sin(π/3+α)sin(π/3-α)cos3α=4cosα•cos(π/3+α)cos(π/3-α)tan3a = tan a •tan(π/3+a)•tan(π/3-a)6. n倍角公式sin(n a)=Rsina sin(a+π/n)……sin(a+(n-1)π/n). 其中R=2^(n-1)7. 半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA )=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2;cos^2(a/2)=(1+cos(a))/2 tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))8. 和差化积sinθ+sinφ= 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ= 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ= 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)9. 两角和公式cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβsin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβ10. 积化和差sinαsinβ= [cos(α-β)-cos(α+β)] /2cosαcosβ= [cos(α+β)+cos(α-β)]/2sinαcosβ= [sin(α+β)+sin(α-β)]/2cosαsinβ= [sin(α+β)-sin(α-β)]/211. 双曲函数sinh(a) = [e^a-e^(-a)]/2cosh(a) = [e^a+e^(-a)]/2tanh(a) = sin h(a)/cos h(a)公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin (2kπ+α)= sinαcos(2kπ+α)= cosαtan(2kπ+α)= tan αcot(2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tan αcot(π+α)= cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)= -sin αcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tan αcot(π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tan αcot(2π-α)= -cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= cosαcos(π/2+α)= -sinαtan(π/2+α)= -cotαcot (π/2+α)= -tanαsin(π/2-α)= cosαcos(π/2-α)= sinαtan (π/2-α)= cotαcot(π/2-α)= tanαsin(3π/2+α)= -cosαcos (3π/2+α)= sinαtan(3π/2+α)= -cotαcot(3π/2+α)= -tan αsin(3π/2-α)= -cosαcos(3π/2-α)= -sinαtan(3π/2-α)= cotαcot(3π/2-α)= tanα(以上k∈Z) A•sin(ωt+θ)+ B•sin(ωt+φ) = √{(A²+B²+2ABcos(θ-φ)} •sin{ ωt + arcsin[ (A•sinθ+B•sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} } √表示根号,包括{……}中的内容12. 诱导公式sin(-α) = -sinαcos(-α) = cosαtan (-α)=-tanαsin(π/2-α) = cosαcos(π/2-α) = sinαsin(π/2+α) = cosαcos(π/2+α) = -sinαsin(π-α) = sinαcos(π-α) = -cosαsin(π+α) = -sinαcos(π+α) = -cosαtanA= sinA/cosA tan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα诱导公式记背诀窍:奇变偶不变,符号看象限13. 万能公式sinα=2tan(α/2)/[1+(tan(α/2))²]cosα=[1-(tan(α/2))²]/[1+(tan(α/2))²]tanα=2tan(α/2)/[1-(tan(α/2))²]14. 其它公式(1) (sinα)²+(cosα)²=1(2)1+(tanα)²=(secα)²(3)1+(cotα)²=(cscα)²证明下面两式,只需将一式,左右同除(sinα)²,第二个除(cosα)²即可.(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)²+(cosB)²+(cosC)²=1-2cosAcosBcosC(8)(sinA)²+(sinB)²+(sinC)²=2+2cosAcosBcosC其他非重点三角函数csc(a) = 1/sin(a) sec(a) = 1/cos(a)15. 两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA)。
三角函数的知识点有哪些一、三角函数的基本概念。
1. 角的概念。
- 角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。
- 按旋转方向可分为正角(按逆时针方向旋转)、负角(按顺时针方向旋转)和零角(没有旋转)。
- 与角α终边相同的角的集合为{ββ = k·360^∘+α,k∈ Z}(角度制)或{ββ = 2kπ+α,k∈ Z}(弧度制)。
2. 弧度制。
- 把长度等于半径长的弧所对的圆心角叫做1弧度的角。
- 弧度与角度的换算:180^∘=π弧度,所以1^∘=(π)/(180)弧度,1弧度=((180)/(π))^∘。
3. 任意角的三角函数定义。
- 设α是一个任意角,α终边上任意一点P(x,y),r = √(x^2)+y^{2}。
- 正弦sinα=(y)/(r),余弦cosα=(x)/(r),正切tanα=(y)/(x)(x≠0)。
二、同角三角函数的基本关系。
1. 平方关系。
- sin^2α+cos^2α = 1。
2. 商数关系。
- tanα=(sinα)/(cosα)(cosα≠0)。
三、三角函数的诱导公式。
1. 公式一。
- sin(α + 2kπ)=sinα,cos(α + 2kπ)=cosα,tan(α+ 2kπ)=tanα,k∈ Z。
2. 公式二。
- sin(π+α)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanα。
3. 公式三。
- sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanα。
4. 公式四。
- sin(π-α)=sinα,cos(π-α)=-cosα,tan(π - α)=-tanα。
5. 公式五。
- sin((π)/(2)-α)=cosα,cos((π)/(2)-α)=sinα。
6. 公式六。
- sin((π)/(2)+α)=cosα,cos((π)/(2)+α)=-sinα。
四、三角函数的图象与性质。
1. 正弦函数y = sin x- 图象:正弦函数的图象是正弦曲线,它是通过“五点法”((0,0),((π)/(2),1),(π,0),((3π)/(2), - 1),(2π,0))画出的周期为2π的曲线。
同角三角函数的基本关系式倒数关系: 商的关系:平方关系:tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secαsin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α诱导公式sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)两角和与差的三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtanα+tanβtan(α+β)=——————1-tanα ·tanβtanα-tanβtan(α-β)=——————1+tanα ·tanβ2tan(α/2) sinα=——————1+tan2(α/2)1-tan2(α/2) cosα=——————1+tan2(α/2)2tan(α/2) tanα=——————1-tan2(α/2)半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tanαtan2α=—————1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tanα-tan3αtan3α=——————1-3tan2α三角函数的和差化积公式三角函数的积化和差公式α+βα-βsinα+sinβ=2sin—--·cos—-—2 2α+βα-βsinα-sinβ=2cos—--·sin—-—2 2α+βα-βcosα+cosβ=2cos—--·cos—-—2 2α+βα-βcosα-cosβ=-2sin—--·sin—-—2 2 1sinα ·cosβ=-[sin(α+β)+sin(α-β)]21cosα ·sinβ=-[sin(α+β)-sin(α-β)]21cosα ·cosβ=-[cos(α+β)+cos(α-β)]21sinα ·sinβ=- -[cos(α+β)-cos(α-β)]2化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)三角形全等的判定1.SSS 两个三角形三边对应相等(边边边)2.AAS 就是两个三角形的两个角对应相等,其中一角所对的边对应相等。
三角函数基本知识点三角函数是中学数学中的一个重要概念,是研究角和角度的函数关系的数学工具。
它是高中数学的基础,也是理工科学习的重要基础知识点。
本文将重点介绍三角函数的基本概念、性质和应用。
一、三角函数的基本概念1.角度和弧度制度量:角度是研究角的大小的度量单位,以°表示;弧度是角的大小的度量单位,以弧长与半径相等的单位弧长表示。
2. 基本三角函数:常用的三角函数有正弦函数sinθ、余弦函数cosθ、正切函数tanθ,它们分别表示角θ的正弦值、余弦值和正切值。
三角函数的定义可以通过单位圆在平面直角坐标系中的投影来理解。
3. 三角函数的周期性:正弦函数和余弦函数的最小正周期为2π,即sin(θ+2π)=sinθ,cos(θ+2π)=cosθ;正切函数的最小正周期为π,即tan(θ+π)=tanθ。
二、三角函数的性质1. 三角函数的奇偶性:正弦函数是奇函数,即sin(-θ)=-sinθ;余弦函数是偶函数,即cos(-θ)=cosθ;正切函数是奇函数,即tan(-θ)=-tanθ。
2.三角函数的正负关系:在单位圆上,正弦函数在0到π/2之间为正,余弦函数在0到π之间为正,正切函数在0到π/2之间为正。
3. 三角函数的周期关系:对于正弦函数和余弦函数,sin(θ+2kπ)=sinθ,cos(θ+2kπ)=cosθ,其中k为整数;对于正切函数,tan(θ+πk)=tanθ,其中k为整数。
4.三角函数的互等关系:通过对三角函数的定义进行代数运算,可以得到一些重要的三角函数互等关系,如正切函数与正弦函数、余弦函数的关系等。
三、三角函数的应用1.三角函数在几何图形中的应用:三角函数在三角形的边与角、面积和高、周长和半周长等方面有广泛应用,如利用正弦定理和余弦定理求解三角形的边长和角度。
2.三角函数在物理学中的应用:三角函数在物理学中有许多应用,如在匀速圆周运动中,利用正弦函数和余弦函数可以描述物体的位置、速度和加速度等随时间变化的关系。
高中数学之三角函数公式关系高中数学之三角函数公式关系倒数关系tanα ·cotα=1sinα ·cscα=1cosα ·secα=1商的关系sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方关系sin^2(α)+cos^2(α)=11+tan^2(α)=sec^2(α)1+cot^2(α)=csc^2(α)同角三角函数关系六角形记忆法构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。
倒数关系对角线上两个函数互为倒数;商数关系六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。
(主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。
)。
由此,可得商数关系式。
平方关系在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的.三角函数值的平方。
两角和差公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtan(α+β)=(tanα+tanβ )/(1-tanα ·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα ·tanβ)二倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan2α=2tanα/(1-tan^2(α))tan(1/2*α)=(sin α)/(1+cos α)=(1-cos α)/sin α半角的正弦、余弦和正切公式sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=(1—cosα)/sinα=sinα/1+cosα万能公式sinα=2tan(α/2)/(1+tan^2(α/2))cosα=(1-tan^2(α/2))/(1+tan^2(α/2))tanα=(2tan(α/2))/(1-tan^2(α/2))三倍角的正弦、余弦和正切公式sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosαtan3α=(3tanα-tan^3(α))/(1-3tan^2(α))三角函数的和差化积公式sinα+sinβ=2sin((α+β)/2) ·cos((α-β)/2)sinα-sinβ=2cos((α+β)/2) ·sin((α-β)/2)cosα+cosβ=2cos((α+β)/2)·cos((α-β)/2)cosα-cosβ=-2sin((α+β)/2)·sin((α-β)/2)三角函数的积化和差公式sinα·cosβ=0.5[sin(α+β)+sin(α-β)]cosα·sinβ=0.5[sin(α+β)-sin(α-β)]cosα·cosβ=0.5[cos(α+β)+cos(α-β)]sinα·sinβ=-0.5[cos(α+β)-cos(α-β)]。
三角函数的基本关系
在上一节我们利用三角形两边长的比例关系,定义了六个锐角的三角函数: 设△ABC 为一直角三角形,其中︒=∠90C ,
AB 为△ABC 的斜边,AC 为∠A 的邻边,
BC 为∠A 的对边,则
◆AB BC A A ==
=∠斜邊對邊的正弦sin ❖AB AC A A ===∠斜邊鄰邊的餘弦cos ♦AC BC A A ==
=∠鄰邊對邊的正切tan ⌧BC AC A A ===∠對邊鄰邊的餘切cot ⍓AC
AB A A ===∠鄰邊斜邊的正割sec BC AB A A ===∠對邊斜邊的餘割csc 此外,我们也可藉由定义推得六个三角函数间的关系,叙述如下:
(1)倒数关系:
1csc sin csc 1sin =⋅⇔=
θθθθ 1sec cos sec 1cos =⋅⇔=
θθθθ ●1cot tan cot 1tan =⋅⇔=θθθ
θ
例题 1
◆试求=︒︒︒︒︒︒40csc 40sec 40cot 40tan 40cos 40sin
❖设θ为锐角﹐求
1111sin 1cos 1sec θθθ++++++11csc θ
+=
练习 1 求22212tan 5312cot 53︒︒+++= 1
(2)余角关系:θ为锐角
()θθ-︒=90cos sin ()θθ-︒=90sin cos
●()θθ-︒=90cot tan ❍()θθ-︒=90tan cot
⏹()θθ-︒=90csc sec ☐()θθ-︒=90sec csc
Q :求出下列锐角θ的値 ◆θsin 56cos =︒,=θ ❖θcot 43tan =︒,=θ ♦θsec 77csc =︒,=θ
例题 2
(1) sin 2(60︒-θ)+sin 2(30︒+θ) =
(2) cos40︒csc50︒+csc 228︒-tan 262︒ =
(3)商数关系:
tan θ= cot θ=
Q :设θ为锐角,且θθsin 4cos =,则=θtan
(4)平方关系:
22sin cos θθ+=
●
Q :◆=︒+︒40cos 40sin 22 ❖=︒-︒20sec 20tan 22 ♦()()=︒-︒+︒+︒2
240cos 40sin 40cos 40sin
例题 3
θ 是一个锐角 已知sin θ-cos θ =15,求sin θ 与cos θ 的值。
练习 3
θ 是一个锐角,已知sin θ +cos θ =
1713,求sin θ 与cos θ 的值。
Ans :cos θ =
513时,sin θ =1213;cos θ =1213时,sin θ =513
例题 4
设θ为锐角:
◆试证:θθθθθθcsc sec cos sin 1cot tan ==
+ ❖若12
25cot tan =+θθ,试求下列各式之値: (1)θθcos sin (2)θθcos sin + (3)θθcos sin - (4)θθ33cos sin +
练习 4
设θ为锐角,若5
3cos sin =+θθ,试求下列各式之値: (1)θθcos sin (2)θθcot tan + (3)θθcos sin - (4)θθ33cos sin +
Ans :(1)52 (2)25 (3)5
1± (4)2559
以上所叙述的三角函数基本关系,务必请同学记忆并熟练。
最后,我们来练习推导三角恒等式,处理类似问题时,只要把握以下几点原则,便能迎刃而解囉!
(1)由繁化简
例题 5 [将高次式化为低次式]
设θ 是锐角,求证三角恒等式cos 4 θ-sin 4 θ=cos 2 θ-sin 2 θ。
练习 5
设θ 是锐角,求证恒等式sin θ.tan θ+cos θ = sec θ。
(2)单纯化 [例如:一律化成sin θ 与cos θ 表示]
(3)化为同一式
例题 6
设θ 是锐角,求证:sec θ-tan θ =
cos 1sin θθ
+。
例题 7
设θ 是锐角,且θ ≠45°,求证:
cot tan csc sec csc sec cot tan θθθθθθθθ+-=+-。
练习 7
设θ 是锐角,求证:tan θ.
1sin 1cos θθ-+=cot θ.1cos 1sin θθ-+。
(4)相减为零
例题 8
设θ 是锐角,求证:
1tan sec 1tan sec θθθθ+--- = tan θ-sec θ。