大学物理第11章电流和恒磁场-1解读
- 格式:doc
- 大小:4.91 MB
- 文档页数:25
第十一章 恒定电流的磁场11–1 如图11-1所示,几种载流导线在平面内分布,电流均为I ,求它们在O 点处的磁感应强度B 。
(1)高为h 的等边三角形载流回路在三角形的中心O 处的磁感应强度大小为 ,方向 。
(2)一根无限长的直导线中间弯成圆心角为120°,半径为R 的圆弧形,圆心O 点的磁感应强度大小为 ,方向 。
…解:(1)如图11-2所示,中心O 点到每一边的距离为13OP h =,BC 边上的电流产生的磁场在O 处的磁感应强度的大小为012(cos cos )4πBC IB dμββ=-^00(cos30cos150)4π/34πI I h hμ︒︒=-=方向垂直于纸面向外。
另外两条边上的电流的磁场在O 处的磁感应强度的大小和方向都与BC B 相同。
因此O 处的磁感应强度是三边电流产生的同向磁场的叠加,即3BC B B ===方向垂直于纸面向外。
(2)图11-1(b )中点O 的磁感强度是由ab ,bcd ,de 三段载流导线在O 点产生的磁感强度B 1,B 2和B 3的矢量叠加。
由载流直导线的磁感强度一般公式012(cos cos )4πIB dμββ=-可得载流直线段ab ,de 在圆心O 处产生的磁感强度B 1,B 3的大小分别为01(cos0cos30)4cos60)IB R μ︒=︒-︒π(0(12πI R μ=031(cos150cos180)4πcos60IB B R μ︒==︒-︒0(12πI R μ= 】IB 2图11–2图11–1…B(a )AE(b )方向垂直纸面向里。
半径为R ,圆心角α的载流圆弧在圆心处产生的磁感强度的大小为04πI B Rμα=圆弧bcd 占圆的13,所以它在圆心O 处产生的磁感强度B 2的大小为00022π34π4π6II I B R R Rμμαμ=== 方向垂直纸面向里。
因此整个导线在O 处产生的总磁感强度大小为000012333(1)(1)0.212π2π6I I II B B B B R R R Rμμμμ=++=-+-+=方向垂直纸面向里。
大学物理稳恒磁场解读 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第十一章稳恒磁场磁场由运动电荷产生。
磁场与电场性质有对称性,学习中应注意对比。
§11-1 基本磁现象磁性,磁力,磁现象;磁极,磁极指向性,N极,S极,同极相斥,异极相吸。
磁极不可分与磁单极。
一、电流的磁效应1819年,丹麦科学家奥斯特发现电流的磁效应;1820年,法国科学家安培发现磁场对电流的作用。
二、物质磁性的电本质磁性来自于运动电荷,磁场是电流的场。
注:1932年,英国物理学家狄拉克预言存在“磁单极”,至今科学家一直在努力寻找其存在的证据。
§11-2 磁场磁感强度一、磁场磁力通过磁场传递,磁场是又一个以场的形式存在的物质。
二、磁感强度磁感强度B的定义:(1)规定小磁针在磁场中N极的指向为该点磁感强度B的方向。
若正电荷沿此方向运动,其所受磁力为零。
(2)正运动电荷沿与磁感强度B垂直的方向运动时,其所受最大磁力F max与电荷电量q和运动速度大小v的乘积的比值,规定为磁场中某点磁感强度的大小。
即:磁感强度B是描写磁场性质的基本物理量。
若空间各点B的大小和方向均相等,则该磁场为均匀磁场;若空间各点B的大小和方向均不随时间改变,称该磁场为稳恒磁场。
磁感强度B的单位:特斯拉(T)。
§11-3 毕奥-萨伐尔定律一、毕-萨定律电流元:电流在空间的磁场可看成是组成电流的所有电流元在空间产生元磁感强度的矢量和。
式中μ0:真空磁导率,μ0=4π×10-7 NA 2dB的大小:d B的方向:d B总是垂直于Id l与r组成的平面,并服从右手定则。
一段有限长电流的磁场:二、应用1。
一段载流直导线的磁场说明:(1)导线“无限长”:(2)半“无限长”:2。
圆电流轴线上的磁场磁偶极矩讨论:(1)圆心处的磁场:x = 0 ;(2)半圆圆心处的磁场:(3)远场:x>>R,引进新概念磁偶极矩则:3。