度九年级数学下册第5章二次函数5.5用二次函数解决问题5.5.1利用二次函数解决销售利润最值问题导学课件新版
- 格式:ppt
- 大小:2.36 MB
- 文档页数:18
用二次函数解决问题第1课时、第2课时1.某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价.若每件商品售价为x元,则可卖出(350-10x)件,则商店所获得的利润y(元)与每件商品售价x(元)之间的函数表达式为()A.y=-10x2-560x+7350B.y=-10x2+560x-7350C.y=-10x2+350xD.y=-10x2+350x-73502.某产品的进货单价为每件90元,按100元一件出售时,每周能售出500件.若每件涨价1元,则每周销售量就减少10件,则该产品每周能获得的最大利润为() A.5000元 B.8000元C.9000元 D.10000元3.某商店出售某种文具盒,若每个获利x元,一天可售出(6-x)个,则当x=________时,一天出售该种文具盒的总利润y最大.4.一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价为10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,经市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值X围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出当销售价为多少元/件时,每天的销售利润最大,最大利润是多少.5.为搞好环保,某公司准备修建一个长方体的污水处理池,池底矩形的周长为100 m,则池底的最大面积是()A .600 m 2B .625 m 2C .650 m 2D .675 m 26.如图,用长为10米的篱笆,一面靠墙(墙的长度超过10米),围成一个矩形花圃,设矩形垂直于墙的一边长为x 米,花圃面积为S 平方米,则S 关于x 的函数表达式是________,当边长x 为________米时,花圃有最大面积,最大面积为________平方米.7.某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50 m .设饲养室的一边长为x (m),占地面积为y (m 2).(1)如图5-5-3①,则饲养室的一边长x 为多少时,占地面积y 最大?(2)如图②,现要求在所示位置留2 m 宽的门,且仍使饲养室的占地面积最大,小敏说:“只要饲养室的一边长x 比(1)中的长多2 m 就行了.”请你通过计算,判断小敏的说法是否正确.图5-5-38.从地面垂直向上抛出一小球,小球的高度h (米)与小球运动的时间t (秒)之间的函数表达式是h =t -t 2,则小球的最大高度为________米.9.飞机着陆后滑行的距离y (单位:m)关于滑行时间t (单位:s)的函数表达式是y =60t -32t 2.在飞机着陆滑行中,最后4 s 滑行的距离是______m.10.小明大学毕业后回家乡创业,第一期培植盆景与花卉各50盆,售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,经调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元,每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x 盆,第二期盆景与花卉售完后的利润分别为W 1,W 2(单位:元).(1)用含x 的代数式表示W 1,W 2;(2)当x 取何值时,第二期培植的盆景与花卉售完后获得的总利润W 最大,最大总利润是多少?11.随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A ,B ,C ,D ,E 中的某一站出地铁,再骑共享单车回家.设他出地铁的站点与文化宫之间的距离为x (单位:千米),乘坐地铁的时间y 1(单位:分)是关于x 的一次函数,其关系如下表:(1)求y 1关于x 的函数表达式;(2)李华骑单车的时间y 2(单位:分)也受x 的影响,其关系可以用y 2=12x 2-11x +78来描述,则李华应选择在哪一站出地铁,才能使他从文化宫回到家里所用的时间最短?并求出最短时间.12.某旅游公司在景区内配置了50辆观光车供游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x (元)是5的倍数.公司发现每天的营运规律如下:当x 不超过100元时,观光车能全部租出;当x 超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入-管理费)(2)当每辆车的日租金为多少元时,每天的净收入最多?参考答案1.B[解析] 由题意,得y =(x -21)(350-10x )=-10x 2+560x -7350. 2.C3.3[解析] 由题意可得y =(6-x )x ,即y =-x 2+6x ,当x =3时,y 有最大值. 4.解:(1)设y 与x 之间的函数关系式为y =kx +b ,把(10,30),(16,24)代入,得⎩⎪⎨⎪⎧10k +b =30,16k +b =24,解得⎩⎪⎨⎪⎧k =-1,b =40.∴y 与x 之间的函数关系式为y =-x +40(10≤x ≤16).(2)W =(x -10)(-x +40)=-x 2+50x -400(10≤x ≤16).∵W =-x 2+50x -400=-(x -25)2+225,函数图像的对称轴是直线x =25,在对称轴的左侧,y 随着x 的增大而增大. ∵10≤x ≤16,∴当x =16时,W 最大,为144.即当销售价为16元/件时,每天的销售利润最大,最大利润是144元.5.B[解析] 设矩形的一边长为x m ,则其邻边长为(50-x )m ,设池底面积为S m 2,则S =x (50-x )=-x 2+50x =-(x -25)2+625.∴当x =25时,S 取得最大值,最大值为625.6.S =-2x 2+10x 52252[解析] 由题意知平行于墙的一边长为(10-2x )米,则S =x (10-2x )=-2(x -52)2+252(0<x <5),所以当x =52时,花圃有最大面积,最大面积为252平方米.7.解:(1)∵y =x ·50-x 2=-12(x -25)2+6252(0<x <50),∴当x =25时,占地面积y 最大,即当饲养室的一边长x 为25 m 时,占地面积y 最大. (2)∵y =x ·50-(x -2)2=-12(x -26)2+338,∴当x =26时,占地面积y 最大.∵26-25=1(m)≠2 m ,∴小敏的说法不正确. 8.9.24[解析] ∵y =60t -32t 2=-32(t -20)2+600,∴当t =20时,飞机着陆后滑行到最大距离600 m ,然后停止滑行;当t =16时,y =576,∴最后4 s 滑行的距离是24 m.10.解:(1)W 1=(50+x )(160-2x )=-2x 2+60x +8000,W 2=19(50-x )=-19x +950.(2)W =W 1+W 2=-2x 2+41x +8950(x 为整数). ∵-2<0,抛物线的开口向下,-412×(-2)=414,∴当0≤x <414时,W 随x 的增大而增大;当414<x ≤50时,W 随x 的增大而减小, 又∵x 取整数,故当x =10时,W 最大,W 最大=-2×102+41×10+8950=9160.即当x =10时,第二期培植的盆景与花卉售完后获得的总利润最大,最大总利润是9160元.11.解:(1)设乘坐地铁的时间y 1关于x 的一次函数表达式是y 1=kx +b .把x =8,y 1=18;x =10,y 1=22代入,得⎩⎪⎨⎪⎧18=8k +b ,22=10k +b ,解得⎩⎪⎨⎪⎧k =2,b =2, ∴y 1关于x 的函数表达式是y 1=2x +2.(2)设李华从文化宫回到家里所用的时间为y 分,则y =y 1+y 2, 即y =2x +2+12x 2-11x +78=12x 2-9x +80=12(x -9)2+792,∴当x =9时,y 最小值=792.∴李华选择从B 地铁口出站,才能使他从文化宫回到家里所用的时间最短,最短时间为792分钟. 12.解:(1)由题意,知若观光车能全部租出,则0<x ≤100,由50x -1100>0,解得x >22,∴22<x ≤100.又∵x 是5的倍数,∴每辆车的日租金至少应为25元. (2)设每辆车的净收入为y 元. 当0<x ≤100时,y 1=50x -1100. ∵y 1随x 的增大而增大,∴当x =100时,y 1有最大值为50×100-1100=3900; 当x >100时,y 2=(50-x -1005)x -1100=-15x 2+70x -1100=-15(x -175)2+5025,∴当x =175时,y 2有最大值为5025. ∵5025>3900,∴当每辆车的日租金为175元时,每天的净收入最多.第3课时1.如图,教练对小明推铅球的录像进行技术分析,发现铅球行进高度y (m)与水平距离x (m)之间的关系为y =-112x 2+23x +53,由此可知铅球被推出的距离是() A .10 m B .3 m C .4 m D .2 m 或10 m2.小敏在某次投篮中,球的运动线路是抛物线y =-15x 2+的一部分(如图).若命中篮圈中心,则他与篮底的距离l 是()A .3.5 mB .4 mC .4.5 mD .4.6 m3.如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线.如果不考虑空气阻力,小球的飞行高度y (单位:m)与飞行时间x (单位:s)之间具有函数关系y =-5x 2+20x ,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15 m 时,飞行时间是多少? (2)在飞行过程中,小球从飞出到落地所用时间是多少? (3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?4.某某省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数表达式为y =-125x 2,当水面离桥拱顶的高度DO 是4 m 时,这时水面的宽度AB 为()A.-20 m B.10 m C.20 m D.-10 m5.建立如图所示的直角坐标系,某抛物线形桥拱的最大高度为16米,跨度为40米,则它对应的表达式为________________.6.如图是一个横断面为抛物线形的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,当水面下降1米时,水面的宽度为多少米?7.某广场有一个喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4x(单位:米)的一部分,则水喷出的最大高度是()A.4米B.3米C.2米D.1米8.某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线形,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合,如图所示,以水平方向为x轴,喷水池中心为原点建立平面直角坐标系.(1)求水柱所在抛物线(第一象限部分)的函数表达式;(2)王师傅在水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高米的王师傅站立时必须在离水池中心多少米以内?(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷出的水柱的最大高度.9.冬天来了,晒衣服成了头疼的事情,聪明的小华想到一个好办法,他在家后院地面(BD)上立两根等长的立柱AB ,CD(均与地面垂直),并在立柱之间悬挂一根绳子.绳子的形状近似抛物线y =110x 2+bx +c ,如图①,已知BD =8米,绳子最低点离地面的距离为1米.(1)求立柱AB 的长度;(2)由于挂的衣服比较多,为了防止衣服碰到地面,小华用一根垂直于地面的立柱MN 撑起绳子(如图②),MN 的长度为米,通过调整MN 的位置,使左边抛物线F 1对应函数表达式的二次项系数为14,顶点离地面米,求MN 与AB 的距离.10.如图,某足球运动员站在点O处练习射门,将足球从离地面0.5 m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,已知足球飞行0.8 s时,离地面的高度为3.5 m.(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为 2.44 m,如果该运动员正对球门射门时,离球门的水平距离为28 m,他能否将球直接射入球门?参考答案1.A[解析] 令y =0,则-112x 2+23x +53=0,解得x 1=10,x 2=-2,由此可知铅球被推出的距离是10 m. 故选A.2.B[解析] 当y =时,-15x 2+=,解得x 1=-1.5(舍去),x 2=,∴l =+=4(m). 故选B.3.解:(1)令y =15,有-5x 2+20x =15, 化简得x 2-4x +3=0, 解得x 1=1,x 2=3, 即飞行时间是1 s 或3 s.(2)飞出和落地的瞬间,高度都为0,故令y =0, 则有0=-5x 2+20x , 解得x 1=0,x 2=4,所以小球从飞出到落地所用时间是4-0=4(s). (3)y =-5x 2+20x =-5(x -2)2+20, ∴当x =2时,y 取得最大值,此时y =20.故在飞行过程中,当飞行时间为2 s 时,小球的飞行高度最大,最大高度为20 m. 4.C 5.y =-125(x -20)2+16[解析] 由图可知抛物线的对称轴为直线x =20,顶点坐标为(20,16).可设此抛物线的表达式为y =a (x -20)2+16.又此抛物线过点(0,0),代入得(0-20)2a +16=0,解得a =-125,所以此抛物线的表达式为y =-125(x -20)2+16.6.解:建立如图所示的直角坐标系,可知OA 和OB 的长均为AB 的一半,即2米,抛物线顶点C 的坐标为(0,2),通过以上条件可设抛物线的函数表达式为y =ax 2+2.把(-2,0)代入y =ax 2+2,得出a =-, 所以y =-x 2+2.当y =-1时,有-1=-x 2+2, 解得x =±6,所以当水面下降1米时,水面的宽度为2 6米.7.A[解析] 直接根据二次函数的顶点坐标公式计算即可,最大高度为4ac -b24a =4×(-1)×0-424×(-1)=4,或将y =-x 2+4x 化为顶点式也可得出结论.8.解:(1)∵抛物线的顶点坐标为(3,5), ∴设y =a (x -3)2+5,将(8,0)代入,得a =-15,∴y =-15(x -3)2+5,即y =-15x 2+65x +165(0<x <8).(2)当y =时,即=-15x 2+65x +165,解得x 1=7,x 2=-1(舍去).答:王师傅必须站在离水池中心7米以内.(3)由y =-15x 2+65x +165,可得原抛物线与y 轴的交点坐标为(0,165).∵装饰物的高度不变, ∴新抛物线也经过点(0,165).∵喷出水柱的形状不变, ∴a =-15.∵直径扩大到32米, ∴新抛物线过点(16,0).设新抛物线的表达式为y 新=-15x 2+bx +c ,将点(0,165)和(16,0)代入,得b =3,c =165.∴y 新=-15x 2+3x +165=-15(x -152)2+28920,∴当x =152时,y 新的最大值为28920.答:扩建改造后喷出的水柱的最大高度为28920米.9.解:(1)由题意可知抛物线的表达式为y =110(x -4)2+1,即y =110x 2-45x +135.令x =0,得y =135,∴AB =135.答:立柱AB 的长度为135米.(2)由题意可以假设抛物线F 1的表达式为y =14x 2+mx +2.6.∵4×14×-m 24×14=,∴m =±1.∵抛物线F 1的对称轴在y 轴右侧,14>0,∴b <0,∴b =-1,∴抛物线F 1的表达式为y =14x 2-x +2.6.令y =,解得x 1=1,x 2=3, 当x =1时,不合题意,舍去, ∴x =3,∴MN 与AB 的距离为3米.10.解:(1)由题意可知函数y =at 2+5t +c 的图像经过点(0,0.5),,3.5), ∴错误!解得错误!∴抛物线的函数表达式为y =-2516t 2+5t +12=-2516(t -85)2+92,∴当t =85时,y 最大值=92.答:足球飞行的时间是85 s 时,足球离地面最高,最大高度是92 m.(2)把x =28代入x =10t ,得28=10t ,∴t =2.8.25 16×2+5×+12=<,∴他能将球直接射入球门.当t=时,y=-。
学习目标:1.经历探索二次函数y=ax2+k(a≠0),y=a(x-h)2(a≠0)的图象作法和性质的过程;2.能够理解函数y=ax2+k(a≠0)、y=a(x-h)2与y=ax2的图象的关系,知道a、h对二次函数的图象的影响;3.能正确说出函数y=ax2+k(a≠0)、y=a(x-h)2的图象的性质.教学过程:一、探索二次函数y=ax2+k(a≠0)的图象和性质。
(2)在下图的直角坐标系中,描点并画出函数2y x=和21y x=+的图象;2.思考:函数y=x2+1的图象与y=x2的图象有什么关系?(1)形状相同吗?(2)相同自变量的值所对应的两个函数值有何关系?(3)从点的位置看,函数y=x2+1的图象与函数y=x2的图象的位置有什么关系?3.归纳:图象向上移还是向下移,移多少个单位长度,有什么规律吗?函数y=ax2 (a≠0)和函数y=ax2+ k (a≠0)的图象形状,只是位置不同;当k >0时,函数y=ax2+ k的图象可由y=ax2的图象向平移个单位得到;当k〈0时,函数y=ax2+c的图象可由y=ax2的图象向平移个单位得到。
二、探索二次函数y=a(x-h)2(a≠0)的图象作法和性质:1.操作:在上图右边直角坐标系中,描点并画出函数y=(x+3)2的图象;2.思考:函数y=(x+3)2的图象与y=x2的图象有什么关系?(1)形状相同吗?(2)从表格中的数值看,函数y=(x+3)2的函数值与函数y=x2的函数值相等时,它们所对应的自变量的值有什么关系?(3)从点的位置看,函数y=(x+3)2的图象与函数y=x 2的图象的位置有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?3.结论:函数y=(x+3)2的图象可以由函数y=x 2的图像沿x 轴向 平移 个单位长度得到,所以它是 ,这条抛物线的对称轴是 ,顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小.4.①抛物线y=-3(x-1)2可以看作是抛物线y=-3x 2沿x 轴 平移了 个单位;抛物线y=-3(x+1)2可以看作是抛物线y=-3x 2沿x 轴 平移了 个单位. ②图象向左平移还是向右平移,移多少个单位长度,有什么规律吗?三、例题:1.函数y=4x 2+5的图象可由y=4x 2的图象向 平移 个单位得到;y=4x 2-11的图象可由 y=4x 2的图象向 平移 个单位得到。
苏科版九年级下《5.5用二次函数解决问题》强化提优检测(三)利用二次函数解决建筑的问题(时间:90分钟满分:120分)一.选择题(共10题;共30分)1. 某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段防护栏需要间距0.4 m加设一根不锈钢的支柱,防护栏的最高点距底部0.5 m(如图),则这条防护栏需要不锈钢支柱的总长度至少为()A.50 m B.100 m C.160 m D.200 m第1题图第2题图第3题图第4题图2. 三孔桥横截面的三个孔都呈抛物线,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米.若大孔水面宽度为20米,则单个小孔的水面宽度为()A.43米B.52米C.213米D.7米3.某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),并在如图所示位置留2m宽的门,已知计划中的建筑材料可建围墙(不包括门)的总长度为50m.设饲养室长为xm,占地面积为ym2,则y关于x的函数表达式是()A.y=﹣x2+50x B.y=﹣x2+24x C.y=﹣x2+25x D.y=﹣x2+26x4﹒河北省赵县的赵州桥的桥拱是近似的抛物线,建立如图所示的平面直角坐标系,其函数关系式为y=-1/25x2,当水面离桥拱的高度DO是4m时,这时水面宽度AB为()A.-20m B.10m C.20m D.-10m5﹒如图,假设篱笆(虚线部分)的长度为16m,则所围成矩形ABCD的最大面积是()A.60m2B.63m2C.64m2D.66m2第5题图第6题图第7题图第8题图第10题图6﹒某建筑物,从10m高的窗口A,用水管向外喷水,喷出的水呈抛物线状(抛物线所在的平面与墙面垂直),如图所示,如果抛物线的最高点M离墙1m,离地面40/3m,则水流落地点B离墙的距离OB是()A.2mB.3mC.4mD.5m7.用长为6m的铝合金型材做一个形状如图所示的矩形窗框,要使做成的窗框的透光面积最大,则该窗的长,宽应分别做成()A. 1.5m,1mB. 1m,0.5mC. 2m,1mD. 2m,0.5m8.有一座抛物线形拱桥,正常水位桥下面宽度为20米,拱顶距离水平面4米,如图建立直角坐标系,若正常水位时,桥下水深6米,为保证过往船只顺利航行,桥下水面宽度不得小于18米,则当水深超过多少米时,就会影响过往船只的顺利航行()A. 2.76米B. 6.76米C. 6米D. 7米9.某公园有一个圆形喷水池,喷出的水流的高度h(单位:m)与水流运动时间t(单位:s)之间的关系式为h=30t−5t2,那么水流从喷出至回落到地面所需要的时间是( )A. 6 sB. 4 sC. 3 sD. 2 s10.某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子OA,O恰为水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.在过OA的任一平面上,建立平面直角坐标系(如图),水流喷出的高度y(m)与水平距离x (m)之间的关系式是,则下列结论:(1)柱子OA的高度为3m;(2)喷出的水流距柱子1m处达到最大高度;(3)喷出的水流距水平面的最大高度是4m;(4)水池的半径至少要3m才能使喷出的水流不至于落在池外.其中正确的有()A. 1个B. 2个C. 3个D. 4二、填空题(共10题;共30分)11.某公园有一个圆形喷水池,喷出的水流呈抛物线,水流的高度h(单位:m)与水流喷出时间t(单位:s)之间的关系式为h=30t﹣5t2,那么水流从喷出至回落到水池所需要的时间是s.12.一抛物线形拱桥如图所示,当拱顶离水面2m时,水面宽4m.当水面下降1m时,水面的宽为m.第12题图第13题图第14题图13. 如图是某地一座抛物线形拱桥,桥拱在竖直平面内与水平桥面相交于A,B两点,桥拱最高点C到AB的距离为9 m,AB=36 m,D,E为桥拱底部的两点,且DE∥AB,点E到直线AB的距离为7 m,则DE的长为________m.14.如图,某校的围墙由一段相同的凹曲拱组成,其拱状图形为抛物线的一部分,栅栏的跨径AB间,按相同间隔0.2米用5根立柱加固,拱高OC为0.36米,则立柱EF的长为_____米.15.农贸市场拟建两间长方形储藏室,储藏室的一面靠墙(墙长30m),中间用一面墙隔开,如图所示,已知建筑材料可建墙的长度为42m,则这两间长方形储藏室的总占地面积的最大值为_______m 2.第15题图 第16题图 第17题图16.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的两处各留1m 宽的门.已知计划中的材料可建墙体(不包括门)总长为28m ,则能建成的饲养室面积最大为 m 2.17.某圆形喷水池的水柱如图①所示,如果曲线APB 表示落点B 离点O 最远的一条水流,如图②所示,其上的水珠的高度y 米关于水平距离x 米的函数解析式为y =-x 2+4x +9/4,那么圆形水池的半径至少为________米时,才能使喷出的水流不落在水池外.18.如图所示的一座拱桥,当水面宽AB 为12 m 时,桥洞顶部离水面4 m ,已知桥洞的拱形是抛物线,以水平方向为x 轴,建立平面直角坐标系,若选取点A 为坐标原点时的抛物线表达式是y =-19(x -6)2+4,则选取点B 为坐标原点时的抛物线表达式是_________.第18题图 第19题图 第20题图19.如图(1)是一座横断面为抛物线形状的拱桥,当水面在直线l 时,拱顶(拱桥洞的最高点)离水面2 m ,水面宽4 m .如图(2)建立平面直角坐标系,则抛物线的表达式是__________. 20.如图,一座抛物线型拱桥,桥下水面宽度是4m 时,拱高为2m ,一艘木船宽2m.要能顺利从桥下通过,船顶点与桥拱之间的间隔应不少于0.3m ,那么木船的高不得超过 ______m.三.解答题(共8题;共60分)21.拱桥的形状是抛物线,其函数关系式为y =﹣x 2,当水面离桥顶的高度为m 时,水面的宽度为多少米?22如图,某公路隧道横截面为抛物线,其最大高度为6米,底部宽度OM为12米.现以O 点为原点,OM所在直线为x轴建立直角坐标系.(1)直接写出点M及抛物线顶点P的坐标;(2)求这条抛物线的解析式;(3)若要搭建一个矩形“支撑架”AD-DC-CB,使C、D点在抛物线上,A、B点在地面OM上,则这个“支撑架”总长的最大值是多少?23.如图是一座拱桥的示意图,相邻两支柱间的距离为10米(即HF=FG=GM=MP=10米),拱桥顶点D到桥面的距离DG=2米,将其置于如图②所示的平面直角坐标系中,抛物线的表达式为y=ax2+6.(1)求a的值;(2)求支柱EF的高.24.一座拱桥呈抛物线形,它的截面如图所示,现测得,当水面宽AB=1.6 m时,拱桥顶点与水面的距离为2.4 m.这时,离开水面1.5 m处,拱桥宽ED是多少?是否超过1 m?25.“创建全国文明城市”的号召,某单位不断美化环境,拟在一块矩形空地上修建绿色植物园,其中一边靠墙,可利用的墙长不超过18 m ,另外三边由36 m 长的栅栏围成.设矩形ABCD 空地中,垂直于墙的边AB =x m ,面积为y m 2(如图).(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)若矩形空地的面积为160 m 2,求x 的值;(3)若该单位用8600元购买了甲、乙、丙三种绿色植物共400棵(每种植物的单价和每棵栽种的合理用地面积如下表).则丙种植物最多可以购买多少棵?此时,这批植物可以全部栽种到这块空地上吗?请说明理由.26.如图需在一面墙上绘制几个相同的抛物线形图案.按照图中的平面直角坐标系,最左边的抛物线可以用y =ax 2+bx 来表示.已知抛物线上B ,C 两点到地面的距离均为34 m ,到墙边OA 的距离分别为12 m ,32 m.(1)求该拋物线的函数表达式,并求图案最高点到地面的距离;(2)若该面墙的长度为10 m ,则最多可以连续绘制几个这样的拋物线形图案?27.如图小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB 和矩形的三边AE ,ED ,DB 组成,已知河底ED 是水平的,ED =16米,AE =8米,抛物线的顶点C 到ED 的距离是11米,以ED 所在的直线为x 轴,抛物线的对称轴为y 轴建立平面直角坐标系.(1)求抛物线的函数表达式;(2)已知从某时刻开始的40小时内,水面与河底ED 的距离h (单位:米)随时间t (单位:时)的变化满足函数关系h =-1128(t -19)2+8(0≤t ≤40),且当水面到顶点C 的距离不大于5米时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?28..如图①,地面BD 上两根等长立柱AB ,CD 之间悬挂一根近似成抛物线y =110x 2-45x +3的绳子.(1)求绳子最低点离地面的距离;(2)因实际需要,在离AB 为3米的位置处用一根立柱MN 撑起绳子(如图②),使左边抛物线F 1的最低点距MN 为1米,离地面1.8米,求MN 的长;(3)将立柱MN 的长度提升为3米,通过调整MN 的位置,使抛物线F 2对应函数的二次项系数始终为14,设MN 离AB 的距离为m 米,抛物线F 2的顶点离地面的距离为k 米,当2≤k ≤2.5时,求m 的取值范围.教师样卷一.选择题(共10题;共30分)1. 某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段防护栏需要间距0.4 m 加设一根不锈钢的支柱,防护栏的最高点距底部0.5 m(如图),则这条防护栏需要不锈钢支柱的总长度至少为( )A .50 mB .100 mC .160 mD .200 m【答案】C [解析] 以2 m 长线段所在直线为x 轴,以其垂直平分线为y 轴建立平面直角坐标系,求出抛物线的解析式,再求出不锈钢支柱的长度.第1题图 第2题图 第3题图 第4题图 2. 三孔桥横截面的三个孔都呈抛物线,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米.若大孔水面宽度为20米,则单个小孔的水面宽度为( ) A .43米 B .52米 C .213米 D .7米【答案】B 【解析】如图所示,建立平面直角坐标系.设大孔对应的函数关系式为y =ax 2+c ,过B (5,c -1.5),F (7,0),代入y =ax 2+c ,,解得a=0.06 c=0,94,∴大孔对应的函数关系式为y =-0.06x 2+2.94.当x =10时,y =-0.06×102+2.94=-3.06,∴H (0,-3.06).设右边小孔顶点坐标为D (10,1.44),则右边小孔对应的函数关系式为y =m (x -10)2+1.44,过点G (12,0),则0= m (12-10)2+1.44,解得m =-0.36,∴右边小孔对应的函数关系式为y =-0.36(x -10)2+1.44,当y =-3.06时,-3.06=-0.36(x -10)2+1.44,解得x=10±,52/2∴大孔水面宽度为20米,时单个小孔的水面宽度为52米.故选项B 正确. 3.某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),并在如图所示位置留2m 宽的门,已知计划中的建筑材料可建围墙(不包括门)的总长度为50m .设饲养室长为xm ,占地面积为ym 2,则y 关于x 的函数表达式是( )A .y =﹣x 2+50xB .y =﹣x 2+24xC .y =﹣x 2+25xD .y =﹣x 2+26x【答案】D 解:设饲养室长为xm ,占地面积为ym 2,则y 关于x 的函数表达式是:y =x •(50+2﹣x )=﹣x 2+26x .故选:D .4﹒河北省赵县的赵州桥的桥拱是近似的抛物线,建立如图所示的平面直角坐标系,其函数关系式为y =-1/25x 2,当水面离桥拱的高度DO 是4m 时,这时水面宽度AB 为( ) A .-20m B .10m C .20m D .-10m【答案】C 解答:根据题意B 的纵坐标为﹣4, 把y =﹣4代入y =﹣1/25x 2,得x =±10,∴A (﹣10,﹣4),B (10,﹣4),∴AB =20m .即水面宽度AB 为20m .故选:C .5﹒如图,假设篱笆(虚线部分)的长度为16m ,则所围成矩形ABCD 的最大面积是( ) A .60m 2 B .63m 2 C .64m 2 D .66m 2【答案】C 解答:设BC =x m ,则AB =(16﹣x )m ,矩形ABCD 面积为y m 2,根据题意得:y =(16﹣x )x =﹣x 2+16x =﹣(x ﹣8)2+64,当x =8m 时,y 最大值=64m 2,则所围成矩形ABCD 的最大面积是64m 2.故选:C .H M F G D C E O N C B A yx第5题图第6题图第7题图第8题图第10题图6﹒某建筑物,从10m高的窗口A,用水管向外喷水,喷出的水呈抛物线状(抛物线所在的平面与墙面垂直),如图所示,如果抛物线的最高点M离墙1m,离地面40/3m,则水流落地点B离墙的距离OB是()A.2mB.3mC.4mD.5m【答案】B 解答:设抛物线的解析式为y=a(x﹣1)2+40/3,把点A(0,10)代入a(x﹣1)2+40/3,得a(0﹣1)2+ =10,解得a=﹣10/3,因此抛物线解析式为y=﹣10/3(x﹣1)2+40/3,当y=0时,解得x1=3,x2=﹣1(不合题意,舍去);即OB=3米.故选:B.7.用长为6m的铝合金型材做一个形状如图所示的矩形窗框,要使做成的窗框的透光面积最大,则该窗的长,宽应分别做成()A. 1.5m,1mB. 1m,0.5mC. 2m,1mD. 2m,0.5m【答案】A【解析】试题分析:设长为x,则宽为,S=,即S=,要使做成的窗框的透光面积最大,则x=,于是宽为=1m,所以要使做成的窗框的透光面积最大,则该窗的长,宽应分别做成1.5m,1m,故选A.8.有一座抛物线形拱桥,正常水位桥下面宽度为20米,拱顶距离水平面4米,如图建立直角坐标系,若正常水位时,桥下水深6米,为保证过往船只顺利航行,桥下水面宽度不得小于18米,则当水深超过多少米时,就会影响过往船只的顺利航行()A. 2.76米B. 6.76米C. 6米D. 7米【答案】B【解析】试题解析:设该抛物线的解析式为y=ax2,在正常水位下x=10,代入解析式可得﹣4=a×102⇒a=﹣1/25故此抛物线的解析式为y=﹣1/25x2.因为桥下水面宽度不得小于18米所以令x=9时可得y=﹣3.24米此时水深6+4﹣3.24=6.76米即桥下水深6.76米时正好通过,所以超过6.76米时则不能通过.故选B.9.某公园有一个圆形喷水池,喷出的水流的高度h(单位:m)与水流运动时间t(单位:s)之间的关系式为h=30t−5t2,那么水流从喷出至回落到地面所需要的时间是( )A. 6 sB. 4 sC. 3 sD. 2 s【答案】.A 解:水流从抛出至回落到地面时高度h为0,把h=0代入h=30t−5t2得:5t2−30t=0,解得:t1=0(舍去),t2=6.故水流从抛出至回落到地面所需要的时间6s. 故选A.10.某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子OA,O恰为水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.在过OA的任一平面上,建立平面直角坐标系(如图),水流喷出的高度y(m)与水平距离x (m)之间的关系式是,则下列结论:(1)柱子OA的高度为3m;(2)喷出的水流距柱子1m处达到最大高度;(3)喷出的水流距水平面的最大高度是4m;(4)水池的半径至少要3m才能使喷出的水流不至于落在池外.其中正确的有()A. 1个B. 2个C. 3个D. 4【答案】C解:当x=0时,y=3,故柱子OA的高度为3m;(1)正确;∵y=-x2+2x+3=-(x-1)2+4,∴顶点是(1,4),故喷出的水流距柱子1m处达到最大高度,喷出的水流距水平面的最大高度是4米;故(2)(3)正确;解方程-x2+2x+3=0,得x1=-1,x2=3,故水池的半径至少要3米,才能使喷出的水流不至于落在水池外,(4)正确.故选:C.三、填空题(共10题;共30分)11.某公园有一个圆形喷水池,喷出的水流呈抛物线,水流的高度h(单位:m)与水流喷出时间t(单位:s)之间的关系式为h=30t﹣5t2,那么水流从喷出至回落到水池所需要的时间是s.【答案】6 解:∵h=30t﹣5t2,∴当h=0时,t=0或t=6,∴水流从喷出至回落到水池所需要的时间是:6﹣0=6,故答案为:6.12.一抛物线形拱桥如图所示,当拱顶离水面2m时,水面宽4m.当水面下降1m时,水面的宽为m.【答案】2.解:如图:以拱顶到水面的距离为2米时的水面为x轴,拱顶所在直线为y 轴建立平面直角坐标系,根据题意设二次函数解析式为:y=ax2+2把A(2,0)代入,得a=﹣,所以二次函数解析式为:y=﹣x2+2,当y=﹣1时,﹣x2+2=﹣1解得x=±.所以水面的宽度为2.故答案为2.第12题图第13题图第14题图13. 如图是某地一座抛物线形拱桥,桥拱在竖直平面内与水平桥面相交于A,B两点,桥拱最高点C到AB的距离为9 m,AB=36 m,D,E为桥拱底部的两点,且DE∥AB,点E到直线AB的距离为7 m,则DE的长为________m.【答案】48[解析] 建立如图所示的平面直角坐标系,设AB与y轴交于点H.∵AB=36 m,∴AH=BH=18 m.由题可知:OH=7 m,CH=9 m,∴OC=9+7=16(m).设该抛物线的解析式为y=ax2+k.∵抛物线的顶点为C(0,16),∴抛物线的解析式为y=ax2+16.把(18,7)代入解析式,得7=18×18a+16,∴7=324a+16,∴a=-136,∴y=-136x2+16.当y=0时,0=-136x2+16,∴-136x2=-16,解得x=±24,∴E(24,0),D(-24,0),∴OE=OD=24 m,∴DE=OD +OE=24+24=48(m).14.如图,某校的围墙由一段相同的凹曲拱组成,其拱状图形为抛物线的一部分,栅栏的跨径AB间,按相同间隔0.2米用5根立柱加固,拱高OC为0.36米,则立柱EF的长为_____米.【答案】0.2 【解析】如图,以C坐标系的原点,OC所在直线为y轴建立坐标系,设抛物线解析式为y=ax2,由题知,图象过B(0.6,0.36),代入得:0.36=0.36a∴a=1,即y=x2.∵F 点横坐标为﹣0.4,∴当x=﹣0.4时,y=0.16,∴EF=0.36﹣0.16=0.2米故答案为0.2.15.农贸市场拟建两间长方形储藏室,储藏室的一面靠墙(墙长30m),中间用一面墙隔开,如图所示,已知建筑材料可建墙的长度为42m,则这两间长方形储藏室的总占地面积的最大值为_______m2.【答案】147 解:设中间隔开的墙EF的长为xm,建成的储藏室总占地面积为sm²,根据题意得AD+3x=42,解得AD=42-3x,则S=x(42-3x)= -3x²+42x=-3(x-7)²+147,故这两间长方形储藏室的总占地面积的最大值为:147m²,故答案为:147.点睛:本题考查了二次函数的应用,配方法,矩形的面积,有一定的难度,解答本题的关键是得到建成的储藏室的总占地面积的解析式.第15题图第16题图第17题图16.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的两处各留1m宽的门.已知计划中的材料可建墙体(不包括门)总长为28m,则能建成的饲养室面积最大为 m2.【答案】75 【解析】设垂直于墙的材料长为x米,则平行于墙的材料长为28+2-3x=30-3x,则总面积S=x(30-3x)=-3x2+30x=-3(x-5)2+75,所以饲养室的最大面积为75平方米,17.某圆形喷水池的水柱如图①所示,如果曲线APB 表示落点B 离点O 最远的一条水流,如图②所示,其上的水珠的高度y 米关于水平距离x 米的函数解析式为y =-x 2+4x +9/4,那么圆形水池的半径至少为________米时,才能使喷出的水流不落在水池外.【答案】.9/2 【解析】当y=0时,即-x 2+4x+9/4=0,解得x 1=9/2,x 2=-1/2(舍去).18.如图所示的一座拱桥,当水面宽AB 为12 m 时,桥洞顶部离水面4 m ,已知桥洞的拱形是抛物线,以水平方向为x 轴,建立平面直角坐标系,若选取点A 为坐标原点时的抛物线表达式是y =-19(x -6)2+4,则选取点B 为坐标原点时的抛物线表达式是_________.【答案】y =-19(x +6)2+4第18题图 第19题图 第20题图19.如图(1)是一座横断面为抛物线形状的拱桥,当水面在直线l 时,拱顶(拱桥洞的最高点)离水面2 m ,水面宽4 m .如图(2)建立平面直角坐标系,则抛物线的表达式是__________.【答案】y =2x 220.如图,一座抛物线型拱桥,桥下水面宽度是4m 时,拱高为2m ,一艘木船宽2m.要能顺利从桥下通过,船顶点与桥拱之间的间隔应不少于0.3m ,那么木船的高不得超过 ______m.【答案】1.2【解析】以水面所在水平线为x 轴,过拱桥顶点作水平线的垂线,作为y 轴,建立坐标系,设水平面与拱桥的交点为A (-2,0),B (2,0),C (0,2),利用待定系数法设函数的解析式为y=a (x+2)(x-2)代入点C 坐标,求得a=-1/2,即抛物线的解析式为y=-1/2(x+2)(x-2),令x=1,解得y=1.5,船顶与桥拱之间的间隔应不少于0.3,则木船的最高高度为1.5-0.3=1.2米.故答案为:1.2.三.解答题(共8题;共60分)21.拱桥的形状是抛物线,其函数关系式为y =﹣x 2,当水面离桥顶的高度为m 时,水面的宽度为多少米?解:在y =﹣x 2中,当y =﹣时,x =±,故水面的宽度为=(米).答:水面的宽度为米.22如图,某公路隧道横截面为抛物线,其最大高度为6米,底部宽度OM 为12米.现以O 点为原点,OM 所在直线为x 轴建立直角坐标系.(1)直接写出点M 及抛物线顶点P 的坐标;(2)求这条抛物线的解析式;(3)若要搭建一个矩形“支撑架”AD -DC -CB ,使C 、D 点在抛物线上,A 、B 点在地面OM 上,则这个“支撑架”总长的最大值是多少?解:(1)M(12,0),P(6,6); (2)设y =a(x -6)2+6,把(0,0)代入得a =-16,∴y =-16(x -6)2+6; (3)设D(m ,n),则C(12-m ,n),设支架总长为S m ,∴AD =CB =n =-16m 2+2m ,DC =12-2m ,∴S =2AD +DC =-13m 2+2m +12,当m =-b 2a=3时,S 最大=15.答:“支撑架”总长的最大值为15米.23.如图是一座拱桥的示意图,相邻两支柱间的距离为10米(即HF =FG =GM =MP =10米),拱桥顶点D 到桥面的距离DG =2米,将其置于如图②所示的平面直角坐标系中,抛物线的表达式为y =ax 2+6.(1)求a 的值; (2)求支柱EF 的高.解:(1)根据题意可知A(-20,0),将其代入y =ax 2+6,得400a +6=0,解得a =-3200. (2)把x =-10代入y =-3200x 2+6,得y =-3200×(-10)2+6=92,∴EF =6+2-92=72(米).24.一座拱桥呈抛物线形,它的截面如图所示,现测得,当水面宽AB =1.6 m 时,拱桥顶点与水面的距离为2.4 m .这时,离开水面1.5 m 处,拱桥宽ED 是多少?是否超过1 m?解:由题意可知,点A(-0.8,-2.4),O C =2.4 m ,OF =0.9 m .设抛物线的表达式为y =ax 2,将点A 的坐标代入,得0.64a =-2.4,解得a =-154,∴y =-154x 2.把y =-0.9代入,得-154x 2=-0.9,解得x =±65,∴DE =2 65 m . ∵2 65=2425<1,∴离开水面1.5 m 处,拱桥宽ED 是2 65 m ,没有超过1 m25.“创建全国文明城市”的号召,某单位不断美化环境,拟在一块矩形空地上修建绿色植物园,其中一边靠墙,可利用的墙长不超过18 m ,另外三边由36 m 长的栅栏围成.设矩形ABCD 空地中,垂直于墙的边AB =x m ,面积为y m 2(如图).(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)若矩形空地的面积为160 m 2,求x 的值;(3)若该单位用8600元购买了甲、乙、丙三种绿色植物共400棵(每种植物的单价和每棵栽种的合理用地面积如下表).则丙种植物最多可以购买多少棵?此时,这批植物可以全部栽种到这块空地上吗?请说明理由.解:(1)y =-2x 2+36x (9≤x <18)(2)由题意得-2x 2+36x =160,解得x 1=10,x 2=8(不符合题意,舍去).∴x 的值为10.(3)∵y =-2x 2+36x =-2(x -9)2+162,∴x =9时,y 有最大值162.设购买乙种绿色植物a 棵,购买丙种绿色植物b 棵,由题意得14(400-a -b )+16a +28b =8600,∴a +7b =1500,∴b 的最大值为214,即丙种植物最多可以购买214棵,此时a =2,需要种植的面积=0.4×(400-214-2)+1×2+0.4×214=161.2(m 2)<162 m 2,∴这批植物可以全部栽种到这块空地上. 26.如图需在一面墙上绘制几个相同的抛物线形图案.按照图中的平面直角坐标系,最左边的抛物线可以用y =ax 2+bx 来表示.已知抛物线上B ,C 两点到地面的距离均为34 m ,到墙边OA 的距离分别为12 m ,32 m.(1)求该拋物线的函数表达式,并求图案最高点到地面的距离;(2)若该面墙的长度为10 m ,则最多可以连续绘制几个这样的拋物线形图案?解:(1)根据题意,得B(12,34),C(32,34).把B ,C 两点的坐标分别代入y =ax 2+bx ,得⎩⎨⎧34=14a +12b ,34=94a +32b ,解得⎩⎪⎨⎪⎧a =-1,b =2,∴拋物线的函数表达式为y =-x 2+2x ,∴图案最高点到地面的距离为-224×(-1)=1(m ).(2)令y =0,即-x 2+2x =0,解得x 1=0,x 2=2,∵10÷2=5,∴最多可以连续绘制5个这样的拋物线形图案.27.如图小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB 和矩形的三边AE ,ED ,DB 组成,已知河底ED 是水平的,ED =16米,AE =8米,抛物线的顶点C 到ED 的距离是11米,以ED 所在的直线为x 轴,抛物线的对称轴为y 轴建立平面直角坐标系.(1)求抛物线的函数表达式;(2)已知从某时刻开始的40小时内,水面与河底ED 的距离h (单位:米)随时间t (单位:时)的变化满足函数关系h =-1128(t -19)2+8(0≤t ≤40),且当水面到顶点C 的距离不大于5米时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?解:(1)设抛物线的函数表达式为y =ax 2+11,由题意得B(8,8),则64a +11=8,解得a =-364,即y =-364x 2+11.(2)水面到顶点C 的距离不大于5米时,即水面与河底ED 的距离h 最多为11-5=6(米),那么6=-1128(t -19)2+8,解得t 1=35,t 2=3,∴35-3=32(时).答:需32小时禁止船只通行.28..如图①,地面BD 上两根等长立柱AB ,CD 之间悬挂一根近似成抛物线y =110x 2-45x +3的绳子.(1)求绳子最低点离地面的距离;(2)因实际需要,在离AB 为3米的位置处用一根立柱MN 撑起绳子(如图②),使左边抛物线F 1的最低点距MN 为1米,离地面1.8米,求MN 的长;(3)将立柱MN 的长度提升为3米,通过调整MN 的位置,使抛物线F 2对应函数的二次项系数始终为14,设MN 离AB 的距离为m 米,抛物线F 2的顶点离地面的距离为k 米,当2≤k ≤2.5时,求m 的取值范围.解:(1)∵a =110>0,∴抛物线的顶点为最低点.∵y =110x 2-45x +3=110(x -4)2+75,∴绳子最低点离地面的距离为75米.(2)由(1)可知,BD =8,令x =0,得y =3,∴A(0,3),C(8,3).由题意可得抛物线F 1的顶点坐标为(2,1.8),设F 1的表达式为y =a(x -2)2+1.8.将(0,3)代入,得4a +1.8=3,解得a =0.3,∴抛物线F 1的表达式为y =0.3(x -2)2+1.8.当x =3时,y =0.3×1+1.8=2.1,∴MN 的长度为2.1米.(3)∵MN =CD =3米,∴根据抛物线的对称性可知抛物线F 2的顶点在ND 的垂直平分线上,∴抛物线F 2的顶点坐标为(12m +4,k),∴抛物线F 2的表达式为y =14(x -12m -4)2+k.把C(8,3)代入,得14(8-12m -4)2+k =3,解得k =3-14(8-12m -4)2,即k =-116(m -8)2+3,从而k是关于m 的二次函数.又由已知条件得m <8,则二次函数k =-116(m -8)2+3在对称轴的左侧,k 随m 的增大而增大,∴当k =2时,-116(m -8)2+3=2,解得m 1=4,m 2=12(不符合题意,舍去);当k =2.5时,-116(m -8)2+3=2.5,解得m 1=8-2 2,m 2=8+2 2(不符合题意,舍去).∴m 的取值范围是4≤m ≤8-2 2.。
苏科版九年级下《5.5用二次函数解决问题》强化提优检测(四)利用二次函数解决最大利润的问题(时间:90分钟满分:120分)一.选择题(共8题;共24分)1. 某企业生产季节性产品,当产品无利润时,企业自动停产,经过调研,它一年中每月获得的利润y(万元)和月份n之间满足函数关系式y=-n2+12n-11,则企业停产的月份为()A.1月和11月B.1月、11月和12月C.1月D.1月至11月2.将进货单价为70元的某种商品按零售价100元/个售出时每天能卖出20个,若这种商品的零售价在一定范围内每降价1元,其日销售量就增加1个,为了获得最大利润,则应降价()A.5元B.10元C.15元D.20元3﹒某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y(万元)与销售量x(辆)之间分别满足:y1=-x2+10x,y2=2x,若该公司在甲、乙两地共销售15辆该品牌的汽车,则能获得的最大利润是()A.30万元B.40万元C.45万元D.46万元4.某民俗旅游村为接待游客住宿需求,开设了有100张床位的旅馆,当每张床位每天收费10元时,床位可全部租出.若每张床位每天收费提高2元,则相应的减少了10张床位租出;如果每张床位每天以2元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是()A.14元B.15元C.16元D.18元5.便民商店经营一种商品,在销售过程中,发现一周利润y(元)与每件销售价x(元)之间的关系满足y=-2(x-20)2+1558,由于某种原因,价格只能在15≤x≤22范围内,那么一周可获得的最大利润是(D)A.20 B.1508 C.1550 D.15586.某旅游景点的收入受季节的影响较大,有时候出现赔本的经营状况.因此,公司规定:若无利润时,该旅游景点关闭.经跟踪测算,该旅游景点一年中某月的利润W(万元)与月份x之间满足二次函数W=-x2+16x-48,则该旅游景点一年中利润最大的月份是(C) A.4 B.6 C.8 D.107.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x元后,每星期售出商品的总销售额为y元,则y与x之间的关系式为( )A.y=60(300+20x)B.y=(60-x)(300+20x)C.y=300(60-20x)D.y=(60-x)(300-20x)8. 某公司的生产利润原来是a元,经过连续两年的增长达到了y万元,如果每年增长的百分数都是x,那么y与x的函数关系是()A. y=x2+aB. y=a(x-1)2C. y=a(1-x)2D. y=a(l+x)2二、填空题(共9题;共27分)9. 某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为元.10 某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(a>0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t·为正整数....)的增大而增大,a的取值范围应为________.11. 某大学生利用业余时间销售一种进价为60元/件的文化衫,前期了解并整理了销售这种文化衫的相关信息如下:(1)月销量y(件)与售价x(元/件)的关系满足y=-2x+400;(2)工商部门限制售价x满足70≤x≤150(计算月利润时不考虑其他成本).给出下列结论:①这种文化衫的月销量最小为100件;②这种文化衫的月销量最大为260件;③销售这种文化衫的月利润最小为2600元;④销售这种文化衫的月利润最大为9000元.其中正确的是________.(把所有正确结论的序号都填上)12.某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为______元时,该服装店平均每天的销售利润最大.13.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x 为整数)出售,可卖出(30-x)件.若使利润最大,每件的售价应为________元.14.某工厂有一种产品现在的年产量是20万件,计划今后两年增加产量,如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,那么y 与x之间的关系应表示为_____.15.某公司2月份的利润为160万元,4月份的利润250万元,若设平均每月的增长率x,则根据题意可得方程为____________.16.某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(a>0)。
5.1二次函数学习目标:1.使学生理解二次函数的概念.2.使学生能够根据实际问题列出二次函数关系式,了解如何确定自变量的取值范围.教学过程:一、知识回顾1.正方形的边长是x ,周长为y ,求y 与x 之间的函数表达式 .这是 函数。
2.已知长方形的长为x ,宽为y 。
若面积为 20,求y 与x 的函数表达式 .这是 ___________函数。
3.函数的定义:4.一次函数的关系式是y = ( );它的图像是 .5.反比例函数的关系式是y = ( ).它的图像是 .二、情景引入1.一粒石子投入水中,激起的波纹不断向外扩展.扩展的圆的面积S 与半径r 之间的函数关系式是 .2.用长16m 的篱笆围成长方形的生物园饲养小兔,求生物园面积y (m 2)与长(m )之间的函数关系式. 那么y 与x 之间的函数关系式为y = ,整理为y = .3.一面长与宽之比为2:1的矩形镜子,四周镶有边框(边框宽不计) 。
已知镜面的价格是每平方米120元,边框的价格是每米30元,加工费为45元.设镜面宽为x 米,求总费用y 与镜面宽x 之间的函数关系式.(1)镜面的费用 ;(2)边框的费用为 ;(3)其他费用为 ;(4)总费用y 为 .三、探究归纳:1.上述函数关系式有哪些共同之处?它们与一次函数、反比例函数关系式有什么不同?2.一般地,我们把形如:y = ( )的函数称为二次函数.其中 是自变量, 是因变量,这是 关于 函数.注意:(1)等号左边是变量y ,右边是关于自变量x 的整式.(2)a,b,c 为常数,且0 a .(3)等式的右边最高次数为2 ,可以没有一次项和常数项,但不能没有二次项.(4)通常,二次函数自变量x 可以取任意实数.但在实际问题中,他们的取值范围往往有所限制,你能说出上述三个问题中自变量的取值范围吗? ① ② ③四、典型评析例1.判断下列函数是否为二次函数.如果是,写出其中a 、b 、c 的值.墙x x ①123212+-=x x y ( ) ②)5(-=x x y ( ) ③231x y -=( ) ④23)2(3x x x y +-=( ) ⑤12312++=x x y ( ) ⑥652++=x x y ( ) ⑦1224-+=x x y ( ) ⑧c bx ax y ++=2( ) ⑨( ) 例2.已知函数()()12222-++-=-x m x m y m是二次函数,求m 的值. 若是一次函数呢?例3. 写出下列问题中y 与x 之间的函数表达式,并写出自变量的取值范围:(1)如图,在长200m 、宽140m 的矩形绿地内修建等宽的十字形道路,设道路宽为x(m),绿地面积为y (m 2)(2)某化肥厂10月份生产某种化肥200t ,设该厂11月、12月的月平均增长率为x ,12月份化肥的产量为y (t ).(3)如图,用长50m 的护栏围成一块靠墙的矩形花园,设矩形花园的长为x (m ),面积为y (m 2).五、课堂练习(1)如果函数11++=+kx x y k 是二次函数,则k 的值一定是______ .(2)如果函数 1232++=+-kx x y k k 是二次函数,则k 的值一定是______ . (3)如果函数()13232++-=+-kx x k y k k 是二次函数,则k 的值一定是______ .(4)写出正方体的表面积S (cm 2)与正方体的棱长a(cm)之间的函数表达式。