全等三角形的条件教学设计
- 格式:pdf
- 大小:70.93 KB
- 文档页数:4
全等三角形的判定教案一、教学目标1. 知识目标:了解全等三角形的判定条件。
2. 能力目标:能够应用判定条件判断两个三角形是否全等。
3. 情感目标:培养学生对几何图形的兴趣和喜好。
二、教学内容1. 全等三角形的判定条件:SSS、SAS、ASA、RHS。
2. 全等三角形的性质。
3. 三角形全等的几何证明。
三、教学过程1. 导入新知:复习三角形的基本知识,提问学生“什么是全等三角形?”引导思考。
2. 学习新知:a. 讲解全等三角形的判定条件:SSS、SAS、ASA、RHS,并进行案例分析。
b. 教师通过幻灯片或手绘,向学生介绍全等三角形的性质。
3. 学生探究:a. 学生小组讨论并验证两个三角形是否全等,使用全等三角形的判定条件。
b. 学生使用尺木、剪纸等实物进行实践操作,通过构造全等三角形来观察和验证全等三角形的性质。
4. 拓展应用:a. 学生自主解决一些应用问题,如平面解析几何中的全等三角形问题,运用全等三角形判定进行证明。
b. 学生以小组形式完成一些综合性的任务,如设计一个拼图游戏,要求将一些全等三角形拼凑成一个大三角形。
5. 总结归纳:a. 教师对全等三角形的判定条件及性质进行归纳总结,并让学生进行讨论补充。
b. 教师提问学生“如何判断两个三角形是否全等?”并让学生进行回答。
6. 练习巩固:a. 学生独立完成课后作业,巩固全等三角形判定的知识。
b. 学生小组互相出题,选择合适的判定条件进行判断。
四、教学评价1. 观察学生在学习过程中的参与度和合作程度。
2. 收集学生的练习作业,查看他们是否掌握了全等三角形的判定条件。
3. 通过学生独立解决应用问题的能力和创造性,评价他们的学习成果。
全等三角形数学教案标题:全等三角形数学教案一、教学目标:1. 知识与技能:学生能理解并掌握全等三角形的定义和性质,能够识别和判断两个三角形是否全等。
2. 过程与方法:通过观察、分析、讨论和实践,培养学生的逻辑思维能力和空间观念。
3. 情感态度价值观:培养学生严谨的科学态度和积极的学习热情。
二、教学重点难点:1. 教学重点:理解和掌握全等三角形的定义和性质。
2. 教学难点:准确判断两个三角形是否全等。
三、教学过程:(一)导入新课教师可以先展示一些生活中的实例,如门框、窗户等,引导学生思考这些形状为什么都是三角形。
然后提出问题:“如果有两个三角形,它们看起来完全一样,那它们就一定是一样的吗?”从而引入全等三角形的概念。
(二)讲解新课1. 全等三角形的定义:大小和形状都相同的两个三角形叫做全等三角形。
2. 全等三角形的性质:全等三角形的对应角相等,对应边相等。
(三)实践操作让学生用纸片或几何工具制作出一些三角形,然后尝试将它们拼接在一起,看哪些可以完全重合,哪些不能。
以此来帮助他们理解和掌握全等三角形的定义和性质。
(四)巩固练习设计一些习题,让学生判断给出的两个三角形是否全等,或者找出需要满足什么条件才能使两个三角形全等。
(五)总结提升让学生自己总结本节课所学的内容,并鼓励他们在日常生活中寻找全等三角形的例子,以提高他们的观察能力和应用能力。
四、教学反思:在教学过程中,教师应注重引导学生主动参与学习,激发他们的学习兴趣。
同时,也要注意对学生的反馈进行及时的调整和改进,确保每一个学生都能理解和掌握全等三角形的相关知识。
三角形全等的判定(一)教学目标1.三角形全等的“边边边”的条件.2.了解三角形的稳定性.3.经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程. 教学重点三角形全等的条件.教学难点寻求三角形全等的条件.教学过程Ⅰ.创设情境,引入新课出示投影片,回忆前面研究过的全等三角形.已知△ABC ≌△A′B′C′,找出其中相等的边与角.C 'B 'A 'C B A图中相等的边是:AB=A′B 、BC=B′C′、AC=A′C .相等的角是:∠A=∠A′、∠B=∠B′、∠C=∠C′.展示课作前准备的三角形纸片,提出问题:你能画一个三角形与它全等吗?怎样画?(可以先量出三角形纸片的各边长和各个角的度数,再作出一个三角形使它的边、角分别和已知的三角形纸片的对应边、对应角相等.这样作出的三角形一定与已知的三角形纸片全等).这是利用了全等三角形的定义来作图.那么是否一定需要六个条件呢?条件能否尽可能少呢?现在我们就来探究这个问题.Ⅱ.导入新课1.只给一个条件(一组对应边相等或一组对应角相等),•画出的两个三角形一定全等吗?2.给出两个条件画三角形时,有几种可能的情况,每种情况下作出的三角形一定全等吗?分别按下列条件做一做.①三角形一内角为30°,一条边为3cm .②三角形两内角分别为30°和50°.③三角形两条边分别为4cm 、6cm .学生分组讨论、探索、归纳,最后以组为单位出示结果作补充交流. 结果展示:1.只给定一条边时:只给定一个角时:2.给出的两个条件可能是:一边一内角、两内角、两边.①3cm 3cm 3cm 30︒30︒30︒②50︒50︒30︒30︒③6cm4cm 4cm6cm可以发现按这些条件画出的三角形都不能保证一定全等.给出三个条件画三角形,你能说出有几种可能的情况吗?归纳:有四种可能.即:三内角、三条边、两边一内角、两内有一边.在刚才的探索过程中,我们已经发现三内角不能保证三角形全等.下面我们就来逐一探索其余的三种情况.已知一个三角形的三条边长分别为6cm 、8cm 、10cm .你能画出这个三角形吗?把你画的三角形剪下与同伴画的三角形进行比较,它们全等吗?1.作图方法:先画一线段AB ,使得AB=6cm ,再分别以A 、B 为圆心,8cm 、10cm 为半径画弧,•两弧交点记作C ,连结线段AC 、BC ,就可以得到三角形ABC ,使得它们的边长分别为AB=6cm ,AC=8cm ,BC=10cm .2.以小组为单位,把剪下的三角形重叠在一起,发现都能够重合.•这说明这些三角形都是全等的.3.特殊的三角形有这样的规律,要是任意画一个三角形ABC ,根据前面作法,同样可以作出一个三角形A′B′C′,使AB=A′B′、AC=A′C′、BC=B′C′.将△A′B′C′剪下,发现两三角形重合.这反映了一个规律:三边对应相等的两个三角形全等,简写为“边边边”或“SSS”.用上面的规律可以判断两个三角形全等.判断两个三角形全等的推理过程,叫做证明三角形全等.所以“SSS”是证明三角形全等的一个依据.请看例题.[例]如图,△ABC 是一个钢架,AB=AC ,AD 是连结点A 与BC 中点D 的支架.求证:△ABD ≌△ACD .[分析]要证△ABD ≌△ACD ,可以看这两个三角形的三条边是否对应相等. 证明:因为D 是BC 的中点所以BD=DC在△ABD 和△ACD 中(AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩公共边)所以△ABD ≌△ACD (SSS ).生活实践的有关知识:用三根木条钉成三角形框架,它的大小和形状是固定不变的,•而用四根木条钉成的框架,它的形状是可以改变的.三角形的这个性质叫做三角形的稳定性.所以日常生活中常利用三角形做支架.就是利用三角形的稳定性.•例如屋顶的人字梁、大桥钢架、索道支架等.Ⅲ.随堂练习如图,已知AC=FE 、BC=DE ,点A 、D 、B 、F 在一条直线上,AD=FB .要用“边边边”证明△ABC ≌△FDE ,除了已知中的AC=FE ,BC=DE 以外,还应该有什么条件?怎样才能得到这个条件?F DC BE A2.课本练习.Ⅳ.课时小结本节课我们探索得到了三角形全等的条件,•发现了证明三角形全等的一个规律SSS .并利用它可以证明简单的三角形全等问题.Ⅴ.作业1. 习题11.2 复习巩固1、2.Ⅵ.活动与探索如图,一个六边形钢架ABCDEF 由6条钢管连结而成,为使这一钢架稳固,请你用三条钢管连接使它不能活动,你能找出几种方法?C本题的目的是让学生能够进一步理解三角形的稳定性在现实生活中的应用. 结果:(1)可从这六个顶点中的任意一个作对角线,•把这个六边形划分成四个三角形.如图(1)为其中的一种.(2)也可以把这个六边形划分成四个三角形.如图(2).板书设计(1)(2)。
教案课题三角形全等的条件(SSS)专业指导教师班级学号§三角形全等的条件(SSS)一.教学目标知识目标:掌握“边边边”条件的内容,并能结合已学过的三角形全等的判定定理来判定两个三角形是否全等.能力目标:在探索三角形全等的判定条件的过程中,培养学生动手画图和观察识图的能力,及类比推理的能力.情感目标:通过实践,在探索中体验发现数学规律的乐趣,以及获得成功的愉悦感.二.教学重难点重点:“SSS”判定定理并灵活运用.难点:尺规作图画全等三角形;及恰当地选择三角形全等的判定定理.三.教学分析教学方法:探究式教学法为主、讲练结合法为辅.教学手段:粉笔、木条、直尺、多媒体.课型:新授课.四.教学过程(一) 复习引入,自然过渡.问题1:目前我们已经学习了几种三角形全等的判定方法(找同学回答,在同学回答问题的过程时,写下他们回答的三个判定定理SAS、ASA、AAS)问题2:两个三角形具有哪些性质(找同学回答)思考1:如果两个三角形只有对应角相等,那么这两个三角形一定全等吗(在学生回答后,给出图形加以说明)思考2:如果两个三角形只有对应边相等,那么这两个三角形一定全等吗(学生猜想结果)(二)探索发现1.作出猜想根据同学的回答,做出猜想——三边分别对应相等的两个三角形一定全等.2.证明猜想将班集体分为3个小组,第一组的同学画一个边长为2cm、9cm、12cm的三角形;第二组的同学画一个边长为6cm、8cm、10cm的三角形;第三组的同学画一个边长为7cm、11cm、17cm的三角形.每位同学将自己画好的三角形用剪刀剪下来.(每一组叫两个同学展示他们的图形,同学们可以发现他们是重合的,说明这两个三角形是全等的),此时,证明同学们的猜想正确.3.得出结论带领学生总结出结论:三边对应相等的两个三角形一定全等.(SSS)(三)例题讲解例1 如下图,在四边形ABCD中,已知,.AD CB AB CD==求证ABC CDA∆≅∆.证明:在ABC∆与CDA∆中,()()() CB ADAB CDAC CA=⎧⎪=⎨⎪=⎩Q已知已知公共边).(SSS CDA ABC ∆≅∆∴(四)课堂练习练习1 如下图,已知,,,AE CF EB FD AC BD ===证明AEB CFD ∆≅∆. 证明:AC BD =Q ,AC CB BD CB ∴+=+, AB CD ∴=.AEB CFD ∆∆在和中,()EB=FD AB CD AE CF =⎧⎪=⎨⎪⎩Q 已知(已知)).(SSS CFD AEB ∆≅∆∴(五)课堂小结(六)作业布置1. 教科书73页练习1写在书上,练习2写在作业本上.2. 自己总结归纳所有证明三角形全等的方法. 五.板书设计§三角形全等的条件 复习巩固板书定理 例1 练习1 总结 作业 课件展示。
全等三角形教学设计优秀4篇全等三角形教案篇一一、教学内容分析本节课选自北师大版《七年级数学下册》第五章第四节探索三角形全等的条件第一课时,本节课探索第一种判定方法—边边边,为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验,为以后的证明打下基础。
二、学生学习情况分析学生的知识技能基础:学生在前几节中,已经了解了三角形的有关概念(内角、外角、中线、高、角平分线),以及三角形三边之间的关系、图形的全等,对本节课要学习的三角形全等条件中的“边边边”和三角形的稳定性来说已经具备了一定的知识技能基础。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些探索图形全等的活动,通过拼图、折纸等方式解决了一些简单的现实问题,获得了一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
三、设计思想我们所在的学校处于市区,教学设备齐全,学生学习基础较好,在这之前他们已了解了图形全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。
另外,学生也基本具备了利用已知条件拼出三角形的能力,具备探索的热情和愿望,这使学生能主动参与本节课的操作、探究。
遵循启发式教学原则,采用引探式教学方法。
用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法。
四、教学目标1.知识与技能目标:掌握三角形全等的“边边边”条件,了解三角形的稳定性。
2.过程与方法目标:在探索三角形全等的条件及其运用的过程中,体会利用操作、归纳获得数学结论的过程,初步形成解决问题的基本策略。
全等三角形教案6篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!全等三角形教案6篇我们的教案需要定期更新以反映新的教育趋势,教师编写教案不仅促进了自我管理,还增强了他们的教育专业素养,以下是本店铺精心为您推荐的全等三角形教案6篇,供大家参考。
三角形全等的判定教案三角形全等的判定教学设计角形全等的判定教案三角形全等的判定教学设计篇一目标:1、知识目标:(1)掌握已知三边画三角形的方法;(2)掌握边边边公理,能用边边边公理证明两个三角形全等;(3)会添加较明显的辅助线。
2、能力目标:(1)通过尺规作图使学生得到技能的训练;(2)通过公理的初步应用,初步培养学生的逻辑推理能力。
3、情感目标:(1)在公理的形成过程中渗透:实验、观察、归纳;(2)通过变式训练,培养学生“举一反三”的学习习惯。
重点:sss公理、灵活地应用学过的各种判定方法判定三角形全等。
难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中较适当的方法判定两个三角形全等。
用具:直尺,微机方法:自学辅导过程:1、新课引入投影显示问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你较少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?这个问题让学生议论后回答,他们的答案或许只是一种感觉。
于是要引导学生,抓住问题的本质:三角形的三个元素――三条边。
2、公理的获得问:通过上面问题的分析,满足什么条件的两个三角形全等?让学生粗略地概括出边边边的公理。
然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。
(这里用尺规画图法)公理:有三边对应相等的两个三角形全等。
应用格式:(略)强调说明:(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。
(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边)(3)、此公理与前面学过的公理区别与联系(4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。
在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进行了沟通。
初中三角形全等公开课教案教学目标:1. 知识与技能:理解并掌握三角形全等的概念及性质。
2. 过程与方法:经历观察、操作、测量等探究活动,增强动手能力和解决问题的能力。
3. 情感、态度价值观:感受生活中的数学,体会数学的魅力,从而激发学习数学的兴趣,获得成功的情感体验。
教学重难点:1. 教学重点:三角形全等的概念与性质。
2. 教学难点:三角形全等的性质。
教学过程:一、导入新课1. 图片导入:展示一些生活中的全等图形,如全等的三角形、正方形等。
2. 提问:这些图形有什么特点?它们能够完全重合,形状和大小完全相同。
3. 引导学生思考:为什么我们会说这些图形是全等的呢?二、讲解新知1. 操作观察,得出概念a. 给学生分发纸板,请他们将各自的三角尺按在纸板上,画下图形,并裁下。
b. 提问:照图形裁下来的纸板和三角尺的形状、大小完全一样吗?把三角尺和裁得的纸板放在一起能够完全重合吗?c. 预设:形状大小完全一样,能完全重合。
d. 多媒体上展示用同一张底片冲洗出来的两张尺寸大小一样的照片,请学生观察,放在一起是否也能完全重合。
e. 教师总结全等形和全等三角形的概念。
2. 平移、翻折、旋转,对应关系a. 小组活动:对一个三角形作出平移、翻折、旋转三种变换,然后动手操作进行探究,看看对于变换前后的两个三角形是否全等。
b. 学生汇报探究结果,教师引导学生总结三角形全等的性质。
三、巩固练习1. 让学生独立完成一些关于三角形全等的练习题,巩固所学知识。
2. 教师选取一些学生的作业进行点评,解答学生的疑问。
四、课堂小结1. 让学生回顾本节课所学的内容,总结三角形全等的概念和性质。
2. 强调三角形全等在实际生活中的应用价值。
五、课后作业1. 请学生总结三角形全等的性质,并写在日记中。
2. 设计一些关于三角形全等的习题,提高学生的解题能力。
教学反思:本节课通过图片导入、操作观察、小组活动等方式,让学生直观地理解了三角形全等的概念和性质。
三角形全等的判定教学设计教学目标:1.学生能够理解全等三角形的概念,能够确定全等三角形的充分必要条件。
2.学生能够运用全等三角形的条件进行判定和证明。
教学重点:理解全等三角形的概念和条件教学难点:能够应用全等三角形的条件进行证明教学准备:教师准备白板、草图、三角形模型,学生准备活动册、尺子等。
教学过程:一、导入新知识(5分钟)教师呈现两个形状相同的三角形,要求学生观察并描述它们之间的相似之处和不同之处。
二、引入全等三角形的概念(10分钟)1.教师给出全等三角形的定义:如果两个三角形的三个角分别相等,且对应的边也分别相等,那么这两个三角形就是全等三角形。
2.教师通过草图和实物模型进一步解释全等三角形的概念,引导学生理解。
三、全等三角形的判定条件(30分钟)1.教师通过讲解和示范,引导学生初步理解全等三角形的充分必要条件:a.SSS(三边全等):如果两个三角形的三个边分别相等,那么这两个三角形就是全等三角形。
b.SAS(两边一角共等):如果两个三角形的两边分别相等,且夹角也相等,那么这两个三角形就是全等三角形。
c.ASA(一边两角共等):如果两个三角形的一边边长相等,且两个角也分别相等,那么这两个三角形就是全等三角形。
2.进行一些实际例子的练习,鼓励学生积极思考和互动讨论。
四、全等三角形的证明(40分钟)1.教师通过示范,引导学生运用全等三角形的条件进行证明。
2.教师给出一些具体的问题,要求学生根据全等三角形的条件进行证明。
五、拓展应用(10分钟)教师布置一些全等三角形的拓展题目,要求学生运用所学知识进行解答。
六、总结与评价(5分钟)教师对本节课的学习进行总结,并评价学生的表现。
学生进行自我评价,并提出问题和困惑。
教学延伸:将全等三角形的概念和条件与实际生活中的应用相结合,让学生了解全等三角形的重要性和广泛运用。
教学反思:本节课通过引入实物模型和具体例子,生动形象地向学生介绍了全等三角形的概念和条件,并通过多种实例演练,培养了学生应用全等三角形的条件进行判定和证明的能力。
三角形全等的判定教案教学目标:1.了解三角形全等的概念。
2.学会运用全等的基本性质判断三角形是否全等。
3.能够列举三角形全等的六对条件。
4.能够在实际问题中应用三角形全等的判定。
教学重难点:重点:掌握三角形全等的概念和判定方法。
难点:如何理解三角形全等的六对条件。
教学过程:1.导入(5分钟)谈论一下三角形的重要性以及它们在我们日常生活中的作用,引出三角形全等的概念。
2.讲授(20分钟)1)引入三角形全等的基本概念。
建议给学生展示两组完全相同的三角形模型来作为例子,让学生研究它们是否具有什么不同之处,以及它们是否完全相同。
然后引导学生得出三角形全等的概念:当两个三角形的三边对应相等时,它们是全等的。
2)讲述三角形的证明方法。
教师可以使用PPT等帮助学生理解所学,说明当两个三角形是全等的时候,它们的一个角与一个边是相等的,它们的两边和一个角都是相等的,或者说当两个三角形满足HSR、SSS和SAS三个条件中的任意一组时,它们就是全等的。
3)解释三角形全等的六对条件。
在第二步中,我们提到了三个三角形全等的条件(HSR,SSS和SAS)。
但实际上,我们还可以列举其他三角形全等的条件。
学生可以跟随老师的示范,一起列举出来。
这些条件包括:1. ASA(两个角和一边相等)2. SAA(两个边和一个角相等)3. AAS(两个角和一个相对的边相等)4. RHS(直角和斜边相等)然后教师应该对提出的条件进行解释和说明,让学生理解为什么会有这些条件。
3.练习(30分钟)1)用全等的方法证明三角形教师应该根据学生们的能力水平,设计一些容易理解的单元构造,供他们使用全等来证明三角形。
2)判断三角形是否全等通过给予不同的显示材料,让学生能够在课堂上判断两个三角形是否全等。
教师应该让学生再次回顾所有列举出的条件,并强调重点。
4.反思(5分钟)课堂结束前,教师应该花一些时间让学生回答以下问题:1)三角形全等的概念是什么?2)三角形全等的证明条件有哪些?3)如何使用全等来解决三角形问题?4)如何判定两个三角形是否全等?5.作业(无时间限制)1)完成课堂上未完成的练习。
数学全等三角形教学设计教案经过翻转、平移后,能够完全重合的两个三角形叫做全等三角形,而该两个三角形的三条边及三个角都对应相等。
全等三角形指两个全等的三角形,它们的三条边及三个角都对应相等。
全等三角形是几何中全等之一。
下面是整理的数学全等三角形教学设计教案【最新3篇】,倘若对您有一些参考与帮忙,请共享给最好的伙伴。
数学全等三角形教案篇一一、教学目标【学问与技能】把握三角形全等的“角角边”条件,会把“角边角”转化成“角角边”。
能运用全等三角形的条件,解决简单的推理证明问题。
【过程与方法】经过探究三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程。
【情感、态度与价值观】在探究归纳论证的过程中,体会数学的严谨性,体验成功的欢乐。
二、教学重难点【教学重点】“角角边”三角形全等的探究。
【教学难点】将三角形“角边角”全等条件转化成“角角边”全等条件。
三、教学过程(一)引入新课利用复习旧知三角形“角边角”全等判定定理:两角和它们夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”)(四)小结作业提问:今日有什么收获?还有什么疑问?课后作业:书后相关练习题。
数学全等三角形教案篇二全等三角形课题:全等三角形教学目标:1、学问目标:(1)知道什么是全等形、全等三角形及全等三角形的对应元素;(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;(3)能娴熟找出两个全等三角形的对应角、对应边。
2、本领目标:(1)通过全等三角形角有关概念的学习,提高同学数学概念的辨析本领;(2)通过找出全等三角形的对应元素,培育同学的识图本领。
3、情感目标:(1)通过感受全等三角形的对应美激发同学酷爱科学勇于探究的精神;(2)通过自主学习的进展体验取得数学学问的感受,培育同学勇于创新,多方位端详问题的制造技巧。
教学重点:全等三角形的性质。
教学难点:找全等三角形的对应边、对应角教学用具:直尺、微机教学方法:自学辅导式教学过程:1、全等形及全等三角形概念的引入(1)动画(几何画板)显示:问题:你能发觉这两个三角形有什么巧妙的关系吗?一般同学都能发觉这两个三角形是完全重合的。
全等三角形教案六篇全等三角形教案范文1同学的学问技能基础:同学通过前面的学习已经了解了全等三角形的概念,把握了全等三角形的对应边、对应角的关系,这为探究三角形全等的条件做好了学问上的预备。
同学活动阅历基础:同学也具备了利用直尺、量角器作三角形的基本作图力量,这将使同学能够主动参加本节课的操作、探究成为可能。
二、教学任务分析全等三角形是两个三角形间最简洁,最常见的关系,它不仅是学习后面学问的基础,还是证明线段相等、角相等以及两线相互平行、垂直的重要依据。
因此必需娴熟地把握全等三角形的判定方法,并且能够敏捷应用。
《探究三角形全等的条件》共三课时,本节课探究第一种判定方法―边边边,为了使同学更好地把握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导同学操作、观看、探究、沟通、发觉、思维,真正把同学放到主置,进展同学的空间观念,体会分析问题、解决问题的方法,积累数学活动阅历,为以后的证明打下基础。
为此,本节课的教学目标是:1.学问与技能:经受探究三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程,把握三角形全等的“边边边”条件,了解三角形的稳定性,在探究的过程中,能够进行有条理的思索并进行简洁的推理。
2.方法与过程:争论、引导教学法。
3.情感、态度、价值观:使同学在自主探究三角形全等的过程中,经受画图、观看、比较、推理、沟通等环节,从而获得正确的学习方式和良好的情感体验,让同学体验数学源于生活,服务于生活的辨证思想。
三、教学设计分析本节课设计了五个教学环节:学问回顾引入新知、创设情境提出问题、建立模型探究发觉、巩固运用及其推广、反思小结布置作业。
第一环节学问回顾引入新知活动内容:回顾全等三角形的定义及其性质。
全等三角形的定义:两个能够重合的三角形称为全等三角形。
全等三角形的性质:全等三角形的对应边、对应角相等。
活动目的:回忆前面学习过的学问,为探究新学问作预备。
《全等三角形的判定》教学设计教学设计:全等三角形的判定一、教学目标1.知识目标:学生理解全等三角形的定义和判定条件。
2.技能目标:学生能够根据给定条件判定两个三角形是否全等。
3.情感目标:培养学生对数学的兴趣,提高他们的逻辑思维和推理能力。
二、教学内容全等三角形的判定:根据三个条件进行判定。
三、教学重点1.全等三角形的定义;2.全等三角形的判定条件。
四、教学过程1.导入新知识引入新知识,让学生回忆三角形的基本概念和性质。
通过提问,引导学生回忆和复习已学的内容,例如:什么是三角形?你能说说三角形有哪些性质?2.引入全等三角形的概念和判定条件通过引入全等三角形的概念和判定条件,让学生了解全等三角形的特点和判定方法。
首先,教师给学生展示两个全等三角形的图形,让他们观察并比较两个图形的特点,引导学生发现它们有哪些相同的地方。
接下来,教师告诉学生全等三角形的定义:如果两个三角形的对应的三边和对应的三个角相等,那么这两个三角形是全等的。
然后,教师向学生介绍全等三角形的判定条件:全等三角形的判定条件有三个,分别是SSS、SAS和ASA。
SSS判定条件表示三边对三边全等,即如果两个三角形的三条边对应相等,则这两个三角形全等。
SAS判定条件表示两边夹角对两边夹角全等,即如果两个三角形的一对边和夹角分别相等,则这两个三角形全等。
ASA判定条件表示两角夹边对两角夹边全等,即如果两个三角形的一对角和连着它们的两边分别相等,则这两个三角形全等。
3.判定全等三角形的练习将学生分成小组,进行判定全等三角形的练习。
教师提供一些三角形的边长和角度大小,让学生通过观察和比较,运用判定条件判断是否为全等三角形。
同时,教师要引导学生进行合理的推理和思考,让学生能够用自己的语言解释判定的过程和结果。
4.巩固与拓展教师出示一些全等三角形的图形,让学生运用判定条件判断是否为全等三角形,并解释自己的判断过程。
然后,教师提问学生:如果两个三角形有两边分别相等,这两个三角形一定全等吗?为什么?学生根据之前学到的知识,用语言和推理回答这个问题。