数学人教版八年级上册探究课:锐角三角形中特殊线段夹角问题
- 格式:docx
- 大小:16.70 KB
- 文档页数:4
11.2与三角形有关的角知识要点:1.三角形内角和定理:三角形三个内角的和等于180︒.(1)三角形内角和定理适用于任意三角形.(2)任何一个三角形中,至少有两个锐角,最多有一个钝角或直角.2.直角三角形的性质与判定(1)性质:直角三角形的两个锐角互余.在Rt ABC∠+∠=︒.A BC△中,90∠=︒,则90(2)判定:有两个角互余的三角形是直角三角形.3.三角形的外角三角形内角的一边与另一边的反向延长线组成的角,叫做三角形的外角.4.三角形外角的性质(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于与它不相邻的任意一个内角.一、单选题1.一个三角形三个内角的度数之比是2:3:4,这个三角形一定是()A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形【答案】C【解析】设一份为k∘,则三个内角的度数分别为2k°,3k°,4k.根据三角形内角和定理可知2k°+3k°+4k°=180°,所以2k°=40°,3k°=60°,4k°=80°.即这个三角形是锐角三角形。
故选:C2.已知三角形两个内角的差等于第三个内角,则它是()A.锐角三角形B.钝角三角形C.直角三角形D.等边三角形【答案】C【解析】依题意得∠A-∠B=∠C,即∠A=∠B+∠C,又∠A+∠B+∠C=180°,∴∠A=90°,∴三角形为直角三角形,故选C.3.已知△ABC中,∠A=2(∠B+∠C),则∠A的度数为()A.100°B.120°C.140°D.160°【答案】B【解析】∵∠A=2(∠B+∠C),∠A+∠B+∠C=180°∴∠A=2(180°-∠A)解得∠A=120°,故选B.4.下列条件:(1)∠A=25°,∠B=65°;(2)3∠A=2∠B=∠C;(3)∠A=5∠B;(4)2∠A=3∠B=4∠C中,其中能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个【解析】(1)∵∠A=25°,∠B=65°,∴∠A+∠B=25°+65°=90°,又∵∠A+∠B+∠C=180°,∴∠C=180°-(∠A+∠B)=180°-90°=90°,∴△ABC是直角三角形;(2)∵3∠A=2∠B=∠C,∴∠A=13∠C,∠B=12∠C,∵∠A+∠B+∠C=180°∴13∠C+12∠C+∠C=116∠C=180°∴∠C≠90°∴△ABC不是直角三角形;(3)∵∠A=5∠B∴无法计算内角的度数,因此无法判定△ABC的形状;(4)∵2∠A=3∠B=4∠C,∴∠A=2∠C,∠B=43∠C,又∵∠A+∠B+∠C=180°,∴2∠C+43∠C+∠C=133∠C=180°,∴∠C=54090 13≠︒∴△ABC不是直角三角形.故选A.5.已知三角形的一个内角是另一个内角的23,是第三个内角的45,则这个三角形各内角的度数分别为()A.60°,90°,75°B.48°,72°,60°C.48°,32°,38°D.40°,50°,90°【答案】B【解析】设第一个内角的度数为x,∵三角形的一个内角是另一个内角的23,是第三个内角的45,∴另一个内角的度数为32x,第三个内角为54x,∴x+32x+54x=180°,解得x=48°,∴三个内角分别为48°,72°,60°故选B.6.如图有四条互相不平行的直线l1、l2、l3、l4所截出的七个角,关于这七个角的度数关系,下列结论正确的是()A.∠2=∠4+∠7B.∠3=∠1+∠7C.∠1+∠4+∠6=180°D.∠2+∠3+∠5=360°【答案】B【解析】A、∵∠2=∠10+∠9,∠10=∠7,∠9≠∠4,∴∠2=∠4+∠7不成立,故本选项错误;B、∵∠3=∠8+∠10,∠8=∠1,∠10=∠7,∴∠3=∠1+∠7,故本选项正确;C、∠4=∠8+∠6,∠8=∠1,∴∠4=∠1+∠6,∴无法说明∠1+∠4+∠6=180°,故本选项错误;D、根据多边形的外角和定理,∠2+∠4+∠5=360°,∵l3、l4不平行,∴∠3≠∠4,∴∠2+∠3+∠5=360°不成立,故本选项错误.故选B.7.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=()A.80°B.70°C.60°D.90°【答案】A【解析】∵AB∥CD,∠1=45°,∴∠C=∠1=45°.∵∠2=35°,∴∠3=∠2+∠C=35°+45°=80°.故选A.8.如图,∠BDC=98°,∠C=38°,∠A=37°,则∠B的度数是()A.33°B.23°C.27°D.37°【答案】B【解析】如图,延长CD交AB于E,∵∠C=38°,∠A=37°,∴∠1=∠C+∠A=38°+37°=75°,∵∠BDC=98°,∴∠B=∠BDC-∠1=98°-75°=23°.故选:B.9.如图所示,∠ACD是△ABC的一个外角,CE平分∠ACD,F为CA延长线上的一点,FG∥CE,交AB于点G,若∠1=70°,∠2=30°,则∠3的度数为()A.30°B.40°C.45°D.50°【答案】B【解析】∵CE平分∠ACD,∴∠1=∠ECF,∵FG∥CE,∴∠F=∠ECF,∵∠FCD=∠3+∠BAC,∠BAC=∠2+∠F,∴∠FCD=∠3+∠2+∠F,∴∠1+∠ECF=∠3+∠2+∠F,∴∠2+∠3=∠1,又∵∠1=70°,∠2=30°,∴∠3=70°-30°=40°,故选B.10.如图,在△ABC中,∠BAC=90︒,AD⊥BC于D,则图中互余的角有A.2对B.3对C.4对D.5对【答案】C【解析】∵∠BAC=90°∴∠B+∠C=90°①;∠BAD+∠CAD=90°②;又∵AD⊥BC,∴∠BDA=∠CDA=90°,∴∠B+∠BAD=90°③;∠C+∠CAD=90°④。
人教版八年级上册11.2与三角形有关的角(2)教学设计一、教学目标1.知道直角三角形特殊的相关角度大小关系,能够运用它们进行解题。
2.了解钝角和锐角的概念,能够通过判断角度大小确定钝角和锐角的类型,进而解决一些三角形的相关问题。
二、教学重点1.直角三角形相关角度大小关系的应用。
2.判断和确定三角形中的钝角和锐角。
三、教学难点1.利用直角三角形相关角度大小关系解决问题。
2.理解和判断三角形中的钝角和锐角。
四、教学方法1.导入法:引入生活中关于直角三角形的实际应用,让学生了解本节课的重点内容。
2.讲授法:通过老师讲解和演示求解三角形中的相关角度,让学生掌握相关知识和技能,同时强化能力训练。
3.反思法:在学生独立练习过程中及时反思和解决问题,提升学生的解题能力。
1. 导入通过讲述日常中的实际例子,引导学生思考直角三角形的应用场景,进而导入本节课的内容。
例如:“小明要从家里走到学校,学校和家之间只有一条街道,并且街道上还有一个直角转弯处,小明该怎么算出街道的长度呢?”2. 讲授(1)直角三角形的相关角度大小关系通过讲解直角三角形中角度的定义和性质,引导学生认识到直角三角形中各角之间的特殊关系,例如直角角为90度,直角三角形中的两个锐角和为90度等等。
同时,通过演示和讲解一些具体的例子,让学生加深理解和掌握相关知识和技能。
(2)三角形中钝角和锐角的判断和类型通过引导学生看图判断,对三角形中的各角大小进行分类,以方便后面的问题解决。
同时,通过讲解的方式引导学生掌握三角形中钝角和锐角的概念和相关特性,进而解决一些涉及钝角和锐角的数学问题。
3. 实战演练安排学生进行相关练习,让学生根据课上讲解和课下作业,加深对相关知识和技能的理解和认识。
4. 反思通过学生的练习和问题反馈,及时总结和提炼学生的疑点和难点,进一步强化学生的解题能力。
通过本节课的讲解和练习,学生对直角三角形和三角形中的相关角度有了深入的理解和认识,能够灵活地应用所学知识解决不同的问题。
系。
解后反思:师:在解决这个问题时,没有图形,我们首先要解读题目,转化为具体的图形语言,结合图形位置来分析三个角之间的数量关系。
研究过程中,考虑要全面,需分类讨论。
用到的知识主要是角平分线的性质,高线的性质以及三角形中角的重要结论。
具体证明方法可能不同,但归根结底要抓住图形关系,有的从角的和差关系出发,有的看到垂直这个条件,从直角三角形两个锐角互余出发,都可以。
记住位置关系决定其数量关系。
师:解决完这个问题,我们把条件变化一下看看。
活动3:问题变式如果在图1中AE 上任取一点F , 过F 作FD BC ⊥,垂足为D ,其他条件不变,那么EFD ∠与,B C ∠∠之间是否还有以上数量关系?FDE CBA 图2若点F 在AE 的延长线上(或AE 的的反向延长线上) , FD BC ⊥,垂足为D ,其他条件不变,那么EFD ∠与,B C ∠∠之间是否还有以上关系?教师对学生多样的思维要给予鼓励和肯定.们用到了前面学过的角平分线,垂线,平行线的性质,以及现在的三角形中角的结论,后面我们还要学习与角有关的知识,大家一定要明确其图形关系所对应的数量关系。
3. 在解决办法上,如果我们没思路的时候,要善于利用工具,通过实验尝试,猜想,帮助大家打开思路,也帮助我们更全面的思考问题;如果有了思路,那就要抓住图形和我要求问题的联系。
希望大家开动脑筋,更多的去发现,去思考。
课后作业:1. 继续探究三角形中从两个顶点出发高线和角平分线的夹角问题和两条高线的夹角问题,看看有什么新的发现吗? 2.练习:(1)已知:如图,在△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,∠BAC =50︒,70C ∠=︒.求∠DAE 的度数.(2)在△ABC 中, ,BAC C αβ∠=∠=()βα≠.BE 平分ABC ∠交AC 于点E ,点F 在CA的延长线上,FG BE ⊥于点G ,交AB 于点D ,交BC 于点H . ①若90,40αβ=︒=︒,如图1所示,∠F = ;的角以外,相等的角还有:。
11.2 与三角形有关的角第1课时三角形的内角(一)教学目标1.理解三角形内角和定理及其推论.2.能灵活运用三角形内角和定理解决有关问题.教学重点探索并证明三角形内角和定理.教学难点如何添加辅助线证明三角形内角和定理.一、创设情景,明确目标多媒体展示:内角三兄弟之争在一个直角三角形里住着三个内角,平时,它们三兄弟非常团结.可是有一天,老二突然不高兴,发起脾气来,它指着老大说:“你凭什么度数最大,我也要和你一样大!”“不行啊!”老大说:“这是不可能的,否则,我们这个家就再也围不起来了……”“为什么?”老二很纳闷.同学们,你们知道其中的道理吗?二、自主学习,指向目标学习至此:请完成《学生用书》相应部分.三、合作探究,达成目标探究点一三角形的内角和活动一:见教材P11“探究”.展示点评:从探究的操作中,你能发现证明的思路吗?图中的直线l与△ABC的边BC有什么关系?你能想出证明“三角形内角和的方法”吗?证明命题的步骤是什么?证明三角形的内角和定理.小组讨论:有没有不同的证明方法?反思小结:证明是由题设出发,经过一步步的推理,最后推出结论正确的过程.三角形三个内角的和等于180°.针对训练:见《学生用书》相应部分探究点二三角形内角和定理的应用活动二:见教材P12例1展示点评:题中所求的角是哪个三角形的一个内角?你能想出几种解法?小组讨论:三角形的内角和在解题时,如何灵活应用?反思小结:当三角形中已知两角的度数时,可直接用三角形内角和定理求第三个内角;当三角形中未直接给出两内角的度数时,可根据它们之间的关系列方程解决.针对训练:见《学生用书》相应部分四、总结梳理,内化目标1.本节学习的数学知识是:三角形的内角和是180°.2.三角形内角和定理的证明思路是什么?3.数学思想是转化、数形结合.五、达标检测,反思目标1.在直角△ABC 中,∠BAC =90°,AD 是高,找出图中相等的角.解:∠1与∠C ,∠2与∠B 相等.2.在△ABC 中,∠A =80°,∠ABC 和∠ACB 的平分线相交于点O.(1)求∠BOC 的度数.(2)将∠A 换个度数,那(1)求出是多少?你能体会∠A 和∠BOC 有什么关系吗?解:(1)因为∠A =80°,所以∠ACB+∠ABC=180°-∠A=100°.因为∠ABC 和∠ACB 的平分线相交于点O ,所以∠1+∠2=50°,所以∠BOC=180°-50°=130°.(2) 由题意知∠1+∠2=12(180°-∠A )=90°- 12∠A ,则∠BOC =180°-(90°- 12∠A )=90°+12∠A. 3.如图,在△ABC 中,AD ,AE 分别是高和角平分线,若∠B =40°,∠C =60°,求 ∠EAD 的度数.解:在△ABC 中,∠BAC =180°-∠B -∠C =180°-40°-60°=80°.因为AE 是∠BAC 的平分线,所以∠EAC =∠BAE =40°.因为AD 是边BC 上的高, 所以∠ADC =90°,所以∠CAD =90°-∠C =30°.所以∠EAD=∠EAC-∠CAD=40°-30°=10°.第2课时三角形的内角(二)教学目标1.掌握直角三角形的表示方法,并理解直角三角形的性质和判定.2.能运用直角三角形的性质和判定解决实际问题.教学重点理解直角三角形的性质和判定.教学难点运用直角三角形的性质和判定.一、创设情景,明确目标1.三角形的内角和是多少度?(180°)2.直角三角形的内角和是多少度?(180°)它的两个锐角有什么特殊关系吗?——引入新课●自主学习指向目标1.自学教材P13-14.2.学习至此:请完成《学生用书》相应部分.三、合作探究,达成目标探究点一直角三角形的内角活动一:已知,在△ABC中,∠B=90°,那么∠A+∠C是多少?展示点评:∵在△ABC中,∠A+∠B+∠C=180°,且∠B=90°,∴∠A+∠C=90°.由此得出:直角三角形的两锐角互余.2.直角三角形的表示方法:为了书写方便,直角三角形可以用符号“Rt△”来表示.活动二:见教材P14例3展示点评:如图,∠CAE与∠DBE分别在哪两个三角形中?(Rt△CAE和Rt△DBE)与这两个角互余的分别是哪两个角?(∠AEC和∠BED)因此能得出∠CAE与∠DBE有什么关系?(相等)依据是什么?(等角的余角相等)解题过程见教材P14.变式:如上图,若AD平分∠CAB,BC平分∠ABD,请求出∠CAD的度数.解:∵AD平分∠CAB,BC平分∠ABD,∴∠CAD =∠BAD =12∠CAB, ∠ABC =∠DBC =12∠DBA. 又∵∠CAD =∠DBC,∴∠CAD =∠DAB =∠ABC.在Rt △ABC 中,∠CAB +∠ABC =90°,∴∠CAD =30°.小组讨论1:在直角三角形中两锐角互余在解题方面有哪些运用?反思小结:在直角三角形中,已知一个锐角的度数,可以根据直角三角形的两锐角互余求出另一个锐角的度数,若已知两锐角的关系,也可以借助方程求出它们的度数.针对训练:见《学生用书》相应部分探究点二 判定直角三角形的方法活动三:我们知道,直角三角形的两锐角互余;反之,有两个角互余的三角形是直角三角形吗?请说明理由.展示点评:是.因为在△ABC 中,∠A +∠C =90°,所以∠B =180°-(∠A +∠C)=90°.所以△ABC 是直角三角形.小组讨论:请用文字语言表述直角三角形新的判定方法? 【反思归纳】有两个角互余的三角形是直角三角形.针对训练:见《学生用书》相应部分四、总结梳理,内化目标1.直角三角形的内角有什么关系?答:直角三角形的两个锐角互余.2.目前已学的直角三角形的判定方法.答:(1)有一个角是直角的三角形是直角三角形;(2)两边互相垂直的三角形是直角三角形;(3)有两个角互余的三角形是直角三角形.五、达标检测,反思目标1.如图,DF ⊥AB ,∠A =40°,∠D =43°,则∠ACD 的度数是87°.第1题图 第2题图 2.如图,∠A =32°,∠ADC =110°,∠B =52°,则△BEC 是__直角__三角形.3.在△ABC 中,三个内角∠A ,∠B ,∠C 满足∠B -∠A =∠C -∠B ,∠A =30°,则∠B =__60__°,△ABC是__直角__三角形.4.如图,一副直角三角板,拼成如图所示的图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是( A )A.15°B.25°C.30°D.10°第4题图第5题图5.如图,在△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于( C )A.44° B.60° C.67° D.77°6.如图,在Rt△ABC中,∠ACB=90°,∠A=α,将△ABC绕点C按顺时针方向旋转后得到△EDC,此时点D在AB边上,∠CDB=∠B,求旋转角∠BCD的大小.解:∵在Rt△ABC中,∠ACB=90°,∠A=α,∴∠B=90°-α,∴∠CDB=∠B=90°-α,∴∠BCD=180°-∠B-∠CDB=2α,即旋转角的大小为2α.第3课时三角形的外角教学目标掌握三角形的外角的两个性质,能利用三角形的外角的性质解决实际问题.教学重点三角形外角的性质,外角和定理.教学难点三角形外角的定义及定理的推理过程.一、创设情景,明确目标1.三角形三个内角的和等于多少度?2.在△ABC中,(1)∠C=90°,∠A=30°,则∠B=__60°__;(2)∠A=50°,∠B=∠C,则∠B=__65°__.3.如图,在△ABC中,CD是BC边的延长线,∠A=60°,∠B=55°.(1)求∠ACD的度数.(115°)(2)∠ACD与∠A,∠B有什么大小关系?(∠ACD=∠A+∠B)二、自主学习,指向目标学习至此:请完成《学生用书》相应部分.三、合作探究,达成目标探究点一三角形的外角及相关结论活动一:阅读教材P14-15.思考:三角形的外角是如何定义的?一个三角形有几个外角?展示点评:学生独立写出证明过程,并说明证明的依据是:三角形内角和定理.小组讨论:三角形的一个外角与它相邻的内角有什么关系?与它不相邻的两个内角有什么关系?反思小结:三角形的一个外角等于与它不相邻的两个内角的和.三角形的一个外角大于与它不相邻的任何一个内角.针对训练:见《学生用书》相应部分探究点二三角形外角结论的运用活动二:见教材P15 例4展示点评:一个三角形有几个外角,每个顶点处的外角是什么关系?三角形的外角和是多少?如何证明你的结论.小组讨论:你有几种不同的证法?反思小结:三角形每个顶点处有两个外角,是对顶角.我们只研究其中的一个,三个外角的和是360°.针对训练:见《学生用书》相应部分四、总结梳理,内化目标三角形外角的定义,三角形外角的性质.五、达标检测,反思目标1.判断题:(1)三角形的外角和是指三角形所有外角的和.(×)(2)三角形的外角和等于它内角和的2倍.(√)(3)三角形的一个外角等于两个内角的和.(×)(4)三角形的一个外角等于与它不相邻的两个内角的和.(√)(5)三角形的一个外角大于任何一个内角.(×)(6)三角形的一个内角小于任何一个与它不相邻的外角.(√)2.填空:(1)如图.∠A +∠B +∠C +∠D +∠E +∠F =__360°__.(2)五角星的五个角的和是__180°__.3.如图,图甲中的∠1=69°,图乙中的∠2=21°.4.如图,AD 是△ABC 中∠BAC 的平分线,AE 是△ABC 的外角的平分线,交BC 的延长线于点E ,且∠BAD =20°,∠E =50°,求∠ACD 的度数.解:∵AD 平分∠BAC ,∠BAD =20°,∴∠BAC =2∠BAD =40°,∴∠CAF =180°-∠BAC =140°.∵AE 平分∠CAF ,∴∠CAE =12∠CAF =70°,∴∠ACD =∠E +∠CAE =120°.。
11.2 与三角形有关的角(第3课时)
教学内容
三角形的稳定性.
教学过程
一、新课导入
盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条,为什么这样做呢?
二、探究新知
1.提出问题
如图(1),用三根木条用钉子钉成一个三角形木架,然后扭动它,它的形状会改变吗?
如图(2),用四根木条用钉子钉成一个四边形木架,然后扭动它,它的形状会改变吗?
如图(3),在四边形的木架上再钉一根木条,将它的一对顶点连接起来,然后扭动它,它的形状会改变吗?
学生独立思考后,再与同伴交流,选代表发言.
2.师生得出结论
三角形木架的形状不会改变,而四边形木架的形状改变.就是说三角形具有稳定性,而四边形没有稳定性.
3.三角形的稳定性的应用举例
(1)窗框在安装好之前斜钉一根木条,分成两个三角形,由于三角形具有稳定性,斜钉一根木条的窗框在安装好之前不会变形.
(2)钢架桥的钢架做成三角形.
(3)起重机的力臂做成三角形.
(4)房顶钢架做成三角形.
4.四边形的不稳定性的应用举例
(1)活动挂架.
(2)放缩尺.
三、归纳小结
1.三角形的稳定性,四边形没有稳定性.
2.稳定性与没有稳定性在生产、生活中广泛应用.四、布置作业
习题11.1 第5、10题.
教学反思:。
探究课:锐角三角形中与特殊线段有关的夹角问题
授课人:关磊
一、本节课的背景:
本节课的生成是基于问题解决的(作业中的一道具体问题)。
学生在初学几何时面对复杂图形的解决能力欠缺,呈现出的结果就是碰到难题不知如何下手,遇到不熟悉的问题无法有效的调用已有知识。
为了解决这个问题,教师引导学生从简单问题出发,通过探究学习的形式让学生慢慢感悟到图形生成的过程,提高学生的识图能力。
并在探究的过程中不断复习已学知识,从而帮助学生构建出“螺旋上升”式的知识体系和能力。
二、教学目标:
1.知识与技能:通过对特殊线段夹角问题的探索,巩固与求角有关的知识。
2.过程与方法:通过独立思考,小组讨论,全班交流等形式丰富学生的识图角度,提高他们的几何直观能力。
3.情感态度价值观:提高学生严谨治学的态度,增强他们的逻辑推理意识。
三、重点、难点:
1.重点:丰富学生的识图角度,提高他们分析图形的能力。
2.难点:如何将已有方法和经验应用到复杂情境中。
四、教学过程:
(一)引入:
1.开门见山:师:“本章我们一直在研究哪个特殊的图形呢?”
生:“三角形。
”
师:“得到了哪些结论呢?”
生:“三角形两边之和大于第三边;三角形内角和180°......”
师:“总结同学们的答案,我们是站在边和角这两个角度对三角形进行研究的。
今天,老师将与大家一起,继续从角的角度对三角形进行深入的研究。
”
引出题目。
2.特殊线段:三角形的角平分线、三角形的高、三角形的中线。
(二)探究阶段:
已知一锐角三角形两个内角的角度为α和β。
1.添加任意一条特殊线段时:
①当三角形里出现特殊线段时会产生什么新图形?
②如何求得角的度数?
操作方法:A.三种特殊线段一一分析,由学生自己发现并讲解。
B.教师总结与评价:关注学生的识图角度,点拨不同学生思维上的差异。
鼓励学
生多角度分析问题。
设计意图:从简单问题开始,引导学生从识图的角度出发分析问题,再到具体解决问题的知识点,最后将问题解决。
为后面复杂问题的分析做铺垫。
2.添加任意两条特殊线段时:
①任意添加两条特殊线段,都有哪些情况?
②添加第二条特殊线段后,又产生了哪些新图形?
③请学生任意挑选一种或几种情况,对特殊线段产生的夹角进行求解。
(重在识图角度和分析思路)
操作方法:A.教师引导学生对两条特殊线段的情况进行分类。
B.学生选取任意一种或多种情况进行分析和求解。
C.以小组为单位,共享和学习不同的识图角度和不同的解决问题方法。
D.全班汇总各组的想法,总结提升。
设计意图:当两条特殊线段同时出现时,图形就变得相对复杂了。
复杂的情况下,引导学生有序的分析和解决问题是难点,因此在分类这个问题上是由老师带领学生一同完
成。
而之后的求角问题是在之前已有的方法和经验的基础上进行的,因此由学生
自行完成,小组讨论的意义在于分享和学习彼此的分析方式,更加全面的解决此
问题。
(三)能力提升:原作业(全品第6页素养提升)
1.引导学生重新审题,提取有效信息。
2.将复杂图形分解,找到与之前经验的联系。
3.做简要分析。
操作方法:A.通过问题指引,引导学生学会审题的一般方式。
B.通过自主作图,将图形拆分,从而将复杂问题转化成较简单的问题。
C.全班汇报,通过简述的方式将问题解决。
设计意图:在之前的铺垫下,对复杂问题进行分析。
重点在如何从复杂图形中抽离已知图形。
(四)归纳总结。
1.识图脉络。
2.知识脉络。
五、作业:
1.复习并梳理本节课学习的知识脉络。
2.将全品第六页素养提升的思路和详细过程写在本上。
六、板书:略。
一、针对这节课:
1.我一直追求的不是热闹的课堂,而是高效的,参与度高的课堂。
所谓参与度,也许是说,也许是看,也许是讨论,也许是思考。
找到学生的最近发展区,从他们的实际需要出发,去帮助他们学会学习。
2.本节课重思路轻计算,体现了中考改革的方向“多思少算”。
3.本课意在以点带面,通过对具体问题的分析和交流,渗透几何的一般研究方法。
重在思维培养。
二、感谢:学校、备课组、陈老师。