高二数学段考试题
- 格式:doc
- 大小:44.00 KB
- 文档页数:4
2024-2025学年第一学期阶段检测(二)高二数学试题注意事项:1.试卷共19题,满分150分,考试时间120分钟。
2.答卷前,考生务必将自己的考号、姓名等相关信息填写在答题卡上。
3.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需要改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡的指定区域,写在本试题卷上无效。
4.试卷包括试题卷(共4页)和答题卡(共6页)两部分,考试结束后,将本试卷和答题卡一并交回。
5.本套试卷的范围:选择性必修一全册........。
一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,空间四边形OABC 中,OA a = ,OB b = ,OC c =,M 在线段OA 上,且3OA AM =,点N 为BC 中点,则MN =A .121232a b c -+B .211322a b c-++ C .111222a b c+-D .2132b a c+-2.“2a =”是“直线210x ay +-=与直线220ax y +-=平行”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3.已知直线420mx y +-=与250x y n -+=互相垂直,垂足为()1,P p ,则m n p -+的值是A .24B .0C .20D .4-4.双曲线22:1C x y -=的一条渐近线被圆22(1)1x y -+=所截得的弦长为A .2B .1C .32D 5.已知棱长为2的正方体1111ABCD A B C D -内有一内切球O ,点P 在球O 的表面上运动,则PA PC ⋅的取值范围为A .[]22-,B .[]0,2C .[]2,4-D .[]0,46.曲线C :()10=>xy x 上到直线1620x y ++=距离最短的点坐标为A .1,44⎛⎫ ⎪⎝⎭B .14,4⎛⎫⎪⎝⎭C .14,4⎛⎫-- ⎪⎝⎭D .1,44⎛⎫-- ⎪⎝⎭7.已知抛物线()2:20C y px p =>的焦点为F ,直线l 过点F 且倾斜角为2π3,若抛物线C 上存在点M 与点3,02N ⎛⎫- ⎪⎝⎭关于直线l 对称,则抛物线C 的准线方程为A .12x =-B .=1x -C .2x =-D .14x =-8.已知椭圆()22222122:10,x y C a b c a b a b+=>>=-的右焦点为F ,过点F 作圆222:20C x y cx ++=的切线与椭圆1C 相交于,A B 两点,且2FB AF =,则椭圆1C 的离心率是A B 6C D 二、选择题:本题共3小题,每小题6分,共18分,在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,选对但不全得部分分,有选错的得0分.9.已知曲线C 的方程为()221R 15x y m m m+=∈+-,则A .当2m =时,曲线C 为圆B .当7m =时,曲线C 为双曲线,其渐近线方程为12y x =±C .当m>2时,曲线C 为焦点在x 轴上的椭圆D .当7m =时,曲线C10.下列说法正确的有A .直线30x +=的倾斜角为150︒B .直线()32y k x -=-必过定点()2,3C .方程()2y k x =-与方程2yk x =-表示同一条直线D .经过点()2,1P ,且在,x y 轴上截距相等的直线方程为30x y +-=11.如图,在棱长为2的正方体1111ABCD A B C D -中,E F G M N 、、、、均为所在棱的中点,动点P 在正方体表面运动,则下列结论中正确的为A .P 在BC 中点时,平面PEF ⊥平面GMNB .异面直线EF GN 、所成角的余弦值为14C .E F G M N 、、、、在同一个球面上D .111112A P t A A A M t A B =+- ,则P三、填空题:本题共3小题,每小题5分,共15分.12.已知空间四点()4,1,3=A ,()2,3,1=B ,()3,7,5=-C ,(),1,3=-D x 共面,则x =.13.已知点P 是直线80-+=x y 上的一个动点,过点P 作圆()()22:114C x y -+-=的两条切线,与圆切于点,M N ,则cos MPN ∠的最小值是.14.已知双曲线E :22221x y a b -=(0a >,0b >)的左、右焦点分别为1F ,2F .过点2F 的直线与y 轴交于点B ,与E 交于点A ,且2232F B F A =-,点1F 在以AB 为直径的圆上,则E 的渐近线方程为.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本题满分13分)已知双曲线()2222:10,0x y C a b a b-=>>的焦距为10,F 为双曲线的右焦点,且点F 到渐近线的距离为4.(1)求双曲线C 的方程;(2)若点()120A ,,点P 为双曲线C 左支上一点,求PA PF +的最小值.16.(本题满分15分)已知以点()1,2A -为圆心的圆与______,过点()2,0B -的动直线l 与圆A 相交于M ,N 两点.从①直线270x y ++=相切;②圆()22320x y -+=关于直线210x y --=对称.这2个条件中任选一个,补充在上面问题的横线上并回答下列问题.(1)求圆A 的方程;(2)当MN =l 的方程.17.(本题满分15分)如图,在四棱锥P ABCD -中,底面ABCD 是直角梯形,//,,2AB CD AB BC BC CD ⊥==,4,PA PD AB PB ====(1)证明:平面PAD ⊥平面ABCD ;(2)若E 为PC 的中点,求平面ADE 与平面ABCD 的夹角的余弦值.18.(本题满分17分)已知椭圆()2222:10x y C a b a b +=>>的右焦点为F ,点P ⎛ ⎝⎭在椭圆C 上.且离心率为2.(1)求椭圆C 的方程;(2)直线l 斜率存在,交椭圆C 于A ,B 两点,A ,B ,F 三点不共线,且直线AF 和直线BF 关于PF 对称.(i )证明:直线l 过定点;(ⅱ)求ABF △面积的最大值.19.(本题满分17分)如果一条双曲线的实轴和虚轴分别是一个椭圆的长轴和短轴,则称它们为“孪生”曲线,若双曲线2C 与椭圆1C 是“孪生”曲线,且椭圆()2212:1039x y C b b +=<<,12e e =12,e e 分别为曲线12,C C 的离心率)(1)求双曲线2C 的方程;(2)设点,A B 分别为双曲线2C 的左、右顶点,过点()5,0M 的动直线l 交双曲线2C 右支于,P Q 两点,若直线,AP BQ 的斜率分别为,AP BQk k ①是否存在实数λ,使得AP BQ k k λ=,若存在求出λ的值;若不存在,请说明理由;②试探究AP BQ k k +的取值范围.。
安徽省汤池中学2020学年高二数学上学期第二次段考试题 理 新人教A 版时间:120分钟 满分:150分第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 焦距为6,离心率53=e ,焦点在x 轴上的椭圆标准方程是 ( ) 2211625x y A +=.22145x y B +=. 22154x y C +=. 2212516x y D +=.2.若三条直线2380x y ++= ,10x y --=和0x ky +=交于一点则k 的值为( )2A -. 12B . -2C . 12D . 3.如图,4A 1B 1C 1D 1,A 1C 的中点E 到AB 的中点F 的距离为( )A. 4 2B. 2 2 C . 4D. 24. 若曲线C 1:x 2+y 2-2x =0与直线线l :y -kx -k =0有两个不同的交点,则实数k 的取值范围是( ) A .(-33,33) B .(-33,0)∪(0,33) C .[-33,33]D .(-∞,-33)∪(33,+∞) 5. 已知x ,y 满足⎩⎪⎨⎪⎧x +3y -7≤0,x ≥1,y ≥1,则S =y x -的最大值是 ( )A .1B .2C .3D .46. 已知直线l ⊥平面α,直线m ⊂平面β,有下面四个命题:①α∥β⇒l ⊥m ; ②α⊥β⇒l ∥m ;③l ∥m ⇒α⊥β; ④l ⊥m ⇒α∥β. 其中正确的命题有( )A .①②B .①③C .②④D .③④7. 点P (4,-2)与圆x 2+y 2=4上任一点连线的中点轨迹方程是( )A . (x +2)2+(y -1)2=1 B .(x -2)2+(y +1)2=4 C . (x +4)2+(y -2)2=4 D .(x -2)2+(y +1)2=18. 圆01222=--+x y x 关于直线032=+-y x 对称的圆的方程是( )A.2)2()3(22=-++y x B.21)2()3(22=++-y x C.21)2()3(22=-++y x D.2)2()3(22=++-y x9. 过椭圆22165x y +=内的一点(2,1)P -的弦,恰好被P 点平分,则这条弦所在的直线方程是( )A .53130x y -+= B. 53130x y +-= C.53130x y --= D53130x y ++=10.已知圆的方程为x 2+y 2-6x -8y =0,设该圆过点P (5,3)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( )A .105.205.206D .40 6第Ⅱ卷(非选择题 共100分)二、 填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置. 11. 如图,在空间直角坐标系中,BC =4,原点O 是BC 的中点,点D 在平面yOz 内,且∠BDC =90°,∠DCB =30°,则点D 的坐标为 12. 如果点P 在平面区域⎩⎪⎨⎪⎧2x -y +2≥0,x +y -2≤0,2y -1≥0上,点Q 在曲线x 2+(y +4)2=1上,那么|PQ |的最小值为13. 椭圆1244922=+y x 上一点P 与椭圆的两个焦点1F 、2F 的连线互相垂直,则△21F PF 的面积为14. 正四面体的侧面与底面所成的二面角的余弦值是________15.过点(2,1)作直线l与两坐标轴交于A 、B ,设三角形AOB 的面积为S ,下列说法中正确的有(1)当S =2时,直线l 有2条符合条件的直线, (2)当S =3时,直线l 有3条符合条件的直线, (3)当S =4时,直线l 有4条符合条件的直线, (4)当S =4时,直线l 有3条符合条件的直线, (5)当S =5时,直线l 有4条符合条件的直线。
高二上学期期末考试数学试题一、单选题1.在曲线的图象上取一点及邻近一点,则为( ) 26y x =+(1,7)(1,7)x y +∆+∆yx∆∆A . B . 2x +∆12x x ∆--∆C . D . 12x x∆++∆12x x+∆-∆【答案】A【分析】根据平均变化率,代入计算. ()()00+∆-∆=∆∆f x x f x y x x【详解】()26172x x x x y ⎡⎤+-∆⎣⎦==+∆+∆∆∆故选:A2.设直线的方程为,则直线的倾斜角的范围是( ) l 66cos 130x y β-+=l αA . B .[0,]πππ,42⎡⎤⎢⎥⎣⎦C .D .π3π,44⎡⎤⎢⎥⎣⎦πππ3,,422π4⎡⎫⎛⎤⋃⎪ ⎢⎣⎭⎝⎦【答案】C【分析】当时,可得倾斜角为,当时,由直线方程可得斜率cos 0β=π2cos 0β≠1tan cos αβ==k ,然后由余弦函数和正切函数的性质求解即可.【详解】当时,方程变为,其倾斜角为, cos 0β=6130+=x π2当时,由直线方程可得斜率, cos 0β≠1tan cos αβ==k 且,[]cos 1,1β∈- cos 0β≠,即,][(),11,k ∴∈-∞-⋃+∞][()tan ,11,α∈-∞-⋃+∞又,,[)0,πα∈πππ3π,,4224α⎡⎫⎛⎤∴∈⋃⎪ ⎢⎣⎭⎝⎦由上知,倾斜角的范围是.π3π,44⎡⎤⎢⎥⎣⎦故选:C .3.已知等差数列的前项和为,且,则( ){}n a n n S 0n a >7448S Sa a-=+A .2B .C .1D .3212【答案】B【分析】由等差数列的性质求解. 【详解】由题意得.745676486633222S S a a a a a a a a -++===+故选:B4.已知双曲线的离心率为3,则该双曲线的渐近线方程为( )22221(0,0)y x a b a b -=>>A. B .0y ±=0x ±=C . D .30x y ±=30x y ±=【答案】B【分析】设,由题有,据此可得,即可得双曲线的渐近线方程.222+=a b c 3c a =228b a =【详解】设,由题有,则222+=a b c 3ce a ==222222298c a b b a b a a a +==⇒=⇒=±故双曲线渐近线方程为,即.y =0x ±=故选:B5.函数过点的切线方程为( )()2e xf x x =()0,0A . B . C .或 D .或0y =e 0x y +=0y =e 0x y +=0y =e 0x y +=【答案】C【分析】设切点,利用导数的几何意义求该切点上的切线方程,再由切线过代入求2(,e )m m m ()0,0参数m ,即可得切线方程.【详解】由题设,若切点为,则, 2()(2)e x f x x x '=+2(,e )m m m 2()(2)e m f m m m '=+所以切线方程为,又切线过, 22(2))e e (m m y m m m x m +-=-()0,0则,可得或,22(2e )e m m m m m +=0m =1m =-当时,切线为;当时,切线为,整理得. 0m =0y =1m =-e 1(1)y x --=+e 0x y +=故选:C6.过抛物线的焦点F 的直线交抛物线于A 、B 两点,分别过A 、B 两点作准线的垂线,垂24y x =足分别为两点,以线段为直径的圆C 过点,则圆C 的方程为( )11,A B 11A B (2,3)-A .B . 22(1)(2)2x y ++-=22(1)(1)5x y ++-=C .D .22(1)(1)17x y +++=22(1)(2)26x y +++=【答案】B【分析】求出抛物线焦点坐标、准线方程,设出直线AB 的方程,与抛物线方程联立求出圆心的纵坐标,再结合圆过的点求解作答.【详解】抛物线的焦点,准线:,设,令弦AB 的中点24y x =(1,0)F 11A B =1x -1122(,),(,)A x y B x y 为E ,而圆心C 是线段的中点,又,即有,,11A B 111111,AA A B BB A B ⊥⊥11////EC AA BB 11EC A B ⊥显然直线AB 不垂直于y 轴,设直线,由消去x 得:,:1AB x ty =+214x ty y x =+⎧⎨=⎩2440y ty --=则,E 的纵坐标为, 12124,4y y t y y +==-12||y y -==1222y y t +=于是得圆C 的半径,而圆C 过点, 111211||||22r A B y y ==-=(1,2)C t -(2,3)M -则有,解得, ||MC r ==12t =因此圆C 的圆心,半径C 的方程为. (1,1)C -r =22(1)(1)5x y ++-=故选:B7.若对任意,不等式恒成立,则实数的取值范围是( ) x R ∈20x ax a +->a A . B . (]ln 2,0e -[)0,ln 2e C . D .(]2ln 2,0e -[)0,2ln 2e 【答案】C【分析】由不等式在上恒成立,问题转化为图象恒在上方,分类讨论参数x R ∈2x y =()1y a x =--,结合函数图象、导数,即可求在何范围时图象符合要求.a a 【详解】对,不等式恒成立,知:不等式恒成立,x ∀∈R 20x ax a +->()21xa x >--问题可转化为:曲线恒处于直线的上方, 2x y =()1y a x =--当时,直线与曲线恒有交点,不满足条件.0a >当时,直线与曲线没有交点且曲线恒处于直线的上方,满足条件.0a =2x y =()1y a x =--当时,当直线与曲线相切时,设切点为,切线方程为,切线过点a<0(),2mm 22ln 2()mm y x m -=-,代入方程得,此时切线斜率为, ()1,0211log 2ln 2m e =+=2ln 2e由图可知,,即,曲线恒处于直线的上方, 02ln 2a e <-<2ln 20e a -<<2x y =()1y a x =--综上,. 2ln 20e a -<≤故选:C【点睛】本题考查不等式恒成立,并将问题转化为函数图象的位置关系,利用导数研究函数求参数范围.8.已知,设,则( )ln 20.69≈3ln 8 3.527 3.536,,132a b c e ===A . B . a c b >>b c a >>C . D .a b c >>b a c >>【答案】D【分析】将化为,和b 比较,确定变量,构造函数,利用其导数判断其单调性,即a 33323()2x x f x =可比较大小,再比较,即可得答案.,a b ,a c 【详解】由于,33ln83 3.527273 3.5,822a b e ====故设函数 , 32322322ln 2(3ln 2)(),()2(2)2x x x x x x x x x x f x f x ⋅-⋅⋅-⋅'=∴==当时,,即在上单调递增, 3ln 2x <()0f x '>()f x 3(,ln 2-∞由于, 33 4.35ln 20.69≈≈故,即, (3)(3.5)f f <333 3.53 3.522a b =<=又,故, ln82727363813a c e ==>>=b a c >>故选:D【点睛】关键点睛:比较的大小时,要注意根据两数的结构特征,确定变量,从而构造函数,,a b 这是比较大小关键的一步,然后利用导数判断函数的单调性,即可求解.二、多选题 9.关于函数,则下面四个命题中正确的是( ) ()ln xf x x=A .函数在上单调递减B .函数在上单调递增 ()f x (0,e)()f x (e,)+∞C .函数没有最小值D .函数的最小值为()f x ()f x e 【答案】BC【分析】求出函数的定义域,求出函数导数,判断函数的单调性,作出其大致图像,一一判断每个选项,即可确定答案. 【详解】由,定义域为,且,则,()ln xf x x={|0x x >1}x ≠2ln 1()(ln )x f x x -'=当和时,,01x <<1e x <<()0f x '<故函数在上单调递减,故A 错误;()f x (0,1),(1,e)当时,,故函数在上单调递增,故B 正确; e x >()0f x '>()f x (e,+)∞当时,,当时,, 01x <<()0f x <1x >()0f x >作出其大致图像如图:由图像可知函数没有最小值,故C 正确,D 错误, ()f x 故选:BC10.定义在上的函数的导函数为,且恒成立,则( ) (0,)+∞()f x ()f x '2()()()0f x x x f x '++<A . B . 4(2)3(1)f f <8(2)9(3)f f >C . D .3(3)2(1)f f >15(3)16(4)f f <【答案】AB【分析】令,利用导数判断函数的单调性,再根据函数的单调性逐一判断即可. ()()()01xf x g x x x =>+【详解】令,()()()01xf x g x x x =>+则, ()()()()()()()()()()222111f x xf x x xf x x g f x x x x x f x '++-⎡⎤⎣⎦'++'==++因为恒成立, 2()()()0f x x x f x '++<所以恒成立, ()0g x '<所以在上递减, ()g x (0,)+∞所以, ()()()()1234g g g g >>>即, ()()()()12233442345f f f f >>>所以,故A 正确; 4(2)3(1)f f <,故B 正确;8(2)9(3)f f >,故C 错误; 3(3)2(1)f f <故D 错误.15(3)16(4)f f >故选:AB.【点睛】关键点点睛:本题考查了利用导数研究函数的单调性,构造函数是解()()()01xf x g x x x =>+决本题的关键.11.已知,令,则取到的值可以112(,6),(A x x B x -L =L 有( )A .BCD . 【答案】BCD【分析】可以看作点直线上的点到椭圆上的点的距离,从L =A B 而求出直线上的点到椭圆的最短距离,从而可判断各项的对错. 【详解】由,得点为直线上的点,11(,6)A x x -A 6y x =-由得点为曲线,(2B x B y则可以看作点到点的距离,L =A B由,y 221(0)2y x y +=≥所以点为椭圆且在轴上方的点,B 221(0)2y x y +=≥x如图,设与直线平行且与椭圆相切的直线方程为6y x =-221(0)2y x y +=≥y x C =-+联立,消得, 2212y x y x C ⎧+=⎪⎨⎪=-+⎩y 223220x Cx C -+-=则,解得(舍去()2241220C C ∆=--=C =则=-+y x所以直线与直线6y x =-=-+yxd==所以L≥对于A ,,A 错误;=<对于B B 正确;>=对于C C 正确;>=对于D ,D 正确. =>故选:BCD12.对于正整数,是小于或等于的正整数中与互质的数的数目.函数以其首名研究者n )(n ϕn n )(n ϕ欧拉命名,称为欧拉函数,例如(1,3与4互质),则( ) (4)2ϕ=A .B .如果为偶数,则数列单调递增(13)12ϕ=n {}()n ϕC .数列的前6项和等于63D .数列前项和为(){}2nϕ()54nϕ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭n 1514n --【答案】AC【分析】根据欧拉函数的定义,即可求解AC,根据反例即可排除BD.【详解】对于A,13与1,2,3,4,5,6,7,8,9,10,11,12均互质,所以,故A 正(13)12ϕ=确,对于B,当时,6与1,5互质,所以,故B 错误,6n =(6)(4)2ϕϕ==对于C,由于2为质数,所以小于等于的正整数中,所有的偶数的个数为个,所以剩下的均与2n 12n -互质,故,所以前6项和等于,故C 正确,2n ()112=222n n n n ϕ---=(){}2nϕ251222=63++++ 对于D ,当时,5与1,2,3,4均互质,所以,而,,显然不成1n =()54ϕ=()514ϕ=051=04-立,故D 错误,(与不互质的数有,共有个,所以与不互质的数有5n 51055n n ,,-5,15n -5n ,因此,则前项和为,故错误) 115545n n n ---=⨯()(){}1155=45,54n nn n ϕϕ--⎧⎫⎪⎪⨯∴=⎨⎬⎪⎪⎩⎭n 514n -故选:AC三、填空题13.圆与圆的公共弦所在直线方程为___________.221:130O x y +-=222:650O x y x +-+=【答案】30x -=【分析】判断两圆相交,将两圆方程相减即可求得答案.【详解】圆的圆心为,半径为,221:130O x y +-=(0,0)1r =圆的圆心为,半径为,222:650O x y x +-+=(3,0)22r =则,则两圆相交,121212||3r r O O r r -<=<+故将两圆方程相减可得:,即,6180x -=30x -=即圆与圆的公共弦所在直线方程为,221:130O x y +-=222:650O x y x +-+=30x -=故答案为:30x -=14.已知,数列的前项和的通项公式为___________.21nn a =-12n n n a a +⎧⎫⎨⎬⋅⎩⎭n n S 【答案】 112221n n n S ++-=-【分析】先化简为,再利用裂项相消法可求解. 112112121n n n n n a a ++=-⋅--【详解】因为,()()111212122211121n n n n n n n n a a +++----==-⋅所以 12231111111212121212121n n n S +-+--=++------ . 11111122212121n n n +++=--=---故答案为:. 112221n n n S ++-=-四、双空题15.任取一个正整数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2.反复进行上述两种运算,经过有限次步骤后,必进入循环圈1→4→2→1.这就是数学史上著名的“冰雹猜想”(又称“角谷猜想”等).如取正整数,根据上述运算法则得出6→3→10→5→16→8→4→2→1,6m =共需经过8个步骤变成1(简称为8步“雹程”).现给出冰雹猜想的递推关系如下:已知数列满足(为正整数), {}n a 1a m =m 1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时当时,试确定使得至少需要________步雹程;若,则所有可能的取值集合34m =1n a =91a =m M 为________.【答案】 13{4,5,6,32,40,42,256}【分析】第一空,根据运算法则,写出每一个步骤,即可得答案;第二空,根据运算法则一步步逆推,分类求解,可得答案.【详解】当时,则按运算法则得到:34m =,34175226134020105168421→→→→→→→→→→→→→即使得需要13步雷程. 1n a =若,则或, 91a =8762,4,8a a a ===1当 时,则或, 68a =5416,32a a ==5若,则或;432a =3264,128a a ==21若,则,若,则; 2128a =1256a =221a =142a =当时,或,45a =3210,20a a ==3若时,则,若时,则; 220a =140a =23a =16a =当时,则或,61a =5432,4,8a a a ===1若,则或;38a =2116,32a a ==5若,则,31a =212,4a a ==故所有可能的取值集合为,m M {4,5,6,32,40,42,256}故答案为:13;{4,5,6,32,40,42,256}五、填空题16.已知分别为双曲线的左、右顶点,是双曲线上关于轴对称的不同两点,,A B 2213x y t -=,P Q x设直线的斜率分别为,若点A 到直线,AP BQ ,m n 2y mnx =________.【分析】确定的坐标,设点,表示出的表达式,结合化简可得,A B (,)P u v ,m n 2213u v t -=2y mnx =即,根据点A 到直线t 的值,即可求得答案.60x ty +=2y mnx =【详解】由题意可得双曲线中,,故, 2213x y t -=0t >(A B 设点,则,则,则, (,)P u v (,)Q u v -2213u v t -=223v t u t =--所以 AP m k ==BQ n k ==故即,即,即, 2y mnx =2(y x =2226v y x x t u t==--60x ty +=由于点A 到直线,2y mnx =解得, 6t =故双曲线离心率为 c e a ====【点睛】关键点睛:解答本题的关键在于设点,从而表示出,结合化简可得(,)P u v ,m n 2213u v t -=,从而可得即,这是关键的环节,然后再结合题意求解即可. 223v t u t=--2y mnx =60x ty +=六、解答题17.过点可以作两条直线与圆相切,切点分别为 (0,1)P 22:20E x y kx k ++-=AB 、(1)求实数的取值范围.k (2)当时,存在直线吗?若存在求出直线方程,若不存在说明理由.10k =-AB 【答案】(1) 1(,8)0,2⎛⎫-∞-⋃ ⎪⎝⎭(2)存在,5200x y --=【分析】(1)根据点在圆外和圆方程的条件即可求解;P (2)易知四点共圆且以为直径,求其方程,利用两圆方程相减即可得到相交弦所P A B E 、、、PE 在直线方程,从而求解.【详解】(1)由题意可知,点在圆外,即,解得. P 120k ->12k <又因为圆,即, 22:20E x y kx k ++-=222824k k k x y +⎛⎫++= ⎪⎝⎭所以,即或,280k k +>8k <-0k >综上,实数的取值范围是. k 1(,8)0,2⎛⎫-∞-⋃ ⎪⎝⎭(2)当时,,10k =-22:10200E x y x +-+=即,所以圆心,22(5)5x y -+=()5,0E 因为与圆相切,所以四点共圆且以为直径.,PA PB P A B E 、、、PE 设过四点的圆上一点,P A B E 、、、(),M x y 则,即,即0PM EM ⋅= (5)(1)0x x y y -+-=2250x y x y +--=所以过过四点的圆的方程为,P A B E 、、、2250x y x y +--=两圆方程相减得,5200x y --=于是直线的方程为.AB 5200x y --=18.设抛物线的准线为,过抛物线上的动点作,为垂足.设点的2:2(0)E x py p =>0l T 0TT l '⊥T 'K 坐标为,则有最小值(6,0)KT TT '+(1)求抛物线的方程;(2)已知,过抛物线焦点的直线(直线斜率不为0)与抛物线交于两点,记直线的(2,1)H -E E ,M N ,斜率分别为,求的值. HM HN 12,k k 1212k k k k +【答案】(1)24x y =(2) 12-【分析】(1)结合抛物线定义确定的最小值,即可求得p 的值,可得答案.KT TT '+(2)设出直线方程并联立抛物线方程,可得根与系数的关系,进而将化简,即可求得答案. 1212k k k k +【详解】(1)设抛物线焦点为,则,则有, F (0,)2p F ||||||||KT TT KT TF KF '+=+≥即三点共线时取得最小值,,,F T K KT TT '+而有最小值KT TT '+=得,则抛物线的方程为 12p =E 24x y =(2)由题意可知,直线的斜率一定存在,设为k ,则其方程为,(0,1)F MN 1y kx =+设,()()1122,,,M x y N x y 由,得,, 214y kx x y=+⎧⎨=⎩2440x kx --=216(1)0k ∆=+>,,124x x k ∴+=124x x =-,,111y kx =+221y kx =+ 121212221111x x k k y y --∴+=+++ 1212221111x x kx kx --=+++++ ()()()()()()122112222222x kx x kx kx kx -++-+=++ ()()12122121222(1)824kx x k x x k x x k x x --+-=+++, 222288(1)888248444k k k k k k k ------===--+++所以的值为. 1212k k k k +12-【点睛】方法点睛:解决直线和抛物线的位置关系类问题时,一般方法是设出直线方程并联立抛物线方程,得到根与系数的关系式,要结合题中条件进行化简,但要注意的是计算量一般都较大而复杂,要十分细心.19.设为数列的前项和,已知.n S {}n a n ()2*0,484n n n n a a a S n >+=-∈N (1)求数列的通项公式;{}n a (2)求数列的前项和. 18(1)()n n n n n a a a +⎧⎫-⋅+⎨⎬⎩⎭n n T 【答案】(1)()*42n a n n =-∈N (2) 11(1)224(2)n n T n n =-+-++【分析】(1)利用与的关系式即可求出;n S n a n a (2)结合的奇偶,利用分组求和法、裂项相消法求和.n 【详解】(1)由,①,得:0n a >2484n n n a a S +=-当时,,解得.1n =2111148484a a S a +=-=-12a =当时,②,2n ≥2111484n n n a a S ---+=-①-②得:,2211144888n n n n n n n a a a a S S a ---+--=-=即()()()1114n n n n n n a a a a a a ---+-=+所以,所以数列是以2为首项,4为公差的等差数列.14n n a a --={}n a 所以.()*42n a n n =-∈N (2) ()()()()()()188111424242n n n n n n n n a n a a n n +⎛⎫-⋅+=-+-⋅- ⎪-+⎝⎭, ()()()()()()()()2111114211222212122121n n n n n n n n n n n n ⎛⎫=-+-⋅-=-⨯++-⋅-+ ⎪-+-+⎝⎭设数列的前项和为, (1)21211112⎧⎫⎛⎫⨯+⎨⎬ ⎪⎝⎭⎩⎭--+n n n n n C ; (1)1(1)(1)33557212111212111111111122214⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++-++⋅⋅⋅++=+=-+ ⎪ ⎪ -⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝-----+⎭⎣⎦++n n n n C n n n n 设数列的前项和为,(){}(1)222-⋅-+n n n n n D .()()()()()()02244668(1)222(1)2+++-++++-⋅==--+-⋅n n n n n n D所以数列的前项和 18(1)()n n n n n a a a +⎧⎫-⋅+⎨⎬⎩⎭n 11(1))224(2=-+-+++=n n n n T C D n n 利用分组,列项和并项求和即可获得. 11(1)224(2)n n T n n =-+-++20.已知等差数列的前项和为,首项为,.数列是等比数列,公比小于0,{}n a n n T 38-63T T ={}n b q 且,,数列的前项和为,121b a =39b a ={}n b n n S (1)记点,证明:在直线上; ()*,,N n n n L b S n ∈n L :330l x y -+=(2)对任意奇数恒成立,对任意偶数恒成立,求的最小值.,n n M S ≥,n n N S ≤M N -【答案】(1)证明见解析(2)34【分析】(1)根据题意求得等常数列的通项公式,即可求得等比数列的通项公式,继而求得,n n b S 的表达式,即可证明结论;(2)结合(1)可判断当为奇数和偶数时的单调性,从而求得的最值,即可得答案.n n S ,M N 【详解】(1)证明:设等差数列的公差为d , {}n a 则由首项为,可得,则, 38-63T T =365332638282d d ⨯⨯-⨯+⋅=-⨯+⋅332d =故, 33315(1)8323232n a n n =-+-⨯=-由,,得,, 0q <121b a =39b a =131532132322b ⨯-==2131519,32322q q b ⨯-∴=-=故,, 131()22n n b -=⋅-311()1221(121()2n n n S ⎡⎤--⎢⎥⎣⎦==----则,即, 1311(22233(3n n n n S b -=-=-=--330n n S b -+=则点在直线上;(),n n n L b S :330l x y -+=(2)由(1)可知, n S =111()1(12()2n n n --=--当为奇数时,在奇数集上单调递减,; n (112n n S =+31,2n S ⎛⎤∈ ⎥⎝⎦当为偶数时,在偶数集上单调递增,, n 11()2n n S =-3,14n S ⎡⎫∈⎪⎢⎣⎭所以. min max min 333,,()244M N M N ==∴-=21.已知函数.()ln (2)1(R)f x x m x m m =+-+-∈(1)当时,求函数的最小值;1m =()e ()x h x x f x =-(2)是否存在正整数,使得恒成立,若存在,求出的最小值;若不存在,说明理由.m ()0f x ≤m 【答案】(1)1(2)存在,最小正整数3m =【分析】(1)根据题意可得,构造函数,利用导数说明其单调ln ()e (ln )x x h x x x +=-+()e x m x x =-性,结合设,判断其取值情况,即可求得答案.()ln ,(0)g x x x x =+>(2)求出函数的导数,根据其表达式,讨论时,说明不合题意,当时,将问题转化为2m ≤m 2>函数的最值问题,即可求得答案.【详解】(1)当时,,1m =()ln ,(0)f x x x x =+>,ln ()e ()e (ln )e (ln )x x x x h x x f x x x x x x +=-=-+=-+令,则,()e x m x x =-()e 1x m x '=-当时,,当时,,0x <()0m x '<0x >()0m x '>即在上单调递减,在上单调递增,()m x (,0)-∞(0,)+∞故,仅当时取等号,1())(0m m x ≥=0x =故对于,此时,ln ()e (ln )x x h x x x +=-+ln 0x x +=令,则, ()ln ,(0)g x x x x =+>11()10x g x x x+'=+=>即在在上单调递增,()ln g x x x =+(0,)+∞,,故,使得, 1110e e g ⎛⎫=-< ⎪⎝⎭(1)10g =>01,1e x ⎛⎫∃∈ ⎪⎝⎭()00g x =函数的最小值为.()e ()x h x x f x =-00ln 000()e (ln )1x x h x x x +=-+=(2)由题意的定义域为,()ln (2)1f x x m x m =+-+-(0,)+∞, 1(2)1()2m x f x m x x-+'=+-=当时,,函数在上单调递增,函数无最大值,不合题意;2m ≤()0f x '>()f x (0,)+∞当时,时,,时,, m 2>102x m <<-()0f x '>12x m >-()0f x '<函数在上单调递增,在上单调递减, ()f x 10,2m ⎛⎫ ⎪-⎝⎭1,2m ⎛⎫+∞ ⎪-⎝⎭当时,函数取得最大值,且, 12x m =-()f x max 11()ln 22f x f m m m ⎛⎫==- ⎪--⎝⎭要使恒成立,即,()0f x ≤max ()0f x ≤所以,即, 1ln 02m m -≤-ln(2)0m m -+≥令,, ()ln(2),(2)m m m m ϕ=-+>11'()10,(2)22m m m m m ϕ-=+=>>--所以在上单调递增, ()m ϕ(2,)+∞,, 6120e ϕ⎛⎫+< ⎪⎝⎭(3)ln130ϕ=+>所以存在最小正整数,使得,即使得恒成立.3m =()ln(2)0m m m ϕ=-+≥()0f x ≤【点睛】方法点睛:(1)第一问中要能根据的表达式的结构特征进行变形为()h x ,从而构造函数,利用导数判断单调性,解决问题;ln ()e (ln )x x h x x x +=-+(2)第二问中,根据函数不等式恒成立问题,求出函数导数,分类讨论参数范围,进而转化为函数最值问题解决.22过点,点分别为椭圆的左、2222:1(0)x y C a b a b +=>>12,F F C 右焦点,过点与轴垂直的直线交椭圆第一象限于点.直线平行于(为原点),且与椭2F x 0l T 1l OT O 圆交于两点,与直线交于点(介于两点之间).C ,M N 0l P P ,M N (1)当面积最大时,求的方程;TMN △1l (2)求证:.||||||||TM PN TN PM ⋅=⋅【答案】(1) 2y x =-(2)证明见解析【分析】(1)根据离心率以及椭圆经过的点联立方程即可解,进而可得椭圆方2a b c ===程,联立直线与椭圆方程,由韦达定理,进而由弦长公式求解弦长,利用面积公式表达面积,结合基本不等式即可求解最值,(2)根据比例关系可将问题转化成斜率之和为0,代入斜率公式即可化简求解.【详解】(1)由题意可知,解得,22222231c e a ab a bc ⎧==⎪⎪⎪+=⎨⎪=+⎪⎪⎩2a b c ===所求椭圆的方程为. C 22184x y +=当时,,所以 2x =211422y æöç÷=-´=ç÷èø(2T 由于的方程为,设,,OT k =1l y t =+()11,M x y ()22,Nx y 由,消去整理得, 22184y t x y ⎧=+⎪⎪⎨⎪+=⎪⎩y 2240xt +-=由韦达定理可得:,()12212224Δ2808x x x x t t t ⎧+=⎪⎪=-⎨⎪=-->⇒<⎪⎩则||MN===又点到的距离 T 1ld ==所以. 11|22TMN S MN d t ===V≤=当且仅当,即时,等号成立.228t t -=24t =又介于两点之间, P ,MN 2P y t t ++所以,故.0t t --<<2t =-故直线的方程为:. 1l 2y =-(2)要证结论成立,只须证明, ||||||||TM TN PM PN =由角平分线性质即证:直线为的平分线,2x =MTN ∠转化成证明:.0TM TN k k +=由于TM TN k k+= ()()()()122112222222t x t x x x ⎡⎡⎫⎫+-++--⎢⎢⎪⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦=--===0=因此结论成立.【点睛】圆锥曲线中的范围或最值问题,可根据题意构造关于参数的目标函数,然后根据题目中给出的范围或由判别式得到的范围求解,解题中注意函数单调性和基本不等式的作用.另外在解析几何中还要注意向量的应用,如本题中根据向量的共线得到点的坐标之间的关系,进而为消去变量起到了重要的作用。
2022-2023学年湖北省鄂东南三校联考高二下学期阶段考试(二)数学试题一、单选题1.“谁知盘中餐,粒粒皆辛苦”,节约粮食是我国的传统美德.已知学校食堂中午有2种主食、6种素菜、5种荤菜,小华准备从中选取1种主食、1种素菜、1种荤菜作为午饭,并全部吃完,则不同的选取方法有( )A .13种B .22种C .30种D .60种【答案】D【分析】根据分步乘法计数原理可求出结果.【详解】根据分步乘法计数原理,共有(种)不同的选取方法,26560⨯⨯=故选:D .2.若直线与直线平行,则实数( ).410mx y -+=230x y +-=m =A .2B .C .D .2-1212-【答案】B【分析】根据直线平行的关系计算求解即可.【详解】解:两直线的斜率分别是,,由两直线平行可知,解得.4m12-142m =-2m =-故选:B .3.已知数列满足,,则( ).{}n a 13a =()111n na n a *+=-∈N 4a =A .B .C .3D .2312-32【答案】C【分析】根据递推关系直接求解即可.【详解】解:因为,,13a =()111n na n a *+=-∈N 所以,,,.211213a a =-=321112a a =-=-43113a a =-=故选:C4.某班举办古诗词大赛,其中一个环节要求默写《将进酒》《山居秋暝》《望岳》《送杜少府之任蜀州》,并要求《将进酒》与《望岳》默写次序相邻,则不同的默写次序有( )A .6种B .12种C .18种D .24种【答案】B【分析】根据排列中相邻问题捆绑法即可求解.【详解】可先将《将进酒》与《望岳》捆绑起来看作一个元素,与剩下两首诗词全排列,有种33A 排法,然后捆绑的《将进酒》与《望岳》也有排列,有种排法,根据乘法原理,得种22A 2323A A 12=排法,即不同的默写次序有12种.故选:B.5.若曲线在点处的切线与直线垂直,则实数( ).ln x ay x +=()1,a :250l x y -+==a A .B .1C .D .21232【答案】C【分析】函数求导,计算,利用切线与直线垂直,求得a 值.()11k f =':250l x y -+=【详解】因为,21ln x ay x --'=所以曲线在点处的切线的斜率为,直线l 的斜率,ln x a y x +=()1,a ()111k f a ='=-22k =由切线与直线l 垂直知,即,解得.121k k =-()211a -=-32a =故选:C .6.记椭圆:的左顶点为,右焦点为,过点且倾斜角为的直线与C 22221(0)x y a b a b +=>>A F A 30 l 椭圆交于另一点,若,则椭圆的离心率为( )C B BF AF ⊥CA B C D 1【答案】A【分析】由条件列关于的方程,由此可求离心率.,,a b c 【详解】因为椭圆的左顶点为,右焦点为,22221x y a b +=A F 所以,()(),0,,0A a F c -因为点在轴上方,又,所以将代入椭圆可得,即,B x BF AF ⊥x c =C 2b y a =2,b B c a ⎛⎫ ⎪⎝⎭因为直线的倾斜角为,l 30所以,又,2b ac a +222b a c =-化简,所以解得)222a ac a c +-)211e e +=-e =故选:A.7.已知等比数列的前项和为,且,若,,则( ){}n a n n S 0n a >68S =1838S =24S =A .27B .45C .65D .73【答案】C【分析】根据等比数列前项和的性质可得,,,成等比数列,然后根据n 6S 126S S -1812S S -2418S S -等比中项的性质,代入数据求出,进而即可求出答案.1220S =【详解】由等比数列前项和的性质可得,,,成等比数列,n 6S 126S S -1812S S -2418S S -所以有,即,()()212661812S S S S S -=-()()212128838S S -=⨯-整理可得,解得(舍)或.2121282400S S --=1212S =-1220S =又因为,()()()181212624182S S S S S S -=--所以有,解得.()()224(3820)20838S -=--2465S =故选:C.8.已知函数的定义域为R ,为的导函数,且,则不等式()f x ()f x '()f x ()()0xf x f x '+>的解集是( )()()()2222x f x x f x ++>A .B .()2,1-()(),21,-∞-⋃+∞C .D .()(),12,-∞-⋃+∞()1,2-【答案】D 【分析】构造,由导函数得到其单调性,从而由单调性解不等式求出答案.()()g x xf x =【详解】根据题意,构造函数,则,()()g x xf x =()()()0g x xf x f x ''=+>所以函数在R 上单调递增,又,即,()g x ()()()2222x f x x f x ++>()()22g x g x +>所以,即,解得.22x x +>220x x --<12x -<<故选:D.二、多选题9.下列运算错误的是( )A .B .'2(2)2log e x x='=C .D .(sin1)cos1'=31(log )ln 3x x '=【答案】AC【分析】利用基本初等函数的求导公式,逐项计算判断作答.【详解】对于A ,,A 错误;(2)2ln 2x x'=对于B ,,B 正确;11221()2x x -'=='=对于C ,,C 错误;(sin1)0'=对于D ,,D 正确.31(log )ln 3x x '=故选:AC10.某校环保兴趣小组准备开展一次关于全球变暖的研讨会,现有10名学生,其中5名男生5名女生,若从中选取4名学生参加研讨会,则( )A .选取的4名学生都是女生的不同选法共有5种B .选取的4名学生中恰有2名女生的不同选法共有400种C .选取的4名学生中至少有1名女生的不同选法共有420种D .选取的4名学生中至多有2名男生的不同选法共有155种【答案】AD【分析】A 选项只在女生5人中选取4人,直接列式求解;B 选项男、女生选取各2人,则分别选取即可列式求解;C 用间接法列式求解;D 分情况讨论.【详解】选取的4名学生都是女生的不同选法共有种,故A 正确;45C 5=恰有2名女生的不同选法共有=100种,故B 错误;2255C C 至少有1名女生的不同选法共有种,故C 错误;44105C C 205-=选取的4名学生中至多有2名男生的不同选法共有种,故D 正确.041322555555C C C C C C 155++=故选:AD.11.已知抛物线:的焦点为,为上一点,且,直线交于C 22(0)y px p =>F ()4,A n C 5AF =AF C另一点,记坐标原点为,则( )B O A .B .C .D .2p =8n =1(,1)4B -3OA OB ⋅=- 【答案】AD【分析】根据条件先求出抛物线的标准方程,再逐项分析求解.【详解】依题意,抛物线C 的准线为,2:2(0)y px p =>2px =-因为为C 上一点,且,则,()4,A n ||5AF =452pAF =+=解得,故A 正确;2p =可得抛物线C :,焦点为,24y x =()1,0F 因为A 为C 上一点,则4,所以 ,故B 错误;24n =⨯4n =±若,则线的方程为,()4,4A AF ()413y x =-代入,得,整理得,解得或,2:4C y x =()216149x x -=241740x x -+=14x =4x =因为B 与A 分别在x 轴的两侧,可得;1,14B ⎛⎫- ⎪⎝⎭同理:若,可得;()4,4A -1,14B ⎛⎫ ⎪⎝⎭综上所述:或,故C 错误;1,14B ⎛⎫- ⎪⎝⎭1,14B ⎛⎫ ⎪⎝⎭若,则,则;()4,4A ()1,,144,4OB OA ⎛⎫=⎝=- ⎪⎭ 143OA OB ⋅=-=-同理:若,可得;()4,4A -3OA OB ⋅=-故D 正确;故选:AD.12.已知是数列的前项和,,,,则( )nS {}n a n ()113202,n n n a a a n n *+--+=≥∈N 11a =24a =A .583S =B .数列是等比数列{}1n n aa +-C .1323n n a -=⋅-D .3223nn S n =⋅--【答案】ABD【分析】根据递推关系式依次求得数列的前项,加和即可知A 正确;将递推关系式转化为{}n a 5,结合,由等比数列定义可得B 正确;利用累加法可求得C 错误;()112n n n n a a a a +--=-213a a -=采用分组求和的方式,结合等比数列求和公式可求得D 正确.【详解】对于A ,,,,()113202,n n n a a a n n *+--+=≥∈N 11a =24a =,,,3213210a a a ∴=-=4323222a a a =-=5433246a a a =-=,A 正确;51410224683S ∴=++++=对于B ,由得:,()113202,n n n a a a n n *+--+=≥∈N ()112n n n n a a a a +--=-又,数列是以为首项,为公比的等比数列,B 正确;213a a -=∴{}1n n a a+-32对于C ,由B 知:,1132n n n a a -+-=⋅当时,2n ≥()()()()11223211n n n n n n n a a a a a a a a a a -----=-+-+-+⋅⋅⋅+-+=,()()1231112322213321132212n n n n n ------++⋅⋅⋅++=⨯=-+=⋅--又满足,,C 错误;11a =1322n n a -=⋅-()1322n n a n -*∴=⋅-∈N 对于D ,,D 正确.()011123222232322312nn n n S n n n --=++⋅⋅⋅+-=⨯-=⋅---故选:ABD.三、填空题13.已知等差数列的前n 项和为,若,则__________.{}n a n S 785a a +=14S =【答案】35【分析】根据给定条件,利用等差数列性质结合前n 项和公式求解作答.【详解】因为是等差数列,,所以.{}n a 114785a a a a +=+=()1141414352a a S +==故答案为:3514.若圆与圆外切,则________.221:5C x y +=222:480C x y x y m +---=m =【答案】15-【分析】由题意分别求两圆的圆心和半径,根据两圆外切可得,代入运算求解.1212C C r r =+【详解】由题意可得:圆的圆心分别为,半径分别是12,C C 12(0,0),(2,4)C C,)1220r r m ==>-因为圆外切,所以,12,C C 1212C C r r =+.=1520m =->-故答案为:.15-15.在中国空间站某项建造任务中,需6名航天员在天和核心舱、问天实验舱和梦天实验舱这三个舱内同时进行工作,由于空间限制,每个舱至少1人,至多3人,则不同的安排方案共有___________种.【答案】450【分析】安排方案可以分为两类,第一类,每个舱各安排2人,第二类,分别安排3人,2人,1人,结合分堆分配问题解决方法求解即可.【详解】满足条件的安排方案可以分为两类,第一类,每个舱各安排2人,共有(种)不同的方案;2223642333C C C A 90A ⋅=方案二:一个实验舱安排3人,一个实验舱2人,一个实验舱1人,共有(种)不同的方案.32136313C C C A 360=所以共有不同的安排方案.()90360450+=种故答案为:450.16.设函数 在区间[上有零点,则实数的取值范围是___________.()e 2xf x mx =-1,32⎡⎤⎢⎥⎣⎦m 【答案】3e e ,26⎡⎤⎢⎥⎣⎦【分析】参数分离,构造新函数,根据所构造的新函数的值域求解.【详解】令 ,则,函数 在区间[,3]上有零点等价于()e 20x f x mx =-=e 2xm x =()e 2x f x mx =-12直线与曲线在上有交点, y m =()e 2xg x x =1,32x ⎡⎤∈⎢⎥⎣⎦则 ,当时,单调递减,当 时,单()()'21e 2x x g x x -=1,12x ⎡⎫∈⎪⎢⎣⎭()()'0,g x g x <(]1,3x ∈()()'0,g x g x >调递增,, ,显然, ,()()mine 12g x g ==()1321e e ,326g g ⎛⎫== ⎪⎝⎭132e e 6∴()3e e ,26g x ⎡⎤∈⎢⎥⎣⎦即当时,函数在上有零点;m 3e e ,26⎡⎤∈⎢⎥⎣⎦()f x 1,32⎡⎤⎢⎥⎣⎦故答案为: .3e e ,26⎡⎤⎢⎥⎣⎦四、解答题17.已知的展开式中前三项的二项式系数和为.nx ⎛⎝37(1)求;n (2)求展开式中的常数项.【答案】(1);8n =(2).1792【分析】(1)写出前三项二项式系数,根据和为,列方程求出的值;37n (2)利用通项,并令的指数为0,求出常数项.x 【详解】(1)因为的展开式中前三项的二项式系数分别是,,,nx ⎛⎝0C n 1C n 2C n 所以,()012711C C 32C n n n n n n -=+++=+即,2720n n +-=解得或8n =()9n =-舍去(2)的展开式中通项为,8x ⎛ ⎝()()4883188C C 208N kk k k k kk T x x k k --+⎛==-≤≤∈ ⎝,由时,可得,即第7项为常数项,4803k -=6k =所以展开式中的常数项为.()66618C 21792T +=-=18.已知等差数列的前项和为,且.{}n a n 632n S a a =,7499S S a -=+(1)求数列的通项公式;{}n a (2)设数列的前项和为,求.1n S⎧⎫⎨⎬⎩⎭n n T n T 【答案】(1)n a n=(2)21n n T n =+【分析】(1)根据等差数列公式,运用条件列方程求出;1,a d(2)运用裂项相消法求解.【详解】(1)设数列{}的公差为,n a d 由,得 ,解得 ,637492,9a a S S a =-=+()()()111115227214689a d a d a d a d a d ⎧+=+⎪⎨+-+=++⎪⎩11,1a d == ;∴n a n =(2),()()11111,2221n n n n a a n n S S n n ++⎛⎫===- ⎪+⎝⎭ ;11111112212233411n n T n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫∴=-+-+-++-=⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 综上,.2,1n n na n T n ==+19.已知函数的两个极值点满足.()()323129R f x ax x x a =++-∈12,x x 122x x =-(1)求的值;a (2)求在区间上的最值.()f x []3,3-【答案】(1)2a =-(2)最大值为36,最小值为-16【分析】(1)有2个极值点等价于导函数有2个零点,根据条件运用韦达定理求解;()f x ()'f x (2)根据导函数求出的单调区间,根据单调性以及闭区间两端的函数值求解.()f x 【详解】(1),令,则有2个零点,显然 ,()'23612f x ax x =++()'0f x =()'f x 12,x x 0a ≠由韦达定理得 ,又代入①得: ,121224x x a x x a ⎧+=-⎪⎪⎨⎪=⎪⎩①②122x x =-1242,x x a a =-=再代入②得: , ,符合题意,284,2a a a -==-2646120∆=+⨯⨯>;()3223129f x x x x ∴=-++-(2) ,得下表:()()()'26612621f x x x x x =-++=--+x()3,1---1()1,2-2()2,3()'f x0<00>00<()f x 单调递减极小值-16单调递增极大值11单调递减又,,()336f -=()30f =所以在区间上的最大值为36,最小值为-16;()f x []3,3-综上,,在区间上的最大值为36,最小值为-16.2a =-()f x []3,3-20.如图,在四棱柱中,底面是矩形,平面平面,点是1111ABCD A B C D -ABCD 11AA D D ⊥ABCD E 的中点,.AD 1122A A A D AD AB ====(1)求证:平面平面;1A EB ⊥ABCD (2)求直线与平面所成角的正弦值.1A D 1A BC 【答案】(1)证明见解析【分析】(1)先证明,根据面面垂直的性质定理证明⊥平面,再由面面垂直判1A E AD ⊥1A E ABCD 定定理证明平面平面; 1A EB ⊥ABCD (2)建立空间直角坐标系,求直线的方向向量与平面的法向量,利用空间向量夹角公式1A D 1A BC 求直线与平面夹角.1A D 1A BC【详解】(1)因为,点是的中点,所以,11A A A D =E AD 1A E AD ⊥又平面平面,平面平面,11AA D D ⊥ABCD 11AA D D ABCD AD =平面,1A E ⊂11AA D D 所以⊥平面ABCD ,又平面,1A E 1A E ⊂1A EB 所以平面平面;1A EB ⊥ABCD (2)取的中点,连结,BC F EF 因为四边形为矩形,且,ABCD 22AD AB ==所以四边形为正方形,,CDEF EF AD ⊥以为坐标原点,,,所在直线分别为轴,轴,轴建立空间直角坐标系如图所示,E EF ED 1EA x yz 则,()()()(11,1,0,1,1,0,0,1,0,B C D A -所以,()((110,2,0,,0,1,BC BA A D ==-= 设平面的法向量,1A BC (),,m x y z = 则 有,即,100m BC m BA ⎧⋅=⎪⎨⋅=⎪⎩200y x y =⎧⎪⎨-++=⎪⎩令,则1z =0,y x ==所以平面的一个法向量,1A BC )m = 设直线与平面所成角为,1A D 1A BC θ则1sin cos ,m A θ= 直线与平面1A D 1A BC21.已知双曲线是上一点.()2222:10,0x y C a b a b -=>>()4P C (1)求的方程;C (2)已知直线与交于两点,为坐标原点,若,判断直线是():0l y kx m m =+>C ,E F O 4OE OF ⋅= l 否过定点?若是,求出该定点的坐标;若不是,请说明理由.【答案】(1)22124x y -=(2)直线恒过定点l(0,【分析】(1)根据离心率、双曲线关系和双曲线所过点可构造方程求得,进而得到双曲,,a b c 22,ab 线方程;(2)将直线方程与双曲线方程联立可得韦达定理的结论,代入向量数量积的坐标运算中,整理可求得.m =【详解】(1)双曲线的离心率,,则, C ==c e a 22223c a b a ∴=+=222b a =又为上一点,,解得:,,()4P C 22101612a a ∴-=22a =24b ∴=双曲线的方程为:.∴C 22124x y -=(2)设,,()11,E x y ()22,F x y 由得:,22124y kx m x y =+⎧⎪⎨-=⎪⎩()2222240k x kmx m ----=,则;()()2222220Δ44240k k m k m ⎧-≠⎪∴⎨=+-+>⎪⎩222224k m k ⎧≠⎨>-⎩,,12222km x x k ∴+=-212242m x x k +=--()()()()221212121212121OE OF x x y y x x kx m kx m k x x km x x m ∴⋅=+=+++=++++ ,()()2222222142422k m k m m k k ++=-++=--整理可得:,又,,则212m =0m >m ∴=:l y kx =+直线恒过定点.∴l (0,22.已知函数,.()()ln f x x x a =-a ∈R (1)若函数在上单调递增,求a 的取值范围;()f x []1,4(2)若,求证:.0a >()()2ln f x x x a ≤--【答案】(1);(,1]-∞(2)证明见解析.【分析】(1)对求导后,问题转化为在[1,4]上恒成立,进而求得的最小值即可()f x ()0f x '≥()f x '求解;(2)由可得只需证明,令,求导后求得0x >ln 2ln x a x a -≤--()2ln ln g x x a a x =+---;令,求导后求得,从而可得,()(1)1ln g x g a a ≥=--()1ln (0)h a a a a =-->()(1)0h a h ≥=()0g x ≥问题得证.【详解】(1),因为函数在[1,4]上单调递增,()ln 1=-+'f x x a ()f x 所以在[1,4]上恒成立,()0f x '≥又在[1,4]上单调递增,所以,()ln 1=-+'f x x a min ()1f x a '=-+所以,解得,所以的取值范围是.10a -+≥1a ≤a (,1]-∞(2)因为,所以要证,只需证,0,0a x >>()(2ln )f x x x a ≤--ln 2ln x a x a -≤--令,则.()2ln ln g x x a a x =+---11()1x g x x x -'=-=当时,,函数单调递减;01x <<()0g x '<()g x 当时, ,函数单调递增.1x >()0g x '>()g x 所以,()(1)1ln g x g a a ≥=--令,则,()1ln (0)h a a a a =-->11()1a h a a a -'=-=当时,单调递减,当时,单调递增.01a <<()0,()h a h a '<1a >()0,()h a h a '>所以时,取最小值, 则,1a =()h a ()(1)0h a h ≥=所以时,,因此.0a >()0h a ≥()0g x ≥所以.()(2ln )f x x x a ≤--。
枣庄三中高二年级10月阶段检测考试数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分,考试用时120分钟。
答卷前,考生务必将自己的姓名、准考证号、考试科目填涂在答题卡和答题纸规定的地方。
第Ⅰ卷(选择题共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设x ,y R ∈,向量(a x = ,1,1),(1b = ,y ,1),(2c = ,4-,2),且a c ⊥ ,//b c,则||(a b += )A .B C .4D .32.若直线30x my ++=与直线460mx y ++=平行,则(m =)A .12B .12-C .12或12-D .不存在3.在正四面体ABC P -中,棱长为2,且E 是棱AB 的中点,则PE BC ⋅的值为()A .-1B .1C .3D .374.直线04cos =++y x α的倾斜角的取值范围()A .[)π,0B .⎪⎭⎫⎝⎛⋃⎥⎦⎤⎢⎣⎡πππ,24,0C .⎪⎭⎫⎢⎣⎡⋃⎥⎦⎤⎢⎣⎡πππ,434,0D .⎥⎦⎤⎢⎣⎡4,0π5.如图所示,在棱长为1的正方体ABCD-A1B 1C 1D 1中,E,F 分别为棱AA 1,BB 1的中点,G 为棱A 1B 1上的一点,且A 1G =λ(0≤λ≤1),则点G 到平面D 1EF 的距离为()A B .22C .23D .556.已知长方体1111ABCD A B C D -中,1B C ,1C D 与底面ABCD 所成的角分别为60 和45 ,则异面直线1B C 和1C D 所成角的余弦值为A .4B .14C .6D .67.如图,等边三角形ABC 的边长为4,M ,N 分别为AB ,AC 的中点,沿MN 将△AMN 折起,使得平面AMN 与平面MNCB 所成的二面角为30°,则四棱锥A -MNCB 的体积为A .32B .32C .D .38.已知点o2,−3),o −3,−2).若直线G m +−−1=0与线段B 相交,则实数的取值范围是()A .3,44⎡⎤-⎢⎥⎣⎦B .1,5⎛⎫+∞ ⎪⎝⎭C .[)3,4,4⎛⎤-∞-⋃+∞ ⎥⎝⎦D .34,4⎡⎤-⎢⎥⎣⎦二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得2分,有选错的得0分)9.有下列四个命题,其中正确的命题有()A .已知A ,B ,C ,D 是空间任意四点,则0AB BC CD DA +++=B .若两个非零向量,AB CD 满足AB CD +=0 ,则AB CDC .分别表示空间向量的有向线段所在的直线是异面直线,则这两个向量可以是共面向量D .对于空间的任意一点O 和不共线的三点A ,B ,C ,若OP xOA yOB zOC =++(x ,y ,z ∈R),则P ,A ,B ,C 四点共面10.已知直线G m ++1=0,1,0,3,1,则下列结论正确的是()A .直线l 恒过定点0,1B .当=0时,直线l 的斜率不存在C .当=1时,直线l 的倾斜角为34D.当=2时,直线l 与直线B 垂直11.如图,PA ⊥平面ABCD ,正方形ABCD 边长为1,E 是CD 的中点,F 是AD 上一点,当BF ⊥PE 时,则()A .AF ∶FD =1∶1B .AF ∶FD =2∶1C .若PA =1,则异面直线PE 与BC 所成角的余弦值为23D .若PA =1,则直线PE 与平面ABCD 所成角为30°12.在棱长为1的正方体中1111ABCD A B C D -中,点P 在线段1AD 上运动,则下列命题正确的是()A .异面直线1C P 和1CB 所成的角为定值B .直线CD 和平面1BPC 平行C .直线CP 和平面11ABCD 所成的角为定值D .三棱锥1D BPC -的体积为定值.第Ⅱ卷(非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知(1A ,2,0),(3B ,1,2),(2C ,0,4),则点C 到直线AB 的距离为_____.14.如图,在空间直角坐标系中有直三棱柱ABC A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为________.15.若A (a ,0),B (0,b ),C (2-,2-)三点共线,则11a b+=.16.在空间直角坐标系中,定义:平面α的一般方程为)0,,,,(0222≠++∈=+++C B A R D C B A D Cz By Ax ,点),,(000z y x P 到平面α的距离222000CB A DCz By Ax d +++++=,则在底面边长与高都为2的正四棱锥中,底面中心O 到侧面的距离等于________.四、解答题(本大题共6题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)在三角形ABC 中,已知点A (4,0),B (-3,4),C (1,2).(1)求BC 边上中线所在的直线方程;(2)若某一直线过B 点,且y 轴上截距是x 轴上截距的2倍,求该直线的一般式方程.18.(12分)如图,四面体ABCD 中,E ,F 分别为AB ,DC 上的点,且AE =BE ,CF =2DF ,设DA DB DC ===a,(1)以{}a,b,c 为基底表示FE;(2)若∠ADB =∠BDC =∠ADC =60°,且433DA DB DC == =,,,求FE.19.(12分)如图,在四棱锥P ABCD -中,底面ABCD 是矩形,M 是PA 的中点,PD ⊥平面ABCD ,且4PD CD ==,2AD =.(1)求AP 与平面CMB 所成角的正弦.(2)求二面角M CB P --的余弦值.20.(12分)已知两直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4(0<a <2)与两坐标轴的正半轴围成四边形.当a 为何值时,围成的四边形面积取最小值?并求最小值.21.(12分)如图所示,在直三棱柱ABC -A1B 1C 1中,∠ABC =90°,BC =2,CC 1=4,EB 1=1,D ,F ,G 分别为CC 1,B 1C 1,A 1C 1的中点,EF 与B 1D 相交于点H .(1)求证:B 1D ⊥平面ABD .(2)求证:平面EGF ∥平面ABD .(3)求平面EGF 与平面ABD 的距离.22.(12分)如图,已知SA 垂直于梯形ABCD 所在的平面,矩形SADE 的对角线交于点F ,G 为SB 的中点,2ABC BAD π∠=∠=,112SA AB BC AD ====.(1)求证:BD //平面A E G ;(2)求平面SCD 与平面ESD 夹角的余弦值;(3)在线段EG 上是否存在一点H ,使得BH 与平面SCD 所成角的大小为6π?若存在,求出GH 的长;若不存在,说明理由.枣庄三中高二年级10月阶段检测考试数学答案一单选题DBAC DAAC 二、多项选择题9.BD 10.BD 11.AC 12.ABD 三、填空题13.14.5515.12-16.552四、解答题(17.(1)∵B (-3,4),C (1,2),∴线段BC 的中点D 的坐标为(-1,3),…………………………………………………2分又BC 边上的中线经过点A (4,0),∴y =x -4),即3x +5y -12=0,故BC 边上中线所在的直线方程3+5−12=0.…………………………………………5分(2)当直线在x 轴和y 轴上的截距均为0时,可设直线的方程为y =kx ,代入点B (-3,4),则4=-3k ,解得k =−43,所以所求直线的方程为y =−43x ,即4x +3y =0;……………………………………………7分当直线在x 轴和y 轴上的截距均不为0时,可设直线的方程为+2=1,代入点B (-3,4),则−3+42=1,解得m =−1,所以所求直线的方程为2x +y +2=0,………………………………………………………9分综上所述,该直线的一般式方程为4x +3y =0或2x +y +2=0.……………………………10分18.如图所示,连接DE .因为FE ―→=FD ―→+DE ―→,FD ―→=-DF ―→=-13DC ―→,DE ―→=12(DA ―→+DB ―→),所以FE ―→=12a +12b -13c .………………………………………………………6分|FE ―→|2+12b -13c =14a 2+14b 2+19c 2+12a ·b -13a ·c -13b ·c =14+14×+19×+12×××12-13×××12-13×××12=274.所以|FE ―→|=332.………………………………………………12分19.(1)∵ABCD 是矩形,∴AD CD ⊥,又∵PD ⊥平面ABCD ,∴PD AD ⊥,PD CD ⊥,即PD ,AD ,CD 两两垂直,∴以D 为原点,DA ,DC ,DP 分别为x 轴,y 轴,z 轴建立如图空间直角坐标系,…1分由4PD CD ==,2AD =,得()2,0,0A ,()2,4,0B ,()0,4,0C ,()0,0,0D ,()0,0,4P ,()1,0,2M ,则()2,0,4AP =- ,()2,0,0BC =- ,()1,4,2MB =-,.………………………………2分设平面CMB 的一个法向量为()1111,,n x y z = ,则1100BC n MB n ⎧⋅=⎪⎨⋅=⎪⎩,即111120420x x y z -=⎧⎨+-=⎩,令11y =,得10x =,12z =,∴()10,1,2n =.………………………………………………4分∴1114cos ,5AP n AP n AP n ⋅==⋅,故AP 与平面CMB 所成角的正弦值为45..……6分(2)由(1)可得()0,4,4PC =-,.………………………………………………7分设平面PBC 的一个法向量为()2222,,n x y z=,则2200BC n PC n ⎧⋅=⎪⎨⋅=⎪⎩,即22220440x y z -=⎧⎨-=⎩,令21y =,得20x =,21z =,∴()20,1,1n =,……10分∴12cos ,10n n ==,故二面角M CB P --的余弦值为10……………12分20.解:两直线l 1:a (x -2)=2(y -2),l 2:2(x -2)=-a 2·(y -2),都过点(2,2),………2分如图:设两直线l 1,l 2的交点为C ,且它们的斜率分别为k 1和k 2,则k 1=a 2∈(0,1),k 2=-2a2∈∞∵l 1与y 轴的交点A 的坐标为(0,2-a ),l 2与x 轴的交点B 的坐标为(2+a 2,0).…………6分∴S OACB =S △OAC +S △OCB =12(2-a )·2+12·(2+a 2)·2=a 2-a +4+154.……………10分∴当a =12时,四边形OACB 的面积最小,其值为154.……………………………………12分21.如图所示,建立空间直角坐标系,设A 1(a ,0,0),则B 1(0,0,0),F(0,1,0),E(0,0,1),A(a,0,4),B(0,0,4),D(0,2,2),G (2,1,0).(1)B 1D →=(0,2,2),AB →=(-a ,0,0),BD →=(0,2,-2).∴B 1D →·AB →=0+0+0=0,B 1D →·BD →=0+4-4=0.∴B 1D ⊥AB,B 1D ⊥BD.又AB∩BD=B,∴B 1D ⊥平面ABD.………………………………4分(2)∵AB →=(-a ,0,0),BD →=(0,2,-2).GF →=(-2,0,0),EF →=(0,1,-1),∴GF →=12AB →,EF →=12BD →.∴GF ∥AB,EF ∥BD.又GF∩EF=F,AB∩BD=B,∴平面EGF ∥平面ABD.…………………………………8分(3)方法一:由(1)(2)知DH 为平面EFG 与平面ABD 的公垂线段.设B 1H →=λB 1D →=(0,2λ,2λ),则EH →=(0,2λ,2λ-1),EF →=(0,1,-1).∵EH →与EF →共线,∴2λ1=2λ−1−1,即λ=14,∴B H →=(0,12,12),∴HD →=(0,32,32),∴|HD →∴平面EGF 与平面ABD ………………………………12分方法二:由(2)知平面EGF ∥平面ABD,设平面ABD 的法向量为n=(x,y,z),则n ⊥AB →,n ⊥BD →,∴解得x =0,y =z,取z=1,则n=(0,1,1),∵ED →=(0,2,1),∴d=即平面EGF 与平面ABD ………………………………………………12分22.(1)连接FG .在△SBD 中,F 、G 分别为,SD SB 的中点,所以//FG BD .又因为FG ⊂平面A E G ,BD ⊄平面A E G ,所以//BD 平面A E G .……………………4分(2)因为SA ⊥平面ABCD ,,AB AD ⊂平面ABCD ,所以,SA A S B A A D ⊥⊥.又2BAD π∠=,所以AB AD ⊥.以,,AB AD AS为正交基底建立如图所示的空间直角坐标系A xyz -.则()0,0,0A ,()()()()()1,0,0,1,1,0,0,2,020110,0,,1,0,,2,1,,2B G C D S E ⎛⎫ ⎪⎝⎭.()1,1,0CD =-,()1,1,1SC =- .设平面SCD 的一个法向量为(),,m x y z = .则00m CD m SC ⎧⋅=⎨⋅=⎩,即00x y z y z -+=⎧⎨+-=⎩,令1x =,得1,2y z ==.所以平面SCD 的一个法向量为()1,1,2m =.又平面ESD 的一个法向量为()1,0,0AB =.所以cos ,6||||m AB m AB m AB ⋅===⨯ 所以平面SCD 与平面ESD夹角的余弦值为.………………………………………8分(3)假设存在点H ,设11(,2,)22GH GE λλλλ==- ,则1111(,2,)2222BH BG GE λλλλ=+=--+ .由(2)知,平面SCD 的一个法向量为()1,1,2m =.则1sin cos ,62m BH π== ,即2(10)λ-=,所以1λ=.故存在满足题意的点H ,此时||2GH GE == (12)分。
江油中学2021级高二下期第一阶段考试数学(理)试题一、单选题(每小题5分,共60分)1.4i1i-的虚部为()A .2-B .2C .2iD .2i-2.命题“0x ∀>,20x >”的否定是()A .0x ∃>,20x ≤B .0x ∀≤,20x >C .0x ∃≤,20x ≤D .0x ∀≤,20x ≤3.若z 满足(1+i )z =−4+2i ,则z =()A .10BC .20D .4.已知函数f (x )=13x 3﹣f '(2)x 2+x ﹣3,则f '(2)=()A .﹣1B .1C .﹣5D .55.下列导数运算正确的是()A .()sin cos x x'=-B .()33xx'=C .()21log ln 2x x '=⋅D .211x x'⎛⎫= ⎪⎝⎭6.“a<0”是“关于x 的不等式210ax ax +-<对任意实数x 恒成立”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.函数()2ln f x x =-2x 的单调递增区间为()A .(1∞--,)B .(1,+∞)C .(-1,1)D .(0,1)8.已知一个圆柱形空杯,其底面直径为8cm ,高为20cm ,现向杯中注入溶液,已知注入溶液的体积V (单位:ml )关于时间t (单位:s )的函数为()()32π2π0V t t t t =+≥,不考虑注液过程中溶液的流失,则当4st =时杯中溶液上升高度的瞬时变化率为()A .2cm /sB .4cm /sC .6cm /sD .8cm /s9.已知函数f (x )的定义域为[﹣1,5],其部分自变量与函数值的对应情况如表:x ﹣10245f (x )312.513f (x )的导函数f '(x )的图象如图所示.给出下列四个结论:①f (x )在区间[﹣1,0]上单调递增;②f (x )有2个极大值点;③f (x )的值域为[1,3];④如果x ∈[t ,5]时,f (x )的最小值是1,那么t 的最大值为4.其中,所有正确结论的序号是()A .③B .①④C .②③D .③④10.已知命题:p 函数()()40f x x x x=+≠的最小值为4;命题:q 在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,则“A B >”是“a b >”的充要条件.则下列命题为真命题的是()A .()p q⌝∧B .()p q ∨⌝C .p q∧D .()()p q ⌝∧⌝11.若动点P 在直线1y x =+上,动点Q 在曲线22x y =-上,则|PQ |的最小值为()A .14B .4C .2D .1812.已知函数()e 23ln x f x t x x x x ⎛⎫=++- ⎪⎝⎭有两个极值点,则t 的取值范围为()A .()3e ,+∞B .{}31,e 2⎛⎫-∞- ⎪⎝⎭ C .(){}31,e e,e 2⎛⎫-∞--- ⎪⎝⎭ D .()1,e e,2⎛⎫-∞--- ⎪⎝⎭ 二、填空题(每小题5分,共20分)13.已知函数()cos2f x x =,则曲线()y f x =在点ππ,44f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线方程为__________.14.若z C ∈且22i 1z +-=,则22i z --的最大值为_______.15.已知函数()()212ln R 2f x x ax x a =--∈.若函数()f x 在区间[)1,+∞上单调递增,则实数a 的取值范围为__________..16.已知函数()33f x x x =-,()e 22xx g x a =-+,对于任意[]12,0,2x x ∈,都有()()12f x g x ≤成立,则实数a的取值范围是________.三、解答题(17题10分,其余每题12分,共70分)17.复数(1)(1)()z m m m i m R =-+-∈.(Ⅰ)实数m 为何值时,复数z 为纯虚数;(Ⅱ)若m =2,计算复数1z z i-+.18.设集合{}23280A x x x =+-<,集合{}21B x m x m =-<<+.(1)已知p :3B ∈,若p 为真命题,求实数m 的取值范围;(2)若“x A ∈”是“x B ∈”的必要不充分条件,求实数m 的取值范围.19.已知函数f(x)=e x (x −2)(1)求()f x ',()0f ',()1f '-﹔(2)求曲线()y f x =在点(0,-2)处的切线方程;(3)求函数f(x)的极值.20.已知p :方程x 2+y 2﹣4x +a 2=0表示圆:q :方程1322=+ax y (a >0)表示焦点在y 轴上的椭圆.(1)若p 为真命题,求实数a 的取值范围;(2)若命题p Ⅴq 为真,p Λq 为假,求实数a 的取值范围.21.已知函数()323f x x mx nx =++在=1x -时有极值0.(1)求,m n 的值.(2)求g(x)=f(x)−x 3−3lnx 的单调区间.22.已知函数21()ln 2f x x ax x =-+.(1)讨论函数()f x 的单调性;(2)若()f x 有两个极值点1x ,2x ,且()()123ln 24f x f x -≥-,求a 的取值范围.江油中学2021级高二下期3月数学(理)试题参考答案1.B 2.A 3.B 4.B5.C 6.D 7.D 8.B 9.D10.A11.B12.【答案】D 【详解】函数()e 23ln x f x t x xx x ⎛⎫=++- ⎪的定义域为()0,∞+,13.202y x +-=14.515.1a ≤-.16.e ,2⎛⎤-∞ ⎥⎝⎦【详解】依题意得,对于任意[]12,0,2x x ∈,都有()()12f x g x ≤成立可等价为对于任意[]12,0,2x x ∈,都有()()max 12f x g x ≤成立,()33=- f x x x ,()()231f x x '∴=-,[]0,2x ∈,当01x <<时,()0f x '<,()f x 单调递减;当12x <<时,()0f x ¢>,()f x 单调递增;又()()00,22f f == ,()()max 22f x f ∴==,∴对于任意[]0,2x ∈,都有()2g x ≥成立,即对于任意[]0,2x ∈,都有2x e a x ≤成立,等价为mine 2x a x ⎛⎫≤ ⎪⎝⎭成立,令()e xh x x =,[]0,2x ∈,()()2e 1x x h x x -'∴=,当01x <<时,()0h x '<,()h x 单调递减;当12x <<时,()0h x '>,()h x 单调递增;()()min 1e h x h ∴==,2e a ∴≤,e 2a ∴≤,a ∴的取值范围是e ,2⎛⎤-∞ ⎥⎝⎦.17.【答案】(1)0m =(2)1122i -试题解析:(1)欲使z 为纯虚数,则须()10m m -=且10m -≠,所以得0m =18.【答案】(1)()2,5(2)[]5,3-【详解】(1)由题意得3B ∈,故231m m -<<+,解得:25m <<,故实数m 的取值范围是()2,5;19.【答案】(1))1()(-='x e x f x ,ef f 2)1(,1)0(-=-'-=',(2)02=++y x (3)极小值-e 20.【答案】(1)﹣2<m <2.(2)(﹣2,0]∪[2,3).21.【答案】(1),13m n ==;(2)函数g(x)=f(x)−x 3−3lnx 的单调减区间为(0,34),单调增区间为(34,+∞).【详解】(1)由题可得2()36f x x mx n '=++,22.【答案】(1)答案见详解(2)32,2⎡⎫+∞⎪⎢⎪⎣⎭【详解】(1)因为函数21()ln 2f x x ax x =-+,则211()x ax f x x a x x -+'=-+=,0x >,令()21g x x ax =-+,则24a ∆=-,。
2022-2023学年吉林省长春市高中高二下学期第二学程考试数学试题一、单选题1.如图所示的Venn 图中,、是非空集合,定义集合为阴影部分表示的集合.若A B A B ⊗,,则( ){}21,,4A x x n n n ==+∈≤N {}2,3,4,5,6,7B =A B ⊗=A .B .C .D .{}2,4,6,1{}2,4,6,9{}2,3,4,5,6,7{}1,2,4,6,9【答案】D 【分析】分析可知,求出集合、、,即可得集合()(){},A B x x A B x A B ⊗=∈⋃∉⋂A A B ⋃A B ⋂.A B ⊗【详解】由韦恩图可知,,()(){},A B x x A B x A B ⊗=∈⋃∉⋂因为,,{}{}21,,41,3,5,7,9A x x n n n ==+∈≤=N {}2,3,4,5,6,7B =则,,因此,.{}1,2,3,4,5,6,7,9A B = {}3,5,7A B = {}1,2,4,6,9A B ⊗=故选:D.2.过原点且与函数图像相切的直线方程是( )()()ln f x x =-A .B .C .D .y x =-2e y x=-1e y x=-e y x=-【答案】C【分析】先设出切点,再利用导数的几何意义建立方程求出切线的斜率即可得到结果.【详解】因为,所以,()ln()f x x =-()1f x x '=设所求切线的切点为,则,00(,())x f x ()001f x x '=由题知,,解得,所以切线斜率为,()00000ln ()1x f x x x x -==0e x =-()1e e k f '=-=-故所求切线方程为.1e y x=-故选:C.3.已知变量y 与x 之间具有线性相关关系,根据变量x 与y 的相关数据,计算得则y 关于x 的线性回归方程为( )77772111128,1078,140,4508ii ii i i i i i xy x x y ========∑∑∑∑附:回归方程中的斜率和截距的最小二乘法估计公式分别为ˆˆˆybx a =+1221ˆˆˆ,.ni ii nii x y nx ybay bx xnx ==-⋅==--∑∑A .B .ˆ7126y x =-ˆ7126yx =+C .D .ˆ5121yx =+ˆ5121yx =-【答案】B【分析】根据已知数据求,代入回归直线方程即可求解.ˆˆ,b a 【详解】由题中的数据可知,4,154x y ==所以.7172217450874154196714071628ˆ7i ii ii x y xyb xx ==--⨯⨯====-⨯-∑∑所以.15474126ˆˆa y bx =-=-⨯=所以y 关于x 的线性回归方程为.ˆˆˆ7126ybx a x =+=+故选:B.4.据统计,某工厂所生产的一类新型微电子芯片的厚度X (单位:)服从正态分布,μm (),4N μ且. 如果芯片的厚度高于,那么就带要对该芯片进行复检. 若该工()()25311P X P X ≥+≥=32μm 厂此芯片日产量平均为10000片,那么每天需要进行复检的产品大约有( )(附:若X (单位:)服从正态分布,则,μm ()2,N μσ()0.6827P X μσμσ-<≤+=,.)()220.9545P X μσμσ-<≤+=()330.9973P X μσμσ-<≤+=A .228件B .455件C .1587件D .3173件【答案】A【分析】根据正态分布的对称性,即可求得的值和,从而求出10000片中每天需要进μ()32P X ≥行复检的产品.【详解】因为,所以,()()25311P X P X ≥+≥=()()()3112525P X P X P X ≥=-≥=<即与关于对称,则,25X =31X =X μ=2531282μ+==因为,所以,又因为,24σ=2σ=232μσ+=()()()1223222P X P X P X μσμσμσ--<<+≥=≥+=10.95452-=,所以件,10.95452-=0.02275=100000.02275227.5228⨯=≈所以每天需要进行复检的产品大约有件,228故选:A.5.已知是定义在R 上的奇函数,的导函数为,若恒成立,则()f x ()f x ()'f x ()'cos f x x≥的解集为( )()sin f x x≥A .B .C .D .[)π,-+∞[)π,+∞π,2⎡⎫+∞⎪⎢⎣⎭[)0,∞+【答案】D【分析】根据函数的单调性求解.【详解】令函数,则,()()sin g x f x x=-()()''cos g x f x x=-因为 所以. 是增函数,()'cos f x x ≥,()()0g x g x '≥,因为是奇函数,所以,,()f x ()00f =()()00sin 00g f =-=所以的解集为,即≥的解集为;()0g x ≥[)0,∞+()f x sin x [)0,∞+故选:D.6.,当时,都有,则实数的最大值为( )[]12,1,e x x ∀∈12x x <()1122lnx a x x x <-aA .B .CD .121e 1e【答案】B 【分析】依题意对,当时恒成立,,1122ln ln x ax x ax -<-[]12,1,e x x ∀∈12x x <()ln h x x ax=-,则问题转化为在上单调递增,求出函数的导函数,则在上恒成立,[]1,e x ∈()h x []1,e ()0h x '≥[]1,e 参变分离可得的取值范围,即可得解.a 【详解】因为,当时,都有,[]12,1,e x x ∀∈12x x <()1122lnx a x x x <-即,即,1212ln ln x x ax ax -<-1122ln ln x ax x ax -<-令,,则恒成立,()ln h x x ax =-[]1,e x ∈()()12h x h x <即在上单调递增,()ln h x x ax=-[]1,e 又,所以在上恒成立,()1h x ax '=-()10a x h x =-≥'[]1,e 所以在上恒成立,因为在上单调递减,1a x ≤[]1,e ()1g x x =[]1,e 所以,所以,即实数的最大值为.()()min 1e e g x g ==1e a ≤a 1e 故选:B7.某市环保局举办“六·五”世界环境日宣传活动,进行现场抽奖.抽奖规则是:盒中装有10张大小相同的精美卡片,卡片上别印有“环保会徽”或“绿色环保标志”图案.参加者每次从盒中抽取卡片两张,若抽到两张都是“绿色环保标志”卡即可获奖.已知从盒中抽两张都不是“绿色环保标志”卡的概率是.现有甲、乙、丙、丁四人依次抽奖,抽后放回,另一人再抽,用表示获奖的人数,那13ξ么( )()()E D ξξ+=A .B .C .D .224225104225815112225【答案】A【分析】根据二项分布的期望和方差公式即可求解.【详解】设印有“环保会徽”图案的卡片有张,则“绿色环保标志”图案的卡片有张,n 10n -由题意可知,所以从盒中抽取卡片两张获奖的概率为,2210C 16C 3n n ⇒==22104221010C C 2C C 15n -==由于服从二项分布,即,所以,ξ24,15B ξ⎛⎫~⎪⎝⎭()()221322444151515225E D ξξ+=⨯+⨯⨯=故选:A 8.已知函数有两个不同的极值点,且不等式恒()22ln f x ax x x=-+12,x x ()()1212f x f x x x t+<++成立,则实数t 的范围是( )A .B .C .D .[)1,-+∞[)5,-+∞[)22ln 2,-+∞[)1ln 2,-+∞【答案】B 【分析】恒成立,等价于恒成立.由()()1212f x f x x x t+<++()()()1212t f x f x x x >+-+有两个不同的极值点结合韦达定理可得,其中()f x ()()()1212f x f x x x +-+21ln 2a a =---,后构造函数,利用导数求出其最值即可得答案.102a <<()211ln 202h a a a a ⎛⎫=---<< ⎪⎝⎭【详解】因为不等式恒成立,所以恒成立.()()1212f x f x x x t+<++()()()1212f x f x x x t+-+<.()()22210-+'=>ax x f x x x 因为函数有两个不同的极值点,()22ln f x ax x x=-+12,x x 所以方程有两个不相等的正实数根,于是有,解得.22210ax x -+=1212Δ48010102a x x a x x a ⎧⎪=->⎪⎪+=>⎨⎪⎪=>⎪⎩102a <<则()()221112221212122ln 2ln f x f x x x x ax x x ax x x x +--+--++=--()()()21212121223ln a x x x x x x x x ⎡⎤=+--++⎣⎦.21ln 2a a =---设,,故在上单调递增,()211ln 202h a a a a ⎛⎫=---<< ⎪⎝⎭()220-'=>a h a a ()h a 102a <<故,所以.又注意到满足题意,因此实数t 的范围是. ()152⎛⎫<=- ⎪⎝⎭h a h 5t >-5t =-[)5,-+∞故选:B【点睛】关键点睛:本题涉及恒成立问题与由函数极值点求参数范围,难度较大.本题所涉字母较多,关键为找到间的关系,得到关于a 的表达式.12,,ax x ()()()1212f x f x x x +-+二、多选题9.下列各结论正确的是()A .“”是“”的充要条件0xy >0xy >B .2C .命题“”的否定是“”21,0x x x ∀>->21,0x x x ∃≤-≤D .“一元二次函数的图象过点”是“”的充要条件2y ax bx c =++()1,00a b c ++=【答案】AD【详解】根据符号规律可判断A ;根据基本不等式成立条件以及利用单调性求最值可判断B ;根据全称命题否定形式可判断C ;结合二次函数图象与性质可判断D.【分析】解:⇔,故A 正确;0xy >0x y >,令,则,y 3t =≥1y t t =+且在区间上,函数值y 随自变量x 的增大而增大,最小值为,故B 错误;)[3,∞+110333+=命题“”的否定是“”,故C 错误;21,0x x x ∀>->21,0x x x ∃>-≤一元二次函数的图象过点显然有,反之亦可,故D 正确.2y ax bx c =++()1,00a b c ++=故选:AD10.有3台车床加工同一型号的零件,第1台加工的次品率为,第2,3台加工的次品率均为5%,加工出来的零件混放在一起,第1,2,3台车床加工的零件数分别占总数的,,3%15%25%.随机取一个零件,记“零件为次品”, “零件为第台车床加工” ,,,下列60%A =i B =i (1i =23)结论正确的有( )A .B .()0.03P A =31()1ii P B ==∑C .D .12()()P B A P B A =123()()(|)P B A P B A P B A +=【答案】BC【分析】由全概率公式和条件概率依次判断4个选项即可.【详解】对于A :因为,故A 错误;()0.050.150.030.250.030.600.033P A =⨯+⨯+⨯=对于B :因为,故B 正确;13Σ()0.150.250.601i i P B ==++=对于C :因为,111()(|)0.050.155(|)()0.03322P B P A B P B A P A ⋅⨯===,222()(|)0.030.255()()0.03322|P B P A B P B A P A ⋅⨯===所以,故C 正确;12()()P B A P B A =对于D :由上可得,125()()11P B A P B A +=又因为,故D 错误,333()(|)0.030.606(|)()0.03311P B P A B P B A P A ⋅⨯===故选:BC .11.乒乓球,被称为中国的“国球”.某次比赛采用五局三胜制,当参赛甲、乙两位中有一位赢得三局比赛时,就由该选手晋级而比赛结束.每局比赛皆须分出胜负,且每局比赛的胜负不受之前比赛结果影响.假设甲在任一局赢球的概率为,实际比赛局数的期望值记为,则下列说法()01p p ≤≤()f p 中正确的是( )A .三局就结束比赛的概率为B .的常数项为3()331p p +-()f p C .函数在上单调递减D .()f p 10,2⎛⎫⎪⎝⎭13328f ⎛⎫= ⎪⎝⎭【答案】ABD【分析】设实际比赛局数为,先计算出可能取值的概率,即可判断A 选项;进而求出期望值X X ,即可判断BCD 选项.()f p 【详解】设实际比赛局数为,则的可能取值为,X X 3,4,5所以,()()3331P X p p ==+-,()()()3131334C 1C 1P X p p p p ==-+-,()()22245C 1P X p p ==-因此三局就结束比赛的概率为,则A 正确;()331p p +-故()()()()()332313122334314C 1C 15C 1f p p p p p p p p p ⎡⎤⎡⎤=+-+-+-+⨯-⎣⎦⎣⎦,432612333p p p p =-+++由知常数项为3,故B 正确;()03f =由,故D 正确;111133361232168428f ⎛⎫=⨯-⨯+⨯+=⎪⎝⎭由,()()()322243663321441f p p p p p p p =-++=---',所以,01p ≤≤ 22441(21)20p p p --=--<令,则;令,则,∴()0f p '>102p ≤<()0f p '<112p <≤则函数在上单调递增,则C 不正确.()f p 10,2⎛⎫⎪⎝⎭故选:ABD.12.已知函数,,则下列说法正确的是( )e ()xx f x =-()ln g x x x =-A .在上是增函数(ln )f x (1,)+∞B .,不等式恒成立,则正实数a 的最小值为1x ∀>()2()f ax f lnx ≥2eC .若有两个零点,,则()g x t=1x 2x 122x x +<D .若,且,则的最大值为()()12(2)f x g x t t ==>210x x >>21ln t x x -1e【答案】ABD 【分析】A 选项,由题,,判断在上的单调性即可;()()ln ln f x x x g x =-=()1,x ∈+∞()g x ()1,+∞B 选项,由单调性,;()f x ()()22max 2ln ln ln x f ax f x ax x a x ⎛⎫≥⇔≥⇒≥ ⎪⎝⎭C 选项,由有两个零点,,构造函数应用极值点偏移可解;()g x t=1x 1x D 选项,因,及在上单调递增,结合B 选项分析可判断选项.()()1232,f g <<()()f xg x ,()1,+∞【详解】对于A 选项,,.()()ln ln f x x x g x =-=()1,x ∈+∞又当时,,则在上是增函数,故A 正确;()1,x ∈+∞()1110x g x x x -'=-=>()ln f x ()1,+∞对于B 选项,时,,又为正实数,所以,又时,,1x >2ln 0x >a 0ax >0x >()e 10x f x '=->所以在单调递增,故,即.()f x ()1,+∞()()22ln ln f ax f x ax x ≥⇔≥max 2ln x a x ⎛⎫≥ ⎪⎝⎭令,知,所以在上递增,在上递减,所以()2ln xx x ϕ=()222ln x x x ϕ-'=()x ϕ()1,e ()e,+∞,()()max 2e e x ϕϕ==得正实数的最小值为,故B 正确;a 2e 对于C 选项,有两个根,,等价于函数有两个零点,.()g x t=1x 2x ()g x t -1x 2x 注意到,则在上单调递减,在上单调递增,()111x g x t x x -'⎡⎤-=-=⎣⎦()g x t -()0,1()1,+∞因函数有零点,则.()()1101g x t g t t t ⎡⎤-=-=-<⇒>⎣⎦m i n 设,1201x x <<<令,,()()()2h x g x g x =--()0,1x ∈因为,()()()2h x g x g x '''=+-所以,()()()()()22111222x x x h x g x g x x x x x ----'''=+-=+=--当时,,单调递减;01x <<()0h x '<()h x 所以在上单调递减,所以,即当时,,()h x ()0,1()()10h x h >=01x <<()()2g x g x >-由题意,,,且在上单调递增,()()()2112g x g x g x =>-21x >121x ->()g x ()1,+∞所以,即.故C 错误;212x x >-122x x +>对于D 选项,由AB 选项分析可知,在上单调递增,()()f xg x ,()1,+∞又,,()()()122f x g x t t ==>()()11233ln 32e ,fg =-<=-<则.由,即,即有,2131x x >>>()()12f x g x =12ln 1222e ln e ln x x x x x x -=-=-()()12ln f x f x =又,在上单调递增,所以,即,所以121ln 1x x >>,()f x ()1,+∞12ln x x =12e x x =,1211ln ln ln e x t t tx x x t ==--其中.由B 选项分析可知,,其中时取等号,则,2t >2ln 2e x x ≤e x =1211ln ln ln 1e e x t t t x x x t ==≤--其中时取等号,所以,故D 正确.e x =21max ln 1et x x ⎛⎫= ⎪-⎝⎭故选:ABD【点睛】关键点点睛:对于复杂函数,常利用导数求单调区间.对于恒成立问题,常利用分离参数法将问题转化为求最值.对于双变量问题,常结合题目条件寻找变量间关系,将双变量转化为单变量.三、填空题13.花店还剩七束花,其中三束郁金香,两束白玫瑰,两束康乃馨,李明随机选了两束,已知李明选到的两束花是同一种花,则这两束花都是郁金香的概率为________.【答案】/350.6【分析】使用条件概率进行计算即可.【详解】设事件“两束花是同一种花”,事件“两束花都是郁金香”,A =B =则积事件“两束花都是郁金香”,AB B ==事件中样本点的个数为,A ()222322C C C 5n A =++=积事件中样本点的个数为,AB ()23C 3n AB ==∴已知李明选到的两束花是同一种花,则这两束花都是郁金香的概率为.()()()35n AB P B A n A ==故答案为:.3514.若两个正实数x ,y恒成立,则实数m的取值1+=26m m >-范围是____________.【答案】28m -<<的最小值,进而求解即可.2616m m-<【详解】由于,所以,0,0x y >>88=≥+取等号,故,解得,64,4x y ⇒==2616m m -<28m -<<故答案为:28m -<<15.若函数在上有最小值,则实数的取值范围是_____.3()3f x x x =-2(,8)a a -a 【答案】[)2,1-【分析】求出函数的单调性,结合最小值的定义即可求解.3()3f x x x =-【详解】,令得,2()33f x x '=-()0f x '=1x =±时,时,,(,1)(1,)x ∈-∞-⋃+∞()0f x '>(1,1)x ∈-()0f x '<所以在和上单调递增,在上单调递减,()f x (,1)-∞-(1,)+∞(1,1)-若函数在上有最小值,则其最小值必为,3()3f x x x =-2(,8)a a -(1)f 则必有且,解得,21(,8)a a ∈-3()3(1)2f a a a f =-≥=-21a -≤<故答案为:.[)2,1-16.已知是函数在其定义域上的导函数,且,,若函数()f x '()f x ()()1e xf x f x +'-=()21e f =在区间内存在零点,则实数m 的取值范围是______.()()()()2ln 20e x mf x g x mx x m =-+->()0,∞+【答案】[)1,+∞【分析】先根据及得到,利用同构得到()()1e xf x f x +'-=()21e f =()1e xf x x +=有解,构造,得到,故()1ln e 1ln 10x mx x mx -+--+-=⎡⎤⎣⎦()e 1=--t g t t ()0min e 10g t =-=,参变分离得到在有解,令,求导得到其单调性,()1ln 0x mx -+=1e x m x -=()0,x ∈+∞()1e x h x x -=极值和最值情况,得到答案.【详解】,所以,()()1ex f x f x +'-=()()e e xf x f x '-=故,所以,为常数,()e e x f x '⎛⎫= ⎪⎝⎭()e e x f x x c =+c 因为,又,故,()21e f =()e 1ef c =+0c =所以,()1e xf x x +=若在区间内存在零点,()()()()2ln 20e x mf x g x mx x m =-+->()0,∞+则在区间内存在零点,()12e ln 20e x x m mx x x +-+-=()0,∞+整理得,()1ln e 1ln 10x mx x mx -+--+-=⎡⎤⎣⎦设,则,()e 1=--t g t t ()e 1t g t '=-令得,当时,,单调递增,()0g t '=0=t 0t >()0g t '>()e 1=--t g t t 当时,,单调递减,0t <()0g t '<()e 1=--t g t t 所以在处取得极小值,也是最小值,,()e 1=--t g t t 0=t ()0min e 10g t =-=故时,成立,()1ln 0x mx -+=()1ln e 1ln 10x mx x mx -+--+-=⎡⎤⎣⎦即存在,使得有解,即有解,()0,x ∈+∞()1ln 0x mx -+=1e x m x -=令,则,()1e x h x x -=()()12e 1x x h x x --'=当时,,当时,,1x >()0h x '>01x <<()0h x '<故在上单调递减,在上单调递增,()1e x h x x -=()0,1()1,+∞故在处取得极小值,也是最小值,()1e x h x x -=1x =又,故,()11h =()1h x ≥所以,故实数m 的取值范围.m 1≥[)1,+∞故答案为:[)1,+∞【点睛】方法点睛:利用函数与导函数的相关不等式构造函数,然后利用所构造的函数()f x ()f x '的单调性解不等式,是高考常考题目,以下是构造函数的常见思路:比如:若,则构造,()()0f x f x +'>()()e x g xf x =⋅若,则构造,()()0f x f x '->()()x f x g x =e 若,则构造,()()0f x xf x '+>()()g x xf x =若,则构造.()()0f x xf x '->()()f xg x x =四、解答题17.设等比数列的前项和为,公比,.{}n a n n S 1q >2316,84a S ==(1)求数列的通项公式;{}n a (2)求数列的前项和为.{}n n a +n n T 【答案】(1);4nn a =(2).214423n n n n T ++-=+【分析】(1)利用基本量法,即可求解.(2)利用分组求和即可求解.【详解】(1)解:,解得,121111684a q a a q a q =⎧⎨++=⎩11644()144a a q q =⎧=⎧⎪⎨⎨==⎩⎪⎩或舍;4n n a ∴=(2)1231424344nn T n =++++++++ 1231234444nn =+++++++++(1)4(14)214n n n +-=+-.214423n n n n T ++-∴=+18.民族要复兴,乡村要振兴,合作社助力乡村产业振兴,农民专业合作社已成为新型农业经营主体和现代农业建设的中坚力量,为实施乡村振兴战略作出了巨大的贡献.已知某主要从事手工编织品的农民专业合作社共有100名编织工人,该农民专业合作社为了鼓励工人,决定对“编织巧手”进行奖励,为研究“编织巧手”是否与年龄有关,现从所有编织工人中抽取40周岁以上(含40周岁)的工人24名,40周岁以下的工人16名,得到的数据如表所示.“编织巧手”非“编织巧手”总计年龄40岁≥19年龄<40岁10总计40(1)请完成答题卡上的列联表,并根据小概率值的独立性检验,分析“编织巧手”与“年22⨯0.010α=龄”是否有关;(2)为进一步提高编织效率,培养更多的“编织巧手”,该农民专业合作社决定从上表中的非“编织巧手”的工人中采用分层抽样的方法抽取6人参加技能培训,再从这6人中随机抽取2人分享心得,求这2人中恰有1人的年龄在40周岁以下的概率.参考公式:,其中.()()()()()22n ad bc a b c d a c b d χ-=++++n a b c d =+++参考数据:α0.1000.0500.0100.005x α2.7063.841 6.6357.879【答案】(1)填表见解析;认为“编织巧手”与“年龄”有关,此推断犯错的概率不大于0.010(2)815【分析】(1)根据题意补全列联表,计算,并与临界值对比分析;2χ(2)先根据分层抽样求各层的人数,结合古典概型分析运算.【详解】(1)年龄在40周岁以上(含40周岁)的非“编织巧手”有5人,年龄在40周岁以下的“编织巧手”有6人.列联表如下:“编织巧手”非“编织巧手”总计年龄40岁≥19524年龄<40岁61016总计251540零假设为:“编织巧手”与“年龄”无关联.0H 根据列联表中的数据,经计算得到,()220.010401910657.111 6.63524162515x χ⨯⨯-⨯=≈>=⨯⨯⨯根据小概率值的独立性检验,我们推断不成立,即认为“编织巧手”与“年龄”有关,此0.010α=0H 推断犯错的概率不大于0.010.(2)由题意可得这6人中年龄在40周岁以上(含40周岁)的人数是2;年龄在40周岁以下的人数是4.从这6人中随机抽取2人的情况有种,2615C =其中符合条件的情况有种,1142C C 8=故所求概率.815P =19.已知函数()322f x x ax b=-+(1)当时,求的极值;3a =()f x (2)讨论的单调性;()f x(3)若,求在区间的最小值.0a >()f x []0,1【答案】(1),()f x b=极大值()1f x b=-+极小值(2)当时的单调增区间为,,单调减区间为;0a >()f x (),0∞-,3a ⎛⎫+∞ ⎪⎝⎭0,3a ⎛⎫ ⎪⎝⎭当时在R 上单调递增;0a =()f x 当时的单调递增区间为,,单调递减区间为;a<0()f x ,3a ⎛⎫-∞ ⎪⎝⎭()0,∞+,03a ⎛⎫ ⎪⎝⎭(3)()3min 2,3,0327a b a f x a b a -+≥⎧⎪=⎨-+<<⎪⎩【分析】(1)求出函数的导函数,再解关于导函数的不等式,即可得到函数的单调区间与极值;(2)求导函数,分,,讨论可得结果;()2(3)f x x x a '=-0a >0a =a<0(3)结合(2)的结论,分、两种情况讨论,分别求出函数的最小值.3a ≥0<<3a 【详解】(1)当时定义域为R ,3a =()3223f x x x b=-+且,()()26661f x x x x x '=-=-所以当或时,当时,0x <1x >()0f x ¢>01x <<()0f x '<所以在处取得极大值,在处取得极小值,()f x 0x =1x =即,;()()0f x f b ==极大值()()11f x f b==-+极小值(2)函数定义域为R ,则,()322f x x ax b=-+()()26223f x x ax x x a '=-=-令,解得或,()0f x '=0x =3ax =①当时,则当或时,,0a >0x <3ax >()0f x ¢>当时,,03ax <<()0f x '<所以的单调增区间为,,单调减区间为;()f x (),0∞-,3a ⎛⎫+∞ ⎪⎝⎭0,3a ⎛⎫ ⎪⎝⎭②当时,恒成立,所以在R 上单调递增;0a =()0f x '≥()f x③当时,当或时,,当时,,a<03a x <0x >()0f x ¢>03ax <<()0f x '<所以的单调递增区间为,,单调递减区间为,()f x ,3a ⎛⎫-∞ ⎪⎝⎭()0,∞+,03a ⎛⎫ ⎪⎝⎭综上可得当时的单调增区间为,,单调减区间为;0a >()f x (),0∞-,3a ⎛⎫+∞ ⎪⎝⎭0,3a ⎛⎫ ⎪⎝⎭当时在R 上单调递增;0a =()f x 当时的单调递增区间为,,单调递减区间为;a<0()f x ,3a ⎛⎫-∞ ⎪⎝⎭()0,∞+,03a ⎛⎫ ⎪⎝⎭(3)因为,由(2)可得的单调增区间为,,单调减区间为,0a >()f x (),0∞-,3a ⎛⎫+∞ ⎪⎝⎭0,3a ⎛⎫ ⎪⎝⎭若,即时在上单调递减,13a≥3a ≥()f x []0,1所以在上的最小值为,()f x []0,1()()min 12f x f a b ==-+若,即时,在单调递减,在单调递增,013a <<0<<3a ()f x 0,3a ⎛⎫ ⎪⎝⎭,13a ⎛⎫ ⎪⎝⎭所以在的最小值为,()f x []0,1()3min327a a f x b⎛⎫==-+ ⎪⎝⎭所以.()3min2,3,0327a b a f x a b a -+≥⎧⎪=⎨-+<<⎪⎩20.某学习平台的答题竞赛包括三项活动,分别为“四人赛”、“双人对战”和“挑战答题”.参赛者先参与“四人赛”活动,每局第一名得3分,第二名得2分,第三名得1分,第四名得0分,每局比赛相互独立,三局后累计得分不低于6分的参赛者参加“双人对战”活动,否则被淘汰.“双人对战”只赛一局,获胜者可以选择参加“挑战答题”活动,也可以选择终止比赛,失败者则被淘汰.已知甲在参加“四人赛”活动中,每局比赛获得第一名、第二名的概率均为,获得第三名、第四名的概率均为;1316甲在参加“双人对战”活动中,比赛获胜的概率为.23(1)求甲获得参加“挑战答题”活动资格的概率.(2)“挑战答题”活动规则如下:参赛者从10道题中随机选取5道回答,每道题答对得1分,答错得0分.若甲参与“挑战答题”,且“挑战答题”的10道题中只有3道题甲不能正确回答,记甲在“挑战答题”中累计得分为X ,求随机变量X 的分布列与数学期望.【答案】(1)2881(2)分布列见解析;72【分析】(1)设甲在“四人赛”中获得的分数为,由题意确定的可能取值,求出每个值对应的概ξξ率,即可得答案.(2)确定随机变量X 的所有可能取值,求得每个值对应概率,可得分布列,即可求得数学期望.【详解】(1)设甲在“四人赛”中获得的分数为,则甲在“四人赛”中累计得分不低于6分包含了ξ或或或.9ξ=8ξ=7ξ=6ξ=;311(9)327P ξ⎛⎫===⎪⎝⎭;223111(8)C 339P ξ⎛⎫==⨯=⎪⎝⎭;3211331111(7)C C 3636P ξ⎛⎫⎛⎫==+⨯⨯= ⎪ ⎪⎝⎭⎝⎭,32313311111111(6)A C 33636354P ξ⎛⎫⎛⎫==⨯⨯⨯++⨯⨯= ⎪ ⎪⎝⎭⎝⎭所以甲在“四人赛”中累计得分不低于6分的概率,1111111427965427P =+++=故甲能进入“挑战答题”活动的概率.1214228327381P P =⨯=⨯=(2)随机变量X 的所有可能取值为,2345,,,;;3237510C C 1(2)C 12P X ===2337510C C 5(3)C 12P X ===;.1437510C C 5(4)C 12P X ===57510C 1(5)C 12P X ===所以X 的分布列如下表所示:X2345P112512512112所以.15517()2345121212122E X =⨯+⨯+⨯+⨯=21.已知椭圆与坐标轴的交点所围成的四边形的面积为上任意一点2222:1(0)x y E a b a b +=>>E 到其中一个焦点的距离的最小值为1.(1)求椭圆的方程;E (2)设直线交于两点,为坐标原点,以,为邻边作平行四(:0l y kx m k =+≤≤E ,M N O OM ON 边形在椭圆上,求的取值范围.,OMPN P E OP【答案】(1)22143x y +=(2)【分析】(1)根据题意列出关于a 、b 、c 的方程,结合可解;222a b c =+(2)设,利用韦达定理结合四边形为平行四边形可的点P 坐()()()112200,,,,,M x y N x y P x y OMPN 标,然后结合点P 在椭圆上可解.【详解】(1)由题可知12221a b a c ⎧⨯⨯⨯=⎪⎨⎪-=⎩,1ab a c ⎧=⎪⇒⎨-=⎪⎩所以,即,()22212a a c -=()212a a c +=所以,2(2a a 1)12-=所以,因为,()()222360a a a -++=0a >所以2,所以=a 1,c b ==所以椭圆的方程为:.E 22143x y +=(2)联立,消去,化简整理得:,22143y kx mx y =+⎧⎪⎨+=⎪⎩y ()2223484120k x kmx m +++-=需满足,()())222222Δ6443441248(340k m k mk m =-+-=+->设,由韦达定理可()()()112200,,,,,M x y N x y P x y 知:.122834km x x k +=-+则以为邻边作平行四边形,,OM ON OMPN 则,()()1122,,OP OM ON x y x y =+=+()0120121228,34km x x x y y y k x x k ∴=+=-=+=++26234mm k +=+由于点在椭圆上,所以,P C 2200143x y +=即()()2222222161213434k m m k k +=++化简得:,经检验满足22434m k =+(2Δ4834k =+-)20m >又OP =====由于,2034315k k ≤≤∴≤+≤所以,213543k ≤+1≤所以231934435k ≤-≤+OP ≤≤所以的取值范围为.OP 22.已知函数.()()ln 1f x x x x λ=--(1)当时,,求的取值范围;1x ≥()0f x ≥λ(2)函数有两个不同的极值点(其中),证明:()()()21g x f x x xλλ=-+-12,x x 12x x <;12ln 3ln 4x x +>(3)求证:.()*1111ln21232n n n n n +++⋯+<∈+++N 【答案】(1)(],1-∞(2)证明见解析(3)证明见解析【分析】(1)由,利用导数研究函数单调性,转化为当,恒成立问题;()10f =1x ≥()0f x '≥(2)函数极值点,是的两个零点,要证,等价于证,()g x 12,x x ()g x '12ln 3ln 4x x +>12112241ln 3x x xx x x ⎛⎫- ⎪⎝⎭<+通过换元,构造函数,利用导数研究单调性可证.(3)由(1)可知,则有,类似于数列求和的裂项相消法可1ln x x x ->11x n =+()1ln 1ln 1n n n <+-+证.【详解】(1)函数,,且,()()ln 1f x x x x λ=--()ln 1f x x λ'=+-()10f =①当时,因为,故恒成立,此时单调递增,所以成立;1λ≤1x ≥()0f x '≥()f x ()0f x ≥②当时,令,得,1λ>()ln 10f x x λ+'=-=1ex λ-=当时,此时单调递减,故,不满足题意;)11,ex λ-⎡∈⎣()0f x '≤()f x ()()10f x f ≤=综上可知:.1λ≤即的取值范围为.λ(],1-∞(2)由,故,()()()221ln g x f x x x x x x xλλλλ=-+-=-+-()ln 121ln 2g x x x x xλλ-='=+--因为函数有两个不同的极值点(其中),故.12,x x 12x x <1122ln 2,ln 2x x x x λλ==要证:,只要证:.12ln 3ln 4x x +>()1212124ln 3ln 2623x x x x x x λλλ<+=+=+因为,于是只要证明即可.120x x <<12423x x λ>+因为,故,1122ln 2,ln 2x x x x λλ==1212ln ln 2x x x x λ-=-因此只要证,等价于证,121212ln ln 43x x x x x x ->-+()1212124ln 3x x x x x x -<+即证,令,等价于证明,12112241ln 3x x xx x x ⎛⎫- ⎪⎝⎭<+12(01)x t t x =<<()41ln 3t t t -<+令,()()()()()22224119116109ln (01),3(3)(3)(3)t t t t t t t t t t t t t t t t ϕϕ----+'=-<<=-==++++因为,所以,01t <<()0t ϕ'>故在上单调递增,所以,得证.()t ϕ()0,1()()10t ϕϕ<=(3)由(1)可知当时,,故,1x >()()ln 10f x x x x =-->1ln x x x ->令,所以,所以,11x n =+111ln 111n n n n n ⎛⎫+>= ⎪++⎝⎭()1ln 1ln 1n n n <+-+,ln2ln ln2n n =-=所以.1111ln21232n n n n +++⋯+<+++【点睛】方法点睛:1. 导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.2.利用导数解决含参函数的单调性问题时,一般将其转化为不等式恒成立问题,解题过程中要注意分类讨论和数形结合思想的应用.3.证明不等式,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.。
2021-2022学年福建省福州闽江学院附属中学高二上学期期末考试数学试题一、单选题1.等差数列{an }中,a 4+a 8=10,a 10=6,则公差d 等于( ) A .B .C .2D .-141212【答案】A【分析】由条件,可得,又可得答案. 486210a a a +==65a =106410a a d =+=【详解】等差数列中,,则{}n a 486210a a a +==65a =,所以,则 1064546a a d d =+=+=41d =14d =故选:A2.已知函数可导,且,( )0()3f x '=000()()limx f x x f x x xΛ→+∆--∆=∆A .-3 B .0C .3D .6【答案】D【分析】利用导数的概念对进行整理,可得结论.000()()limx f x x f x x x∆→+∆--∆∆【详解】000()()limx f x x f x x x ∆→+∆--∆=∆000()()lim x f x x f x x ∆→+∆-∆000()()lim x f x f x x x ∆→--∆+∆.()026f x '==故选:D.【点睛】本题主要考查了导数的概念.属于基础题.3.已知数列{an }的通项公式为an =-2n 2+21n ,则该数列中的数值最大的项是( ) A .第5项 B .第6项C .第4项或第5项D .第5项或第6项【答案】A【分析】根据,结合二次函数的性质即可得出答案.2221441221248n a n n n ⎛⎫=-+=--+ ⎪⎝⎭【详解】解:,2221441221248n a n n n ⎛⎫=-+=--+ ⎪⎝⎭因为,且, *21,564n N ∈<<5655,54a a ==所以数值最大的项为第5项. 故选:A .4.设函数,若为奇函数,则曲线在点(0,0)处的切线()()32212f x x a x ax =+++()f x ()y f x =方程为( ) A . B .C .D .2y x =-y x =-2y x =y x =【答案】A【分析】根据该函数为奇函数,求出a 的值,然后求出得所求切线斜率,最后利用点斜式求0f '()出切线的方程【详解】,函数为奇函数,有,即()()32212f x x a x ax =+++()()f x f x -=-,()()()()()3232212212x a x a x x a x ax ⎡⎤-++-+-=-+++⎣⎦故,即,10a +=1a =-所以,所以,,, ()322f x x x =-()262f x x ='-00f =()02f '=-()所以曲线在点(0,0)处的切线斜率为,切线方程为:. ()y f x =2-2y x =-故选:A.5.如图所示是函数的导函数的图象,则下列判断中正确的是( )()f x ()f x 'A .函数在区间上是减函数 ()f x (3,0)-B .函数在区间上是减函数 ()f x (3,2)-C .函数在区间上是减函数 ()f x (0,2)D .函数在区间上是单调函数 ()f x (3,2)-【答案】A【分析】根据函数的导函数>0时单调递增,时单调递减,依次判断选项即()y f x =()f x '()0f x '<可.【详解】由函数的导函数的图像知,()y f x =()f x 'A :时,,函数单调递减,故A 正确; (30)x ∈-,()0f x '<()f x B :时,或, (32)x ∈-,()0f x '<()0f x '>所以函数先单调递减,再单调递增,故B 错误;()f x C :时,,函数单调递增,故C 错误; (02)x ∈,()0f x '>()f x D :时,或, (32)x ∈-,()0f x '<()0f x '>所以函数先单调递减,再单调递增,不是单调函数,故D 错误. ()f x 故选:A6.设是等差数列的前项和,若,则( ) n S {}n a n 891715a a =1517S S =A .2 B .C .1D .0.51-【答案】C【分析】利用等差数列的求和公式结合等差数列的性质化简求解即可 【详解】解:因为在等差数列中,, {}n a 891715a a =所以, 1151511588117171179915()15()152152117()17()172172a a S a a a a a a S a a a a ++⨯====⋅=++⨯故选:C7.下列结论正确的是( )A .若为等比数列,是的前n 项和,则,,是等比数列 {}n a n S {}n a n S 2n n S S -32n n S S -B .若为等差数列,是的前n 项和,则,,是等差数列{}n a n S {}n a n S 2n n S S -32n n S S -C .若为等差数列,且均是正整数,则“”是“ “的充要{}n a m n p q ,,,m n p q +=+m n p q a a a a +=+条件D .满足的数列为等比数列 1n n a qa +={}n a 【答案】B【分析】根据等差数列前n 项和性质可以判定B 选项正确,利用特例判定其余选项错误. 【详解】若为等比数列,设公比为,是的前n 项和,{}n a 0q q ≠,n S {}n a 设,当时,,,,则,,不是等比数()1na -=2n =0S =0S S -=0S S -=S S S -S S -列,所以A 选项错误;若为等差数列,是的前n 项和,设公差为, {}n a n S {}n a d 则,12n n S a a a +++ =,22212212n n n n n n n S S a a a a a a n d S n d ++-++++++++ ==()=,2232212231222n n n n n n n n n n S S a a a a a a n d S S n d ++++-+++++++-+ ==()=()所以,,是等差数列,所以B 选项正确;n S 2n n S S -32n n S S -为等差数列,考虑,,,所以C 选项错误;{}n a 1n a =1234a a a a +=+1234+≠+考虑常数列,,,满足,数列不是等比数列,所以D 选项错误. {}n a 0n a =0q =1n n a qa +={}n a 故选:B.8.已知是定义在上的偶函数,当时,,且,则不等式()f x R 0x >'2()()0xf x f x x->()20f -=的解集是( ) ()0f x x>A . B . ()()2,00,2-⋃()(),22,-∞-+∞ C . D .()()2,02,-+∞ ()(),20,2-∞- 【答案】C【分析】是定义在上的偶函数,说明奇函数,若时,,可得()f x R ()f x x 0x >'2()()0xf x f x x ->为增函数,若,为增函数,根据,求出不等式的解集; ()f x x 0x <()f x x()()220f f -==【详解】解:∵是定义在上的偶函数,当时,, ()f x R 0x >'2()()0xf x f x x->∴为增函数,为偶函数,为奇函数,()f x x ()f x ()f x x∴在上为增函数, ()f x x(),0∞-∵,()()220f f -==若,,所以; 0x >()202f =2x >若,,在上为增函数,可得, 0x <()202f -=-()f x x (),0∞-20x -<<综上得,不等式的解集是. ()0f x x>()()2,02,-+∞ 故选:C.二、多选题9.(多选)已知数列中,,,下列选项中能使的n 为( ) {}n a 13a =()*111n n a n a +=-∈+N 3n a =A .17 B .16C .8D .7【答案】BD【分析】由递推公式可得数列为周期数列,即得答案. 【详解】由,, 13a =111n n a a +=-+得,,,214a =-343a =-43a =所以数列是周期为3的数列,{}n a 所以,.81714a a ==-7163a a ==故选:BD .10.若为数列的前项和,且,则下列说法正确的是 n S {}n a n 21,(*)n n S a n N =+∈A .B .516a =-563S =-C .数列是等比数列 D .数列是等比数列{}n a {}1n S +【答案】AC【解析】根据题意,先得到,再由,推出数列是等比数列,根据等11a =-1(2)n n n a S S n -=-≥{}n a 比数列的通项公式与求和公式,逐项判断,即可得出结果. 【详解】因为为数列的前项和,且, n S {}n a n 21,(*)n n S a n N =+∈所以,因此,1121S a =+11a =-当时,,即,2n ≥1122n n n n n a S S a a --=-=-12n n a a -=所以数列是以为首项,以为公比的等比数列,故C 正确;{}n a 1-2因此,故A 正确;451216a =-⨯=-又,所以,故B 错误;2121n n n S a =+=-+552131S =-+=-因为,所以数列不是等比数列,故D 错误. 110S +={}1n S +故选:AC.【点睛】本题主要考查由递推公式判断等比数列,以及等比数列基本量的运算,熟记等比数列的概念,以及等比数列的通项公式与求和公式即可,属于常考题型. 11.已知函数,则( ) ()31443f x x x =-+A .在上单调递增 ()f x ()0,∞+B .是的极大值点 2x =-()f x C .有三个零点()f x D .在上最大值是 ()f x []0,34【答案】BCD【分析】对求导,令,可得的值,列表可得函数的单调性与极值,再逐个选项()f x ()0f x '=x ()f x 判断即可.【详解】解:因为 ()31443f x x x =-+所以, 2()4(2)(2)f x x x x '=-=+-令,解得或,()0f x '=2x =-2x =与随的变化情况如下表: ()f x '()f x xx(,2)-∞- 2-(2,2)- 2(2,)+∞()f x ' +0 -0 +()f x极大值极小值因此函数在,上单调递增,在上单调递减,故错误;()f x (,2)-∞-(2,)+∞(2,2)-A 是的极大值点,故正确;2x =-()f x B 因为,,,, (6)440f -=-<28(2)03f -=>()423f =-()652f =由函数的单调性及零点存在性定理可知有三个零点,故正确; ()f x C 当的定义域为时,()f x []0,3在,上单调递减,在,上单调递增,()f x [02](23]又, ,(0)4f =()31f =故选:.BCD 12.“提丢斯数列”是18世纪由德国数学家提丢斯给出的,具体如下:取0,3,6,12,24,48,96,192,…这样一组数,容易发现,这组数从第3项开始,每一项是前一项的2倍,将这组数的每一项加上4,再除以10,就得到“提丢斯数列”:0.4,0.7,1.0,1.6,2.8,5.2,10.0,…,则下列说法中正确的是( ) A .“提丢斯数列”是等比数列B .“提丢斯数列”的第99项为9732410⨯+C .“提丢斯数列”的前31项和为 30321211010⨯+D .“提丢斯数列”中,不超过20的有9项 【答案】BC【分析】根据题意得,由此利用等比数列的性质即可求出结果.20.4,1324,210n n n a n -=⎧⎪=⎨⋅+≥⎪⎩【详解】记“提丢斯数列”为数列,则当时,,当时,{}n a 3n ≥326243241010n n n a --=⋅+⋅+=2n =,符合该式,当时,不符合上式,故,故A 错误;20.7a =1n =10.4a =20.4,1324,210n n n a n -=⎧⎪=⎨⋅+≥⎪⎩,故B 正确;“提丢斯数列”的前31项和为979932410a ⨯+=()3002923232121223051051010⨯++⋅⋅⋅++⨯=+,故C 正确;令,即,得,又,故不超过20的有23242010n -⋅+≤219623n -≤2,3,4,5,6,7,8n =120a <8项,故D 错误. 故选:B C.三、填空题13.在等比数列中,,则_____. {}n a 7125a a =891011a a a a =【答案】25【分析】根据等比数列下标和的性质即可得到结论. 【详解】在等比数列中,, {}n a 7125a a =则, 891011811910712712()()()()25a a a a a a a a a a a a ===故答案为:25【详解】时到直线的距离最短, 22,1,(1,0)21y x P x ==∴='-所以点230x y -+=15.设Sn 是数列{an }的前n 项和,且a 1=-1,an +1=SnSn +1,则Sn =__________. 【答案】-. 1n【详解】试题分析:因为,所以,所以,11n n n a S S ++=111n n n n n a S S S S +++=-=111111n n n n n n S S S S S S +++-=-=即,又,即,所以数列是首项和公差都为的等差数列,所1111n n S S +-=-11a =-11111S a ==-1n S ⎧⎫⎨⎬⎩⎭1-以,所以. 11(1)(1)n n n S =----=-1n S n=-【解析】数列的递推关系式及等差数列的通项公式.【方法点晴】本题主要考查了数列的通项公式、数列的递推关系式的应用、等差数列的通项公式及其性质定知识点的综合应用,解答中得到, ,确定数列是首项和公差1111n n S S +-=-111S =-1n S ⎧⎫⎨⎬⎩⎭都为的等差数列是解答的关键,着重考查了学生灵活变形能力和推理与论证能力,平时应注意方1-法的积累与总结,属于中档试题. 16.设函数f (x )=x 3--2x +5,若对任意的x ∈[-1,2],都有f (x )>a ,则实数a 的取值范围是22x ________.【答案】7(,2-∞【分析】利用导数求得函数在上的值域,即可列出不等式求得结果. []1,2-【详解】,令,得或,2()32f x x x '=--()0f x '=23x =-1x =∴在和上为增函数,在上为减函数, ()y f x =2()3-∞-,(1)+∞,2(1)3-,∴在处有极大值,在处有极小值,()f x 23x =-1x =极小值为17(1)12522f =--+=而,111(1)12522f -=--++= ∴在上的最小值为, ()f x [12]-,72对于任意都有成立,得的范围. 1[]2x ∈-,()f x a >a 72a <故答案为:.7(,)2-∞【点睛】该题考查利用导数求函数在区间上的最值,属于基础题目.四、解答题17.设是公比为正数的等比数列,,. {}n a 12a =214a a =+(1)求的通项公式;{}n a (2)设是首项为1,公差为2的等差数列,求数列的前n 项和. {}n b {}n n a b +n S 【答案】(1)123n n a -⨯=(2) 231n n +﹣【分析】(1)设为等比数列的公比,由已知易得值,则数列的通项可求; q {}n a q {}n a (2)由已知可得的通项,利用分组求和法,求解. {}n b n S 【详解】(1)设为等比数列的公比, q {}n a 则由,得,解得q =3, 12a =214a a =+224q =+∴的通项为;{}n a 123n n a -⨯=(2)由已知可得, ()12121n b n n =+=﹣﹣∴,12321n n n a b n +⨯+﹣=(﹣)1122n n n S a b a b a b =+++ +++()()1212n n a a a b b b =+++ +++ 2(13)(121)132n n n-+-=+-.231n n =+﹣18.已知函数()2ln f x x x =+(1)求的极值;()()3h x f x x =-(2)若函数在定义域内为增函数,求实数的取值范围. ()()g x f x ax =-a【答案】(1)见解析;(2)a ≤【分析】(1)由已知可得,求出其导函数,解得导函数的零点,由导函数的零点对定义域分()h x 段,求得函数的单调区间,进一步求得极值(2)由函数在定义域内为增函数,可得恒成立,分离参数,利()()g x f x ax =-()()‘00g x x ≥>a 用基本不等式求得最值可得答案【详解】(1)由已知可得()()233h x f x x lnx x x =-=+-,()()2‘2310x x h x x x-+=>令,可得或()2‘2310x x h x x-+==12x =1x =则当时,,当时, ()1012x ⎛⎫∈⋃+∞ ⎪⎝⎭,,()‘0h x >112x ⎛⎫∈ ⎪⎝⎭()‘0h x <在,上为增函数,在上为减函数 ()h x ∴102⎛⎫ ⎪⎝⎭,()1+∞,112⎛⎫⎪⎝⎭则 ()()12h x h ==-极小值,()15224h x h ln ⎛⎫==-- ⎪⎝⎭极大值(2)()()2g x f x ax lnx x ax =-=+-, ()‘12g x x a x=+-由题意可知恒成立,()()‘00g x x ≥>即12min a x x ⎛⎫≤+ ⎪⎝⎭时, 0x > 12x x +≥x =故12min x x ⎛⎫+= ⎪⎝⎭则a ≤【点睛】本题主要考查了函数的极值,只需求导后即可求出结果,在解答函数增减性时,结合导数来求解,运用了分离参量的解法,属于中档题19.已知数列的各项均为正数,表示数列的前n 项的和,且. {}n a n S {}n a 22n S n n =+(1)求数列的通项公式;{}n a(2)设,求数列的前n 项和. 12n n n b a a +={}n b n T 【答案】(1),21n a n =+*N n ∈(2)269n n + 【分析】(1)利用公式,分两种情况讨论,即可求解. ()()1112n n n S n a S S n -⎧=⎪=⎨-≥⎪⎩(2)根据已知条件,结合裂项相消法,即可求解.【详解】(1)∵,22n S n n =+∴当时,,1n =113a S ==当时,,2n ≥()()221212121n n n a S S n n n n n -=-=+----=+对时,等号也成立,1n =故,.21n a n =+*N n ∈(2)==, 12n n n b a a +=2(21)(23)n n ++112123n n -++故前n 项和= 11111135572123n T n n =-+-++-++ 11232369n n n -=++20.已知函数. 22()ln 1x f x x x -=-+(1)判断函数的零点个数;()f x (2)设,若,是函数的两个极值点,求实数a 的取值范围. 4()()2()1a g x f x a x +=-+∈+R 1x 2x ()g x 【答案】(1)有且仅有1个零点;(2).(),4-∞-【分析】(1)先判断函数的单调性,再结合,即可知零点个数;()10f =(2)由题意知,是方程在内的两个不同的实数解,也是方程1x 2x ()0g x '=(0,)+∞在内的两个不同的实数解,再根据实根分布知识即可解出.()()2210h x x a x =+++=(0,)+∞【详解】(1)由题知函数的定义域为,()f x ()0,∞+对任意恒成立, ()22212(1)2(1)(1)0(1)(1)x x x f x x x x x +---'=-=≥++()0,x ∈+∞当且仅当时,,所以在上单调递增.1x =()0f x '=()f x ()0,∞+又,所以函数有且仅有1个零点. ()2121ln1011f ⨯-=-=+()f x(2)因为, ()()42ln 11a a g x f x x x x +=-+=-++所以. ()()2221(2)10(1)(1)a x a x g x x x x x x +++'=+=>++由题意知,是方程在内的两个不同的实数解.1x 2x ()0g x '=(0,)+∞令,又,且函数图象的对称轴为, ()()221h x x a x =+++()010h =>()h x 22a x +=-所以只需 220,(2)40,a a -->⎧⎨∆=+->⎩解得,即实数的取值范围为.4a <-a (),4-∞-21.已知数列的前n 项和,,且满足.{}n a n S 11a =12n n S na +=(1)求;n a (2)若,求数列的前n 项和.(1)2n a n n b a =+⋅{}n b n T 【答案】(1)n a n =(2)12n n T n +⋅=【分析】(1)由题意可得,可得,累乘即可得; ()121n n S n a --=11n n a n a n ++=n a n =(2)由,利用错位相减即可求和. 12n n b n =+⋅()【详解】(1)由题意可得.....①,12n n S na +=当时,......②,2n ≥()121n n S n a --=①﹣②得,,可得, ()121n n n a na n a +--=11n n a n a n ++=又,, 2122a S ==2121a a =综上,时,, 1n ≥11n n a n a n ++=当时,=, 2n ≥3241231n n a a a a a a a a -⋅⋅⋅ 2341231n n ⋅⋅⋅⋅- ∴,∴, 1n a n a =n a n =又满足,11a =n a n =综上,.n a n =(2) )12(12n a n n n b n a =+⋅=+⋅()数列的前n 项和,.......① {}n b 1231223242...212n n n T n n ⋅+⋅+⋅++⋅++⋅﹣=(),.........②23122232...212n n n T n n +⋅+⋅++⋅++⋅=()①﹣②可得 ()12112+222...2122n n n n T n n ++-++++-+⋅=-⋅=,∴.12n n T n +⋅=22.已知抛物线的焦点恰好是双曲线的一个焦点,是坐标原点.22(0)y px p =>F 221243x y -=O (1)求抛物线的方程;(2)已知直线与抛物线相交于,两点,:22l y x =-A B ①求;AB ②若,且在抛物线上,求实数的值.OA OB mOD += D m 【答案】(1);(2)①5;②. 24y x =13【解析】(1)求出双曲线的一个焦点是,从而可得,求出即可. (1,0)12p =p (2)联立直线与抛物线方程得,利用韦达定理结合焦半径公式可求出,设2310x x -+=AB ,根据向量的坐标运算即可求解.()00,D x y 【详解】(1)双曲线方程可化为, 221243x y -=2211344x y -=因此,所以双曲线的一个焦点是, 2131,144c c =+==(1,0)于是抛物线的焦点为,则, 22(0)y px p =>(1,0)F 12p =24p =故抛物线的方程为.24y x =(2)①依题意,由可得,设, 2224y x y x=-⎧⎨=⎩2310x x -+=()()1122,,,A x y B x y 由韦达定理知,123x x +=1225AB FA FB x x ∴=+=++=②设,则由,得, ()00,D x y OA OB mOD += ()01213x x x m m=+=()01212y y y m m =+=由于D 在抛物线上,因此,可得. 2412m m=13m =【点睛】方法点睛:本题考查了抛物线的标准方程、焦半径公式,有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式,若不过焦12AB x x p =++点,则必须用一般弦长公式.。
高二12月月考(数学)(考试总分:150 分)一、单选题(本题共计8小题,总分40分)1.(5分)1.直线x﹣y+1=0的斜率为()A.B.﹣C.D.﹣2.(5分)2.已知向量=(2,3,1),=(1,2,0),则|+|等于()A.B.3C.D.93.(5分)3.如图,在三棱柱ABC﹣A1B1C1中,M为A1C1的中点,若=,=,=,则下列向量与相等的是()A.﹣﹣+B.+﹣C.﹣++D.++4.(5分)4.《周髀算经》是中国最古老的天文学和数学著作,书中提到冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影子长依次成等差数列.若冬至、大寒、雨水的日影子长的和是40.5尺,芒种的日影子长为4.5尺,则冬至的日影子长为()A.6.5尺B.13.5尺C.14.5尺D.15.5尺5.(5分)5.在正方体ABCD﹣A1B1C1D1中,M、N分别为棱A1B1和BB1的中点,那么异面直线AM和CN所成角的余弦值是()A.B.C.D.﹣6.(5分)6.历时23天嫦娥五号成功携带月球样品返回地球,标志着中国航天向前迈出一大步.其中2020年11月28日晚,嫦娥五号成功进行首次近月制动,进入一个大椭圆轨道.该椭圆形轨道以月球球心为一个焦点F1,若其近月点A(离月球表面最近的点)与月球表面距离为r1公里,远月点B(离月球表面最远的点)与月球表面距离为r2公里,并且F1,A,B在同一直线上已知月球的半径为R公里,则该椭圆形轨道的离心率为()A.B.C.D.7.(5分)7.已知动点P在直线l1:3x﹣4y+1=0上运动,动点Q在直线l2:6x+my+4=0上运动,且l1∥l2,则|PQ|的最小值为()A.B.C.D.8.(5分)8.若等差数列{a n}的前n项和为S n,首项a1>0,a2020+a2021>0,a2020•a2021<0,则满足S n>0成立的最大正整数n是()A.4039B.4040C.4041D.4042二、多选题(本题共计4小题,总分20分)9.(5分)9.关于双曲线C1:=1与双曲线C2:=1,下列说法正确的是()A.它们的实轴长相等B.它们的渐近线相同C.它们的离心率相等D.它们的焦距相等10.(5分)10.已知圆C1:x2+y2=1和圆C2:x2+y2﹣4x=0的公共点为A,B,则()A.|C1C2|=2B.直线AB的方程是x=C.AC1⊥AC2D.|AB|=11.(5分)11.若数列{a n}满足a1=1,a2=1,a n=a n﹣1+a n﹣2(n≥3,n∈N+),则称数列{a n}为斐波那契数列,又称黄金分割数列.在现代物理、准晶体结构、化学等领域,斐波那契数列都有直接的应用则下列结论成立的是()A.a7=13B.a1+a3+a5+……+a2019=a2020C.S7=54D.a2+a4+a6+……+a2020=a202112.(5分)12.已知正方体ABCD﹣A1B1C1D1的棱长为2,点E,F在平面A1B1C1D1内,若|AE|=,AC⊥DF,则()A.点E的轨迹是一个圆B.点F的轨迹是一个圆C.|EF|的最小值为﹣1D.AE与平面A1BD所成角的正弦值的最大值为三、填空题(本题共计3小题,总分15分)13.(5分)13.若直线x﹣y+1=0与直线mx+3y﹣1=0互相垂直,则实数m的值为.14.(5分)14.若双曲线的渐近线为,则双曲线C的离心率为.15.(5分)16.在平面直角坐标系中,O为坐标原点,过点(,0)的直线l与圆C:x2+y2﹣4x+8=0交于A,B两点,则四边形OACB面积的最大值为.四、解答题(本题共计7小题,总分75分)16.(5分)15.已知四面体ABCD的顶点分别为A(2,3,1),B(1,0,2),C(4,3,﹣1),D(0,3,﹣3),则点D到平面ABC的距离.17.(10分)17.在:①圆C与y轴相切,且与x轴正半轴相交所得弦长为2;②圆C经过点A(4,1)和B(2,3);③圆C与直线x﹣2y﹣1=0相切,且与圆Q:x2+(y﹣2)2=1相外切。
广东省汕尾市陆河县河田中学2023-2024学年高二下学期第二次阶段考试数学试题一、单选题 1.已知()1f x x=,则()4f '=( ) A .116B .116-C .16D .-162.在等差数列{}n a 中,若26510,9a a a +==,则10a =( ) A .20B .24C .27D .293.有3个旅游爱好者分别从4个不同的景点中选择一处游览,则不同的选择方法数为( ) A .81B .64C .24D .124.若()na b +的展开式中,第3项的二项式系数与第7项的二项式系数相等,则n =( ). A .10B .9C .8D .75.已知函数()2ln x ax f xx =++的单调递减区间为1,12⎛⎫⎪⎝⎭,则( ). A .(],3a ∈-∞- B .3a =- C .3a =D .(],3a ∈-∞6.今天是星期三,再过20252天是星期( ). A .一B .二C .四D .五7.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,L ,从第三项起,每个数都等于它前面两个数的和,即()*21n n n a a a n ++=+∈N ,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”.设数列{}n a 的前n 项和为n S ,记2023a m =,2024a n =,则2023S =( )A .2m n +-B .m n +C .1m n +-D .1m n ++8.已知函数()f x 是定义在R 上的可导函数,其导函数为()f x ',若()22e f =,且()()0f x f x '->,则关于x 的不等式()ln f x x ≥的解集为( )A .(]0,eB .(20,e ⎤⎦ C .[)e,+∞D .)2e ,⎡+∞⎣二、多选题9.甲、乙、丙、丁、戊五名同学站一排,下列结论正确的是( ) A .不同的站队方式共有120种B .若甲和乙相邻,则不同的站队方式共有36种C .若甲、乙不相邻,则不同的站队方式共有72种D .甲不在两端,则不同的站队方式共有48种10.已知曲线3()21f x x =+.则曲线过点P (1,3)的切线方程为.( )A .630x y --=B .3230x y -+=C .690x y +-=D .3290x y +-=11.传说古希腊毕达哥拉斯学派的数学家用沙粒和小石子来研究数,他们根据沙粒或小石子所排列的形状把数分成许多类,如图中第一行图形中黑色小点个数:1,3,6,10,...称为三角形数,第二行图形中黑色小点个数:1,4,9,16,...称为正方形数,记三角形数构成数列{}n a ,正方形数构成数列{}n b ,则下列说法正确的是( )A .621a =B .1225既是三角形数,又是正方形数C .1231111 (1)n na a a a n ++++=+ D .*,2m m ∀∈≥N ,总存在*,p q ∈N ,使得m p qb a a =+成立三、填空题12.已知数列{}n a 的前n 项和2n S n n c =++(其中c 为常数,c ∈R ),写出使{}n a 为等差数列的一个通项公式n a =.13.8(2)2y x x y ⎛⎫-+ ⎪⎝⎭的展开式中45x y 的系数为.14.习近平总书记在党的十九大工作报告中提出,永远把人民对美好生活的向往作为奋斗目标.在这一号召的引领下,全国人民积极工作,健康生活.当前,“日行万步”正成为健康生活的代名词.某学校工会积极组织该校教职工参与“日行万步”活动,并随机抽取了该校100名教职工,统计他们的日行步数,按步数分组,得到各组日行步数的人数比例如饼图所示.(1)若从日行步数超过10千步的教职工中随机抽取两人,则这两人的日行步数恰好一人在10千步:12千步之间,另一人在12千步:14千步之间的概率是.(2)设抽出的这两名教职工中日行步数超过12千步的人数为随机变量X ,则()1P X ≤=.四、解答题15.为铭记历史,缅怀先烈,增强爱国主义情怀,某学校开展了共青团知识竞赛活动.在最后一轮晋级比赛中,甲、乙、丙三名同学回答一道有关团史的问题,每个人回答正确与否互不影响.已知甲回答正确的概率为23,甲、丙两人都回答正确的概率是12,乙、丙两人都回答正确的概率是14.(1)若规定三名同学都回答这个问题,求甲、乙、丙三名同学中至少1人回答正确的概率;(2)若规定三名同学抢答这个问题,已知甲、乙、丙抢到答题机会的概率分别为111,,263,求这个问题回答正确的概率.16.四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是正方形,2PA AB ==,点E 是棱PC 上一点.(1)求证: 平面PAC ⊥平面BDE ;(2)当E 为PC 中点时, 求二面角A BE D --的正弦值.17.已知等差数列{}n a 为递增数列,636S =,且125,,a a a 成等比数列. (1)求数列{}n a 的通项公式; (2)令11n n n b a a +=,若n T 为数列{}n b 的前n 项和,且存在N n *∈,使得10n n T a λ+-≥成立,求实数λ的取值范围.18.已知函数()e x f x x=,()ln g x x x=-.(1)求函数()g x 的极值;(2)若()()()h x f x g x =-,求函数()h x 的最小值; (3)若()h x a =有两个零点1x ,2x ,证明:121x x <.19.在n 个数码1,2,,(N,2)∈≥L n n n 构成的一个排列12n j j j L 中,若一个较大的数码排在一个较小的数码的前面,则称它们构成逆序(例如25j j >,则2j 与5j 构成逆序),这个排列的所有逆序的总个数称为这个排列的逆序数,记为()12n T j j j L ,例如,在3个数码的排列312中,3与1,3与2都构成逆序,因此()3122T =. (1)计算(645231)T ;(2)设数列{}n a 满足1113[(645231)]n n n a a T ++=-,113a =,求{}n a 的通项公式; (3)设排列12(,3)n j j j n n ∈≥N L 满足1(2,3,,1)i j n i i n =+-=-L ,11j =,n j n =,()12n n b T j j j =L ,12(3)20.1n n c n b +=≥+,证明:342n c c c +++<L .。
高二数学段考试题
一、选择题(每题3分,共36分)
1、下列说法正确的是 ( )
A、两平面相交只有一个公共点
B、两两相交的三条直线共面
C、不共面的四点中,任何三点不共线
D、有三个公共点的两平面必重合
2、如果直线a⊥b,且a⊥平面α,则()
A、b//平面α
B、b⊂α
C、b⊥平面α
D、b//平面α或b⊂α
3、空间同垂直于一条直线的两条直线的位置关系()
A、一定是异面直线
B、不可能平行
C、不可能相交
D、异面、共面都有可能
4、正四棱锥的底面边长是棱锥高的2倍,则侧面与底面所成的二面角是()
A、30o
B、45o
C、60o
D、90o
5、圆锥的轴截面是正三角形,则它的侧面积是底面积的()
A、√2/2倍
B、√2倍
C、2倍
D、4倍
6、圆锥的母线与高的比为2√3/3,则母线与底面的夹角为()
A、30o
B、45o
C、60o
D、75o
7、一个正三棱锥的底面边长为6,高为3,这个三棱锥的体积是()
A、9
B、27
C、27√3
D、9√3
8、两个球的表面积之比是1:16,那么这两个球的体积之比是()
A、1:32
B、1:24
C、1:64
D、1:256
9、正方体ABCD--ABCD中,则∠ B1AC= ()
A、30o
B、45o
C、60o
D、75o
10、如果两条直线a和b没有公共点,则a和b ()
A、共面
B、异面
C、平行
D、可能平行,也可能异面
11、圆锥的轴截面是等边三角形,那么它的侧面展开图扇形的圆心角
是()
A、60o
B、90o
C、180o
D、270o
12、线段AB的长为2(A∈α),它在平面内的射影长为1,则线段AB所在的直线与平面α所成的角是()
A、30o
B、60o
C、120o
D、150o
二、填空题(13题4分,其它每空3分,共25分)
13、默写三垂线定理:
; 14、如图,长方体ABCD-A1B1C1D1中,AB=2,BB1=BC=1,则CD1与BB1所成角的余弦值是;A1C与平面AC所成的角的余弦值
是。
15、设一圆锥的轴截面的面积为√3,底面半径为1,
则此圆锥的体积。
16、已知平面α//β,且α、β间的距离为1,直线L
与α、β成60o的角,则夹在α、β之间的线段长为。
17、若长方体的长、宽、高分别为1,2,,√3 ,,则对角线长为。
18、设圆锥的高为2,高与母线所成的角为600,则该圆锥的侧面积是。
19、若正六棱锥的体积为12cm2,底面边长为2cm,则它的高为cm
高二数学段考试题(答题卷)
一、选择题(每题3分,共36分)
题号 1 2 3 4 5 6 7 8 9 10 11 12 答案
二、填空题(13题4分,其它每空3分,共25分)
13、
14、,;15、;16、;
17、;18、;19、;
三、解答题(20题7分,21题8分,22题12分,23题12分)
20、已知圆锥母线长为5cm,侧面积为10 √3 cm2,求该圆锥的体积。
21、已知球面上有A、B、C三点,AB=12cm, BC=20cm, CA=16cm,
球心到过这三点的截面的距离为24cm, 求球的表面积和体积。
22、如图,在直角三角形ABC中,∠ACB=90o,AC=BC=1,若PA⊥平面ABC,且PA=√2,
(1)证明BC⊥PC
(2)求直线BP与平面PAC所成的角。
23、已知圆锥的高PO为√2,过顶点P的一个截面PAB
与底面成二面角为45o,且截面PAB面积为4,求此圆锥
侧面积。