数学分析课件PPT之二十一章重积分(上)
- 格式:ppt
- 大小:5.16 MB
- 文档页数:157
第二十一章 重积分 1二重积分的概念一、平面图形的面积引例:若构成平面图形P 的点集是平面上的有界点集, 即存在矩形R ,使P ⊂R ,则称平面图形P 有界. 用某一平行于坐标轴的一组直线网T 分割P(如图),这时直线网T 的网眼——小闭矩形△i 可分为三类: (1)△i 上的点都是P 的内点;(2)△i 上的点都是P 的外点,即△i ∩P=Ø; (3)△i 上含有P 的边界点.将所有属于直线网T 的第(1)类小矩形(图中阴影部分)的面积加起来, 记和数为s p (T),则有s p (T)≤△R (矩形R 的面积);将所有第(1)类与第(3)类小矩形(图中粗线所围部分)的面积加起来, 记作S p (T),则有s p (T)≤S p (T). 由确界存在定理知,对于平面上所有直线网,数集{s p (T)}有上确界,数集{S p (T)}有下确界, 记Tp I sup ={s p (T)} ,Tp I inf ={S p (T)}. 显然有0≤p I ≤p I .p I 称为内面积,p I 称为外面积.定义1:若平面图形P 的内面积p I 等于它的外面积p I , 则称P 为可求面积,并称其共同值I p =p I =p I 为P 的面积.定理21.1:平面有界图形P 可求面积的充要条件是:对任给ε>0, 总存在直线网T ,使得S p (T)-s p (T)< ε.证:[必要性]设P 的面积为I p , 由面积的定义知, I p =p I =p I . ∀ε>0, 由p I 及p I 的定义知,分别存在直线网T 1与T 2,使得 s p (T 1)>I p -2ε, S p (T 2)<I p +2ε, 记T 为由T 1与T 2合并所成的直线网,则 s p (T 1)≤s p (T), S p (T 2)≥S p (T),∴s p (T)>I p -2ε, S p (T)<I p +2ε, 从而S p (T)-s p (T)<ε. [充分性]设对任给的ε>0, 存在某直线网T ,使得S p (T)-s p (T)<ε. 但s p (T)≤p I ≤p I ≤S p (T),∴p I -p I ≤S p (T)-s p (T)<ε. 由ε的任意性知,p I =p I ,∴平面图形P 可求面积.推论:平面有界图形P 的面积为零的充要条件是它的外面积p I =0,即对任给的ε>0, 存在某直线网T ,使得S p (T)<ε,或 平面图形P 能被有限个其面积总和小于ε的小矩形所覆盖.定理21.2:平面有界图形P 可求面积的充要条件是:P 的边界K 的面积为0.证:由定理21.1,P 可求面积的充要条件是:∀ε>0, ∃直线网T , 使得S p (T)-s p (T)<ε. 即有S K (T)=S p (T)-s p (T)<ε, 由推论知,P 的边界K 的面积为0.定理21.3:若曲线K 为定义在[a,b]上的连续函数f(x)的图象,则曲线K 的面积为零.证:∵f(x)在闭区间[a,b]上连续,从而一致连续. ∴∀ε>0, ∃δ>0, 当把区间[a,b]分成n 个小区间[x i-1,x i ] (i=1,2,…,n, x 0=a,x n =b)并满足 max{△x i =x i -x i-1 |i=1,2,…,n }<δ时,可使f(x)在每个小区间[x i-1,x i ]上的振幅都有ωi <ab -ε.把曲线K 按自变量x=x 0,x 1,…,x n 分成n 个小段,则 每一个小段都能被以△x i 为宽, ωi 为高的小矩形所覆盖,又 这n 个小矩形面积的总和为i ni i x ∆∑=1ω<ab -ε∑=∆ni ix1<ε,由定理21.1的推论即得曲线K 的面积为零.推论1:参数方程x=φ(t), y=ψ(t), t ∈[α,β]所表示的光滑曲线K 的面积为零.证:由光滑曲线的定义,φ’(t),ψ’(t)在[α,β]上连续且不同时为0. 对任意t 0∈[α,β],不妨设φ’(t 0)≠0,则存在t ’的某邻域U(t 0), 使得 x=φ(t)在此邻域上严格单调,从而存在反函数t=φ-1(x). 又 由有限覆盖定理,可把[α,β]分成有限段:α=t 0<t 1<…<t n =β, 在每一小区间段上,y=ψ(φ-1(x))或x=ψ(φ-1(y)),由定理21.3知, 每小段的曲线面积为0,∴整条曲线面积为零.推论2:由平面上分段光滑曲线所围成的有界闭区域是可求面积的.注:并非平面中所有的点集都是可求面积的.如D={(x,y)|x,y ∈Q ∩[0,1]}. 易知0=D I ≤D I =1, 所以D 是不可求面积的.二、二重积分的定义及其存在性 引例:求曲顶柱体的体积(如图1).设f(x,y)为定义在可求面积的有界闭区域D 上的非负连续函数. 求以曲面z=f(x,y)为顶,以D 为底的柱体体积V.用一组平行于坐标轴的直线网T 把D 分成n 个小区域σi (i=1,2,…,n). ∵f(x,y)在D 上连续,∴当每个σi 都很小时, f(x,y)在σi 上各点的函数值近似相等; 可在σi 上任取一点(ξi ,ηi ),用以f(ξi ,ηi )为高, σi 为底的小平顶柱体的体积f(ξi ,ηi )△σi 作为V i 的体积△V i ,即△V i ≈f(ξi ,ηi )△σi .把这些小平顶柱体的体积加起来, 就得到曲顶柱体体积V 的近似值: V=∑=∆n i i V 1≈i ni i i f σηξ∆∑=1),(.当直线网T 的网眼越来越细密,即分割T 的细度T =di ni ≤≤1max →0(di 为σi 的直径)时,i ni i i f σηξ∆∑=1),(→V.概念:设D 为xy 平面上可求面积的有界闭区域,f(x,y)为定义在D 上的函数. 用任意的曲线把D 分成n 个可求面积的小区域σ1, σ2,…, σn . 以△σi 表示小区域△σi 的面积,这些小区域构成D 的一个分割T , 以d i 表示小区域△σi 的直径,称T =di ni ≤≤1max 为分割T 的细度.在每个σi 上任取一点(ξi ,ηi ),作和式ini iif σηξ∆∑=1),(,称为函数f(x,y)在D 上属于分割T 的一个积分和.定义2:设f(x,y)是定义在可求面积的有界闭区域D 上的函数. J 是一个确定的数,若对任给的正数ε,总存在某个正数δ,使对于D 的任何分割T ,当它的细度T <δ时,属于T 的所有积分和都有J f ini ii-∆∑=σηξ1),(<ε,则称f(x,y)在D 上可积,数J 称为函数f(x,y)在D上的二重积分,记作:J=⎰⎰Dd y x f σ),(.注:1、函数f(x,y)在有界可求面积区域D 上可积的必要条件是f 在D 上有界.2、设函数f(x,y)在D 上有界,T 为D 的一个分割,把D 分成n 个可求面积的小区域σ1, σ2,…, σn . 令M i =iy x σ∈),(sup f(x,y), m i =iy x σ∈),(inf f(x,y), i=1,2,…,n.作和式S(T)=i n i i M σ∆∑=1, s(T)=i ni i m σ∆∑=1. 它们分别称为函数f(x,y)关于分割T 的上和与下和.定理21.4:f(x,y)在D 上可积的充要条件是:0lim →T S(T)=0lim →T s(T).定理21.5:f(x,y)在D 上可积的充要条件是:对于任给的正数ε,存在D 的某个分割T ,使得S(T)-s(T)<ε.定理21.6:有界闭区域D 上的连续函数必可积.定理21.7:设f(x,y)在有界闭域D 上有界,且不连续点集E 是零面积集,则f(x,y)在D 上可积.证:对任意ε>0, 存在有限个矩形(不含边界)覆盖了E ,而 这些矩形面积之和小于ε. 记这些矩形的并集为K ,则 D\K 是有界闭域(也可能是有限多个不交的有界闭域的并集). 设K ∩D 的面积为△k ,则△k <ε. 由于f(x,y)在D\K 上连续, 由定理21.6和定理21.5,存在D\K 上的分割T 1={σ1, σ2,…, σn }, 使得S(T 1)-s(T 1)<ε. 令T={σ1, σ2,…, σn , K ∩D},则T 是D 的一个分割,且 S(T)-s(T)=S(T 1)-s(T 1)+ωK △k <ε+ωε, 其中ωK 是f(x,y)在K ∩D 上的振幅,ω的是f(x,y)在D 上的振幅. 由定理21.5可知f(x,y)在D 上可积.三、二重积分的性质1、若f(x,y)在区域D 上可积,k 为常数,则kf(x,y)在D 上也可积,且⎰⎰Dd y x kf σ),(=k ⎰⎰Dd y x f σ),(.2、若f(x,y), g(x,y)在D 上都可积,则f(x,y)±g(x,y)在D 上也可积,且[]⎰⎰±Dd y x g d y x f σσ),(),(=⎰⎰Dd y x f σ),(±⎰⎰Dd y x g σ),(.3、若f(x,y)在D 1和D 2上都可积,且D 1与D 2无公共内点,则⎰⎰21),(D D d y x f σ=⎰⎰1),(D d y x f σ+⎰⎰2),(D d y x f σ.4、若f(x,y)与g(x,y)在D 上可积,且f(x,y)≤g(x,y), (x,y)∈D ,则⎰⎰Dd y x f σ),(≤⎰⎰Dd y x g σ),(.5、若f(x,y)在D 上可积,则函数|f(x,y)|在D 上也可积,且⎰⎰Dd y x f σ),(≤⎰⎰Dd y x f σ),(.6、若f(x,y)在D 上都可积,且m ≤f(x,y)≤M, (x,y)∈D ,则 mS D ≤⎰⎰Dd y x f σ),(≤MS D , 其中S D 是积分区域D 的面积.7、(中值定理)若f(x,y)在有界闭区域D 上连续,则存在(ξ,η)∈D , 使得⎰⎰Dd y x f σ),(=f(ξ,η)S D , 其中S D 是积分区域D 的面积.注:中值定理的几何意义:以D 为底,z=f(x,y) (f(x,y)≥0)为曲顶的曲顶柱体体积等于一个同底的平顶柱体的体积,这个平顶柱体的高等于f(x,y)在区域D 中某点(ξ,η)的函数值f(ξ,η).习题1、把重积分⎰⎰Dxydxd σ作为积分和的极限,计算这个积分值,其中D=[0,1]×[0,1],并用直线网x=n i, y=nj , (i,j=1,2,…,n-1)分割D 为许多小正方形,每个小正方形取其右顶点作为其节点.解:⎰⎰Dxydxd σ=2111lim n n j n i nj ni n ⋅⋅∑∑==∞→=21121lim n n j n nj n ⋅⋅+∑=∞→=224)1(lim n n n +∞→=41.2、证明:若函数f(x,y)在有界闭区域D 上可积,则f(x,y)在D 上有界. 证:若f 在D 上可积,但在D 上无界,则对D 的任一分割T={σ1, σ2,…, σn }, f 必在某个小区域σk 上无界. 当i ≠k 时,任取p i ∈σi ,令G=∑≠nki i i p f σ)(, I=⎰⎰Ddxdy y x f ),(.∵f 在σk 上无界,∴存在p k ∈σk ,使得|f(p k )|>kG I σ∆++1, 从而∑=ni iip f 1)(σ=∑≠∆+nki k k i i p f p f σσ)()(≥|f(p k )·△σk |-∑≠nki i i p f σ)(>|I|+1.又f 在D 上可积,∴存在δ>0,对任一D 的分割T={σ1, σ2,…, σn }, 当T <δ时,T 的任一积分和∑=nk k k p f 1)(σ都满足∑=-nk k k I p f 1)(σ<1,即∑=nk k k p f 1)(σ<|I|+1,矛盾!∴f 在D 上可积,则f 在D 上有界.3、证明二重积分中值定理:若f(x,y)在有界闭区域D 上连续,则存在(ξ,η)∈D ,使得⎰⎰Df =f(ξ,η)S D , 其中S D 是积分区域D 的面积.证:∵f 在有界闭区域D 上连续,∴f 在D 上有最大值M 和最小值m, 对D 中一切点有m ≤f ≤M ,∴mS D ≤⎰⎰Df ≤MS D , 即m ≤⎰⎰DDf S 1≤M.由介值性定理知,存在(ξ,η)∈D ,使得⎰⎰Df =f(ξ,η)S D .4、证明:若f(x,y)为有界闭区域D 上的非负连续函数,且在D 上不恒为零,则⎰⎰Dd y x f σ),(>0.证:由题设知存在p 0(x 0,y 0)∈D ,使f(p 0)>0,令δ=f(p 0),由连续函数的局部保号性知:∃η>0使得对一切p ∈D 1(D 1=U(p 0,η)∩D), 有f(p)>2δ. 又f(x,y)≥0且连续,∴⎰⎰Df =⎰⎰1D f +⎰⎰-1D D f ≥2δ·△D 1>0.5、证明:若f(x,y)在有界闭区域D 上连续,且在D 内任一子区域D ’⊂D 上有⎰⎰'D d y x f σ),(=0,则在D 上f(x,y)≡0.证:假设存在p 0(x 0,y 0)∈D ,使得f(p 0)≠0, 不妨设f(p 0)>0. 由连续函数的保号性知,∃η>0使得对一切p ∈D ’(D ’=U(p 0,η)∩D), 有f(p)>0,由第4题知⎰⎰'D f >0,矛盾! ∴在D 上f(x,y)≡0.6、设D=[0,1]×[0,1],证明: 函数f(x,y)=⎩⎨⎧内非有理点为皆为有理数即内有理点为D y x y x D y x ),(,0),(),(,1在D 上不可积.证: 设D 的任一分割T={σ1, σ2,…, σn }, 则每一个小区域σi 内必同时含有D 内有理点和非有理点,从而 M i =iy x σ∈),(sup f(x,y)=1, m i =iy x σ∈),(inf f(x,y)=0, i=1,2,…,n.∴S(T)=i n i i M σ∆∑=1=1, s(T)=i ni i m σ∆∑=1=0,由T 的任意性知:lim →T S(T)=1≠0=0lim →T s(T). ∴f 在D 上不可积.7、证明:若f(x,y)在有界闭区域D 上连续,g(x,y)在D 上可积且不变号,则存在一点(ξ,η)∈D ,使得⎰⎰Dd y x g y x f σ),(),(=f(ξ,η)⎰⎰Dd y x g σ),(.证:不妨设g(x,y)≥0, (x,y)∈D ,则⎰⎰Dd y x g σ),(≥0. 令M,m 分别为f 在D 上的最大、最小值,则 m ⎰⎰Dd y x g σ),(≤⎰⎰Dd y x g y x f σ),(),(≤M ⎰⎰Dd y x g σ),(.若⎰⎰Dd y x g σ),(=0, 则⎰⎰Dd y x g y x f σ),(),(=0,任取(ξ,η)∈D ,得证!若⎰⎰Dd y x g σ),(>0, 则m ≤⎰⎰⎰⎰DDd y x g d y x g y x f σσ),(),(),(≤M. 由介值性定理知,存在一点(ξ,η)∈D ,使得f(ξ,η)=⎰⎰⎰⎰DDd y x g d y x g y x f σσ),(),(),( ,即⎰⎰Dd y x g y x f σ),(),(=f(ξ,η)⎰⎰Dd y x g σ),(.8、应用中值定理估计积分:I=⎰⎰++Dyx d 22cos cos 100σ的值, 其中D={(x,y)||x|+|y|≤10}. 解:∵f(x,y)=yx 22cos cos 1001++ 在D={(x,y)||x|+|y|≤10}上连续,根据中值定理知:存在(ξ,η)∈D ,使得I=ηξ22cos cos 100++∆D, 从而102D ∆≤I ≤100D ∆, △D 为D 的面积,∴51100≤I ≤2.9、证明:若平面曲线x=φ(t), y=ψ(t), α≤t ≤β光滑 (即φ(t),ψ(t)在[α,β]上具有连续导数且φ’2(t)+ψ’2(t)≠0),则 此曲线的面积为0.证法1:该平面曲线L 的长度为l=dt t t ⎰'+'βαψϕ)()(22为有限值.对∀ε>0, 将L 分成n=⎥⎦⎤⎢⎣⎡εl +1段:L 1,L 2,…,L n , 在每段L i 上取一点P i , 使P i 与其一端点的弧长为nl 2,以P i 为中心作边长为的ε正方形△i , 则L i ⊂△i (i=1,2,…,n), 从而L ⊂n i 1= △i ,记△=ni 1= △i ,则△为一多边形.设△的面积W ,则W ≤n ε2=⎪⎭⎫ ⎝⎛+1εlε=(1+ε)ε,∴L 的面积W L ≤W ≤(1+ε)ε. 即此曲线的面积为0.证法2:在曲线上任取参数t 的点M ,∵φ’2(t)+ψ’2(t)≠0, 由隐函数存在定理知,存在σ=(t-δ,t+δ)使曲线上对应的一段可以表示成显式方程.应用有限覆盖定理,[α,β]被开区间集{σ}有限覆盖,得出有限个区间, 使曲线分成有限部分,每一部分可以表示成显式方程y=f(x)或x=g(y), 其中f,g 为连续函数,由定理21.3知光滑曲线的面积为0.。