线路相间短路电流保护
- 格式:ppt
- 大小:1.23 MB
- 文档页数:27
相间短路的阶段式电流保护相间短路通常仅考虑两相短路和三相短路的情况。
电力系统发生相间短路的主要特征是电流明显增大,利用这一特点可以构成反应电流增大的阶段式电流保护。
一、瞬时电流速断保护1、瞬时电流速断保护的工作原理从故障切除时间考虑,原则上继电保护的动作时间越短越好,即在被保护元件或设备上装设快速保护,瞬时电流速断保护就是这样的快速保护。
下面用如图3-1所示单电源线路,说明瞬时电流速断保护的工作原理。
对于图3-1所示单侧有电源的辐射形电网,电流保护装设在线路始端,当线路发生三相短路时,短路电流计算如下k s k X X E I +=ϕ)3( (3-3)式中ϕE ——系统等效电源的相电动势; sX ——系统电源到保护安装点的电抗; k X ——短路电抗(保护安装点到短路点的电抗。
则Xs+Xk 为系统电源至短路点之间的总电抗。
显然,当短路点距离保护安装点越远时,Xk 越大,短路电流越小;当系统电抗越大时,短路电流越小;而且短路电流与短路类型有关,同一点)2()3(k k I I 〉。
短路电流与短路点的关系如图3-1的)(L f I k =曲线,曲线1为最大运行方式(系统电抗为m in .s X ,短路时出现最大短路电流)下三相短路故障时的)(L f I k =,曲线2为最小运行方式(系统电抗为max .s X ,短路时出现最小短路电流)下两相短路故障时的)(L f I k =。
瞬时电流速断保护反应线路故障时电流增大动作,并且没有动作延时,所以必须保证只有在被保护线路上发生短路时才动作,例如图3-1的保护1必须只反应线路Ll 上的短路,而对L1以外的短路故障均不应动作。
这就是保护的选择性要求,瞬时电流速断保护是通过对动作电流的合理整定来保证选择性的。
2.整定计算一般把对继电保护装置动作值、动作时间的计算和灵敏度的校验称为继电保护整定计算,将计算条件称为整定原则。
按照选择性要求,图3-1保护1的动作电流,应该大于线路L2始端短路时的最大短路电流。
第一章 输电线路相间短路的三段式电流保护第一节 瞬时电流速断保护一、 短路电流的分析计算瞬时电流速断保护(又称第I 段电流保护)它是反映电流升高,不带时限动作的一种电流保护。
1.短路电流计算在单侧电源辐射形电网各线路的始端装设有瞬时电流速断保护。
当系统电源电势一定,线路上任一点发生短路故障时,短路电流的大小与短路点至电源之间的电抗忽略电阻)及短路类型有关,三相短路和两相短路时,流过保护安装地点的短路电流为:lX X E I S S k 1)3(+= lX X E I S S k 1)2(23+= 2、运行方式与短路电流的关系当系统运行方式改变或故障类型变化时,即使是同一点短路,短路电流的大小也会发生变化。
在继电保护装置的整定计算中,一般考虑两种极端的运行方式,即最大运行方式和最小运行方式。
(1)最大运行方式——流过保护安装处的短路电流最大时的运行方式称为最大运行方式,此时系统的阻抗Xs 为最小;(2)最小运行方式——当流过保护安装处的短路电流最小的运行方式称为系统最小运行方式,此时系统阻抗Xs 最大。
图3- 1中曲线1表示最大运行方式下三相短路电流随J 的变化曲线。
曲线2表示最小运行方式下两相短路电流随J 的变化曲线。
二、动作电流的整定计算1、动作电流假定在线路L1和线路L2上分别装设瞬时电流速断保护。
根据选择性的要求,瞬时电流速断保护的动作范围不能超出被保护线路,故保护1瞬时电流速断保护的动作电流可按大于本线路末端短路时流过保护安装处的最大短路电流来整定,即max .1kB rel I op I I K I =1op I I ——保护装置1瞬时电流速断保护的动作电流,又称一次动作电流rel I K ——可靠系数,考虑到继电器的整定误差、短路电流计算误差和非周期分量的影响等而引人的大于1的系数,一般取1.2~1.3;I k1.max ——被保护线路末端B 母线上三相短路时流过保护安装处的最大短路电流,一般取次暂态短路电流周期分量的有效值.2、保护范围分析在图1中,以动作电流画一平行于横坐标的直线3,其与曲线1和曲线2分别相交于M 和N 两点,在交点到保护安装处的一段线路上发生短路故障时,I k >I I op1保护1会动作。
第4章双侧电源输电线路相间短路的方向电流保护第4章双侧电源输电线路相间短路的方向电流保护在电力系统中,双侧电源输电线路是非常常见的一种拓扑结构。
然而,在运行过程中,由于各种原因,可能会出现相间短路故障。
为了保护电力系统的正常运行,需要对这种故障进行准确的判断,并及时采取措施保护系统。
双侧电源输电线路相间短路故障是指两个电源之间的相线发生短路。
当这种故障发生时,电流会沿着线路的各个分支流动,同时流向短路点,形成环流。
由于环流的存在,会对电力系统带来很大的危害,如引发设备的过电流、电压波动等问题,对系统的稳定性和安全性构成威胁。
为了解决这个问题,需要在电源侧进行方向电流保护。
方向电流保护是指通过检测电流方向,判断故障点的位置,并采取保护措施,以限制短路故障的影响范围。
方向电流保护的基本原理是通过检测电流的相位差来确定故障的位置。
当相间短路发生时,电流的相位差会随着故障点的位置而改变。
通过测量电流的相位差,就可以判断故障点是在哪一侧,并采取相应的保护措施。
常用的方法包括差动保护和方向元件保护。
差动保护是利用差动电流进行方向电流保护。
差动电流是指同一线路两端电流的差值,通过比较差动电流的幅值和相位差,可以判断故障点的位置。
如果差动电流的幅值超过设定值,并且相位差在某个范围内,就说明故障点在保护的覆盖范围内,此时保护动作。
差动保护具有快速、精确的特点,广泛应用于电力系统。
另一种常用的方向电流保护方法是采用方向元件。
方向元件是指能够根据电流方向进行判断的装置,常见的方向元件有方向比较器、方向继电器等。
这些装置通过检测电流的相位差,判断故障点的位置,并根据判断结果发出保护信号,实现保护动作。
除了差动保护和方向元件保护之外,还可以利用数字保护装置进行方向电流保护。
数字保护装置具有运算速度快、精度高的特点,可以通过相间短路电流的特征进行方向电流保护。
数字保护装置通过采样和计算电流波形,判断故障点的位置,并根据判断结果进行保护动作。
第二章:输电线路的相间短路的电流保护GB50062-92《电力装置的继电保护和自动装置设计规范》规定:对3~63kV线路的下列故障或异常运行,应装设相应的保护装置:(1) 相间短路。
(2) 单相接地。
(3) 过负荷。
1. 3~10kV 线路装设相间短路保护装置的配置原则(1) 在3~10kV线路装设的相间短路保护装置,应符合下列要求:1) 由电流继电器构成的保护装置,应接于两相电流互感器上,同一网络的所有线路均应装在相同的两相上。
2) 后备保护应采用远后备方式。
3) 当线路短路使发电厂厂用母线或重要用户电压低于额定电压的60%时,以及线路导线截面过小,不允许带时限切除短路时,应快速切除故障。
4) 当过电流保护的时限不大于0.5~0.7s时,且没有第3)款所列的情况,或没有配合上的要求时,可不装设瞬动的电流速断保护。
(2) 在3~10kV 线路装设的相间短路保护装置,应符合下列规定:1) 单侧电源线路。
可装设两段过电流保护:第一段为不带时限的电流速断保护;第二段为带时限的过电流保护。
可采用定时限或反时限特性的继电器。
对单侧电源带电抗器的线路,当其断路器不能切断电抗器前的短路时,不应装设电流速断保护,此时,应由母线保护或其他保护切除电抗器前的故障。
保护装置仅在线路的电源侧装设。
2) 双侧电源线路。
可装设带方向或不带方向的电流速断和过电流保护。
对1~2km双侧电源的短线路,当采用上述保护不能满足选择性、灵敏性或速动性的要求时,可采用带辅助导线的纵差保护作主保护,并装设带方向或不带方向的电流保护作后备保护。
3) 并列运行的平行线路。
宜装设横联差动保护作为主保护,并应以接于两回线电流之和的电流保护,作为两回线同时运行的后备保护及一回线断开后的主保护及后备保护。
4) 环形网络中的线路。
为简化保护,可采用故障时先将网络自动解列而后恢复的办法,对不宜解列的线路,可参照对并列平行线路的办法。
2.35~63kV线路相间短路保护装置配置原则(1) 35~63kV线路装设的相间短路保护装置,应符合下列要求l) 对单侧电源线路可采用一段或两段电流速断或电流闭锁电压速断作主保护并应以带时限过电流保护作后备保护。
相间短路的方向性电流保护什么是相间短路?相间短路,也叫做线与线之间的短路,是电网中常见的故障之一。
它是指电力系统中两个或多个电源、负载或线路之间发生非预期的短路现象。
在短路时,电流将沿着短路路径流动,通过短路路径形成放电弧,产生高温、高压和大气压力等影响,严重时会损坏设备、造成电网停运。
相间短路引起的问题相间短路可能会瞬间造成电压下降、电网不稳定、设备损坏、停运等影响。
因此,及时采取措施进行保护至关重要。
方向性电流保护方向性电流保护是一种在电力系统中防止短路或过流的保护方式。
其原理是根据电流的方向来判断故障的位置和类型。
因为电流在短路故障时的流向会发生改变,因此根据电流的方向可以确定故障地点。
在电力系统中,为了保护系统免受相间短路的影响,我们通常会采用方向性电流保护技术。
这种保护方式可用来保护电力系统的各种设备,例如变压器、杆塔及电缆等。
方向性电流保护的实现方向性电流保护主要分为电机保护、发电机保护、变压器保护、线路保护和母线保护等。
这些保护设备通常包含一个电流变压器和一个保护继电器。
在保护装置中,电流变压器用于测量电流,而保护继电器会根据电流方向和大小判断故障类型和位置。
在方向性电流保护中,保护继电器是核心部件。
保护继电器的工作原理是通过对电流、电压等信号进行计算和检测,判断电力系统是否正常,实现故障检测和保护的功能。
在电力系统中,方向性电流保护必须能够快速而准确地检测故障,并尽快地进行保护操作。
这种保护方式不仅能够减少设备故障,还可以确保电力系统的稳定性和可靠性。
结论相间短路是电力系统中常见的故障之一,它会给电网带来很大的影响,甚至会导致设备损坏和电网停运。
为了解决这一问题,我们通常采用方向性电流保护技术。
这种技术可以在电力系统中保护各种设备,并根据电流方向来判断故障的位置和类型。
方向性电流保护是电力系统的核心保护技术,它能够确保电力系统的稳定性和可靠性。
输电线路相间短路的三段式电流保护第⼀章输电线路相间短路的三段式电流保护第⼀节瞬时电流速断保护⼀、短路电流的分析计算瞬时电流速断保护(⼜称第I 段电流保护)它是反映电流升⾼,不带时限动作的⼀种电流保护。
1.短路电流计算在单侧电源辐射形电⽹各线路的始端装设有瞬时电流速断保护。
当系统电源电势⼀定,线路上任⼀点发⽣短路故障时,短路电流的⼤⼩与短路点⾄电源之间的电抗忽略电阻)及短路类型有关,三相短路和两相短路时,流过保护安装地点的短路电流为:lX X E I S S k 1)3(+= lX X E I S S k 1)2(23+= 2、运⾏⽅式与短路电流的关系当系统运⾏⽅式改变或故障类型变化时,即使是同⼀点短路,短路电流的⼤⼩也会发⽣变化。
在继电保护装置的整定计算中,⼀般考虑两种极端的运⾏⽅式,即最⼤运⾏⽅式和最⼩运⾏⽅式。
(1)最⼤运⾏⽅式——流过保护安装处的短路电流最⼤时的运⾏⽅式称为最⼤运⾏⽅式,此时系统的阻抗Xs 为最⼩;(2)最⼩运⾏⽅式——当流过保护安装处的短路电流最⼩的运⾏⽅式称为系统最⼩运⾏⽅式,此时系统阻抗Xs 最⼤。
图3- 1中曲线1表⽰最⼤运⾏⽅式下三相短路电流随J 的变化曲线。
曲线2表⽰最⼩运⾏⽅式下两相短路电流随J 的变化曲线。
⼆、动作电流的整定计算1、动作电流假定在线路L1和线路L2上分别装设瞬时电流速断保护。
根据选择性的要求,瞬时电流速断保护的动作范围不能超出被保护线路,故保护1瞬时电流速断保护的动作电流可按⼤于本线路末端短路时流过保护安装处的最⼤短路电流来整定,即max .1kB rel I op I I K I =1op I I ——保护装置1瞬时电流速断保护的动作电流,⼜称⼀次动作电流rel I K ——可靠系数,考虑到继电器的整定误差、短路电流计算误差和⾮周期分量的影响等⽽引⼈的⼤于1的系数,⼀般取1.2~1.3;I k1.max ——被保护线路末端B 母线上三相短路时流过保护安装处的最⼤短路电流,⼀般取次暂态短路电流周期分量的有效值.2、保护范围分析在图1中,以动作电流画⼀平⾏于横坐标的直线3,其与曲线1和曲线2分别相交于M 和N 两点,在交点到保护安装处的⼀段线路上发⽣短路故障时,I k >I I op1保护1会动作。