电力电子器件及电力二极管
- 格式:pptx
- 大小:1.67 MB
- 文档页数:34
电力电子技术中的开关器件有哪些电力电子技术是指利用电力器件进行能量转换和信号处理的技术领域。
开关器件在电力电子技术中起着至关重要的作用,它们具有开关能力,可以控制电路通断,实现能量转换和信号处理功能。
在电力电子技术中常用的开关器件包括晶体管、功率MOSFET、IGBT和二极管等。
下面将分别介绍这些开关器件的工作原理和应用。
一、晶体管晶体管是一种基于半导体材料的开关器件,分为NPN型和PNP型两种。
晶体管工作的基本原理是通过控制输入信号的电流或电压,来控制输出信号的增益和功率。
晶体管具有高速开关和放大功能,广泛应用于电力电子技术中的各种电路中,如放大器、振荡器、计算机逻辑电路等。
二、功率MOSFET功率MOSFET是一种金属氧化物半导体场效应管,具有低电阻、高开关速度和低功耗等特点。
功率MOSFET的工作原理是通过控制栅极电压来改变沟道中的电阻,从而实现对信号的放大或开关控制。
功率MOSFET广泛应用于直流-直流转换器、交流-直流变换器、电机驱动器等电力电子系统中。
三、IGBTIGBT(Insulated Gate Bipolar Transistor)是一种集晶体管和MOSFET于一体的开关器件。
它结合了晶体管和MOSFET的优点,具有高电压承受能力和低导通压降的特点。
IGBT的工作原理是通过控制栅极电压来控制基极和集电极之间的结,实现对电流的开关和放大。
IGBT广泛应用于交流电机驱动、电网功率变换、无线电发射器等领域。
四、二极管二极管是一种最简单的开关器件,它由P型和N型半导体材料组成。
二极管具有电压导通和整流功效,其工作原理是通过施加正向电压,使电流从P区域流向N区域,实现通断控制。
二极管广泛应用于电源、整流、保护电路等。
以上是电力电子技术中常见的开关器件,它们的工作原理和应用领域各有特点,通过合理选择和配置,可以实现各种电力电子系统的功能和性能要求。
在实际应用中,需要根据具体需求和设计条件来选择合适的开关器件,以提高系统效率、稳定性和可靠性。
电⼒电⼦技术的主要内容1电⼒电⼦技术的主要内容将电⼦技术和控制技术引⼊传统的电⼒技术领域,利⽤半导体电⼒开关器件组成各种电⼒变换电路实现电能的变换和控制称为电⼒电⼦技术。
电⼒电⼦技术主要包括电⼒电⼦器件、变流电路和控制技术三个部分,其中电⼒电⼦技术是基础,变流电路是电⼒电⼦技术的核⼼。
主要研究电⼒电⼦器件的应⽤、电⼒电⼦电路的电能变换原理以及控制技术及电⼒电⼦装置的开发与应⽤。
1、电⼒电⼦器件1.1电⼒电⼦器件是指可直接⽤于主电路中实现电能变换或控制的电⼦器件,它是电⼦器件的⼀⼤分⽀,能承受⾼电压和⼤电流,是弱电控制强电的纽带。
1.2电⼒电⼦器件的分类1.2.1按可控性分类根据控制信号对器件控制程度可将电⼒电⼦器件分为三类:(1)不可控器件,不能⽤控制信号来控制其导通、关断的电⼒电⼦器件,如电⼒⼆极管。
(2)半控型器件,能⽤控制信号控制其导通,但不能控制其关断的电⼒电⼦器件称为半控型器件,主要有晶闸管及其⼤部分派⽣器件(GTO除外)。
(3)全控型器件,能⽤控制信号控制其导通,⼜能控制其关断的电⼒电⼦器件称为半控型器件,⼜称为⾃关断器件。
如绝缘栅双极晶体管(IGBT)和电⼒场效应晶体管(P-MOSFET)等。
1.2.2按驱动信号类型分类(1)电流驱动型,通过控制极注⼊或抽出电流来实现导通或关断控制的。
如门极可关断晶闸管(GTO)、电⼒晶体管(GTR)。
(2)电压驱动型,通过在控制端和公共端之间加⼀定的电压信号就能实现导通或关断控制的,如电⼒场效应晶体管(P-MOSFET)、集成门集换流晶闸管(IGCT)。
1.2.3按器件内部载流⼦参与导电情况分类(1)单极型器件,由⼀种载流⼦参与导电的器件,如电⼒场效应晶体管(P-MOSFET)、静电感应晶体管(SIT)。
(2)双极型器件,由电⼦和空⽳两种载流⼦参与导电的器件,如电⼒晶体管(GTR)、静电感应晶闸管(SITH)、MOS控制晶闸管(MCT)。
1.3常⽤电⼒电⼦器件1.3.1电⼒⼆极管具有⼀个PN结和阳极A、阴极K的两层两端半导体器件。
天津冶金职业技术学院教案( 首页)天津冶金职业技术学院教案( 首页)图1.3.2 晶闸管的内部结构和等效电路)导通:阳极施加正向电压时→给门极G也加正向电压T I I图1.3.6 控晶闸管的电气图形符号和伏安特性a) 电气图形符号b) 伏安特性1.4 可关断晶闸管可关断晶闸管(Gate-Turn-Off Thyristor)简称GTO。
天津冶金职业技术学院教师授课教案沟道沟道MOSFET耗尽型:增强型:耗尽型增强型之间就存在导电沟道;才存在导电沟道1. IGBT的结构图1.7.1 IGBT的结构、简化等效电路与电气符号IGBT的结构如图1.7.1(a)所示。
它是在VDMOS管结构的基础上再增加一个P+层,形成了一个大面积的P+N结1J,和其它结2J、3J一起构成了一个相当于由VDMOS驱动的厚基区PNP型GTR;简化等效电路如图1.7.1(b)所示。
电气符号如图1.7.1(c)所示GBT有三个电极:集电极C、发射极E和栅极G。
2. IGBT的工作原理IGBT也属场控器件,其驱动原理与电力MOSFET基本相同,是一种由栅电压GEU控制集电极电流的栅控自关断器件。
1.7.2 缘栅双极型晶体管的特性IGBT的伏安特性和转移特性图1.7.2 IGBT的伏安特性和转移特性天津冶金职业技术学院教案( 首页)构,如图1.8.4(a)。
)三极:阳极A 、阴极、栅极G ,)原理:栅极开路,在阳极和阴极之间加正向电压,有电流流过SITH ;在栅极G 和阴极K 之间加负电压,G-K 之间PN 结反偏,在两个栅极图1.9.5 GTO 的基本驱动电路2)导通和关断过程:图1.9.5(b)导通时GTO 门极与阴极间流过负电流而被关断;由于GTO 的开通和关断均依赖于一个独立的电源,故其关断能力强且可控制,其触发脉冲可采用窄脉冲;3)图1.9.5(c)中,导通和关断用两个独立的电源,开关元件少,电路简单。
4)图1.9.5(d),对于300A 以上的GTO ,用此驱动电路可以满足要求。
电子行业电力电子器件及应用引言电子行业是一个快速发展的行业,在电子设备中,电力电子器件是不可或缺的关键组成部分。
电力电子器件是指用于调整和转换电能的器件,广泛应用于交流和直流电网、电动机驱动、电源供应等领域。
本文将介绍电子行业中常见的电力电子器件及其应用。
一、开关器件1.整流二极管 (Rectifier Diode)整流二极管是一种常见的开关器件,用于将交流电转换为直流电。
它具有正向导通和反向截止的特性,常用于交流电桥式整流器、逆变器等电路中。
2.IGBT (Insulated Gate Bipolar Transistor) IGBT 是一种高压高频开关器件,兼具了普通晶体管和普通MOSFET的特点。
它可以控制高电压和高电流的通断,并且具有低开关损耗和快速切换速度的特点。
IGBT广泛用于工业设备、交通工具和电力传输中。
3.MOSFET (Metal-Oxide-SemiconductorField-Effect Transistor)MOSFET 是一种常见的开关器件,可以通过调节栅极电压来控制导通和截止。
它具有低导通电阻、低开关损耗和高开关速度的特点。
MOSFET 常用于直流转换器、电机驱动和太阳能发电逆变器等应用中。
二、功率模块1.IGBT模块IGBT模块是由多个IGBT芯片、隔离驱动电路和散热器组成的集成模块。
它可以方便地实现高压高频电路的设计和构建,广泛应用于电力传输、电机驱动和可再生能源领域。
2.整流桥模块整流桥模块是由多个整流二极管组成的集成模块。
它常用于交流电源的整流和直流电源供应的设计中。
3.功率放大模块功率放大模块是用于放大低功率信号为高功率信号的模块。
它常用于音频放大器、无线电频率放大器等应用中。
三、电力电子器件的应用1.交流调速电力电子器件在交流调速中起着重要作用。
例如,交流调压器使用电力电子器件的开关特性来调节交流电压的大小,实现电压调节和稳定。
2.无线充电利用电力电子器件的功率转换特性,可以实现无线充电技术。
习题3.101.电力电子器件一般工作在开关状态,通常情况下,电力电子器件功率损耗为当器件开关频率较高时,功率损耗主要为开关损耗。
2.二极管英文名字缩写(TVS),二极管电气符号为。
3.电力二极管主要类型:、、。
3.131.晶闸管英文名字缩写为:。
2.同一晶闸管维持电流I H与掣住电流I l在数值大小上有I l I H。
3.晶闸管基本工作特性的概括为正向触发刚导通,反向截止。
3.201.晶闸管:。
门极自关断晶闸管:。
电力晶闸管。
2.GTO的多元集成,多元集成,多元的功率集成结构是为了便于实现萌及控制关断而设计。
3.功率晶体管GTR从高压小电流向低电压大电流跃变现象:。
4.GTR共发射极接法时输出特性中的三个区域:,,。
5.GTR电气符号中:b是极。
c是极。
e是极。
3.271.MOSFET的漏极伏安特性中的三个区域与GTR的共发射极接法时输出特性中的三个区域有对应关系,其中前者截至区对应后者,前者饱和区对应后者,前者非饱和区对应后者。
2.电力MOSFET的电气符号中,G是极,D 极,S 极。
3.电力MOSFET通态电阻具有温度系数。
4.晶闸管;门级的关断晶闸管:;电力晶体管:;绝缘栅双型晶体管:。
电力场效应管晶体管。
4.31.在如下电力电子器件中SCR,GTO,IGBT,MOSFET中,按照器件内部电子和空穴两种载流子参与导电情况,属于双极型器件是;属于单极型器件;属于复合型器件的是;属于电压驱动的是;电流驱动型全控器件。
2.晶闸管的电气图形符号:。
3.门级的关断晶闸管电气图形符:。
4.电气晶体管电气图形符号:。
5.电力场效应晶体管电器图形符号:。
6.绝缘栅双极型晶体管电气图形符号:。
7.如图中阴影部分为晶闸管处于通态区间的电流波形,电流最大值为I m,试计算波形的电流平均值I d与电流有效值I L,如果考虑安全裕量为a。
应选择额定电流为多大的晶闸管?1.单项桥式全控整流电路,带电阻负载时,其a角的移相范围:带阻感负载时,a角的移相范围:。
主要电力电子器件特点◆不可控器件——电力二极管PD◆电流驱动型器件(SCR、GTO、GTR)◆电压驱动型器件(POWER MOSFET、IGBT)()电力二极管(P Di d )I(一)电力二极管(Power Diode)I F◆二极管的基本原理——PN结的单向导电性功率提高:结构、P-i-NO U TO U FU◆PN 结的电容效应,结电容C J 影响PN 结的工作频率势垒电容C B 和扩散电容C D◆正向电压降U 和反向漏电流I Fd i F F U Ft t t rrt dt ft t td t◆通流能力强---电导调制效应F 012U Rd i R d t ◆存在较大反向电流和反向电压过冲a)U RPI R P ◆正向导通需要正向恢复时间t fr(二)电流驱动型器件特点:都是三个联接端,2个功率端,1个控制端◆晶闸管—半控型器件,开通时刻可控◆门极可关断晶闸管GTO☞晶闸管的一种派生器件,在门极施加负的脉冲电流使其关断小☞电流关断增益βoff◆电力晶体管(Giant Transistor——GTR)☞与普通的双极结型晶体管基本原理样与普通的双极结型晶体管基本原理一样☞最主要的特性是耐压高、电流大、开关特性好(三)电力MOSFET(绝缘栅型MOS)栅极来控制漏极特点◆电压来控制电流,它的特点:☞驱动电路简单,需要的驱动功率小。
☞开关速度快,工作频率高。
☞电流容量小,耐压低,多用于功率不超过10kW的电力电子装置。
◆按导电沟道可分为沟道和沟道P N沟道。
☞当栅极电压为零时漏源极之间就存在导电沟道的称为耗尽型。
对于N(P)沟道器件,栅极电压大于(小于)零时才存在导☞)沟道器件栅极电压大于(小于)零时才存在导电沟道的称为增强型。
☞在电力MOSFET中,主要是N沟道增强型。
中主要是☞输出特性截止区(GTR的截止区)饱和区(GTR的放大区)非饱和区(GTR的饱和区)饱和----漏源电压增加时漏极电流不再增加,非饱和指漏源电压增加时----漏极电流相应增加。
电力电子器件及应用技术电力电子器件是指能转换和调节电能的器件,是电力电子技术的核心。
随着电力电子技术的不断发展,电力电子器件的种类也日益增多。
在本文中,我们将介绍几种常见的电力电子器件及其应用技术。
一、开关管开关管是一种常见的电力电子器件,适用于高压、高电流的工作环境。
开关管具有通断能力强、开关速度快等特点,被广泛应用于各个领域。
最常见的应用是在电源开关、直流电机驱动器、电池充电器等设备中。
二、整流器整流器是将交流电转换为直流电的电力电子器件,常用于交流电转换为直流电的环境中。
整流器的类型有很多种,其中最常见的是单相整流器和三相整流器。
整流器广泛应用于交流到直流的转换领域,比如电源适配器、电气焊接设备等。
三、逆变器逆变器是将直流电转换为交流电的电力电子器件,适用于需要将直流电转换为交流电的场合。
逆变器在可逆变和无线电源等领域有广泛应用。
它可以将直流电动力设备连接到交流电网,比如太阳能和风能的利用。
逆变器还可用于驱动交流电机。
四、电力调节器电力调节器是一种能够调节电能的电力电子器件,可以根据需要对电压和电流进行调节。
电力调节器被广泛应用于稳压变送器、磁控管、智能继电器等设备中。
它能够在工业自动化、变频调速等领域起到重要作用。
五、功率电子器件功率电子器件是指能够直接转换大功率电力的电力电子器件。
功率电子器件的种类多样,其中最常见的是晶闸管、电力二极管和功率MOSFET。
这些器件被广泛应用于电力变换、电力控制等领域。
功率电子器件的发展为电力电子技术的进步提供了有力支持。
六、电力电子应用技术电力电子应用技术是指将电力电子器件应用于各个领域的技术方法和方法。
电力电子应用技术在电力系统、工业制造、交通运输、新能源等领域发挥着重要作用。
其中,电力变换技术、电力控制技术、电力传输技术等是电力电子应用技术的重要组成部分。
七、电力电子器件的未来发展随着科技的进步和社会的发展,电力电子器件及其应用技术也在不断发展。
未来,电力电子器件将更加智能化、高效化、小型化。
电子行业电力电子器件介绍1. 概述电力电子器件是电子行业中一类重要的器件,在能源转换、控制和调节等方面发挥着关键作用。
随着能源需求的增长和环境保护的要求,对电力电子器件的要求也越来越高。
2. 电力电子器件的分类电力电子器件根据其功能和特点可以分为多个类别,以下是一些常见的电力电子器件分类:2.1 可控硅(SCR)可控硅是一种常见的电力电子器件,在交流电控制方面具有重要作用。
可控硅具有整流和可控开关的功能,因此广泛应用于电能转换、变频调速、功率因数校正等领域。
2.2 可控晶闸管(GTO)可控晶闸管是一种高压高功率的半导体开关器件,广泛应用于高压直流输电和直流变频调速等场合。
可控晶闸管具有较好的控制能力和可靠性,被认为是电力电子领域的关键器件之一。
2.3 电力二极管电力二极管是一种用于整流和逆变的无控制半导体器件。
具有较大的导通电流和较高的工作温度,广泛用于交流电转换、电源等方面。
常见的电力二极管有快恢复二极管、整流二极管等。
2.4 电力MOSFET电力MOSFET是电力电子器件中的一种关键元件,广泛应用于交流-直流转换、逆变和变频调速等领域。
它具有快速开关速度、低开关损耗和高温工作能力等优点。
电力IGBT是一种高压、高功率的开关器件,结合了MOSFET的高速性和可控晶闸管的大电流承受能力。
电力IGBT被广泛应用于交流电变频调速、直流电逆变等电力电子系统中。
3. 电力电子器件的应用电力电子器件在电力变换、电能控制和调节等方面具有广泛的应用。
电力电子器件可以将一种电能形式转换为另一种电能形式,例如将交流电转换为直流电、将直流电转换为交流电。
这种电力转换广泛应用于工业生产、交通运输等领域。
3.2 电能控制和调节电力电子器件可以控制和调节电能的大小、频率和波形,实现对电力系统的稳定运行和优化控制。
例如,调整电源的输出电压、调整电机的转速等。
3.3 新能源应用随着新能源的快速发展,电力电子器件在太阳能、风能等新能源设备中的应用越来越广泛。