卡尔曼滤波简述
- 格式:pdf
- 大小:61.13 KB
- 文档页数:4
卡尔曼滤波公式
卡尔曼滤波是一种用于估计状态变量的数学算法,广泛应用于各种领域,如航空航天、无人驾驶、机器人等。
以下是卡尔曼滤波的公式:
1.状态预测方程:
x[k|k-1] = A[k|k-1] * x[k-1|k-1] + B[k|k-1] * u[k]
其中,x[k|k-1]表示在时间k对时间k-1的状态预测,A[k|k-1]是状态转移矩阵,B[k|k-1]是控制矩阵,u[k]是控制向量。
2.测量更新方程:
z[k|k] = H[k|k] * x[k|k] + v[k]
其中,z[k|k]表示在时间k对时间k的测量更新,H[k|k]是量测矩阵,v[k]是测量噪声。
3.协方差预测方程:
P[k|k-1] = A[k|k-1] * P[k-1|k-1] * A[k|k-1]' + Q
其中,P[k|k-1]表示在时间k对时间k-1的协方差预测,Q是过程噪声协方差。
4.协方差更新方程:
P[k|k] = (I - K[k] * H[k|k]) * P[k|k-1]
其中,P[k|k]表示在时间k对时间k的协方差更新,K[k]是卡尔曼增益矩阵。
5.卡尔曼增益计算:
K[k] = P[k|k-1] * H[k|k]' / (H[k|k] * P[k|k-1] * H[k|k]' + R)
其中,R是测量噪声协方差。
倾角卡尔曼滤波-概述说明以及解释1.引言1.1 概述倾角卡尔曼滤波是一种用于测量倾角的方法,它结合了倾角测量与卡尔曼滤波原理。
倾角的测量在许多领域中都是非常重要的,例如航空航天、导航系统以及工业自动化等。
倾角的准确测量可以帮助我们判断物体的姿态、稳定性以及对周围环境做出合适的调整。
然而,由于当前倾角传感器本身存在一定的误差和干扰,因此需要采用合适的滤波算法来对倾角进行精确估计和校正。
在这方面,倾角卡尔曼滤波是一种被广泛应用的方法。
倾角卡尔曼滤波算法基于卡尔曼滤波原理,通过对倾角的测量数据进行预测和更新,以得到更加准确、稳定的倾角估计值。
它利用了传感器测量数据的统计特性和系统模型的动态特性,通过权衡预测值和测量值的不确定性来对倾角进行优化估计。
相比其他滤波算法,倾角卡尔曼滤波具有以下优势:首先,它能够有效地抑制传感器数据中的噪声和干扰,并能够适应不同程度的噪声;其次,它具有较高的估计精度和稳定性,能够准确地跟踪目标物体的倾角变化;最后,倾角卡尔曼滤波算法具有较快的收敛速度和较低的计算复杂度,适用于实时应用场景。
未来,倾角卡尔曼滤波在自动化控制、导航系统等领域具有广阔的应用前景。
随着技术的不断进步和创新,倾角卡尔曼滤波算法将更加成熟和精确,为各行各业提供更加可靠和准确的倾角测量方法。
同时,倾角卡尔曼滤波的应用也将得到进一步的拓展,为我们创造更多便利和可能性。
1.2 文章结构文章结构部分的内容如下:文章结构部分的目的是为了向读者介绍本文的大致结构和内容安排。
本文将按照以下方式进行组织和撰写:第一部分是引言,主要包括概述、文章结构和目的三个小节。
在概述部分,会简要介绍倾角卡尔曼滤波的背景和重要性,引起读者的兴趣。
在文章结构部分,将详细说明本文的结构安排,以便读者能够清楚地了解整篇文章的内容。
在目的部分,将明确本文的目标和意义,为读者提供一个阅读的导向。
第二部分是正文,主要包括倾角测量方法和卡尔曼滤波原理两个小节。
卡尔曼滤波算法基本原理一、概述卡尔曼滤波算法是一种基于线性系统状态空间模型的递归滤波算法,主要用于估计含有噪声的测量数据,并能够有效地消除噪声对估计的影响,提高估计精度。
本篇文章将详细介绍卡尔曼滤波算法的基本原理。
二、基本原理1.状态方程:卡尔曼滤波算法基于线性系统状态空间模型,该模型可以用状态方程来表示。
状态方程通常包含系统的内部状态、输入和输出,可以用数学公式表示为:x(t+1)=Ax(t)+Bu(t)+w(t)。
其中,x(t)表示系统内部状态,u(t)表示输入,w(t)表示测量噪声。
2.测量方程:测量数据通常受到噪声的影响,卡尔曼滤波算法通过建立测量方程来处理噪声数据。
测量方程通常表示为:z(t)=h(x(t))+v(t),其中z(t)表示测量数据,h(x(t))表示系统输出,v(t)表示测量噪声。
3.卡尔曼滤波算法:卡尔曼滤波算法通过递归的方式,根据历史状态和测量数据来估计当前系统的内部状态。
算法的核心是利用过去的估计误差和测量误差来预测当前的状态,并不断更新估计值,以达到最优估计的效果。
卡尔曼滤波算法主要包括预测和更新两个步骤。
预测步骤根据状态方程和上一步的估计值,预测当前的状态;更新步骤则根据当前的测量数据和预测值,以及系统协方差矩阵,来更新当前状态的估计值和系统协方差矩阵。
4.滤波器的选择:在实际应用中,需要根据系统的特性和噪声的性质来选择合适的卡尔曼滤波器。
常见的滤波器有标准卡尔曼滤波器、扩展卡尔曼滤波器等。
选择合适的滤波器可以提高估计精度,降低误差。
三、应用场景卡尔曼滤波算法在许多领域都有应用,如航空航天、自动驾驶、机器人控制等。
在上述领域中,由于系统复杂、噪声干扰大,使用卡尔曼滤波算法可以有效地提高系统的估计精度和控制效果。
四、总结卡尔曼滤波算法是一种基于线性系统状态空间模型的递归滤波算法,通过预测和更新的方式,能够有效地消除噪声对估计的影响,提高估计精度。
本篇文章详细介绍了卡尔曼滤波算法的基本原理和应用场景,希望能对大家有所帮助。
卡尔曼滤波原理
卡尔曼滤波是一种用于估计系统状态的递归滤波器。
它可以通过组合系统的测量值和模型的预测值来提供对状态的最优估计。
卡尔曼滤波器首先利用系统的数学模型预测下一个状态,并计算预测值与实际测量值之间的差异。
然后,通过加权这些差异,卡尔曼滤波器可以生成对当前状态的最佳估计。
卡尔曼滤波的核心原理是“最小均方误差”。
它假设系统状态和观测都是高斯分布,然后尝试寻找最小均方误差的估计值。
通过选择合适的权重,卡尔曼滤波器可以在预测值和测量值之间找到一个平衡,从而提供最佳的估计结果。
卡尔曼滤波器由两个主要步骤组成:预测和更新。
在预测步骤中,卡尔曼滤波器使用系统模型和先前的状态估计来预测下一个状态。
然后,在更新步骤中,卡尔曼滤波器将测量值与预测值进行比较,并使用加权平均法来更新状态估计。
通过周期性地重复这两个步骤,卡尔曼滤波器可以连续地提供对系统状态的估计。
卡尔曼滤波器在估计问题中广泛应用,特别是在传感器融合、航空航天和导航系统中。
它能够有效地处理噪声和不确定性,并在给定系统模型和测量信息的情况下提供最优的状态估计。
贝叶斯滤波和卡尔曼滤波随着科技的不断发展,人们对于数据的处理和分析也变得越来越重要。
而在这个过程中,滤波算法成为了一种常用的方法。
本文将会介绍两种常见的滤波算法:贝叶斯滤波和卡尔曼滤波。
一、贝叶斯滤波贝叶斯滤波是一种基于贝叶斯定理的滤波算法,它通过给定的先验概率和观测数据,计算出后验概率,从而实现对未知变量的估计。
贝叶斯滤波的基本思想是将观测数据和系统模型进行融合,通过不断的观测和更新,逐渐减小估计误差。
贝叶斯滤波的主要步骤如下:1. 初始化:给定先验概率和初始状态。
2. 预测:根据系统模型,预测下一时刻的状态。
3. 更新:根据观测数据,计算出后验概率。
4. 重采样:根据后验概率,进行状态更新。
贝叶斯滤波可以用于各种不同的应用领域,例如目标跟踪、机器人定位等。
它的优点是可以处理非线性和非高斯的系统模型,并且能够实时地更新估计结果。
但是,贝叶斯滤波的计算复杂度较高,对于大规模的系统模型来说,计算量很大。
二、卡尔曼滤波卡尔曼滤波是一种基于线性系统模型和高斯噪声假设的滤波算法,它通过观测数据和系统模型的融合,实现对系统状态的估计。
卡尔曼滤波的基本思想是通过对系统状态进行最优估计,从而得到最优的滤波结果。
卡尔曼滤波的主要步骤如下:1. 初始化:给定初始状态和初始协方差矩阵。
2. 预测:根据系统模型,预测下一时刻的状态和协方差矩阵。
3. 更新:根据观测数据,计算出后验状态和协方差矩阵。
卡尔曼滤波具有计算简单、实时性好的特点,适用于多种线性系统模型。
它在目标跟踪、导航定位等领域有着广泛的应用。
然而,卡尔曼滤波对于非线性和非高斯的系统模型效果较差,因此在实际应用中需要进行一定的改进。
三、贝叶斯滤波与卡尔曼滤波的比较虽然贝叶斯滤波和卡尔曼滤波都是滤波算法,但是它们在原理和应用上有一些区别。
1. 原理:贝叶斯滤波是基于概率论的,通过观测数据和先验概率的融合,得到后验概率。
而卡尔曼滤波是基于线性系统和高斯噪声的假设,通过观测数据和系统模型的融合,得到最优估计。
扩展卡尔曼滤波器原理一、引言扩展卡尔曼滤波器(Extended Kalman Filter,EKF)是一种常用的非线性滤波器,其原理是对非线性系统进行线性化处理,从而利用卡尔曼滤波器的优势进行状态估计和滤波。
本文将介绍扩展卡尔曼滤波器的原理及其应用。
二、卡尔曼滤波器简介卡尔曼滤波器是一种基于最优估计理论的滤波算法,广泛应用于估计系统状态。
卡尔曼滤波器通过对系统状态和观测数据进行加权平均,得到对系统状态的估计值。
其基本原理是通过系统的动力学方程和观测方程,利用贝叶斯概率理论计算系统状态的后验概率分布。
三、非线性系统的滤波问题在实际应用中,许多系统都是非线性的,而卡尔曼滤波器是基于线性系统模型的。
因此,当系统模型非线性时,传统的卡尔曼滤波器无法直接应用。
扩展卡尔曼滤波器就是为了解决这个问题而提出的。
四、扩展卡尔曼滤波器原理扩展卡尔曼滤波器通过对非线性系统进行线性化处理,将非线性系统转化为线性系统,然后利用卡尔曼滤波器进行状态估计。
其基本思想是通过一阶泰勒展开将非线性系统进行线性逼近。
具体步骤如下:1. 系统模型线性化:将非线性系统的动力学方程和观测方程在当前状态下进行一阶泰勒展开,得到线性化的系统模型。
2. 预测步骤:利用线性化的系统模型进行状态预测,得到预测的状态和协方差矩阵。
3. 更新步骤:利用观测方程得到的测量值与预测的状态进行比较,计算卡尔曼增益。
然后利用卡尔曼增益对预测的状态和协方差矩阵进行更新,得到最终的状态估计和协方差矩阵。
五、扩展卡尔曼滤波器的应用扩展卡尔曼滤波器广泛应用于各个领域,包括机器人导航、目标跟踪、航天器姿态估计等。
以机器人导航为例,机器人在未知环境中通过传感器获取的信息是非线性的,而机器人的运动模型也是非线性的。
因此,利用扩展卡尔曼滤波器可以对机器人的位置和姿态进行估计,从而实现导航功能。
六、总结扩展卡尔曼滤波器是一种处理非线性系统的滤波算法,通过对非线性系统进行线性化处理,利用卡尔曼滤波器进行状态估计和滤波。
卡尔曼滤波的原理与应用一、什么是卡尔曼滤波卡尔曼滤波是一种用于估计系统状态的算法,其基本原理是将过去的观测结果与当前的测量值相结合,通过加权求和的方式进行状态估计,从而提高对系统状态的准确性和稳定性。
二、卡尔曼滤波的原理卡尔曼滤波的原理可以简单概括为以下几个步骤:1.初始化:初始状态估计值和协方差矩阵。
2.预测:使用系统模型进行状态的预测,同时更新预测的状态协方差矩阵。
3.更新:根据测量值,计算卡尔曼增益,更新状态估计值和协方差矩阵。
三、卡尔曼滤波的应用卡尔曼滤波在很多领域都有广泛的应用,下面列举了几个常见的应用场景:•导航系统:卡尔曼滤波可以用于航空器、汽车等导航系统中,实时估计和优化位置和速度等状态参数,提高导航的准确性。
•目标追踪:如在无人机、机器人等应用中,利用卡尔曼滤波可以对目标进行状态估计和跟踪,提高目标追踪的鲁棒性和准确性。
•信号处理:在雷达信号处理、语音识别等领域,可以利用卡尔曼滤波对信号进行滤波和估计,去除噪声和提取有效信息。
•金融预测:卡尔曼滤波可以应用于金融市场上的时间序列数据分析和预测,用于股价预测、交易策略优化等方面。
四、卡尔曼滤波的优点•适用于线性和高斯性:卡尔曼滤波适用于满足线性和高斯假设的系统,对于线性和高斯噪声的系统,卡尔曼滤波表现出色。
•递归性:卡尔曼滤波具有递归性质,即当前状态的估计值只依赖于上一时刻的状态估计值和当前的测量值,不需要保存全部历史数据,节省存储空间和计算时间。
•最优性:卡尔曼滤波可以依据系统模型和观测误差的统计特性,以最小均方差为目标,进行最优状态估计。
五、卡尔曼滤波的局限性•对线性和高斯假设敏感:对于非线性和非高斯的系统,卡尔曼滤波的性能会受到限制,可能会产生不理想的估计结果。
•模型误差敏感:卡尔曼滤波依赖于精确的系统模型和观测误差统计特性,如果模型不准确或者观测误差偏差较大,会导致估计结果的不准确性。
•计算要求较高:卡尔曼滤波中需要对矩阵进行运算,计算量较大,对于实时性要求较高的应用可能不适合。
卡尔曼滤波原理及应用
一、卡尔曼滤波原理
卡尔曼滤波(Kalman filter)是一种后验最优估计方法。
它以四个步骤:预测、更新、测量、改善,不断地调整估计量来达到观测的最优估计的目的。
卡尔曼滤波的基本思想,是每次观测到某一位置来更新位置的参数,并用更新结果来预测下一次的位置参数,再由预测时产生的误差来改善当前位置参数。
从而可以达到滤波的效果,提高估计精度。
二、卡尔曼滤波应用
1、导航系统。
卡尔曼滤波可以提供准确的位置信息,把最近获得的各种定位信息和测量信息,如GPS、ISL利用卡尔曼滤波进行定位信息融合,可以提供较准确的空中、地面导航服务。
2、智能机器人跟踪。
在编队技术的应用中,智能机器人往往面临着各种复杂环境,很难提供精确的定位信息,而卡尔曼滤波正是能解决这一问题,将持续不断的测量信息放在卡尔曼滤波器中,使机器人能够在范围内定位,跟踪更新准确可靠。
3、移动机器人自主避障。
对于移动机器人来说,很多时候在前传感器检测不到
人或障碍物的时候,一般将使用卡尔曼滤波来进行自主避障。
卡尔曼滤波的定位精度很高,相对于静止定位而言,移动定位有更多的参数要考虑,所以能提供更准确的定位数据来辅助自主避障,准确的定位信息就可以让我们很好的实现自主避障。
4、安防监控。
与其他传统的安防场景比,安防场景如果需要运动物体位置估计或物体检测,就必须使用卡尔曼滤波技术来实现,这是一种行为检测和行为识别的先进技术。
(注:安防监控可用于感知移动物体的位置,并在设定的范围内监测到超出范围的物体,以达到安全防护的目的。
)。
卡尔曼滤波详解卡尔曼滤波是一种常用于估计和预测系统状态的优秀滤波算法。
它于1960年代由R.E.卡尔曼提出,被广泛应用于飞机、导弹、航天器等领域,并逐渐在其他科学领域中得到应用。
卡尔曼滤波的基本思想是通过融合测量数据和系统模型的信息,对系统状态进行更准确的估计。
其核心原理是基于贝叶斯定理,将先验知识与观测数据相结合来更新系统状态的概率分布。
卡尔曼滤波算法包括两个主要步骤:更新和预测。
在更新步骤中,算法通过观测值来计算系统的状态估计。
在预测步骤中,算法使用系统的模型对下一个时间步长的状态进行预测。
通过反复进行这两个步骤,可以得到不断更新的状态估计结果。
卡尔曼滤波算法的关键是系统模型和观测模型的建立。
系统模型描述了系统状态的演化规律,通常用线性动态方程表示。
观测模型描述了观测值与系统状态之间的关系,也通常用线性方程表示。
当系统模型和观测模型都是线性的,并且系统噪声和观测噪声都是高斯分布时,卡尔曼滤波算法能够得到最优的状态估计。
卡尔曼滤波的优点在于,在给定模型和测量信息的情况下,它能够最小化误差,并提供最佳的状态估计。
此外,卡尔曼滤波算法还具有递归、高效、低存储等特点,使其在实时应用中具有广泛的应用前景。
然而,卡尔曼滤波算法也有一些限制。
首先,它要求系统模型和观测模型能够准确地描述系统的动态特性。
如果模型存在误差或不完全符合实际情况,滤波结果可能会产生偏差。
其次,卡尔曼滤波算法适用于线性系统,对于非线性系统需要进行扩展,例如使用扩展卡尔曼滤波或无迹卡尔曼滤波。
另外,卡尔曼滤波算法还会受到噪声的影响。
如果系统的噪声比较大,滤波结果可能会失真。
此外,卡尔曼滤波算法对初始状态的选择也敏感,不同的初始状态可能会导致不同的滤波结果。
综上所述,卡尔曼滤波是一种高效、优秀的滤波算法,能够在给定模型和测量信息的情况下提供最优的状态估计。
然而,它也有一些局限性,需要充分考虑系统模型和观测模型的准确性、噪声的影响以及初始状态的选择。
卡尔曼滤波卡尔曼滤波(Kalman filtering ) 一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。
由于观测数据中包括系统中的噪声和干扰的影响,所以最优估计也可看作是滤波过程。
斯坦利施密特(Stanley Schmidt)首次实现了卡尔曼滤波器。
卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑使用了这种滤波器。
关于这种滤波器的论文由Swerli ng (1958), Kalman (I960) 与Kalma n and Bucy (1961) 发表。
数据滤波是去除噪声还原真实数据的一种数据处理技术,Kalman滤波在测量方差已知的情况下能够从一系列存在测量噪声的数据中,估计动态系统的状态•由于,它便于计算机编程实现,并能够对现场采集的数据进行实时的更新和处理,Kalman滤波是目前应用最为广泛的滤波方法,在通信,导航,制导与控制等多领域得到了较好的应用•中文名卡尔曼滤波器,Kalman滤波,卡曼滤波外文名KALMAN FILTER表达式X(k)=A X(k-1)+B U(k)+W(k)提岀者斯坦利施密特提岀时间1958应用学科天文,宇航,气象适用领域范围雷达跟踪去噪声适用领域范围控制、制导、导航、通讯等现代工程斯坦利施密特(Stanley Schmidt)首次实现了卡尔曼滤波器。
卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导—航电脑使用了这种滤波器。
关于这种滤波器的论文由Swerling (1958), Kalman (1960)与Kalma n and Bucy (1961) 发表。
2定义传统的滤波方法,只能是在有用信号与噪声具有不同频带的条件下才能实现. 20世纪40年代,N .维纳和A. H .柯尔莫哥罗夫把信号和噪声的统计性质引进了滤波理论,在假设信号和噪声都是平稳过程的条件下,利用最优化方法对信号真值进行估计,达到滤波目的,从而在概念上与传统的滤波方法联系起来,被称为维纳滤波。
卡尔曼滤波是一种利用时间序列数据进行状态估计和预测的算法,它可以通过对系统状态和观测值的预测误差进行修正,不断优化估计结果,从而提高估计精度。
卡尔曼滤波的基本思想是将系统状态和观测值分别作为状态向量和观测向量,建立数学模型,通过递归计算估计状态向量的值。
卡尔曼滤波的基本流程包括预测和更新两个步骤,其中预测步骤根据上一时刻的状态向量和系统噪声进行状态预测,更新步骤则根据当前时刻的观测向量和观测噪声对预测状态进行修正,得到更精确的状态向量估计值。
卡尔曼滤波的公式比较复杂,但是它可以被应用于很多领域,如导航、机器人、信号处理等。
卡尔曼滤波的扩展包括扩展卡尔曼滤波、无迹卡尔曼滤波、粒子滤波等。
扩展卡尔曼滤波是在卡尔曼滤波基础上引入了更高阶的状态变量,可以处理非线性系统;无迹卡尔曼滤波则是通过将非线性系统线性化,近似为线性系统进行滤波;粒子滤波则是一种基于蒙特卡罗方法的滤波算法,可以处理非线性、非高斯系统。
这些扩展算法在不同的应用场景中都具有一定的优势和适用性。
卡尔曼滤波平滑1. 什么是卡尔曼滤波卡尔曼滤波(Kalman Filtering)是一种用于估计系统状态的最优递归算法。
它通过融合系统的测量值和模型预测值,提供对系统状态的最优估计。
卡尔曼滤波广泛应用于控制系统、机器人导航、信号处理等领域。
卡尔曼滤波是一种递归算法,即通过前一时刻的状态估计和当前时刻的测量值,来更新当前时刻的状态估计。
它基于统计学原理,通过不断迭代,逐渐提高对系统状态的估计精度。
2. 卡尔曼滤波原理卡尔曼滤波基于以下两个假设:•系统状态(包括位置、速度等)可以由线性动态方程描述,并且服从高斯分布。
•测量值可以由线性观测方程描述,并且服从高斯分布。
根据这两个假设,卡尔曼滤波可以分为两个步骤:预测和更新。
2.1 预测步骤在预测步骤中,根据上一时刻的状态估计和系统模型,预测当前时刻的状态。
预测步骤中使用的方程为:•状态预测方程:x k=F⋅x k−1+B⋅u k•协方差预测方程:P k=F⋅P k−1⋅F T+Q其中,x k是当前时刻的状态向量,F是状态转移矩阵,B是控制输入矩阵,u k是控制输入向量,P k是当前时刻的状态估计协方差矩阵,Q是过程噪声协方差矩阵。
2.2 更新步骤在更新步骤中,根据当前时刻的测量值和预测结果,更新对系统状态的估计。
更新步骤中使用的方程为:•测量残差:y k=z k−H⋅x k•测量残差协方差:S=H⋅P k⋅H T+R•卡尔曼增益:K=P k⋅H T⋅S−1•状态更新:x̂k=x k+K⋅y k•协方差更新:P̂k=(I−K⋅H)⋅P k其中,z k是当前时刻的测量向量,H是观测矩阵,R是测量噪声协方差矩阵,y k是测量残差,S是测量残差协方差矩阵,x̂k是更新后的状态估计向量,P̂k是更新后的状态估计协方差矩阵。
3. 卡尔曼滤波应用卡尔曼滤波广泛应用于各种领域,包括控制系统、机器人导航、信号处理等。
以下是一些常见的应用场景:3.1 控制系统在控制系统中,卡尔曼滤波可以用于估计系统状态,并提供对系统状态的最优估计。
卡尔曼,美国数学家和电气工程师。
1930年5月 19日生于匈牙利首都布达佩斯。
1953年在美国麻省理工学院毕业获理学士学位,1954年获理学硕士学位,1957年在哥伦比亚大学获科学博士学位。
1957~1958年在国际商业机器公司(IBM)研究大系统计算机控制的数学问题。
1958~1964年在巴尔的摩高级研究院研究控制和数学问题。
1964~1971年到斯坦福大学任教授。
1971年任佛罗里达大学数学系统理论研究中心主任,并兼任苏黎世的瑞士联邦高等工业学校教授。
1960年卡尔曼因提出著名的卡尔曼滤波器而闻名于世。
卡尔曼滤波器在随机序列估计、空间技术、工程系统辨识和经济系统建模等方面有许多重要应用。
1960年卡尔曼还提出能控性的概念。
能控性是控制系统的研究和实现的根本概念,在最优控制理论、稳定性理论和网络理论中起着重要作用。
卡尔曼还利用对偶原理导出能观测性概念,并在数学上证明了卡尔曼滤波理论与最优控制理论对偶。
为此获电气与电子工程师学会(IEEE)的最高奖──荣誉奖章。
卡尔曼著有《数学系统概论》(1968)等书。
什么是卡尔曼滤波最优线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。
从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。
为了克制这一缺点,60年代Kalman把状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼1 / 17滤波理论。
卡尔曼滤波是以最小均方误差为估计的最优准如此,来寻求一套递推估计的算法,其根本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。
它适合于实时处理和计算机运算。
卡尔曼滤波的实质是由量测值重构系统的状态向量。
它以“预测—实测—修正〞的顺序递推,根据系统的量测值来消除随机干扰,再现系统的状态,或根据系统的量测值从被污染的系统中恢复系统的本来面目。
卡尔曼滤波c语言姿态解算
摘要:
一、卡尔曼滤波简介
1.卡尔曼滤波的定义
2.卡尔曼滤波的应用领域
二、卡尔曼滤波的原理
1.卡尔曼滤波的基本思想
2.卡尔曼滤波的基本步骤
三、卡尔曼滤波在姿态解算中的应用
1.姿态解算的定义
2.姿态解算在导航系统中的重要性
3.卡尔曼滤波在姿态解算中的应用实例
四、卡尔曼滤波的C 语言实现
1.C 语言实现的基本步骤
2.C 语言实现的注意事项
3.C 语言实现的示例代码
正文:
一、卡尔曼滤波简介
卡尔曼滤波是一种线性滤波方法,主要用于估计动态系统的状态。
该方法是由俄国数学家卡尔曼提出的,被广泛应用于航空航天、自动化控制、通信、计算机等领域。
二、卡尔曼滤波的原理
卡尔曼滤波的基本思想是在系统的观测数据中,通过加权最小二乘法来估计系统的状态。
其基本步骤包括:
1.建立系统状态的数学模型
2.计算系统的观测值
3.构造卡尔曼增益公式
4.更新系统状态的估计值
三、卡尔曼滤波在姿态解算中的应用
姿态解算是指通过测量和计算,确定飞行器或其他运动物体的姿态参数,如位置、速度、加速度等。
在导航系统中,姿态解算是非常重要的一个环节。
卡尔曼滤波历史
卡尔曼滤波是一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。
其历史可追溯到20世纪60年代,由美国学者斯坦利·施密特首次提出。
当时,由于传感器精度不高、飞船电脑相对落后,卡尔曼滤波算法在理论上允许在不那么精密的传感器条件下获得较好的效果,且对飞船电脑要求不高。
这一算法的提出,震惊了美国国家航空航天局(NASA),并在随后的人类登月工程中得到了广泛应用。
如今,卡尔曼滤波已成为应用最为广泛的滤波方法之一,在通信、导航、制导与控制等领域得到了较好的应用。
其便于计算机编程实现,并能够对现场采集的数据进行实时的更新和处理,因而备受青睐。
卡尔曼滤波法卡尔曼滤波法(KalmanFiltering)是一种用来求解线性系统的最优估计方法。
它是由美国科学家,经济学家及控制论著名的发明家Rudolf Kalman在1960年发明的,用于处理复杂的分析和计算,广泛应用于系统分析和状态估计中。
卡尔曼滤波法是一种基于状态模型的过滤算法,属于非参数估计,该算法可以在条件较差的情况下得到满意的结果估计结果。
典型的,它可以用来估计连续时间的系统状态变化,通道特性,轨迹跟踪等。
卡尔曼滤波法的基本思想是对测量值的不确定性和系统状态的不确定性进行有效的折衷,用观测到的时变数据情况更新当前估计值,从而得到最佳状态估计结果。
卡尔曼滤波法可以分为三个阶段:预测、更新、融合。
预测步骤是要预测当前状态,更新步骤是根据从系统中获取到的最新观察信息,更新预测的状态估计。
融合步骤是将上面两个步骤的结果进行综合计算,得出最终的状态估计值。
卡尔曼滤波法有很多优点,它能够处理噪声,使用基于状态估计的模型,能够更好地处理系统参数的变化和误差,运行速度更快,能够更好地处理非线性系统,而且计算量少,在实际应用中可以提高效率和准确度,而且无需了解系统内部的参数结构,减少状态估计过程中的参数的定义和控制的复杂性,可以提高系统的容错性,提高系统的可靠性。
卡尔曼滤波法目前被广泛应用于导航、定位、轨迹跟踪、图像处理、机器人学、人工智能技术、生物信号处理、生物识别等多领域。
主要应用于系统定位、信号处理、图像处理、环境控制、机器人等,可以用于计算、控制、测量等工业领域,尤其是在拓展室内和外环境定位方面有很好的应用,特别是可用于机器人跟踪用户轨迹,为室内覆盖提供贡献,是一种非线性观测系统的消息滤波方法。
总而言之,卡尔曼滤波法是一种在线性系统中获得最优估计的方法,它通过对系统状态的不确定性和测量值的不确定性进行权衡,使用观测到的时变数据情况更新当前估计值,从而得到最佳状态估计结果,是一种在不同领域得到广泛应用的非参数估计方法,为实现室内外定位、跟踪轨迹等任务提供了有效的技术支持。
Kalman Filter
Xianling Wang
July23,2016v1.0
目录
一、简介2
二、线性卡尔曼滤波方法2
2.1滤波方法描述 (2)
2.2滤波过程的其他细节 (3)
三、后记4
一、简介
卡尔曼滤波器(Kalman Filter)的核心功能是对观测值进行优化,尽可能降低误差的影响,使其更加贴近系统的实际值。
二、线性卡尔曼滤波方法
2.1滤波方法描述
假设系统在t时刻的状态由x t描述,x t包含了若干个变量,因此以向量的形式出现。
同时假设系统状态相对于时间变化的机理是可知的,由式(1)描述,即
x t+1=F t x t+B t u t+w t(1)其中,F t为状态转移矩阵,描述t时刻状态对t+1时刻状态的影响程度;u t表示外界控制因素;B t为控制矩阵,描述外界控制因素对t+1时刻状态的影响程度;w t表示不可控的过程噪声,假设其协方差矩阵为Q t。
式(1)所描述的关系是线性的,因此对其误差消除的滤波方法称为线性卡尔曼滤波方法。
假设对系统状态的观测是间接的,而且存在一定误差,即
z t=H t x t+v t(2)其中,z t为所用观测工具可以观测到的直接变量,不一定等同于系统状态中的变量,但却是和系统状态中的变量存在一定线性关系的变量;H t描述直接观测变量和系统状态变量之间的线性关系;v t表示观测误差,假设其协方差矩阵为R t。
虽然t时刻的观测值都是带有误差的,但由于系统状态相对于时间变化的机理是可知的,因此结合t−1时刻的某些信息可以削减该误差,提升t时刻观测值的精确度,得到t时刻的最优估计值,该估计值相对实际值的误差协方差为P t。
为了获得t时刻系统状态的最优估计值,线性卡尔曼滤波器需要以下3个方面的信息:
1.t−1时刻的最优估计值ˆx t−1;
2.t−1时刻最优估计值相对于实际值的误差协方差P t−1;
3.t时刻的观测值z t;
在获知这些信息的条件下,t时刻系统状态的最优估计值可以依据以下5个公式逐步获得:
1.由t−1时刻的最优估计值ˆx t−1,结合式(1)系统状态相对时间变化的机理,
预测t时刻的系统状态ˆx t|t−1,即
ˆx t|t−1=F t−1ˆx t−1+B t−1u t−1(3)
2.由t−1时刻最优估计值相对实际值的误差协方差P t−1,结合式(1)获得t时
刻预测状态相对于实际状态的误差协方差P t|t−1,即
P t|t−1=F t−1P t−1F T
t−1
+Q t−1(4)该式可以根据定义展开P t|t−1,并且结合最优估计误差x t−1−ˆx t−1与过程噪声w t之间的非相关性获得。
3.由P t|t−1计算卡尔曼因子K t,即
K t=P t|t−1H T
t (
H t P t|t−1H T
t
+R t
)−1
(5)
4.由t−1时刻对t时刻的预测ˆx t|t−1、卡尔曼因子K t以及t时刻的观测z t共同
得到t时刻对系统状态的最优估计,即
ˆx t=ˆx t|t−1+K t (
z t−H tˆx t|t−1
)
(6)
5.由t−1时刻对t时刻的预测误差和卡尔曼因子K t更新t时刻的估计误差,即
P t=P t|t−1−K t H t P t|t−1(7)其中,式(5-7)的引出与高斯噪声的特性有关[1]。
2.2滤波过程的其他细节
•估计误差P t是迭代更新的,因此P t并不是准确的,而其初值并不是非常重要。
•卡尔曼滤波器隐式地使用了0至t时刻的所有样本信息,体现在P t的逐步迭代更新上。
•式(4)和式(5)中的Q t−1和R t为过程噪声和观测噪声协方差,这两个噪声为平稳过程,因此其下标可以去掉。
•Q和R作为迭代的重要参数,对卡尔曼滤波器的性能起到一定影响,应该尽可能提前对其进行统计,否则只能多次测试。
•t=1时刻做初次估计时,不存在先前时刻的预测值,因此可以将观测值直接作为最优估计使用。
•所谓卡尔曼滤波器的预测作用,仅仅是结合系统机理根据t时刻对t+1时刻进行粗糙的预测,并不是根据0至t时刻的所有样本对系统状态的后续发展做
出长期的预测。
三、后记
非常好!
参考文献
[1]Faragher R.Understanding the Basis of the Kalman Filter via a Simple and Intuitive
Derivation[J].IEEE Signal Processing Magazine,2012,29(5):128–132.。