相似三角形的判定3(两角)
- 格式:ppt
- 大小:228.50 KB
- 文档页数:9
(一)相似三角形1定义:对应角相等,对应边成比例的两个三角形,叫做相似三角形.①当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做相似三角形,即定义中的两个条件,缺一不可;②相似三角形的特征:形状一样,但大小不一定相等;③相似三角形的定义,可得相似三角形的基本性质:对应角相等,对应边成比例.2、相似三角形对应边的比叫做相似比.①全等三角形一定是相似三角形,其相似比k=1 •所以全等三角形是相似三角形的特例•其区别在于全等要求对应边相等,而相似要求对应边成比例.②相似比具有顺序性.例如△ ABC A B,的对应边的比,即相似比为k,则△ A B' 0△ ABC的相似比「当它们全等时,才有k=k' =1③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出.3、如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形.4、相似三角形的预备定理:平行于三角形的一条边直线,截其它两边所在的直线,截得的三角形与原三角形相似.①定理的基本图形有三种情况,如图其符号语言:•/ DE // BC ,•••△ ABC ADE ;②这个定理是用相似三角形定义推导出来的三角形相似的判定定理. 它不但本身有着广泛的应用,同时也是证明相似三角形三个判定定理的基础,故把它称为预备定理”;③有了预备定理后,在解题时不但要想到见平行,想比例”,还要想到见平行,想相似(二)相似三角形的判定1、相似三角形的判定:判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
可简单说成:两角对应相等,两三角形相似。
例1、已知:如图,/ 仁/ 2=7 3,求证:△ AB(0A ADEA(双A型)例2、如图,E、F分别是△ ABC的边BC上的点,DE // AB,DF // AC , 求证:△ ABC DEF.判定定理2:如果三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。
相似三角形的判定(三)知识点回顾:1.关于三角形的判定方法(1)定义法:对应角相等、对应边成比例(2)预备定理:平行于三角形一边的直线和它两边(或两边延长线)相交,所构成的三角形和原三角形相似.(3)判定定理1.两角对应相等两三角形相似(4)判定定理2.两边对应成比例且夹角相等,两三角形相似(5)判定定理3.三边对应成比例的两三角形相似(6)直角三角形判定的方法①以上各种判定方法均适用②如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和直角对应成比例,那么这两个直角三角形相似③直角三角形被斜边上的高分成的两个直角三角形和原三角形相似2、判定定理的适用范围(1)已知有一角相等时,可选择判定定理1与判定定理2.(2)有两边对应成比例时,可选择判定定理2与判定定理3.(3)直角三角形判定先考虑判定直角三角形相似的方法.还可以考虑一般三角形相似的方法说明:一般不用定义来判定三角形的相似.3、三角形相似的基本图形:①平行型:如图1,“A”型即公共角对的边平行,“×”型即对顶角对的边平行,都可推出两个三角形相似;②相交线型:如图2,公共角对的边不平行,即相交或延长线相交或对顶角所对边延长相交.图中几种情况只要配上一对角相等,或夹公共角(或对顶角)的两边成比例,就可以判定两个三角形相似.例题讲解 课前练习1.在图3中,若DE ∥BC ,DB ∶DA=9∶4,则ΔABC 与ΔADE 的相似比是______.2.如图4, 在梯形ABCD 中,EF 交DB 、DC 于E 、F,则图中的相似三角形共有_____对;若AE ∶EF=4∶3则ΔAFD 与ΔGFC 的相似比是______.3.如图5,当∠ADC=∠____时,ΔABC ∽ΔACD ;当AD 2=_________时,ΔABC ∽ΔACD.4. ΔABC 的三边长为3、4、5,ΔA /B /C /的最短边为5,若ΔABC ∽ΔA /B /C /,则ΔA /B /C /的面积为____.例1、如图:点G 在平行四边形ABCD 的边DC 的延长线上,AG 交BC 、BD 于点E 、F ,则△AGD ∽ ∽ 。
三角形相似的判定方法一1、定义法:三个对应角相等,三条对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似. 5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这 两个三角形相似.简述为:三边对应成比例,两三角形相似. 特殊、判定直角三角形相似的方法:(1)以上各种判定均适用.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似. 注:射影定理:在直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。
如图,Rt △ABC 中,∠BAC=90°,AD 是斜边BC 上的高, 则AD 2=BD ·DC ,AB 2=BD ·BC ,AC 2=CD ·BC 。
二 相似三角形常见的图形三、1,下面我们来看一看相似三角形的几种基本图形:(1) 如图:称为“平行线型”的相似三角形(有“A 型”与“X 型”图)(2) 如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜交型”的相似三角形。
(有“反A 共角型”、“反A 共角共边型”、 “蝶型”)ACD E 12AADDEE12412DBCEAD(3)BCAE (2)CB(3) 如图:称为“垂直型”(有“双垂直共角型”、“双垂直共角共边型(也称“射影定理型”)”“三垂直型”)(4)如图:∠1=∠2,∠B=∠D ,则△ADE ∽△ABC ,称为“旋转型”的相似三角形。
相似三角形的判定方法
相似三角形的判定方法主要有以下几种:
1. AA判定法:如果两个三角形的两个角分别相等,则这两个三角形是相似的。
2. SSS判定法:如果两个三角形的对应边的比值相等,则这两个三角形是相似的。
3. SAS判定法:如果两个三角形的一个角相等,而且两个相邻边的比值相等,则这两个三角形是相似的。
4. 共边判定法:如果两个三角形有一条边是相等的,并且其他两边的比值相等,则这两个三角形是相似的。
需要注意的是,以上判定方法只能判断两个三角形是否相似,不能得出相似三角形的具体比例关系。
若要确定相似三角形的比例关系,需要通过对应边长的比值来确定。
三角形相似的判定方法三角形相似的判定方法一1、定义法:三个对应角相等,三条对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似. 5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似.特殊、判定直角三角形相似的方法:(1)以上各种判定均适用.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.注:射影定理:在直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。
如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则AD=BD·DC,AB=BD·BC ,AC=CD·BC 。
22二相似三角形常见的图形三、1,下面我们来看一看相似三角形的几种基本图形:BC(1)如图:称为“平行线型”的相似三角形(有“A型”与“X型”图)(2)B(3)(2) 如图:其中∠1=∠2,则△ADE∽△ABC称为“斜交型”的相似三角形。
(有“反A共A角型”、“反A共角共边型”、“蝶型”)A4DCDEADE1E(3)如图:称为“垂直型”(有“双垂直共角型”、“双垂直共角共边型(也称“射影定理型”)”DEB(D)B(4)如图:∠1=∠2,∠B=∠D,则△ADE∽△ABC,称为“旋转型”的相似三角形。