红外光谱操作
- 格式:docx
- 大小:370.62 KB
- 文档页数:7
红外光谱操作规程1. 背景介绍红外光谱(IR)是一种分析物质结构和化学键信息的常用分析技术。
红外光谱仪通过测量物质分子与红外光相互作用所产生的吸收,能够提供有关化学物质的结构和成分的信息。
本文档旨在介绍红外光谱操作规程,以保证实验操作的标准化和可重复性。
2. 实验室设备准备在进行红外光谱实验前,需确保以下设备已准备就绪:•红外光谱仪•红外光谱样品皿•红外光谱样品•非挥发性溶剂•必要的个人防护装备(手套、安全眼镜等)3. 实验操作步骤3.1 准备样品1.根据实验要求选择适当的红外光谱样品,并确认其状态(固体、液体或气体)。
2.若样品为固体,先进行样品制备,用适当的方法将样品挤压成透明薄膜。
3.若样品为液体,将样品转移到红外光谱样品皿中。
4.若样品为气体,将样品置于合适的气体容器中。
3.2 光谱仪设置1.打开红外光谱仪的电源,并等待设备自检完成。
2.设置所需的光谱扫描范围和分辨率,根据实验要求调整波数范围和光谱分辨率。
3.3 样品测量1.将样品放置在红外光谱样品台上,并确保样品与光谱仪光源和探测器之间没有任何障碍物。
2.关闭实验室窗户和门,以减少外部干扰。
3.启动光谱测量程序,开始采集红外光谱数据。
3.4 数据分析1.采集完红外光谱数据后,保存数据到计算机或其他存储设备中。
2.使用专门的红外光谱软件对数据进行分析和解释。
3.根据实验需求,提取有关光谱峰位、强度和形状等信息,并进行相应的结构分析和比对。
4. 实验安全措施1.在操作红外光谱仪过程中,避免与红外辐射直接接触,如有必要,使用适当的个人防护设备进行保护。
2.在操作红外光谱样品皿时,需注意尖锐边缘和易破碎的特性,避免割伤和溅入样品。
3.对于易燃、易爆或有毒的样品,需按照实验室安全规定进行妥善处理。
5. 结束实验实验结束后,按以下步骤进行操作:1.关闭红外光谱仪的电源。
2.清理工作台和样品皿,并妥善处理样品或废弃物。
3.将设备恢复到原始状态,包括清洁光谱台和探测器。
红外光谱实验步骤
红外光谱实验是一种用于分析物质结构的方法,具体步骤如下:
1. 准备样品:选择需要分析的样品,通常需要将样品制备成透明的薄片或溶液。
对于固体样品,可以使用金刚石压片机将其压制成薄片。
2. 设置光谱仪:打开红外光谱仪,在仪器上选择红外光谱扫描模式。
3. 校准仪器:根据仪器的要求,进行波数校准,通常使用气体或参考样品进行校准。
4. 选择检测方法:红外光谱实验可以采用不同的检测方法,最常用的是透射法和反射法。
透射法是将红外光通过样品后进行检测,反射法是将红外光照射在样品表面后进行检测。
5. 放置样品:将样品放置在光谱仪的光路中,根据实验要求选择透射池、反射杯等装置。
6. 开始实验:启动光谱仪,选择适当的波数范围和扫描速度,开始记录红外光谱。
7. 分析结果:根据实验记录的红外光谱图,观察吸收峰的位置和强度,进行物质结构的分析和鉴定。
8. 清洗仪器:实验结束后,关闭光谱仪,并进行相应的清洗和
维护工作,保持仪器的良好状态。
以上是典型的红外光谱实验步骤,具体步骤可能会根据不同的实验要求和仪器设备而略有变化。
红外光谱仪操作流程
1.准备样品:将待测样品制备成适合红外光谱仪分析的样品形式,如粉末、溶液或薄
膜等。
2.打开仪器:打开红外光谱仪的仪器门,并进行仪器自检。
3.调整仪器参数:根据需要,调整仪器的光学系统和探测器灵敏度等参数。
4.定位样品:将样品放置在红外光谱仪的样品台上,并进行定位。
通常需要使用支架
或其他辅助工具来确保样品的位置和稳定性。
5.开始测量:启动红外光谱仪,让其开始测量样品的红外光谱图谱。
这个过程可能需
要几分钟或几小时的时间,具体取决于待测样品的复杂程度和仪器的性能。
6.分析结果:等待测量完成后,分析红外光谱图谱的结果。
这通常需要使用计算机软
件来进行数据处理和图像分析。
根据测量结果可以得到样品的化学组成信息,例如分子结构、官能团等。
7.结果报告:根据分析结果生成报告,记录样品的化学组成信息以及与标准物质的比
较结果。
这个过程通常需要专业的知识和经验,以确保结果的准确性和可靠性。
红外光谱仪操作规程《红外光谱仪操作规程》一、引言红外光谱仪是一种用于分析样品中的分子结构和化学成分的仪器。
它通过对样品激发并测量样品辐射的红外光的方式来进行分析。
正确操作红外光谱仪对于获取准确的分析结果至关重要,因此有必要建立一套操作规程来保证仪器的正确使用。
二、操作准备1. 打开红外光谱仪电源,等待仪器自检完成。
2. 检查样品室和样品支撑平台是否清洁,有无异物。
3. 准备好需要测试的样品,并将其放置在样品支撑平台上。
三、仪器校准1. 进行零点校准,将空气对流区设定为零基线。
2. 使用标准样品进行波数校准,确保仪器的波数测量准确。
四、样品测试1. 选择适当的测试模式和参数设置。
2. 将样品放置在样品支撑平台上,并确保样品与红外光谱仪的检测区域对齐。
3. 开始测试,并记录测试时间和条件。
五、数据处理1. 获取红外光谱图谱,并保存数据。
2. 对测试数据进行分析,提取出需要的信息。
六、仪器维护1. 测试结束后,关闭红外光谱仪电源。
2. 清洁样品室和样品支撑平台,确保仪器的卫生和整洁。
3. 定期对仪器进行维护保养,保证其正常使用。
七、安全注意事项1. 使用红外光谱仪时,注意避免直接暴露在红外光线下,以免对眼睛造成伤害。
2. 操作过程中,尽量避免样品在样品支撑平台上发生滑动或晃动。
八、结语红外光谱仪是一种非常重要的分析仪器,准确操作和维护对于保证分析结果的准确性至关重要。
遵守本操作规程,可以有效保护仪器和提高操作人员的安全意识,保证分析结果的可靠性。
红外光谱仪的操作步骤简介红外光谱仪是一种广泛应用于化学、生物、医药等领域的分析仪器。
它通过测量物质在红外光波段的吸收特性,可以帮助研究人员分析物质的结构和组成。
本文将简要介绍红外光谱仪的操作步骤。
1. 准备样品在进行红外光谱分析之前,首先需要准备待测样品。
样品可以是固体、液体或气体,但需要保证样品的纯度和稳定性。
对于固体样品,通常需要将其研磨成粉末或制备成适当的片剂。
对于液体样品,可以直接放置在透明的红外吸收盒中。
对于气体样品,需要使用气体采样装置将其引入红外光谱仪。
2. 设置仪器参数在进行红外光谱分析之前,需要根据样品的性质和实验要求设置仪器参数。
主要包括选择合适的光源、选择合适的检测器、调节光源和检测器的强度等。
不同的样品和实验目的可能需要不同的仪器参数设置,因此需要根据具体情况进行调整。
3. 进行基线扫描基线扫描是红外光谱分析的第一步,用于检测仪器本身的噪音和漂移。
在进行基线扫描时,不需要放入样品,仅需将红外吸收盒或样品槽放置在光路中,进行空白扫描。
通过基线扫描可以得到仪器的基线信号,后续的样品扫描将基于这个基线信号进行分析。
4. 进行样品扫描在进行样品扫描之前,需要将样品放置在红外吸收盒中,并将其放入光路中。
样品的位置和角度需要根据具体仪器的要求进行调整。
在进行样品扫描时,仪器将发出一束红外光,样品会吸收部分光线,其余的光线经过检测器后转化为电信号。
通过对样品吸收的光谱进行分析,可以得到样品的红外光谱图。
5. 数据处理与分析得到样品的红外光谱图后,还需要进行数据处理与分析。
常见的数据处理方法包括基线校正、峰识别和峰定量等。
基线校正可以帮助去除基线漂移和噪音,使得谱图更加清晰。
峰识别可以帮助确定谱图中的各个峰位和峰强度,从而推测样品的结构和组成。
峰定量可以通过峰强度与样品浓度的关系,进行定量分析。
6. 结果解读与应用最后,根据数据处理与分析的结果,可以对样品的结构和组成进行解读与应用。
红外光谱分析可以帮助研究人员确定化学键的类型和存在状态,推测分子的结构和功能。
红外光谱仪的操作步骤
准备工作:
1.检查仪器的状态,确保光谱仪处于正常工作状态。
2.准备样品,根据需要制备样品,确保样品的纯度和含量符合要求。
3.准备基线参考物质,用于校正仪器并建立基线。
1.打开仪器:
a.打开红外光谱仪的电源开关,等待仪器自检完成。
b.启动光谱软件,确保仪器与计算机连接正常。
2.校准仪器:
a.选择校准模式,根据仪器的型号和要测量的样品类型,选择适当的
校准模式。
b.将基线参考物质放入样品室,调整路径长度,使其与待测样品相同。
c.点击校准按钮,开始校准仪器。
3.放置样品:
a.打开样品室的盖子,将样品放置在样品架上。
b.如果需要,调整路径长度,确保与校准时相同。
4.设置测量参数:
a.在光谱软件中选择测量模式,如透射或反射模式。
b.设置扫描范围,选择适当的红外光谱范围进行测量。
c.选择分辨率,根据需要选择适当的光谱分辨率。
d.设置积分时间,根据样品的特性选择适当的积分时间。
5.进行测量:
a.点击开始按钮,开始测量。
b.仪器将按照设置的测量参数进行扫描,同时记录样品吸收或反射的红外光谱。
6.分析光谱:
a.保存测量结果,将测量得到的红外光谱保存到计算机中。
b.使用光谱软件对光谱进行分析和处理,比如峰值、峰高测量、光谱干涉等。
7.结束测量:
a.关闭仪器,依次关闭红外光谱仪的电源开关和软件。
b.清洁样品室,将样品室内的废弃物清除干净。
红外光谱仪操作说明书I. 概述红外光谱仪是一种用于分析和识别样品中红外光谱信号的仪器。
本操作说明书将介绍红外光谱仪的正确操作方法,以确保准确和可靠的实验结果。
II. 仪器安装1. 首先,确保工作环境安全并符合红外光谱仪要求,包括通风良好、无尘等。
2. 将红外光谱仪放置在水平平台上,并保持稳定。
3. 检查并连接电源线,确保电源电压与设备要求一致。
4. 根据需要,连接样品室或样品盒,确保连接紧固。
III. 仪器调试1. 打开电源开关,待红外光谱仪系统初始化完成。
2. 检查光源和探测器是否正常工作,如有异常请及时联系专业技术人员进行检修。
3. 调整红外光谱仪的波数和带宽设置,以适应不同的实验要求。
4. 进行零点和背景校准,确保信号准确。
IV. 样品准备1. 准备样品并将其放入样品盒或样品室中。
注意选择适当的样品盒或样品室,以避免对红外光谱仪的损坏。
2. 确保样品完整且不受其他杂质污染。
3. 根据实验需求,选择合适的样品量,并将其均匀堆放在样品盒中。
V. 仪器操作1. 打开红外光谱仪软件,并根据实验要求选择相应的测量模式。
2. 在软件界面上设置并调整红外光谱仪的参数,如波数范围、扫描速度等。
3. 点击开始按钮,启动红外光谱仪的测量过程。
VI. 结果分析1. 测量完成后,红外光谱仪将生成光谱图。
2. 使用相应分析软件对光谱图进行处理和分析,以获得所需的实验结果。
3. 根据实验要求,比较和解释不同样品之间的光谱差异。
VII. 清洁与维护1. 每次使用红外光谱仪后,应关闭电源开关。
2. 用软布轻轻擦拭红外光谱仪的外壳,确保仪器清洁。
3. 定期检查红外光谱仪的光源和探测器,如有损坏或异常,请联系专业维修人员进行检修。
4. 注意保持红外光谱仪通风良好,确保其正常工作。
请根据以上操作说明书,正确使用红外光谱仪,确保实验的准确性和可靠性。
如有任何问题或疑问,请随时联系技术支持人员获取帮助。
红外光谱仪操作流程红外光谱仪是一种常用的实验仪器,用于分析和研究物质的结构和化学特性。
它通过测量和分析样品对红外辐射的吸收和散射情况,来获取样品的红外光谱信息。
以下是红外光谱仪操作的流程。
一、准备工作1. 确保红外光谱仪处于正常工作状态,接通电源并保证仪器仪表显示正常;2. 检查仪器的光源、样品室、检测器等部件是否完好无损;3. 准备好样品,确保样品处理符合实验要求;4. 确保实验环境安静、干净,以确保测试结果的准确性。
二、样品的装载1. 打开样品室,将样品放置在样品台上,并保证样品与台面紧密接触;2. 将样品室关闭,确保室内没有外界光线的干扰;3. 选择适当的测量模式和参数,如透射模式或反射模式,并设置相应的参数。
三、测量操作1. 点击仪器界面上的启动按钮,启动红外光谱仪;2. 等待一段时间,直到仪器自检完毕,确保仪器进入正常工作状态;3. 选择所需的测量范围和波数范围,确保测量结果具有足够的精度;4. 点击开始测量按钮,开始进行样品的红外光谱测量;5. 仪器将自动扫描样品并记录数据,等待测量完成。
四、数据处理和分析1. 测量完成后,将测量数据导出保存;2. 使用专业的红外光谱分析软件对数据进行处理和分析;3. 根据实验需要进行数据的峰位、峰面积、光谱图形等参数的计算和分析。
五、实验结果和讨论1. 根据数据分析的结果,得出相应的结论;2. 将实验结果进行整理和总结,并撰写报告或显示在仪器界面上;3. 对实验结果进行讨论,探讨可能的影响因素和改进方法。
六、实验结束1. 关闭红外光谱仪,断开电源;2. 清理并整理好实验现场,确保仪器和工作区域的整洁;3. 将实验数据和结果进行备份和归档。
红外光谱仪的操作流程可能因仪器型号和实验要求的不同而有所差异,因此在进行操作前,一定要详细查阅仪器的使用说明书,并根据实验目的进行相应的调整和修改。
在操作过程中,需要注意操作规范和安全措施,确保自身和周围人员的安全。
红外光谱操作
红外光谱操作是一种常用的分析方法,可用于确定物质的分子结构和化学键。
下面是红外光谱操作的相关内容:
1. 样品制备:样品制备是红外光谱操作的重要步骤,必须保证样品干燥、均匀、透明或透光等特性。
不同的样品需要采用不同的制备方法,如固体样品需研磨成粉末,液体样品需振荡均匀等。
2. 仪器调试:在进行红外光谱操作前需要对仪器进行调试,包括对光源、光谱仪、样品室等部分的检查和调整。
同时还需要进行参比物的测定,以保证数据的准确性。
3. 光谱测量:将样品放入样品室中,开始进行光谱测量。
在进行测量时需要注意光谱仪的分辨率、波数范围等参数的设置,以保证测量结果的准确性。
4. 数据处理:测量完成后,需要对所得光谱数据进行处理。
一般采用软件对数据进行处理,如进行峰位、峰型、峰面积等参数的计算和比对,以进一步确定样品的分子结构和化学键。
红外光谱操作是一种常用的分析方法,可用于各种领域的物质分析和研究。
在进行操作时需要注意样品制备和仪器调试等步骤的重要性,以保证测量结果的准确性和可靠性。
- 1 -。
1 安全操作1.1日常操作进程中,操作员把样品放入样品仓后,必须盖上仓盖进行测试,当仪器的仓盖揭开或损坏后,不得操作仪器。
1.2警告板:激光。
板1:位于红外仪上部,紧挨指示灯和光源仓位置(任何时候必须注意:万勿直接应用任何光学仪器观察激光光束找激光光束在任何表面的反射光束。
以免对眼睛造成永久的损坏)。
板2:位于红外仪上部的左后。
板3:位于光源仓内激光器的头部(任何时候进行养护工作时,无论何种原因揭开仪器仓盖(除了样品仓的盖)时,主机电源开关应置于“off”(关)位置,但必须拔下主机电源插头)。
1.3仪器远离水及其它导电介质。
勿触摸仪器的电源接头或半导体元件。
1.4在未得到布鲁克服务工作人员的指导下,不得触摸红外仪内的任何元件,以确保人员及仪器的安全。
1.5不在仪器上放置任何物品。
2 环境要求2.1对于仪器运行及长期稳定性最适宜的环境条件是: 18—30℃,低于70%湿度。
2.2仪器不适宜在交通繁忙的区域或临近振动源(如通风机、空调、马达等)处工作。
3 电源要求电源:200Volts(Ac)±1%,0.8Amps,单相(50—60Hz)。
如果计算机也接入了同一电流,瓦特数应大些。
4 电源环境要求为保证得到高质量的数据,延长元件寿命,应避免下列情况。
4.1勿将仪器置于电场干扰,高能脉冲,磁场源及电频干扰的环境下。
4.2探测器元件,如大型马达,热电偶,……这些仪器不能与红外仪插入一个电流循环系统。
4.3主机电源须稳定,如果出现(如灯光暗淡,电流急冲,频繁的电击)问题,应考虑使用一个不受干扰的(UPS)电源和/或Line Conditioner。
5 分束器更换过程5.1分束器:分束器上部有一手柄,以便插入光谱仪。
分束器对湿度、尘埃及其它环境因素十分敏感。
它们只要不放在光谱仪中使用时就应储存在布鲁克干燥存储箱内。
注意:分束器除了手柄外,其它任何部分都不能用手触摸。
触摸任何其它部分可能损坏甚至完全弄坏分束器。
红外光谱样品测试及图谱解析技巧一、样品制取1、固体粉末样品制备(1)卤化物压片法:基质有氯化钠、溴化钾、氯化银、碘化铯,最常用的是溴化钾,压成直径13mm,厚度0.5mm的薄片,溴化钾与样品的比例为100:1(样品约1-2mg)注意:溴化钾必须干燥溴化钾研磨很细控制溴化钾与样品的比例适用:可以研细的样品,但对于不稳定的化合物,如发生分解、异构化、升华等变化的化合物不宜使用压片法。
注意样品的干燥,不能吸水.(2)糊剂法: 取2mg样品与1滴石蜡油研磨后,涂在溴化钾窗片上测量。
适用:对于吸水性很强、有可能与溴化钾发生反应的样品注意:要扣除石蜡油的吸收峰2、橡胶、油漆、聚合物的制样一般采用薄膜法,膜的厚度为10-30μm,且厚薄均匀。
常用的成膜法有3种:(1)熔融成膜:适用熔点低、熔融时不分解、不产生化学变化的样品(2)热压成膜:适用热塑性聚合物,将样品放在膜具中加热至软化点以上压成薄膜(3)溶液成膜:适用可溶性聚合物,将样品溶于适当的溶剂中,滴在玻璃板上使溶剂挥发得到薄膜3、液体样品的制备(1)沸点较高,粘度较大的液体样品,取2mg或一滴样品直接涂在KBr窗片上进行测试(2)沸点较低及粘度小、流动性较大的高沸点液体样品放在液体池中测试(3)液体池是由两片KBr窗片和能产生一定厚度的垫片所组成切记不得有水4、气体样品的制备(1)气体样品采用气体池,直接测试;(2)浓度高的样品,采用光程短的气体池,或者减小压力,或者用氮气或氦气进行稀释;(3)对于浓度低至PPM或PPB量级的样品,采用光程长的气体池以及更高灵敏度的MCT 检测器。
常规气体池:长度100mm,直径30-40mm,由窗片和玻璃筒密封而成小体积气体池:池的直径较小,适用于样品量少的气体长光程气体池:最长有1000m,适用于ppm级极稀浓度样品的测试高温、低温、加压气体池:适用于高温、低温、高压气体的特殊研究二、红外光谱解析技巧1、分子结构对基团吸收谱带位置的影响在双原子分子中,基团的吸收不是固定在某一个频率上,而在一定范围内波动。
如:C-H的伸缩振动频率受到与这个碳原子邻接方式的影响C-C-H:3000-2850cm-1C=C-H: 3100-3000cm-1C≡C-H: 3300 cm-1附近外部条件对吸收的影响有:物态效应、晶体状态和溶剂效应。
主要讨论分子结构的影响因素有以下7个方面:(1) 诱导效应(I效应)基团邻近带有不同电负性的取代基时,由于诱导效应引起分子中电子云分布的变化,从而引起键力常数的改变,使基团吸收频率变化。
吸电子基团(-I效应)使邻近基团吸收波数升高(吸-高)给电子基团(+I效应)使邻近基团吸收波数降低(给-低)如:化合物(υC=O/cm-1)CH3-CO-CH3 CH2Cl-CO-CH31715 1724Cl-CO-CH3 Cl-CO-Cl F-CO-F1806 1828 1928相同的吸电子取代基越多,则波数升高越多取代基吸电子性(电负性)越强,则波数升高越多(2) 共轭效应(C效应)在有不饱和键存在的化合物,共轭体系经常会影响基团吸收频率。
共轭体系有:“π-π”共轭和“p-π”共轭。
基团与给电子基团共轭,使基团的吸收频率降低如:化合物υC=O/c m-1CH3-CO-CH3 CH3-CH=CH-CO-CH3 Ph-CO-Ph1715 1677 1665(3) 振动偶合与费米(Feimi)共振如果一个分子内邻近的两个基团位置很靠近,它们的振动频率几乎相同,并有相同的对称性,就会偶合产生两个吸收带,这叫振动偶合。
在许多化合物中都可以发生这种现象。
(6种情况)一个碳原子上含有两个或三个甲基,则在1385-1350cm-1出现两个吸收带。
酸酐上两个羰基互相偶合产生两个吸收带上则没有这种偶合。
如:化合物vC=O/cm-1HOOCCH2COOH HOOC(CH2)2COOH HOOC(CH2)nCOOH 1740, 1710 1780, 1700 N≥3时只有一个vC=O 具有R-NH2和R-CONH2 结构的化合物,有两个υN-H。
这也是区分伯、仲、叔胺的有效方法,氮上有几个氢,3300-3500cm-1就有几个峰。
酰胺中由于δN-H 与υC-N偶合产生酰胺Ⅱ和Ⅲ带。
酰胺Ⅱ带在1570-1510cm-1, 酰胺Ⅲ带在1335-1200cm-1 .Fermi 共振当一个倍频或合频靠近另一个基频时,则会发生偶合,产生两个吸收带。
一般情况下,一个频率比基频高,而另一个比基频低,这叫Fermi 共振。
如:正丁基乙烯基醚中ω=CH (810cm-1)的倍频与υC=C 发生Fermi 共振, 出现两个强的谱带在1640,1613cm-1。
环戊酮分子中υC=O 出现两个吸收带1746,1728cm-1,这是由于羰基的伸缩振动与环的呼吸振动(889cm-1)的倍频间发生Fermi 共振所致。
(4)张力效应与环直接连接的环外双键(烯键、羰基)的伸缩振动频率,环张力越大其频率越高。
如:υC=O/cm-11718 1751 1775 环内双键,张力越大,伸缩振动频率越低(环丙稀 例外)。
如:1646 1611 1566 1641(5)氢键使伸缩振动频率向低波数移动,强度增强并变宽。
分子内氢键:下列化合物中后者形成分子内氢键,形成氢键的吸收频率明显降低。
CONHH ROOoC O CHCH 2O1676,1673 1675,1622区分分子内和分子间氢键的很好办法——稀释法如乙醇在四氯化碳中的不同浓度时: 自由OH 伸缩振动出现在3640cm-1 二聚体OH 伸缩振动出现在3515cm-1 多聚体OH 伸缩振动出现在3350cm- (6)位阻效应共轭效应会使基团吸收频率移动,若分子结构中存在空间阻碍,使共轭受到限制,则基团吸收频率接近正常值。
υC=O/cm-11663 1686 1693 (7) 互变异构的影响显示:各种异构体的吸收带。
如乙酰乙酸乙酯有酮式和烯醇式结构,可以看到烯醇式的羰基吸收较酮式的弱,说明烯醇式较少.CH3-CO-CH2-COO-C2H5 → CH2-C(OH)=CH-COO-C2H5 υC=O/cm -1在 υC=O 与υC=C 在1738(s),1717(s) 1650(w), υOH 3000 OOOHO OOH3、红外图谱的解析范围:4000-400cm-1中红外区,绝大多数有机化合物的基频振动出现在该区域. (1)谱带的三个重要特征: 位置、形状、相对强度位置:指特征吸收峰,是指示某一基团存在的最有用特征形状:从谱带的形状也可以得到有关基团的一些信息。
如:酰胺基团的羰基大都形成氢键,其谱带较宽,很容易与烯类的谱带区别。
OH是宽的大包,而NH则是尖峰。
相对强度:极性较强的基团,将产生强的吸收带,如羰基和醚键的谱带就很强。
(2)红外光谱一般解析步骤A.检查谱图是否符合要求。
基线的透过率在90%左右;最大吸收峰不应成平头峰。
(图谱合格)B.了解样品来源、样品理化性质、其他分析数据、样品重结晶溶剂及纯度。
(样品合格)排除可能出现的“假谱带”,常见的有:水的吸收,在3400、1640和650cm-1;CO2的吸收,在2350和667cm-1。
C.算出分子的不饱和度(U)。
D.根据特征吸收峰判断官能团,如羧基可能在3600-2500、1760-1685、1440-1210、995-915cm-1附近出现多个吸收,而且有一定的强度和形状。
从这多个峰的出现可以确定羧基的存在。
* 图谱解析“三先三后”原则1、先官能团区,后指纹区2、先强峰,后弱峰3、先否定,后肯定4000-1333cm-1可以判断化合物的官能团种类。
1333-650cm-1范围为指纹区,反映整个分子结构的特点.如:苯环的存在可以由3100-3000、1600、1580、1500、1450cm-1的吸收带判断,而苯环上的取代位置要用900-650cm-1区域的吸收带判断。
否定法:例如,1725cm-1附近没有吸收带,就可以判断没有酯基的存在;3700-3100cm-1区域没有吸收带,就可以判断没有NH、OH基团的存在;3100-3000、1600、1580、1500、1450cm-1区域没有吸收带,就可以判断没有苯环基团的存在。
对于否定法应用的特征基团频率肯定法:有许多谱带是特征的,如某一化合物在1100cm-1处具有一个很强、形状对称的谱带,就可以判断有醚键;在2242cm-1处有吸收,就可以判断有C≡N 、C≡C、C=C=C等存在。
注意:必须综合判断某一个基团的存在,如,不能单凭在3100-3000cm-1区域出现吸收带,就肯定化合物中有芳环,则还需要看在1600-1500cm-1处和1000-650cm-1处有无谱带,才能做出正确的判断。
未知化合物结构解析1.计算不饱和度2.官能团搜索3..分步进行:(1)C=O是否存在?1820~1660 cm-1(s),不存在,进行(3);存在:(2) 酸?O-H?酰胺?N-H?酯?C-O?1300~1000 cm-1 (s)酐?1810,1760 cm-1 ?醛?C-H?2850,2750 cm-1 (w)排除以上,则可能是酮(3) C=O不存在醇、酚?O-H?3600~3300(br)1300~1000 C-O胺?N-H 3500~3100 一个或两个中等强度醚?无O-H,但C-O 有1300~1000(4) 双键、芳环1650~1450(5) 三键2250 C N (m)2150 C C (w)(6)硝基?1600~1500 (s),1390~1300(s)标准红外谱图及检1、直接查对谱图(Sadtler Standdard Infrared Spectra)4种索引:化合物名称字顺索引分子式索引化学分类索引光谱顺序号索引2、计算机数据库检索(布鲁克公司的红外谱库)。