STM32F4——NVIC中断优先级及外部中断
- 格式:docx
- 大小:12.25 KB
- 文档页数:3
STM32103系列中断NVIC 中断构成10个系统异常(系统中断)60个外部中断NVIC寄存器NVIC简介全称:嵌套向量中断控制器来源:cortex-M3 内核里的NVIC减去不需要的部分构成STM32的NVIC寄存器1.ISER中断使能寄存器2.ICER中断清除寄存器(也就是失能中断)3.ISPR中断使能悬起寄存器4.ICPR中断清除悬起寄存器5.IABR中断有效位寄存器6.IP中断优先级寄存器7.STIR软件触发中断寄存器黄色部分是常用的中断优先级优先级的定义优先级设定寄存器:NVIC->IPRx复位,NMI 和硬 fault是特殊的、不可设置的、优先级最高的,无论什么时候出现都会抢占最高级别作用:用来配置外部中断优先级寄存器说明寄存器宽度:8bit(如图所示:STM32系列有效的只有4bit)支持16级优先级别:0~15数值意义:数值越小,优先级就越高优先级分组优先级分组:SCB->AIRCR:PRIGROUP[10:8]优先级分组定义用于表达优先级的4bit,如果有中断发生,抢占式优先级高的先执行,如果抢占式优先级相同,就比较子优先级。
如果2者都相同,那就比较它们的硬件编号(编号小的优先级高)优先级分组的来源优先级分组抢占式优先级子优先级固件库中断配置需要用到的定义所在文件misc.c、misc.h、stm32f10x.h、st32f10x_it.c中断配置步骤使能外设某个中断11.开启比如定时器中断、串口中断,外部中断等相应外设中断的寄存器位2.使能NVIC寄存器中的使能寄存器设置中断优先级分组2对应的固件库函数:NVIC_PriorityGroupConfig(),在misc.c的文件中配置NVIC寄存器3初始化NVIC_InitTypeDef结构体将初始化后的NVIC_InitTypeDef结构体放入NVIC_Init()中,在misc.c的文件中4编写中断服务函数51.中断服务函数名称都在startup_stm32f10x_hd.s的汇编文件中已经设置好了2.在st32f10x_it.c文件中编写。
nvic中断控制原理
NVIC,全称为嵌套向量中断控制器,是ARMCortex-M微控制器中的核心组件之一。
它的工作原理如下:
1.中断优先级:每个中断都有一个固定的优先级。
优先级高的中断在发生时可以立即打断正在执行的指令序列。
ARMCortex-M微控制器支持动态优先级,可以在运行时改变中断的优先级。
2.中断向量表:NVIC使用一个特殊的存储区域来保存中断向量表(InterruptVectorTable)。
中断向量表是一个数组,其中每个元素都是一个指向中断处理程序的地址。
当中断发生时,NVIC将比较新中断与当前中断的优先级,如果新中断优先级高,则立即处理新中断。
3.中断屏蔽:NVIC具有可编程的中断屏蔽寄存器,用于控制哪些中断被允许或禁止。
通过设置这些寄存器的值,可以控制哪些中断信号可以触发中断事件。
4.自动保存和恢复处理器状态:在ISR(中断服务程序)结束时,NVIC将从栈中恢复相关寄存器的值,进行正常操作,因此花费少量且确定的时间处理中断请求。
总之,NVIC通过优先级管理、向量表、屏蔽寄存器和自动保存恢复处理器状态等功能,实现了对微控制器中断的全面控制和管理。
STM32中断优先级彻底讲解stm32目前支持的中断共为84个(16个内核+68个外部),16级可编程中断优先级的设置(仅使用中断优先级设置8bit中的高4位)和16个抢占优先级(因为抢占优先级最多可以有四位数)。
二:优先级推论stm32(cortex-m3)中有两个优先级的概念——抢占式优先级和响应优先级,有人把响应优先级称作'亚优先级'或'副优先级',每个中断源都需要被指定这两种优先级。
具备低抢占市场式优先级的中断可以在具备高抢占市场式优先级的中断处理过程中被积极响应,即为中断嵌套,或者说低抢占市场式优先级的中断可以嵌套高抢占市场式优先级的中断。
当两个中断源的抢占式优先级相同时,这两个中断将没有嵌套关系,当一个中断到来后,如果正在处理另一个中断,这个后到来的中断就要等到前一个中断处理完之后才能被处理。
如果这两个中断同时到达,则中断控制器根据他们的响应优先级高低来决定先处理哪一个;如果他们的抢占式优先级和响应优先级都相等,则根据他们在中断表中的排位顺序同意先处置哪一个。
三:优先级分组既然每个中断源都须要被选定这两种优先级,就须要存有适当的寄存器位记录每个中断的优先级;在cortex-m3中定义了8个比特位用作设置中断源的优先级,这8个比特位在nvic应用领域中断与登位掌控递丛器(aircr)的中断优先级分组域中,可以存有8种分配方式,如下:所有8位用于指定响应优先级最低1十一位用作选定抢占市场式优先级,最高7十一位用作选定积极响应优先级最低2十一位用作选定抢占市场式优先级,最高6十一位用作选定积极响应优先级最低3十一位用作选定抢占市场式优先级,最高5十一位用作选定积极响应优先级最低4十一位用作选定抢占市场式优先级,最高4十一位用作选定积极响应优先级最低5十一位用作选定抢占市场式优先级,最高3十一位用作选定积极响应优先级最低6十一位用作选定抢占市场式优先级,最高2十一位用作选定积极响应优先级最低7十一位用作选定抢占市场式优先级,最高1十一位用作选定积极响应优先级这就是优先级分组的概念。
STM32中断优先级彻底讲解一:综述STM32 目前支持的中断共为 84 个(16 个内核+68 个外部), 16 级可编程中断优先级的设置(仅使用中断优先级设置 8bit 中的高 4 位)和16个抢占优先级(因为抢占优先级最多可以有四位数)。
二:优先级判断STM32(Cortex-M3)中有两个优先级的概念——抢占式优先级和响应优先级,有人把响应优先级称作'亚优先级'或'副优先级',每个中断源都需要被指定这两种优先级。
具有高抢占式优先级的中断可以在具有低抢占式优先级的中断处理过程中被响应,即中断嵌套,或者说高抢占式优先级的中断可以嵌套低抢占式优先级的中断。
当两个中断源的抢占式优先级相同时,这两个中断将没有嵌套关系,当一个中断到来后,如果正在处理另一个中断,这个后到来的中断就要等到前一个中断处理完之后才能被处理。
如果这两个中断同时到达,则中断控制器根据他们的响应优先级高低来决定先处理哪一个;如果他们的抢占式优先级和响应优先级都相等,则根据他们在中断表中的排位顺序决定先处理哪一个。
三:优先级分组既然每个中断源都需要被指定这两种优先级,就需要有相应的寄存器位记录每个中断的优先级;在Cortex-M3中定义了8个比特位用于设置中断源的优先级,这8个比特位在NVIC应用中断与复位控制寄丛器(AIRCR)的中断优先级分组域中,可以有8种分配方式,如下:所有8位用于指定响应优先级最高1位用于指定抢占式优先级,最低7位用于指定响应优先级最高2位用于指定抢占式优先级,最低6位用于指定响应优先级最高3位用于指定抢占式优先级,最低5位用于指定响应优先级最高4位用于指定抢占式优先级,最低4位用于指定响应优先级最高5位用于指定抢占式优先级,最低3位用于指定响应优先级最高6位用于指定抢占式优先级,最低2位用于指定响应优先级最高7位用于指定抢占式优先级,最低1位用于指定响应优先级这就是优先级分组的概念。
学习笔记:STM32的外部中断(库函数)在为某引脚配置中断前,同样要先初始化该引脚的配置,用GPIO_Init()函数初始化,不同的是,由于是外部中断,所以输入模式要设置上拉输入。
假设外部中断引脚为PE.2,则该引脚初始化配置的程序为:IOIO口作为外部中断输入是复用功能,因此在此基础上还需要对另一个时钟信号进行初始化。
这是IO口作为复用功能时需要进行初始化的时钟,另外,要注意的是,做一般功能使用的IO口只需要调用第一个函数即可,而作为复用功能的IO口,两个函数都要调用,两者缺一不可,否则不能正常使用。
STM32的每个IO都可以作为外部中断的中断输入口,这点也是STM32的强大之处。
STM32F103的中断控制器支持19个外部中断/事件请求。
每个中断设有状态位,每个中断/事件都有独立的触发和屏蔽设置。
STM32F103的19个外部中断为:线0~15:对应外部IO口的输入中断。
线16:连接到PVD输出。
线17:连接到RTC闹钟事件。
线18:连接到USB唤醒事件。
从上面可以看出,STM32供IO口使用的中断线只有16个,但是STM32的IO口却远远不止16个,那么STM32是怎么把16个中断线和IO口一一对应起来的呢?于是STM32就这样设计,GPIO的管脚GPIOx.0~GPIOx.15(x=A,B,C,D,E,F,G)分别对应中断线0~15。
这样每个中断线对应了最多7个IO口,以线0为例:它对应了GPIOA.0、GPIOB.0、GPIOC.0、GPIOD.0、GPIOE.0、GPIOF.0、GPIOG.0。
而中断线每次只能连接到1个IO口上,这样就需要通过配置来决定对应的中断线配置到哪个GPIO上了。
下面我们看看GPIO跟中断线的映射关系图:在库函数中,配置GPIO与中断线的映射关系是通过函数GPIO_EXTILineConfig()来实现的:void GPIO_EXTILineConfig(uint8_t GPIO_PortSource,uint8_t GPIO_PinSource)该函数将端口与中断线映射起来,使用示例是:GPIO_EXTILineConfig(GPIO_PortSourceGPIOE,GPIO_PinSource2);将中断线2与GPIOE映射起来,那么很显然是GPIOE.2与EXTI2中断线连接了。
STM32外部中断处理流程外部中断是指引发中断的事件来自于MCU外部的输入引脚或外设,需要通过配置寄存器和中断服务程序来处理外部中断。
在STM32系列MCU中,外部中断处理可分为以下几个步骤。
1.配置中断引脚要使用外部中断功能,首先需要配置中断引脚。
对于STM32,外部中断引脚由GPIO口提供,需要通过GPIO配置寄存器设置相关引脚的工作模式、上下拉和中断触发方式等。
具体配置方法可以参考芯片手册。
2.配置中断控制器外部中断的中断源需要连接到中断控制器(NVIC),通过配置NVIC的相关寄存器来使能外部中断。
NVIC是位于ARM Cortex-M内核内部的外设,用于管理和分配中断优先级。
3.编写中断服务程序(ISR)中断服务程序(Interrupt Service Routine, ISR)是用于处理中断事件的函数,当外部中断引发时,MCU会跳转到相应的ISR进行处理。
在编写ISR时,需要注意以下几点:-确定中断源:可以通过读取中断状态寄存器来判断是哪个外部中断引起的中断。
-处理中断事件:根据中断源的不同,进行相应的处理。
例如,可以读取输入引脚状态、处理外设状态等。
-清除中断标志位:要在ISR内部清除中断标志位,以允许MCU再次响应该外部中断。
具体方法是通过读取相应的寄存器或调用相关函数清除中断标志位。
4.配置中断优先级中断优先级用于确定ISR的响应顺序,优先级较高的中断先被处理。
在STM32中,中断优先级可以通过配置中断控制器的相关寄存器进行设置。
5.启用中断在完成上述步骤后,需要启用相应的中断引脚和中断控制器。
具体方法是通过设置GPIO寄存器来使能中断引脚,并通过设置NVIC寄存器来使能相关中断。
6.处理中断请求一旦发生外部中断事件,MCU就会跳转到相应的ISR进行中断处理。
在ISR中,可以根据需要调用其他的函数或执行其他的操作。
处理完成后,可以通过清除中断标志位和退出中断函数来结束中断处理。
STM32中断优先级分组Cortex-M3 的中断优先级的分组方式最多可以有有8 种,因为CM3 强制规定:SubPriority 至少要占一个位(如果没有该强制规定,那么CM3 分组方式最多有9 种)。
我们知道:STM32 把指定中断优先级的寄存器的MSB4 位有效,共有以下5 种分组方式:第0 组方式:所有4 位用于响应优先级第1 组方式:最高1 位用于抢占式优先级,最低3 位用于响应优先级第2 组方式:最高2 位用于抢占式优先级,最低2 位用于响应优先级第3 组方式:最高3 位用于抢占式优先级,最低1 位用于响应优先级第4 组方式:所有4 位用于抢占式优先级在MISC.H 里面有:#define NVIC_PriorityGroup_0((uint32_t)0x700)#define NVIC_PriorityGroup_1((uint32_t)0x600)#defineNVIC_PriorityGroup_2((uint32_t)0x500)#defineNVIC_PriorityGroup_3((uint32_t)0x400)#defineNVIC_PriorityGroup_4((uint32_t)0x300)我们发现:第4 组方式是所有4 位用于抢占式优先级,那么这是不是与”SubPriority 至少要占一个位”相冲突呢?答案:当然不冲突了!因为虽然STM32 的”优先级配置寄存器”没有使用bit3、bit2、bit1、bit0,但是却允许从它们中分组(分组位置由应用程序中断及复位控制寄存器(AIRCR)的[10:8]决定)。
=========================第0 组采用的分组方式是bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0。
外部中断(zhōngduàn)的初始化过程:1.初始化IO为输入(shūrù)(可以设置上拉,下拉,浮空)2.开启(kāiqǐ)IO复用(fù yònɡ)时钟3.开启(kāiqǐ)与该IO相对的线上(详解下)4.配置NVIC,使能中断5.编写中断服务函数外部中断:Stm32中总共有19个外部中断包括:线0-15:IO输入中断(每条线上最多有7个IO,如GPIOA~GPIOG,但是每一条线每次只允许同时连接到一个IO)线16:PVD线17:RTC线18:USB关于(guānyú)优先级:CM3中内核(nèi hé)支持256个中断(zhōngduàn)(16个内核(nèi hé)+240外部(wàibù))和可编程256级中断优先级的设置Stm32目前(mùqián)支持84个中断(zhōngduàn)(16个内核(nèi hé)+68个外部(wàibù),注:不是(bù shi)指68个外部中断),16级可编程优先级(优先级设置寄存器中使用了4位)注意:其中(qízhōng)外部中断5-9和中断(zhōngduàn)10-15向量存放(cúnfàng)在一起优先级:数值(shùzí)低的优先级要高于数值高的!!!!!!上电复位后,系统默认(mòrèn)使用的是组0;一个系统只能使用一组优先级组,不可使用多个,优先级的设置不能超过组的范围,否则会产生不可预计的错误1.高抢先级的中断可以打断低优先级的中断响应,构成中断嵌套2.相同抢先级的中断不可以构成嵌套,系统会优先响应子优先级高的3.当2(n)个相同抢先优先级和相同子优先级的中断(zhōngduàn)出现,STM32首先响应中断通道所对应的中断向量地址(dìzhǐ)低的那个中断4.0号抢先优先级的中断,可以(kěyǐ)打断任何中断抢先优先级为非0号的中断(zhōngduàn);1号抢先优先级的中断(zhōngduàn),可以打断任何中断抢先优先级为2、3、4号的中断;……;构成中断嵌套。
stm32解决中断冲突的方法如何解决STM32中的中断冲突第一步:了解STM32中断机制STM32微控制器系列是STMicroelectronics开发的一系列32位ARM Cortex-M内核的微控制器。
STM32使用向量中断控制器(NVIC)来管理中断。
每个可中断源都有一个特定的中断优先级,并且可以通过调整优先级来控制中断的触发和处理顺序。
中断是STM32系统中非常重要的一部分,它允许微控制器在处理其他任务时根据需要对外部事件作出响应。
但是,在STM32中使用多个中断时可能会出现冲突的问题。
这可能导致一些中断无法触发或中断优先级错误。
为了解决这个问题,可以采取以下方法。
第二步:了解中断冲突的原因中断冲突可能是由于中断优先级设置错误、中断嵌套问题或中断间共享资源引起的。
中断优先级设置错误是指中断的优先级设置不正确,导致某些中断会被覆盖或延迟触发。
中断嵌套问题是指当一个中断正在处理时,另一个中断发生,导致中断无法正确触发。
中断间共享资源引起的冲突是指多个中断同时访问共享资源,导致数据错误或冲突。
第三步:调整中断优先级首先,调整中断的优先级是解决中断冲突的关键。
在STM32中,每个中断源都有一个特定的优先级,范围从0到15。
较低的数值表示更高的优先级,而较高的数值表示较低的优先级。
为了更好地控制中断触发和处理顺序,可以根据系统需求适当调整中断的优先级。
调整中断优先级可通过在NVIC中设置相关的中断控制器寄存器来实现。
有两个关键的寄存器需要设置:中断优先级寄存器(IPR)和中断使能寄存器(IER)。
中断优先级寄存器用于设置中断的优先级,而中断使能寄存器用于使能或禁用中断。
为了防止冲突,可以将高优先级的中断设置为较低的值(例如0或1),而将低优先级的中断设置为较高的值(例如14或15)。
这样可以确保高优先级的中断首先得到处理,从而避免了中断冲突。
第四步:正确处理中断嵌套另一个常见的中断冲突问题是中断嵌套。
stm32 定时器中断配置
stm32 中断
stm32 的Cortex 内核具有强大的异常响应系统,它把能够打断当前代码执行流程的事件分为异常(excepTIon)和中断(terryp),并把它们用二个表管理起来,编号为0~15 的称为内核异常,而16 以上的则称为外部中断(外,相对内核而言),这个表就称为中断向量表。
而STM32 对这个表重新进行了编排,把编号从-3 至6 的中断向量定义为系统异常,编号为负的内核异常不能被设置优先级,如复位(Reset)、不可屏蔽中断(NMI)、硬错误(Hardfault)。
从编号7 开始的为外部中断,这些中断的优先级都是可以自行设置的。
STM32 的中断如此之多,配置起来并不容易,因此,我们需要一个
强大而方便的中断控制器NVIC,NVIC 是属于Cortex 内核的器件。
stm32 中断配置
配置STM32 的中断只需要理解2 个内容,配置4 个变量即可。
查看stm32的SysTick中断的优先级,⽐外设中断优先级⾼吗?默认SysTick中断优先级1//core_cm4.h23 __STATIC_INLINE uint32_t SysTick_Config(uint32_t ticks)4 {5if ((ticks - 1UL) > SysTick_LOAD_RELOAD_Msk) { return (1UL); } /* Reload value impossible */67 SysTick->LOAD = (uint32_t)(ticks - 1UL); /* set reload register */8 NVIC_SetPriority (SysTick_IRQn, (1UL << __NVIC_PRIO_BITS) - 1UL); /* set Priority for Systick Interrupt */9 SysTick->VAL = 0UL; /* Load the SysTick Counter Value */10 SysTick->CTRL = SysTick_CTRL_CLKSOURCE_Msk |11 SysTick_CTRL_TICKINT_Msk |12 SysTick_CTRL_ENABLE_Msk; /* Enable SysTick IRQ and SysTick Timer */13return (0UL); /* Function successful */14 }第8⾏设置了SysTick中断的优先级,#define __NVIC_PRIO_BITS 4 /*!< STM32F4XX uses 4 Bits for the Priority Levels */在看NVIC_SetPriority函数:NVIC_SetPriority对中断分了类,分内核中断和外设中断,内核外设中断枚举值⼩于0,普通外设>=0。
STM32CubeMX实战教程(三)——外部中断(中断及HAL_Delay函数避坑)在STM32CubeMX实战教程中,我们已经学习了如何使用GPIO来控制LED的亮灭。
在这篇文章中,我们将进一步学习如何使用外部中断来实现更复杂的功能。
外部中断可以使我们的微控制器能够在输入发生变化时立即做出响应。
这对于需要实时性的应用非常重要,比如按钮的按下或松开的检测。
外部中断类似于计数器,不断地检测输入引脚的变化,并在变化时触发中断。
在STM32CubeMX中配置外部中断非常简单。
我们只需要选择外部输入引脚作为中断源,然后为中断配置触发方式即可。
触发方式可以是上升沿、下降沿或双边沿触发。
但要注意的是,当使用外部中断时,我们应该避免在中断服务子程序(ISR)中使用延时函数,如HAL_Delay。
这是因为在ISR中调用延时函数会导致中断响应时间增加,从而影响其他中断的响应和整个系统的实时性。
所以在ISR中,我们只能执行最核心、最迅速的操作。
为了避免在ISR中使用延时函数,我们可以使用定时器中断来实现延时。
定时器中断是一种定期触发的中断,在ISR中我们可以通过判断定时器的计数值来实现一定时间的延时。
下面是一个使用外部中断的示例代码:```c#include "stm32f4xx_hal.h"GPIO_InitTypeDef GPIO_InitStruct;EXTI_HandleTypeDef hexti;void SysTick_Handler(void)HAL_IncTick(;HAL_SYSTICK_IRQHandler(;void EXTI_IRQHandler(void)HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_0);void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin) //在这里执行最核心、最迅速的操作int main(void)HAL_Init(;SystemClock_Config(;__HAL_RCC_GPIOA_CLK_ENABLE(;__HAL_RCC_SYSCFG_CLK_ENABLE(;GPIO_InitStruct.Pin = GPIO_PIN_0;GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING; GPIO_InitStruct.Pull = GPIO_PULLDOWN;HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);HAL_NVIC_SetPriority(EXTI0_IRQn, 0, 0);HAL_NVIC_EnableIRQ(EXTI0_IRQn);while (1)//在这里执行其他操作}```在这个示例中,我们使用PA0引脚,即用户按钮作为外部中断源。
stm32中断(NVIC与EXTI) D部有4个从优先级(00 01 10 11)。
1.中断输入与悬起当中断输入脚被置为有效后,该中断就被“悬起”。
所谓“悬起”,也就是等待、就绪的意思。
即使后来中断源撤消了中断请求,已经被标记成悬起的中断也被记录下来。
当某中断的服务程序开始执行时,就称此中断进入了“活跃”状态,并且其悬起位会被硬件自动清除。
在一个中断活跃后,直到其服务例程执行完毕,并且返回后,才能对该中断的新请求予以响应。
当NVIC响应一个中断时,会自动完成以下三项工作,以便安全、准确地跳转到相应的中断服务程序:入栈:把8个寄存器的值压入栈。
当响应中断时,如果当前的代码正在使用PSP,则压入PSP(进程堆栈),否则就压入MSP(主堆栈)。
一旦进入了服务例程,就一直使用主堆栈。
在自动入栈的过程中,将寄存器写入堆栈的顺序与时间顺序无关,CM3会保证正确的寄存器被保存到正确的位置。
取向量:当数据总线(系统总线)进行入栈操作时,指令总线(I-Code总线)正在从向量表中找出正确的中断向量与对应的服务程序入口地址。
更新寄存器。
注意:①如果在某个中断得到响应之前,其悬起状态被清除了,则中断被取消。
②新请求在得到响应时,由硬件自动清零其悬起标志位。
③如果中断源咬住请求信号不放,该中断就会在其上次服务例程返回后再次被置为悬起状态。
④如果某个中断在得到响应之前,其请求信号以若干的脉冲的方式呈现,则被视为只有一次中断请求⑤如果在服务例程执行时,中断请求释放了,但是在服务例程返回前又重新被置为有效,则NVIC会记住此动作,重新悬起该中断。
2.中断返回当中断完成,返回主程序时,NVIC自动完成以下两步:①出栈:先前压入栈中的寄存器在这里恢复。
内部的出栈顺序与入栈时的相对应,堆栈指针的值也改回先前的值。
②更新NVIC 寄存器:伴随着中断的返回,它的活动位也被硬件清除。
对于外部中断,倘若中断输入再次被置为有效,则悬起位也将再次置位,新一次的中断响应序列也会再次开始。
stm32中断嵌套规则
在STM32微控制器中,中断是实现多任务处理和事件驱动程序的关键机制之一。
中断嵌套是指在一个中断服务程序(ISR)执行过程中,另一个中断发生并且
执行相应的ISR。
然而,为了确保中断嵌套的正确执行,需要遵守一些嵌套规则。
首先,在STM32中,不同的中断具有不同的优先级。
中断优先级通过使用相
应的寄存器进行配置,具有较低数值的中断优先级将具有较高的优先级。
这意味着,在一个中断服务程序中,如果发生了比当前正在执行ISR的中断优先级更高的中断,系统将中断当前正在执行的中断并执行较高优先级的中断程序。
其次,如果两个中断具有相同的优先级,则优先级有效性取决于初始的中断请
求时刻的先后顺序。
这称为优先级争夺。
在这种情况下,第一个发生的中断请求将被优先执行,而第二个被挂起,直到第一个中断服务程序执行结束。
此外,在编写中断服务程序时,需要注意中断服务函数(ISF)的执行时间。
较长的中断服务程序将导致较长的响应时间和延迟,从而可能影响系统的实时性。
因此,为了提高系统的实时性和响应能力,应将中断服务程序设计为尽可能短小和高效。
最后,在STM32中,还提供了一种特殊类型的中断服务程序,称为嵌套向量
中断控制器(NVIC)。
NVIC负责管理和控制所有中断请求,并根据其优先级和
嵌套规则决定执行的中断服务程序。
总之,在STM32中,遵循中断嵌套规则非常重要,以确保中断的正确执行和
系统的实时性。
通过正确配置中断优先级、处理争夺情况、优化中断服务程序的执行时间,并合理使用NVIC,可以有效地实现多任务处理和事件驱动的功能。
STM32外部中断(实现按键控制LED)引⾔“中断” 这个概念,指的是在单⽚机运⾏过程中,在指定条件发⽣时,停下当前所有⼯作,去执⾏中断处理函数内的内容。
就像我们在教室上课时,突然地震了,不出意外的话我们都需要停下⼿中学习任务,去进⾏⼀系列的避险动作。
这⼀节我们通过中断的⽅式,完成通过按键控制LED亮灭的操作。
准备环节中断相关知识STM32的中断控制器⽀持19个外部中断/事件请求。
这⼗九个外部中断为:线0~15:对应外部IO⼝的输⼊中断。
线16:连接到PVD输出。
线17:连接到连接到RTC时钟事件。
线18:连接到USB唤醒事件。
配置使⽤时,需要先将IO⼝与相应中断线的映射关系建⽴,再对其进⾏使⽤。
那映射关系是怎样的呢?GPIOx.0 ~ GPIOx.15(x = A,B,C,D,E,F,G)分别对应中断线0 ~ 15配置GPIO与中断线关系的函数是void GPIO_EXTILineConfig(uint8_t GPIO_PortSource, uint8_t GPIO_PinSource)eg:GPIO_EXTILineConfig(GPIO_PortSourceGPIOE,GPIO_PinSource2);把GPIO作为EXTI外部中断时,需要打开AFIO时钟。
APIO时钟何时需要打开,具体可以参考这篇⽂章:嵌套向量中断控制器(NVIC)初始化完线上中断和中断条件等内容,还需要配置中断分组。
配置中断分组之前,我们需要先确定如何进⾏分组。
这⾥就需要⽤到NVIC。
关于NVIC的具体内容可查看这篇博⽂:。
编码环节步骤初始化IO⼝输⼊开启AFIO时钟设置IO⼝与中断线的映射关系初始化线上中断、设置触发条件等配置中断分组,并使能中断编写中断服务函数main.c(以下内容均省略头⽂件)int main(void){delay_init();NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); //设置NVIC终端分组2LED_Init();KEY_Init();EXTIX_Init(); //外部中断初始化LED1 = 0;}exti.h#ifndef __EXTI_H#define __EXIT_H#include "sys.h"void EXTIX_Init(void); //外部中断初始化#endifexti.cvoid EXTIX_Init(void){EXTI_InitTypeDef EXTI_InitStructure; //外部中断结构体初始化NVIC_InitTypeDef NVIC_InitStructure; //中断分组结构体初始化KEY_Init();RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE); //开启AFIO时钟GPIO_EXTILineConfig(GPIO_PortSourceGPIOA, GPIO_PinSource0); //映射IO⼝与中断线//以下为配置中断线初始化EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt; //中断模式EXTI_InitStructure.EXTI_LineCmd = ENABLE; //使能中断线EXTI_InitStructure.EXTI_Line = EXTI_Line0; //中断线标号EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising; //触发⽅式EXTI_Init(&EXTI_InitStructure);//以下为中断优先级的配置NVIC_InitStructure.NVIC_IRQChannel = EXTI0_IRQn; //声明使⽤的中断是哪⼀个NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0x02; //设置抢占优先级为2 NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0x03; //设置⼦优先级为3NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //使能中断NVIC_Init(&NVIC_InitStructure);}void EXTI0_IRQHandler(void) //中断服务函数{delay_ms(10); //软件去抖if(WK_UP==1){LED0 = !LED0;LED1 = !LED1;}EXTI_ClearITPendingBit(EXTI_Line0); //清除中断位}补充中断服务函数中断服务函数的名称是固定的,写错会导致⽆法中断。
STM32 外部中断配置总结一:触发方式STM32 的外部中断是通过边沿来触发的,不支持电平触发;二:外部中断分组STM32 的每一个GPIO 都能配置成一个外部中断触发源,STM32 通过根据引脚的序号不同将众多中断触发源分成不同的组,比如:PA0,PB0,PC0,PD0,PE0,PF0,PG0为第一组,那么依此类推,我们能得出一共有16 组,STM32 规定,每一组中同时只能有一个中断触发源工作,那么,最多工作的也就是16个外部中断。
STM32 分组和对应中断处理函数分配:三:外部中断的配置过程配置触发源 -GPIO触发源为通过GPIO 端口输入,所以,要配置GPIO 的模式,输入方式,输入方式有以下几种:1.GPIO_Mode_AIN ,模拟输入(ADC 模拟输入,或者低功耗下省电)2.GPIO_Mode_IN_FLOATING ,浮空输入3.GPIO_Mode_IPD = 0x28,带下拉输入4.GPIO_Mode_IPU = 0x48,带上拉输入管脚 中断标志 中断处理函数分配PA0~PG0 EXTI0 EXTI0_IRQHandlerPA1~PG1 EXTI1 EXTI1_IRQHandlerPA2~PG2 EXTI2 EXTI2_IRQHandlerPA3~PG3 EXTI3 EXTI3_IRQHandler PA4~PG4 EXTI4 EXTI4_IRQHandler PA5~PG5 EXTI5 EXTI9_5_IRQHandler PA6~PG6 EXTI6 PA7~PG7 EXTI7 PA8~PG8 EXTI8 PA9~PG9 EXTI9 PA10~PG10 EXTI10 EXTI15_10_IRQHandler PA11~PG11 EXTI11 PA12~PG12 EXTI12 PA13~PG13 EXTI13 PA14~PG14 EXTI14 PA15~PG15 EXTI15●引脚与外部中断关联●外部中断AFIO时钟开启●外部中断配置这个主要是中断线路选择,中断触发方式,中断使能。
单片机指令的中断处理和优先级设置单片机作为嵌入式系统的核心部件,在各个领域广泛应用。
在单片机的开发过程中,中断处理和优先级设置是非常重要的一部分。
本文将介绍单片机指令的中断处理原理以及优先级设置的方法。
一、中断处理中断是指在单片机执行程序的过程中,当有特殊事件发生时,强制打断当前程序的执行,转而去执行特殊事件相关的程序代码。
中断的处理方式可以确保在特殊事件发生时保持对该事件的及时响应。
单片机中常见的中断有外部中断、定时器中断、串口中断等。
1. 外部中断外部中断是通过连接外部引脚的方式触发的中断。
当外部引脚的电平或边沿产生变化时,单片机会检测到该事件,并强制打断当前程序执行,转而去执行与该中断相关的程序。
通过外部中断,可以实现对外部设备的响应,比如按钮按下、传感器信号变化等。
2. 定时器中断定时器中断是通过单片机内部的定时器模块实现的。
定时器中断可以周期性地产生中断,用于实现定时功能。
在定时器中断的处理函数中,可以编写与定时器相关的程序代码,比如时钟显示、定时任务等。
3. 串口中断串口中断是在单片机与外部设备进行通信时,通过监测串口接收缓冲区是否有新数据到来而触发的中断。
通过串口中断,可以实现与外部设备的可靠通信。
二、中断优先级设置在单片机的中断处理过程中,通常会存在多个中断源同时触发的情况。
为了合理地处理这些中断源,单片机提供了中断优先级的设置功能。
通过设置中断的优先级,可以确保某些中断具有更高的响应权重,以保证关键中断的及时处理。
中断优先级的设置是通过设置相关的寄存器来实现的。
具体的设置方法可以根据不同型号的单片机而有所差异,一般可以参考单片机的技术手册。
在进行中断优先级设置时,需要注意以下几点:1. 确定中断的优先级级别在进行中断优先级设置之前,首先要明确每个中断的优先级级别。
对于多个中断源,可以根据其重要性和紧急程度来确定优先级。
2. 优先级的设置方法根据单片机的不同,中断优先级的设置方法也会有所不同。
STM32F4——NVIC中断优先级及外部中断
NVIC 中断优先级一、简介:CM4 内核可以支持256 个中断,包括16 个
内核中断和240 个外部中断,256 级的可编程中断设置。
对于STM32F4 没有用到CM4 内核的所有东西,只是用到了一部分,对于STM32F40 和41 系列共有92 个中断,其中有10 个内核中断和82 个可屏蔽中断,常用的为82 个可屏蔽中断。
二、相关寄存器:ISER[8]中断使能寄存器组,用来使能中断,每一位控制一个中断,由于上面已经说明了控制82 个可屏蔽的中断,因此利用ISER[0~2]这三个32 位寄存器就够了。
一下的几个寄存器同理。
ICER[8]中断除能寄存器组,用来消除中断。
ISPR[8]中断挂起控制寄存器组,用来挂起中断。
ICPR[8]中断解挂控制寄存器组,用来解除挂起。
IABR[8]中断激活标志寄存器组,对应位如果为1 则表示中断正在被执行。
IP[240]中断优先级控制寄存器组,它是用来设置中断优先级的。
我们只用到了IP[0]~IP[81],每个寄存器只用到了高4 位,这4 位又用来设置抢占优先级和响应优先级(有关抢占优先级和响应优先级后面会介绍到),而对于抢占优先
级和响应优先级各占多少位则由AIRCR 寄存器控制,相关设置如下图所示:
关于抢占优先级和响应优先级的理解,可以将它们简单的理解为两个级别,
抢占优先级的级别要比响应优先级的级别高,简单的理解为一个为长辈的一个
为晚辈的,晚辈要让着长辈,因此抢占优先级的中断可以打断响应优先级的中断,而同级别的中断就得有个先来后到的了,先来的先执行。
三、相关库函数应用1、中断优先级分组函数:void
NVIC_PriorityGroupConfig(uint32_t NVIC_PriorityGroup),用来设置设置中断优。