人教版九年级上册数学期中考试试卷[1]
- 格式:doc
- 大小:131.00 KB
- 文档页数:5
2024年最新人教版九年级数学(上册)期中考卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()A. 2B. 0.5C. 3/4D. √23. 下列等式中,正确的是()A. 3x + 4y = 7B. 2x 3y = 5C. 4x + 5y = 9D. 5x 6y = 84. 下列各式中,正确的是()A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + b^2 = c^2D. a^2 b^2 = c^25. 下列各式中,正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a b)^2 = a^2 2ab +b^2 C. (a + b)^2 = a^2 2ab + b^2 D. (a b)^2 = a^2 + 2ab +b^26. 下列各式中,正确的是()A. (a + b)(c + d) = ac + ad + bc + bdB. (a b)(c d) =ac ad bc + bd C. (a + b)(c d) = ac + ad bc bd D. (ab)(c + d) = ac ad + bc bd7. 下列各式中,正确的是()A. a^3 + b^3 = (a + b)(a^2 ab + b^2)B. a^3 b^3 = (a b)(a^2 + ab + b^2)C. a^3 + b^3 = (a b)(a^2 ab + b^2)D.a^3 b^3 = (a + b)(a^2 + ab + b^2)8. 下列各式中,正确的是()A. a^4 b^4 = (a + b)(a^2 ab + b^2)B. a^4 b^4 = (a b)(a^2 + ab + b^2)C. a^4 b^4 = (a + b)(a^2 + ab + b^2)D. a^4 b^4 = (a b)(a^2 ab + b^2)9. 下列各式中,正确的是()A. (a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3B. (a b)^3 =a^3 3a^2b + 3ab^2 b^3 C. (a + b)^3 = a^3 3a^2b + 3ab^2 + b^3 D. (a b)^3 = a^3 + 3a^2b 3ab^2 b^310. 下列各式中,正确的是()A. (a + b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4B. (a b)^4 = a^4 4a^3b + 6a^2b^2 4ab^3 + b^4C. (a + b)^4 = a^4 4a^3b + 6a^2b^2 + 4ab^3 + b^4D. (a b)^4 = a^4 + 4a^3b6a^2b^2 4ab^3 + b^4二、填空题(每题4分,共40分)11. 若一个数的平方根是±3,则这个数是_________。
人教版九年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案)1.下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2.方程2x x =的解是()A .1x =B .0x =C .11x =-,20x =D .11x =,20x =3.下列方程中,没有实数根的是()A .20x x +=B .23410x x -+=C .24520x x -+=D .25410x x --=4.抛物线()2y 2x 31=-+的顶点坐标是()A .(3,1)B .(3,﹣1)C .(﹣3,1)D .(﹣3,﹣1)5.在平面直角坐标系中,点(2,1)A -与点B 关于原点对称,则点B 的坐标为()A .(2,1)-B .(2,1)-C .(2,1)D .(2,1)--6.已知⊙O 的直径为10,圆心O 到弦AB 的距离OM 为3,则弦AB 的长是()A .4B .6C .7D .87.已知抛物线243y x x =+-,(1,y 1)与(2,y 2)是该抛物线上的两点,则y 1与y 2的大小关系是()A .y 1>y 2B .y 1<y 2C .y 1=y 2D .不确定8.如图,已知在⊙O 中,点A ,B ,C 均在圆上,∠AOB =80°,则∠ACB 等于()A .130°B .140°C .145°D .150°9.为了美化环境,某市加大对绿化的投资.2016年用于绿化投资20万元,2018年用于绿化投资25万元,求这两年绿化投资的年平均增长率.设这两年绿化投资的年平均增长率为x ,根据题意所列方程为()A .22025x =B .20(1)25x +=C .220(1)25x +=D .220(1)20(1)25x x +++=10.一次函数(0)y ax b a =+≠与二次函数2(0)y ax bx c a =++≠在同一平面直角坐标系中的图象可能是().A .B .C .D .二、填空题11.将一元二次方程x 2-8x -1=0配方得___________________.12.如图,OA ,OB 是⊙O 的半径,点C 在⊙O 上,连接AC ,BC ,若∠AOB =120°,则∠ACB =________°.13.若一个等腰三角形的三边长均满足方程x 2-6x +8=0,则此三角形的周长为______.14.已知抛物线y=ax 2+bx+c 与x 轴有两个交点,那么一元二次方程ax 2+bx+c=0的根的情况是________.15.如图,圆O 的半径为2.C 1是函数y=x 2的图象,C 2是函数y=−x 2的图象,则阴影部分的面积是___.16.如图,将等边ABC 绕顶点A 顺时针方向旋转,使边AB 与AC 重合得ACD △,BC 的中点E 的对应点为F ,则EAF ∠的度数是_______.17.如图所示,已知抛物线C1,抛物线C2关于原点中心对称.如果抛物线C1的解析式为y=34(x+2)2-1,那么抛物线C2的解析式为:___________________________三、解答题18.解方程x2+4x-5=019.如图,点E是正方形ABCD的边DC上一点,把△ADE顺时针旋转△ABF的位置.(1)旋转中心是点,旋转角度是度;(2)若连结EF,则△AEF是三角形;并证明20.如图,AB为⊙O的弦,C,D为直线AB上的两点,OC=OD.(1)尺规作图:过点O作直线AB的垂线,垂足为点P(不写作法,保留作图痕迹);(2)在(1)的条件上,求证:AC=BD.21.某商店在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.商场决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装每降价4元,那么平均每天就可多售出8件.如果要盈利1200元,那每件降价多少元?22.如图,⊙O的直径AB为5,弦AC为3,∠ACB的平分线交⊙O于点D.(1)求BC的长;(2)求AD的长.23.已知抛物线y=ax2+b x+c经过A(0,2),B(4,0),C(5,-3)三点,当x≥0时,其图象如图所示.(1)求抛物线的解析式,写出抛物线的顶点坐标;(2)画出抛物线y=ax2+b x+c当x<0时的图象.24.如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当△AOD是直角三角形且∠ADO=90°时,求α的度数;(3)当α=110°或125°或140°时,判断△AOD的形状,请选择其中一种情况说明理由.25.如图,在△ABC中,∠B=90°,AB=12mm,BC=24mm,动点P从点A开始沿边AB向B以2mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4mm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,设运动的时间为ts,四边形APQC的面积为ymm2.(1)y与t之间的函数关系式;(2)求自变量t的取值范围;(3)四边形APQC的面积能否等于172mm2.若能,求出运动的时间;若不能,说明理由.参考答案1.D【分析】根据轴对称图形的定义和中心对称图形的定义逐一分析即可.【详解】A选项是轴对称图形,不是中心对称图形,故本选项不符合题意;B选项是轴对称图形,不是中心对称图形,故本选项不符合题意;C选项是轴对称图形,不是中心对称图形,故本选项不符合题意;D选项是轴对称图形,也是中心对称图形,故本选项符合题意.故选D.【点睛】此题考查的是轴对称图形的识别和中心对称图形的识别,掌握轴对称图形的定义和中心对称图形的定义是解决此题的关键.2.D【解析】试题分析:∵20x x -=,∴x (x ﹣1)=0,∴x=0或x ﹣1=0,∴11x =,20x =.故选D .考点:解一元二次方程-因式分解法.3.C【分析】根据根的判别式逐个判断即可.【详解】解:A 、20x x +=,△=12−4×1×0=1>0,方程有两个不相等的实数根,故本选项不符合题意;B 、23410x x -+=,△=(-4)2−4×1×3=4>0,即方程有两个不相等的实数根,故本选项不符合题意;C 、24520x x -+=,△=(-5)2−4×2×4=−7<0,方程没有实数根,故本选项符合题意;D 、25410x x --=,△=(−4)2−4×5×(-1)=36>0,方程有两个不相等的实数根,故本选项不符合题意,故选:C .【点睛】本题考查了根的判别式,能熟记根的判别式的内容是解此题的关键,注意:一元二次方程ax 2−bx +c =0(a 、b 、c 为常数,a≠0),当△=b 2−4ac >0时,方程有两个不相等的实数根,当△=b 2−4ac =0时,方程有两个相等的实数根,当△=b 2−4ac <0时,方程没有实数根.4.A【分析】根据顶点式解析式写出顶点坐标即可.【详解】抛物线()2y 2x 31=-+的顶点坐标是(3,1).故选A.5.B【详解】试题解析:∵点A坐标为(-2,1),且点B与点A关于原点对称,∴点B的坐标为(2,-1).故选B.考点:关于原点对称的点的坐标.6.D【分析】连接OA,先根据垂径定理求出AM=12AB,再根据勾股定理求出AM的值.【详解】解:连接OA,∵⊙O的直径为10,∴OA=5,∵圆心O到弦AB的距离OM的长为3,由垂径定理知,点M是AB的中点,AM=12AB,由勾股定理可得,,所以AB=2AM=8.故选D.【点睛】本题考查了垂径定理,垂径定理是:垂直与弦的直径平分这条弦,并且平分这条弦所对的两段弧.也考查了勾股定理的应用.7.B【分析】先求出抛物线的对称轴和开口方向,在根据对称轴两侧的增减性即可得出结论.【详解】解:抛物线243y x x =+-的对称轴为直线x=4221-=-⨯,开口向上∴当x >-2时,y 随x 的增大而增大∵-2<1<2∴y 1<y 2故选B .【点睛】此题考查的是比较二次函数上两点的纵坐标大小,掌握二次函数图象对称轴求法和对称轴两侧的增减性是解决此题的关键.8.B【分析】设点E 是优弧AB 上的一点,连接EA ,EB ,根据同弧所对的圆周角是圆心角的一半可求得∠E 的度数,再根据圆内接四边形的对角互补即可得到∠ACB 的度数.【详解】解:设点E 是优弧AB 上的一点,连接EA ,EB,∵∠AOB=80°,∴∠E=12∠AOB=40°,∴∠ACB=180°-∠E=140°.故选B .【点睛】本题主要考查了利用了圆周角定理,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9.C【分析】根据增长后的量=增长前的量×(1+增长率)列方程即可,设这两年绿化投资的年平均增长率为x ,根据“2016年用于绿化投资20万元,2018年用于绿化投资25万元”,可得出方程.【详解】设这两年绿化投资的年平均增长率为x,那么依题意得20(1+x)2=25故选C.【点睛】本题考查一元二次方程的应用,为平均增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.10.C【分析】逐一分析四个选项,根据二次函数图象的开口方向以及对称轴与y轴的位置关系,即可得出a、b的正负性,由此即可得出一次函数图象经过的象限,即可得出结论.【详解】A.∵二次函数图象开口向下,对称轴在y轴左侧,∴a<0,b<0,∴一次函数图象应该过第二、三、四象限,故本选项错误;B.∵二次函数图象开口向上,对称轴在y轴右侧,∴a>0,b<0,∴一次函数图象应该过第一、三、四象限,故本选项错误;C.∵二次函数图象开口向下,对称轴在y轴左侧,∴a<0,b<0,∴一次函数图象应该过第二、三、四象限,故本选项正确;D.∵二次函数图象开口向下,对称轴在y轴左侧,∴a<0,b<0,∴一次函数图象应该过第二、三、四象限,故本选项错误.故选C.【点睛】本题主要考查二次函数图象与一次函数图象的综合,掌握二次函数与一次函数系数与图象的关系,是解题的关键.11.(x-4)2=17【分析】先移项,然后根据完全平方公式配方即可【详解】解:x 2-8x -1=0x 2-8x =1x 2-8x +16=1+16(x -4)2=17故答案为:(x -4)2=17.【点睛】此题考查的是配方法,掌握完全平方公式是解决此题的关键.12.60【解析】解:∵同弧或等弧所对的圆心角是圆周角的2倍,111206022ACB AOB ∴∠=∠=⨯= .点睛:本题考查了圆周定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半可得答案.13.6或12或10【分析】由等腰三角形的底和腰是方程2680x x -+=的两根,解此一元二次方程即可求得等腰三角形的腰与底边的长,注意需要分当2是等腰三角形的腰时与当4是等腰三角形的腰时讨论,然后根据三角形周长的求解方法求解即可.【详解】解:∵2680x x -+=,∴()()240x x --=,解得:2x =或4x =,∵等腰三角形的底和腰是方程2680x x -+=的两根,∴当2是等腰三角形的腰时,2+2=4,不能组成三角形,舍去;当4是等腰三角形的腰时,2+4>4,则这个三角形的周长为2+4+4=10.当边长为2的等边三角形,得出这个三角形的周长为2+2+2=6.当边长为4的等边三角形,得出这个三角形的周长为4+4+4=12.∴这个三角形的周长为6或12或10.故答案为6或12或10.【点睛】本题考查了三角形三边关系的应用,一元二次方程的解法.解题的关键是注意分类讨论思想的应用.特别注意不要忘记三边都是2或都是4的情况.14.有两个不相等的实数根【解析】根据抛物线y =ax 2+bx +c 与x 轴有两个交点,即ax 2+bx +c =0时,有两个不相等的实数根,从而可以得到本题答案.解:∵抛物线y =ax 2+bx +c 与x 轴有两个交点,∴ax 2+bx +c =0时有两个不相等的实数根.故答案为两个不相等的实数根.15.2π【分析】根据圆和二次函数图象的对称性,用割补法和圆的面积公式,即可求解.【详解】把x 轴下方阴影部分关于x 轴对称后,原图形阴影部分的面积和,变为一个半圆的面积,即2222ππ⋅=【点睛】利用图形的对称性,把不规则的阴影部分,补成规则的图形,再用圆的面积公式求解.16.60︒【分析】根据等边三角形的性质以及旋转的性质得出旋转角,进而得出∠EAF 的度数.【详解】∵将等边△ABC 绕顶点A 顺时针方向旋转,使边AB 与AC 重合得△ACD ,BC 的中点E 的对应点为F ,∴旋转角为60°,E ,F 是对应点,则∠EAF 的度数为:60°.故答案为:60°.【点睛】此题主要考查了等边三角形的性质以及旋转的性质,得出旋转角的度数是解题关键.17.y=-34(x -2)2+1【详解】试题解析:抛物线C 1的解析式为23(2)14y x =+-,抛物线1C 的开口向上,顶点坐标为:()2,1.--抛物线C 1,抛物线C 2关于原点中心对称.抛物线C 2的开口向下,顶点坐标为:()2,1.∴抛物线C 2的解析式为23(2) 1.4y x =--+故答案为23(2) 1.4y x =--+18.11x =,25x =-.【解析】x 2+4x -5=0,b 2-4ac=42-4×(-5)=36,2b x a-==4362-±=462-±,11x =,25x =-.19.(1)A ;90;(2)△AEF 是等腰直角三角形,【解析】试题分析:(1)利用旋转的定义直接填写即可;(2)可证明△ADE ≌△ABF ,可得出AE=AF ,且可求得∠EAF=90°;试题解析:(1)由旋转的定义可知旋转中心为A ,AD 从AD 到AB ,可知旋转了90°.(2)△AEF 是等腰直角三角形,理由如下:∵四边形ABCD 是正方形,∴∠DAB=90°,∵△ADE经顺时针旋转后与△ABF重合,∴△ADE≌△ABF,∠DAB=∠EAF=90°,∴AE=AF,∴△AEF是等腰直角三角形;考点:1.旋转的性质;2.点与圆的位置关系;3.作图—复杂作图.20.(1)作图见解析;(2)证明见解析【分析】(1)分别以A、B两点为圆心,大于12AB的长为半径作弧,两弧在AB下方交于一点,然后连接O和该交点交AB于点P即可;(2)根据三线合一和垂径定理可得PC=PD,PA=PB,然后根据等式的基本性质即可得出结论.【详解】解:(1)分别以A、B两点为圆心,大于12AB的长为半径作弧,两弧在AB下方交于一点,然后连接O和该交点交AB于点P,根据圆的性质和作图方法,OP⊥AB,如下图所示,点P即为所求.(2)∵OC=OD,OP⊥AB于点P∴PC=PD,PA=PB∴PC-PA=PD-PB,即AC=BD【点睛】此题考查的是用尺规作图作线段的垂直平分线、等腰三角形的性质和垂径定理,掌握线段垂直平分线的作法、三线合一和垂径定理是解决此题的关键.21.每件童装应降价20元.【分析】设每件童装应降价x元,原来平均每天可售出20件,每件盈利40元,后来每件童装降价4元,那么平均每天就可多售出8件.要想平均每天销售这种童装上盈利1200元,由此即可列出方程(40-x)(20+2x)=1200,解方程就可以求出应降价多少元.【详解】如果每件童装降价4元,那么平均每天就可多售出8件,则每降价1元,多售2件,设降价x元,则多售2x件.设每件童装应降价x元,依题意得(40-x)(20+2x)=1200,整理得x2-30x+200=0,解之得x1=10,x2=20,因要减少库存,故x=20.答:每件童装应降价20元.【点睛】首先找到关键描述语,找到等量关系,然后准确的列出方程是解决问题的关键.最后要判断所求的解是否符合题意,舍去不合题意的解.22.(1)4;(2)52 2【分析】(1)根据直径所对的圆周角是直角可得∠ACB=∠ADB=90°,然后根据勾股定理即可求出BC;(2)根据角平分线的定义即可求出∠ACD=∠BCD=45°,然后根据同弧所对的圆周角相等即可求出∠DAB和∠DBA,从而得出△ADB是等腰直角三角形,【详解】解:(1)∵AB是⊙O的直径∴∠ACB=∠ADB=90°在Rt△ACB中,由勾股定理,得4BC===(2)∵CD 是∠ACB 的平分线∴∠ACD=∠BCD=12∠ACB=45°∴∠DAB =∠BCD=45°,∠DBA =∠ACD=45°∵∠ADB =90°∴△ADB 是等腰直角三角形∴AD=BD根据勾股定理可得222AD BD AB +=22525222AD AB ∴==⨯=【点睛】此题考查的是圆周角定理的推论、等腰直角三角形的判定及性质和勾股定理,掌握直径所对的圆周角是直角、同弧所对的圆周角相等和勾股定理是解决此题的关键.23.(1)213222y x x =-++;325,28⎛⎫ ⎪⎝⎭;(2)见解析【分析】(1)将A 、B 、C 三点的坐标代入解析式中即可求出抛物线的解析式,然后将一般式转化为顶点式即可求出其顶点坐标;(2)列表、描点、连线即可.【详解】解:(1)将A 、B 、C 三点的坐标代入y =ax 2+bx +c 中,得201643255c a b c a b c =⎧⎪=++⎨⎪-=++⎩解得:12322a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩∴抛物线的解析式为213222y x x =-++,将其化为顶点式213222y x x =-++=21325228y x ⎛⎫=--+ ⎪⎝⎭∴该抛物线的顶点坐标为325,28⎛⎫⎪⎝⎭(2)列表x-2-10y -302描点,连线,当x <0时的图象如下图所示.【点睛】此题考查的是求抛物线的解析式、顶点坐标和画二次函数的图象,掌握利用待定系数法求二次函数的解析式、将二次函数的一般式转化为顶点式和画二次函数的图象是解决此题的关键.24.(1)证明见解析;(2)150°;(3)△AOD 是等腰三角形,证明见解析【分析】(1)根据等边三角形的性质可得∠ACB=60°,然后根据旋转的性质可得∠OCB =∠DCA ,OC=DC ,即可证出∠ACB=∠OCD=60°,从而证出结论;(2)根据等边三角形的性质和已知条件即可求出∠ADC ,然后根据旋转的性质即可求出结论;(3)根据α的度数、旋转的性质、周角的定义、三角形的内角和定理分别求出△AOD 的三个内角即可得出结论.【详解】(1)证明:∵△ABC为等边三角形∴∠ACB=60°∵△BOC绕点C按顺时针方向旋转60°得△ADC∴∠OCB=∠DCA,OC=DC∴∠OCB+∠ACO=∠DCA+∠ACO∴∠ACB=∠OCD=60°∴△COD是等边三角形(2)解:∵△COD是等边三角形∴∠CDO=60°∵∠ADO=90°∴∠ADC=∠CDO+∠ADO=60°+90°=150°∵△BOC绕点C按顺时针方向旋转60°得△ADC∴α=∠ADC=150°(3)解:当α=110°或125°或140°时,△AOD均是等腰三角形当α=110°时,理由如下:∴α=∠ADC=110°∵∠ADO=∠ADC-∠CDO=50°,∠AOD=360°-∠AOB-α-∠COD=80°∴∠OAD=180°-∠ADO-∠AOD=50°=∠ADO∴△AOD是等腰三角形;当α=125°时,理由如下:∴α=∠ADC=125°∵∠ADO=∠ADC-∠CDO=65°,∠AOD=360°-∠AOB-α-∠COD=65°∴∠ADO=∠AOD∴△AOD是等腰三角形;当α=140°时,理由如下:∴α=∠ADC=140°∵∠ADO=∠ADC-∠CDO=80°,∠AOD=360°-∠AOB-α-∠COD=50°∴∠OAD=180°-∠ADO-∠AOD=50°=∠AOD∴△AOD是等腰三角形以上证明方法任选其一即可.【点睛】此题考查的是等边三角形的性质、旋转的性质和等腰三角形的判定,掌握等边三角形的性质、旋转的性质和等角对等边是解决此题的关键.25.(1)y=4t2﹣24t+144;(2)0<t<6;(3)四边形APQC的面积不能等于172mm2,见解析.【分析】(1)利用两个直角三角形的面积差求得答案即可;(2)利用线段的长度与运动速度建立不等式得出答案即可;(3)利用(1)的函数建立方程求解判断即可.【详解】解:(1)∵出发时间为t,点P的速度为2mm/s,点Q的速度为4mm/s,∴PB=12﹣2t,BQ=4t,∴y=12×12×24﹣12×(12﹣2t)×4t=4t2﹣24t+144.(2)∵t>0,12﹣2t>0,∴0<t<6.(3)不能,4t2﹣24t+144=172,解得:t1=7,t2=﹣1(不合题意,舍去)因为0<t<6.所以t=7不在范围内,所以四边形APQC的面积不能等于172mm2.【点睛】此题考查二次函数的实际运用,一元二次方程的实际运用,掌握三角形的面积计算方法是解决问题的关键.。
人教版九年级上册《数学》期中考试卷及答案一、选择题:每题1分,共5分1. 若 a > b,则 a c 与 b c的大小关系是()A. a c > b cB. a c < b cC. a c = b cD. 无法确定2. 下列函数中,奇函数是()A. y = x^2B. y = x^3C. y = |x|D. y = sin(x)3. 已知三角形ABC中,sinA = 1/2,cosB = √3/2,则∠C的度数是()A. 30°B. 45°C. 60°D. 90°4. 一辆汽车以每小时60公里的速度行驶,行驶了2小时后,汽车行驶的路程是()A. 120公里B. 120千米C. 120米D. 无法确定5. 下列数列中,等差数列是()A. 1, 3, 5, 7, 9B. 1, 3, 6, 10, 15C. 1, 2, 4, 8, 16D. 1, 2, 4, 7, 11二、判断题:每题1分,共5分1. 任何两个奇数的和都是偶数。
()2. 两条平行线的斜率相等。
()3. 任何数乘以0都等于0。
()4. 三角形的内角和等于180°。
()5. 两个负数相乘的结果是正数。
()三、填空题:每题1分,共5分1. 一个正方形的边长是4,它的面积是______。
2. 若 a = 3,b = 2,则 a b = ______。
3. 2的平方根是______。
4. 已知sinθ = 1/2,则θ的度数是______。
5. 下列数列的通项公式是 an = ______。
四、简答题:每题2分,共10分1. 简述等差数列和等比数列的定义。
2. 解释正弦函数和余弦函数的定义。
3. 解释勾股定理,并给出一个应用勾股定理的例子。
4. 简述平行线的性质。
5. 解释二次函数的图像特征。
五、应用题:每题2分,共10分1. 一辆汽车以每小时60公里的速度行驶,行驶了3小时后,汽车行驶的路程是多少?2. 一个等差数列的首项是1,公差是2,求第10项的值。
人教版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.已知方程2430x x -+=,它的二次项系数、一次项系数、常数项分别是()A .0、4、3B .1、4、3C .1、4-、3D .0、4-、32.已知一元二次方程2230x x b +-=的一个根是1,则b =()A .3B .0C .1D .53.一元二次方程2310x x -+=的两根之和为()A .13B .2C .3-D .34.对于抛物线221y x x =--,下列说法中错误的是()A .顶点坐标为()12,-B .对称轴是直线1x =C .当1x >时,y 随x 的增大减小D .抛物线开口向上5.抛物线2(1)2y x =-+可以由抛物线2x y =平移而得到,下列平移正确的是()A .先向左平移1个单位,再向上平移2个单位B .先向左平移1个单位,再向下平移2个单位C .先向右平移1个单位,再向上平移2个单位D .先向右平移1个单位,再向下平移2个单位6.右图所示,已知二次函数2y ax bx c =++的图象如图所示,则a 、b 、c 满足()A .0a <,0b >,0c >B .0a >,0b <,0c >C .0a <,0b <,0c <D .0a <,0b <,0c >7.如图,已知⊙O 是△ABD 的外接圆,AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD=58°,则∠BCD 等于()A .116°B .32°C .58°D .64°8.如图,AB 是O 的弦,半径OC AB ⊥于点D ,且8cm AB =,5cm OC =,则DC 的长是()A .3cmB .2.5cmC .2cmD .1cm9.如图,四边形ABCD 内接于O ,F 是 CD上一点,且 DF BC =,连接CF 并延长交AD 的延长线于点E ,连接AC ,若105ABC ∠=︒,25BAC ∠=︒,则E ∠的度数为()A .60︒B .45︒C .50︒D .30°10.如图,在平面直角坐标系中,已知抛物线2y ax bx =+的对称轴为34x =,且经过点A (2,1),点P 是抛物线上的动点,P 的横坐标为()02m m <<,过点P 作PB x ⊥轴,垂足为B ,PB 交OA 于点C ,点O 关于直线PB 的对称点为D ,连接CD ,AD ,过点A 作AE ⊥x 轴,垂足为E ,则当m =()时,ACD ∆的周长最小.A .1B .1.5C .2D .2.5二、填空题11.一元二次方程x 2﹣4=0的解是_________.12.二次函数()2214y x =+-,当x =________时,y 的最小值是_______.13.若二次函数228y x x c =++的图像上有()11,A y -,()24,B y ,()31,C y 三点,则1y ,2y ,3y 的大小关系是______.14.如图,二次函数y =ax 2+bx +3的图象经过点A (﹣1,0),B (3,0),那么一元二次方程ax 2+bx+3=0的根是_____.15.如图A ,B ,C 是圆O 上的3点,且四边形OABC 是菱形,若点D 是圆上异于A ,B ,C 的另一点,则ADC ∠的度数是_______.16.如图,在⊙O 中,直径AB =6,BC 是弦,∠ABC =30°,点P 在BC 上,点Q 在⊙O 上,且OP ⊥PQ ,当点P 在BC 上移动时,则PQ 长的最大值为__________.17.二次函数y =ax 2+bx +c(a≠0)的图象如图所示,根据图象解答下列问题:(1)方程ax 2+bx +c =0的两个根为____________;(2)不等式ax 2+bx +c>0的解集为________;(3)y 随x 的增大而减小的自变量x 的取值范围为________;(4)若方程ax 2+bx +c =k 有两个不相等的实数根,则k 的取值范围为________.三、解答题18.解方程:(1)24x x=(2)23100x x --=19.如图,已知抛物线2122y x =-+与直线222y x =+交于A ,B 两点,(1)求A ,B 两点的坐标。
人教版九年级上册数学期中试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()。
A. a/2B. a√2C. 2aD. a²2. 下列哪个数是无理数?()A. √9B. √16C. √3D. √13. 若a、b为实数,且a≠0,那么下列哪个式子是正确的?()A. a² = b²B. a² + b² = (a + b)²C. (a + b)² = a² + 2ab + b²D. a² b² = (a b)²4. 下列哪个式子是整式?()A. 1/xB. √xC. x² + 2x + 1D. |x|5. 若一个三角形的两边长分别为3和4,那么第三边的长度可能是()。
A. 1B. 5C. 6D. 7二、判断题(每题1分,共5分)1. 两个负数相乘的结果是正数。
()2. 任何数与0相乘的结果都是0。
()3. 两个正数相加的结果一定是正数。
()4. 两个负数相加的结果一定是负数。
()5. 任何数的平方都是非负数。
()三、填空题(每题1分,共5分)1. 若a、b为实数,那么(a + b)² = a² + 2ab + _______。
2. 若一个数的平方是16,那么这个数可能是_______或_______。
3. 若一个数的立方是-8,那么这个数是_______。
4. 若一个等腰三角形的底边长为5,腰长为8,那么这个三角形的周长是_______。
5. 若一个数的平方根是2,那么这个数的立方根是_______。
四、简答题(每题2分,共10分)1. 请简述有理数的定义。
2. 请简述整式的定义。
3. 请简述无理数的定义。
4. 请简述平方根的定义。
5. 请简述立方根的定义。
五、应用题(每题2分,共10分)1. 已知一个正方形的边长为2,求它的对角线长。
人教版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案,每小题3分,共30分)1.下列图形是中心对称图形的是( )A .B .C .D .2.把二次函数y=x 2﹣4x+3化成y=a (x ﹣h )2+k 的形式是( )A .y=(x ﹣2)2﹣1B .y=(x+2)2﹣1C .y=(x ﹣2)2+7D .y=(x+2)2+73.如图,点A ,B ,C 在⊙O 上,CO 的延长线交AB 于点D ,∠A=50°,∠B=30°,则∠ADC 的度数为( )A .70°B .90°C .110°D .120°4.⊙O 的半径为5,圆心O 到直线l 的距离为6,则直线l 与⊙O 的位置关系是( )A .相交B .相切C .相离D .无法确定5.已知函数y=ax 2+bx+c 的图象如图所示,则下列结论正确的是( )A .a >0,c >0B .a <0,c <0C .a <0,c >0D .a >0,c <06.将抛物线 y =5x 2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是()A .y =5(x+2)2+3B .y =5(x ﹣2)2+3C .y =5(x ﹣2)2﹣3D .y =5(x+2)2﹣37.如图⊙O 的直径垂直于弦,垂足是,,,的长为AB CD E 22.5A ∠=︒4OC =CD( )A .B .4C .D .88.小明用图中所示的扇形纸片作一个圆锥的侧面,已知扇形的半径为5cm ,弧长是cm ,那么这个的圆锥的高是( )A .4cmB .6cmC .8cmD .2cm9.已知⊙O 的半径为1,点P 到圆心O 的距离为d ,若抛物线y=x 2﹣2x+d 与x 轴有两个不同的交点,则点P ( )A .在⊙O 的内部B .在⊙O 的外部C .在⊙O 上D .无法确定10.小刚在实践课上要做一个如图1所示的折扇,折扇扇面的宽度AB 是骨柄长OA 的,折扇张开的角度为120°.小刚现要在如图2所示的矩形布料上剪下扇面,且扇面不能拼接,已知矩形布料长为cm ,宽为21cm .小刚经过画图、计算,在矩形布料上裁剪下了最大的扇面,若不计裁剪和粘贴时的损耗,此时扇面的宽度AB 为( )A . 21cmB .20 cmC . 19cmD . 18cm二、填空题。
人教版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案,每小题3分,共30分)1.下列汽车标志中,是中心对称图形的是( )A .B .C .D .2.二次函数的顶点坐标是( )A .(2,3)B .(-1,-3)C .(1,3)D .(-1,2)3.如右图,点A 、B 、C 在⊙O 上,∠A=62°,则∠BOC 的度数是()A .31°B .124°C .118°D .122°4.已知圆锥的母线长为4,底面半径为2,则圆锥的侧面积等于()A .8B .4C .4D .85.在平面直角坐标系中,将二次函数的图象向上平移2个单位,所得图象的表达式为( )A .B .C .D .6.已知⊙O 的直径为6,点P 到圆心O 的距离为4,则点P 在()A .⊙O 内B .⊙O 外C .⊙O 上D .无法确定7,则该正六边形的边长是( )AB .2C .3D .8.如右图,将Rt △ABC (其中∠B=35°,∠C=90°)绕点A 按顺时针方向旋转到△AB 1C 1的位置,使得点C 、A 、B 1在同一条直线上,那么旋转角等于( )()213y x =+-ππ22y x =222y x =-222y x =+()222y x =-()222y x =+A .105°B .70°C .115°D .125°9.如右图,点A 、B 、C 三点都在⊙O 上,且∠AOB=120°,则∠ACB 等于()A .100°B .60°C .80°D .120°10.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列结论:①b 2﹣4ac >0; ②abc >0; ③8a +c <0; ④9a +3b +c >0.其中,正确结论的个数( )A .1B .2C .3D .4二、填空题。
人教版九年级数学上册期中统考试题及参考答案(WL2023-2024精编)(满分120分,时间100分钟)第I卷(选择题共36分)一、选择题(本大题共12个小题,每小题3分,满分36分)1. 下列图形中,不是中心对称图形的是()2.已知 m,n是关于x的方程x2+3x-1=0的两个根,则m² +4m+n的值为()A.-2B.2C.-4D.43.抛物线y=-2(x+2)2-5可由y=-2x2如何平移得到()A.先向右平移2个单位,再向下平移5个单位B.先向右平移2个单位,再向上平移5个单位C.先向左平移2个单位,再向上平移5个单位D.先向左平移2个单位,再向下平移5个单位4.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数为()A.67°B.62°C.68°D.70°5.下列四个命题中,真命题是()A.相等的圆心角所对的两条弦相等B.平分弦的直径一定垂直于这条弦C.三角形的内心是到三角形三边距离相等的点D.等弧就是长度相等的弧6.某苗圃用花盆育苗,经调查发现,每盆载3株时,平均单株盈利10元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少1元,要使每盆的盈利为40元,需要每盆增加几株苗?设每盆增加x株苗,下面列出的方程中符合题意的是()A.(x- 3)(10 -x)=40 B. (x +3)(10-x)=40C. (x - 3)(10 +x) =40D.(x +3)(10 +x) = 407.如图,在平面直角坐标系中,点A在y轴上,点B的坐标为(6,0),将△ABO绕着点B顺时针旋转60°,得到△DBC,则点C的坐标是()A.( 3√3,3)B.(3, 3√3)C.(6,3)D.(3,6)8.如图,DE与⊙O相切于点D,交直径AB的延长线于点E,C为圆上一点,∠ACD=60°,若DE的长度为3,则BE的长度为()A.√2B.√3C.3D.22(第7题) (第8题) (第9题)9.如图,在四边形ABCD中,AD//BC,∠ABC=90°,AD=2,AB=6,以AB为直径的⊙O 切 CD于点E,F为弧BE上一动点,过F点的直线MN为⊙O的切线,MN交BC于M,交CD于N,则△MCN的周长为()A.9B.10C. 3√11D. 2√2310.如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,与BC相交于点G,则下列结论:①∠BAD=∠CAD ②若∠BAC=60°,则∠BEC=120°③若点G 为BC的中点,则∠BGD=90°④BD=DE.其中一定正确的个数是()A.1B.2C.3D. 4(第10题) (第11题) (第12题)11.如图,在平面直角坐标系xOy中,直线y=-x-2与x轴,y轴分别交于A,B两点, C,D是半径为1的⊙O上两动点,且CD=√2,P为弦 CD的中点.当C,D两点在圆上运动时,△PAB面积的最大值是()A.8B.6C.4D.312.如图是抛物线y=ax² + bx + c(a<0)的部分图象,其顶点坐标为(1,n),且与x 轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①a-b+c>0 ②3a +b=0 ③b²=4a(c-n) ④一元二次方程ax²+bx+c=n-1无实数根⑤a +b ≥am² + bm (m为任意实数).其中正确结论的个数是()A.1B.2C.3D.4第Ⅱ卷(非选择题共84分)二、填空题(本大题共4个小题,每小题4分,共16分)13.若关于x的方程kx²+2x+1=0有实数根,则实数k的取值范围_________.14.已知等腰△ABC,AB=AC=5,BC=8,则△ABC外接圆半径长度为_________.的图象如图所示,若直15.已知函数y={−x2+2x (x>0)−x (x≤0)线y=x+m与该图象恰有三个不同的交点,则m的取值范围为_____________.16.如图,P是正方形ABCD内一点,PA=2,PB=3,PD=1,将线段AP以点A为旋转中心逆时针旋转 90°得到线段AP',连接 DP'.下列结论:①△AP'D 可以由△APB绕点A逆时针旋转90°得到②点P与P'的距离为2 ③∠APD=135°④S正方形ABCD=5+2√2⑤S△APB=2+√2.其中正确的结论是_______________.(填序号)三、解答题(本大题共6小题,满分68分)17.(本题满分8分)解方程(1)3 (x-1)²-x (x-1)=0 (2)2x²+3x+3=4-x.18.(本题满分10分)已知关于x的一元二次方程x2-4x+k+1=0有两个实数根x1,x2.(1)求k的取值范围;(2)是否存在实数k,使得x12x22=x1+x2+21,若存在,请求出k的值;若不存在,请说明理由;(3)若有一个矩形的长宽分别是x1,x2,且这个矩形的对角线长为2√2,求k的值.19.(本题满分12分)某水果商店经销一种水果,原价每千克50元,连续两次降价后每千克 32元,若每次下降的百分率相同.(1)求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,但商场规定每千克涨价不能超过8元,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,那么每千克应涨价多少元?(3)在(2)的基础上,商场决定每卖出1千克捐赠m元(m≤2),设每千克涨价x元后,若要保证当0≤x≤8时,每天盈利随着x的增加而增大,求m的取值范围.20.(本题满分 12分)如图,AB是⊙O的直径,AC是弦,P为AB延长线上一点,∠BCP=∠BAC,∠ACB的平分线交⊙O于点D,交AB于点 E.(1)求证:PC是⊙O的切线;(2)求证:△PEC是等腰三角形;(3)若AC+BC=√2时,求CD的长.21.(本题满分12分)如图,一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移,翻折,旋转前后的图形全等,我们把这种图形的变换叫全等变换.(1)数学作图工具中有一个三角尺是等腰直角三角形,它的两个锐角相等,度数都是______.(2)如图1,在等腰直角三角形AOB 中,∠AOB =90°,AO =BO,C 为边AB 上的一点(不与点A,B 重合),连接OC,把△AOC 绕点0顺时针旋转90°后,得到△BOD,点A 与点B 恰好重合,连接CD.①填空:OC____OD,∠COD 的度数为_____.②若∠A0C =30°,求∠BDC 的度数.(3)如图1,如果C 是直线AB 上的一点(不与点A,B 重合),其他条件不变,请猜想∠AOC 与∠BDC 的数量关系,并直接写出猜想结论.22.(本题满分14分)如图,已知抛物线y=−43x 2−83x+4与x 轴交点为A,B 两点,A 在B 的左侧,与y 轴交点为点C,且抛物线与直线交于A,C.(1)求直线AC 的表达式;(2)点D 是第二象限内抛物线上的动点,设点D 的横坐标为m,求△ACD 面积的最大值及此时D 点的坐标;(3)若点P 在抛物线对称轴上,是否存在点P,Q,使以点A,C,P,Q 为顶点的四边形是以AC 为对角线的菱形?若存在,请求出P,Q 两点的坐标;若不存在,请说明理由.参考答案一、选择题AADCC BBBAD DC二、填空题13. k ≦114. 256 15. 0<m <1416. ①③④三、解答题17(1)x 1=1,x 2=32 (2) x 1=−2+√62,x 2=−2−√6218(1) k ≦3(2)k=-6 (3) k=319(1)20%(2)设每千克涨价y 元,(10+y)(500-20y)=6000∴ y 1=5,y 2=10∵ 每千克涨价不能超过8元∴ y=5(3)设扣除捐赠后每天盈利为W 元W=(10+x-m)(500-20x)=-20x 2+(300+20m)x+5000-500m ∵ 当0≦x ≦8时,W 随x 的增大而增大∴ −300+20m 2×(−20)≥8, m ≥1∴ 1≦m ≦220(1)略(2)略(3) 121(1)45°(2) ①=,90° ②60°(3) ∠AOC+∠BDC=90°22(1)y=43x +4(2) 92,D(−32,5)(3)P(-1, 138) Q(-2, 198)。
最新人教版九年级数学上册期中考试试题(含答案)一、选择题(每小题4分,共80分)1. 题目1a. A选项b. B选项c. C选项d. D选项答案:B2. 题目2a. A选项b. B选项c. C选项d. D选项答案:C...二、填空题(每小题4分,共40分)1. 题目1:_______是一个素数。
答案:132. 题目2:32的约数有_______个。
答案:6...三、计算题(每小题10分,共50分)1. 题目1:已知两个角的度数为45°和120°,这两个角的补角之和为多少度?答案:60°2. 题目2:某商店原价100元的商品打8折出售,实际售价为多少元?答案:80元...四、应用题(每小题12分,共60分)1. 题目1:甲、乙两个人同时从相距800千米的地点出发,甲每小时行40千米,乙每小时行50千米。
请问他们多长时间后会相遇?答案:8小时2. 题目2:一个矩形的长是宽的3倍,如果宽为6米,求该矩形的面积。
答案:108平方米...五、解答题(每小题15分,共75分)1. 题目1:如图所示,已知AB是⊙O的直径,CD是弧AB的弦,∠ACD=90°,AB=8,AD=6,请计算弧CD的长度。
答案:42. 题目2:根据下列计算过程,填写下表中的数据:计算过程:2*(-5) - 3*(-4) + 6*(-10) = ?...以上是最新人教版九年级数学上册期中考试试题及答案,希望对你有帮助!。
人教版九年级数学上册期中试卷九年级数学满分:120分时间:120分钟注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:人教版九年级上21~24章。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本题共10小题,每小题3分,共30分。
1.如图,△ABC的顶点坐标分别为A(4,6)、B(5,2)、C(2,1),如果将△ABC绕点B按顺时针方向旋转90°,得到△A′BC′,将△A′BC′向下平移2个单位,得△A″B′C″,那么点C的对应点C″的坐标是()。
A.(3, 2) B.(3, 3) C.(4, 3) D.(4, 2)2.已知关于x的一元二次方程(k-1)x2+2kx+1=0根的情况是()。
A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根3.下面是小明同学用配方法解方程2x2-12x-1=0的过程:解:2x2-12x-1=0 (1)x2-6x=1 (2)x2-6x+9=1+9 (3)(x-3)2=10,x-3=±10 (4)∴x1=3+10,x2=3-10最开始出现错误的是()。
A.第1步B.第2步C.第3步D.第4步4.如图是一位同学从照片上剪切下来的海上日出时的画面,“图上”太阳与海平线交于A、B两点,他测得“图上”圆的半径为10厘米,AB=16厘米。
若从目前太阳所处位置到太阳完全跳出海平面的时间为16分钟,则“图上”太阳升起的速度为()A.1.0厘米/分B.0.8厘米/分C.1.2厘米/分D.1.4厘米/分5.已知抛物线y=ax2+bx+m(a≠0)是由抛物线y=x2-2x+m向左平移2个单位得到,若点A(-2, y1),B(-1, y2),C(1, y3)都在抛物线y=ax2+bx+m(a≠0)上,则y1, y2, y3之间的大小关系是()。
人教版中学九年级上学期期中考试数学试题满分:150分 考试时间:120分钟第I 卷(选择题)一、单选题(每小题5分,共45分)1.下列方程中,①2x 2+1=0,②ax 2+bx +c =0,③(x +2)(x ﹣2)=x 2﹣3,④2x ﹣1x=0,是一元二次方程的有( )A .1个B .2个C .3个D .4个2.下列图形中是中心对称图形的是 ( )A .B .C .D . 3.若()2319x m x +-+是一个完全平方式,则m 的值等于( )A .-1B .3C .-1或3D .6或6-4.下列关于二次函数图象的性质,说法正确的是( )A .抛物线2y ax =的开口向下B .抛物线y =2x 2+3的对称轴为直线x =2C .抛物线y =3(x -1)2在对称轴左侧,即x <1时,y 随x 的增大而减小D .抛物线y =2(x -1)2+3的顶点坐标为(-1,3)5.若方程2x -4x +m =0没有实数根,则m 的取值范围是( )A .4m >-B .4m >C .4m <-D .4m < 6.一次函数y 1=mx +n (m ≠0)与二次函数y 2=ax 2+bx +c (a ≠0)的图象如图所示,则不等式ax 2+bx +c <mx +n 的解集为( )A .1<x <-4B .x <-4C .-4<x <1D .x >1或x <-47.受国际油价影响,今年我国汽油价格总体呈上升趋势.某地92号汽油价格六月底是7.5元/升,八月底是8.4元/升.设该地92号汽油价格这两个月平均每月的增长率为x ,根据题意列出方程,正确的是( ) A .()27.518.4x =+B .()27.518.4x =+C .()28.417.5x =-D .()()27.517.518.4x x =+++8.直线123l x =+关于直线x a =对称后,所得的直线2l 过点()3,1,则直线2l 的表达式为( ) A .27y x =-+ B .25y x =- C .25y x =-+ D .1522y x =-+ 9.如图,Rt △ABC 中,90ABC ∠=︒,8AB =,3BC =,P 是△ABC 内部的一个动点,且满足PAB PBC ∠=∠,则线段CP 长的最小值为( )A .2B .3C .6D .4第II 卷(非选择题)二、填空题(每小题5分,共30分)10.点(1,–2)关于坐标原点 O 的对称点再向上平移1个单位后坐标是_____.11.将抛物线y =2x 2向上平移1个单位,再向左平移2个单位,那么得到的抛物线的解析式为___________________.12.某中学有一块长30m ,宽20m 的矩形空地,计划在这块空地上划分出四分之一的区域种花,小明同学设计方案如图所示,求花带的宽度.设花带的宽为xm ,则可列方程为_____.13.如图,已知△ABC 中,∠C =90°,AC =BC =将△ABC 绕点A 逆时针反向旋转60°到△AB′C′的位置,连接C′B ,则C′B 的长为_____.14.某涵洞的截面是抛物线型,如图所示,在图中建立的直角坐标系中,抛物线的解析式为214y x =-,当涵洞水面宽AB 为12米时,水面到桥拱顶点O 的距离为________米.15.如图,在菱形ABCD 中,160AB DAB =∠=︒,,把菱形ABCD 绕点A 顺时针旋转30°得到菱形AB C D ''',其中点C 的运动路径为'CC ,则图中阴影部分的面积为________.三、解答题(共75分)16.(8分)解下列方程:(1)﹣12x 2﹣3x +6=0;(2)7x (3﹣x )=3(x ﹣3)(因式分解法).17.(8分)关于x 的方程22210x x k ++-=有两个不相等的实数根.(1)求k 的取值范围;(2)当k 取最大整数值时,求方程的两个根.18.(8分)如图,在矩形ABCD 中,AB =12cm ,BC =6cm ,点P 沿AB 边从点A 开始向点B 以2cm/s 的速度移动,点Q 沿DA 边从点D 开始向点A 以1cm/s 的速度移动,如果P 、Q 同时出发,用t 表示移动的时间(0≤t ≤6).那么:(1)求四边形QAPC 的面积;(2)当t 为何值时,PCQ 的面积是31cm 2?19.(8分)一块长5米、宽4米的地毯如图所示,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的17 80.(1)求配色条纹的宽度;(2)如果地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价.20.(8分)如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约5米高,球落地后又一次弹起,根据实验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式;(2)足球第一次落地点C距守门员多少米?(3)运动员乙要抢到足球第二个落点D,他应从B处再向前跑多少米?21.(10分)运城菖蒲酒产于山西垣曲.莒蒲洒远在汉代就已名噪酒坛,为历代帝王将相所喜爱,并被列为历代御膳香醪.菖蒲酒在市场的销售量会根据价格的变化而变化.菖蒲酒每瓶的成本价是35元,某超市将售价定为55元时,每天可以销售60瓶,若售价每降低2元,每天即可多销售10瓶(售价不能高于55元),若设每瓶降价x元()1用含x的代数式表示菖蒲酒每天的销售量.()2每瓶菖蒲酒的售价定为多少元时每天获取的利润最大?最大利润是多少?22.(12分)如图,点A 、B 在⊙O 上,直线AC 是⊙O 的切线,OC ⊥OB ,连接AB 交OC 于点D .(1)证明:AC=CD(2)若AC=2,OD 的长度.23.(13分)已知抛物线223y x x =-++与x 轴交于A ,B 两点(点A 在点B 的左侧).(1)求点A ,点B 的坐标;(2)如图,过点A 的直线:1l y x =--与抛物线的另一个交点为C ,点P 为抛物线对称轴上的一点,连接PA PC 、,设点P 的纵坐标为m ,当PA PC =时,求m 的值;(3)将线段AB 先向右平移1个单位长度,再向上平移5个单位长度,得到线段MN ,若抛物线2(23)(0)y a x x a ++≠=-与线段MN 只有一个交点,请直接写出....a 的取值范围.参考答案:1.A2.C3.C4.C5.B6.D7.B8.A9.B10.(-1,3)11.y =32(+2)x +112.(30﹣2x )(20﹣x )=34×20×3013.114.915.342π16.(1)13x =-23x =-(2)137x =-,x 2=3 17.(1)1k <(2)11x =-21x =-18.(1)36(cm 2);(2)当t =1或5时,△PCQ 的面积是31cm 2.19.(1)配色条纹宽度是14米 (2)地毯的总造价为2425元.20.(1)y =-19(x -6)2+5(2)足球第一次落地点C 距守门员(6+米(3)运动员乙要抢到足球第二个落点D ,他应再向前跑(米 21.(1)605x +;(2)售价定为51元时,有最大利润,最大利润为1280元.22.(1)证明:(2)OD=123.(1)A(-1,0),B(3,0)(2)-3(3)54a=或53a>或1a≤-。
人教版九年级上学期期中考试数学试卷(一)满分 120 分,考试时间 120 分钟。
一、精心选一选(每小题 3 分,共 30 分,将答案填在相应的括号内) 1. 下列方程中不一定是一元二次方程的是 ()A.(a-3)x =8 (a≠3)B.ax +bx+c=02 2 3C.(x+3)(x-2)=x+5D. 32 2 0 x x 572.关于 的一元二次方程 1 1 0的一个根是 0,则 值为( )x a x x a 2a 2 12 A. 1 B. 1 C.1 或1D.y x 3.在抛物线 =- +1 上的一个点是 ( )2A .(1,0)B .(0,0)C .(0,-1)D .(1,1)y x x4.抛物线 = -2 +1 的顶点坐标是 ( ) 2 A .(1,0) B .(-1,0) C .(-2,1)D .(2,-1) 5.已知方程2 2,则下列说中,正确的是 ()x x A. 方程两根和是 1 B. 方程两根积是 2 C. 方程两根和是1D.方程两根积比两根和大 26.某超市一月份的营业额为 200 万元,已知第一季度的总营业额共 1000 万元, 如 果平均每月增长率为 x,则由题意列方程应为( )A.200(1+x) =10002B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x) ]=100027. 若点(2,5),(4,5)在抛物线 y =ax +bx +c 上,则它的对称轴是 ()2b A . B .x =1 C .x =2 D .x =3xa8.用 10 米长的铝材制成一个矩形窗框,使它的面积为 6 平方米.若设它的一条 边长为 x 米,则根据题意可列出关于 x 的方程为( )A.x(5+x)=6B. x(5-x)=6C. x(10-x)=6D. x(10-2x)=6ht9.一小球被抛出后,距离地面的高度 (米)和飞行时间 (秒)满足下面函数关系 ht式: =-5( -1)2+6,则小球距离地面的最大高度是 ( )A .1 米B .5 米C .6 米D .7 米10.二次函数 y=x +bx+c ,若 b+c=0,则它的图象一定过点( )2A. (-1,-1)B. (1,-1)C. (-1,1)D. (1,1)二、细心填一填(每小题 4 分,共 32 分) 11. 方程 x +x=0 的根是2.12.请你写出以 2 和-2 为根的一元二次方程 个即可).(只写一.13. 抛物线 y =-x +3 的对称轴是2,顶点坐标是14.函数 y=x +x-2 的图象与 y 轴的交点坐标是2.x x bx b15.已知 =-1 是方程 + -5=0 的一个根,则 =________,方程的另一根 2 为________.16.若 x 、x 是方程 x +4x-6=0 的两根,则 x +x =2.2 2 1212 x 2x m,若其顶点在 x 轴上,则 m=_________.2 x x k三、解答题(要求:写出必要的解题步骤和说理过程). x -2x-3 2 19.(满分 9 分)请画出二次函数y的图象,并结合所画图象回答问题:(1) 当 x 取何值时,y=0; (2) 当 x 取何值时,y <0.a ba b a a b20.(满分 6 分)现定义运算“★”,对于任意实数 、 ,都有 ★ = ﹣3 + .2 x x如:3★5=3 ﹣3×3+5,若 ★2=6,试求实数 的值.221. (满分 8 分)已知△ABC 的一条边 BC 的长为 5,另两边 AB 、AC 的长是关于 x 的一元二次方程 2 3 3 2 0 的两个实数根.x 2 k x k 2 k k(1)求证:无论 为何值时,方程总有两个不相等的实数根.k(2) 当 为何值时,△ABC 是以 BC 为斜边的直角三角形.y ax bx c a22. (满分 9 分)已知二次函数 =+ + ( ≠0)的图象如图所示,请结合图2 象,abc; a b c a b c判断下列各式的符号. ①;②b -4ac. ③ + + ;④ ﹣ + .2y ax bx c23.(满分 6 分)已知二次函数 = + + 的图象如图所示. 2 ①求这个二次函数的表达式; ②当 x 为何值时,y=3.24.(满分 7 分)如图所示,在宽为 20m ,长为 32m 的矩形耕地上,修筑同样宽 的三条道路,(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的 面积为 570m ,道路应为多宽?225.(满分 13 分)在平面直角坐标系 xOy 中,顶点为 M 的抛物线是由抛物线 y=x 2﹣3 向右平移 1 个单位后得到的,它与 y 轴负半轴交于点 A ,点 B 在该抛物线上, 且横坐标为 3.(1)求点 M 、A 、B 坐标;(2)若顶点为 M 的抛物线与 x 轴的两个交点为 B 、C ,试求线段 BC 的长.参考答案及评分标准一、选择题(每小题 3 分,共 3 0 分) 1-5 小题 BBAAC6-10 小题 DDBCD二、填空题(每小题 4 分,共 32 分) 11. 0 或-112.答案不唯一,如 x -4=0 等.213. 直线 x=0(或 y 轴) (0,3) 14. (0,-2) 15. -4, 5 16. 2817. -118. 1 19.用描点法正确画出函数图象 得3分;(1)因为抛物线与 x 轴交于(-1,0)、(3,0),所以当 x=-1 或 3 时,y=0;…………(3 分) (2) 由图象知,当-1<x <3 时,y <0; …………(6 分) …………(4 分) ………… (6 分)20. x -3x+2=62解得:x=﹣1 或 421. (1)证明:∵ △= (2 3) 4( 3 2) 1 0k 2 k 2 k k∴ 无论 为何值方程总有两个不相等的实数根。
人教版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是()A .B .C .D .2.一元二次方程x 2﹣5x +6=0的解为()A .x 1=2,x 2=﹣3B .x 1=﹣2,x 2=3C .x 1=﹣2,x 2=﹣3D .x 1=2,x 2=33.二次函数2(1)(0)y a x b a =-+≠的图像经过点(0,2),则a+b 的值是()A .-3B .-1C .2D .34.如图所示,△ABC 内接于⊙O ,∠C =45°.AB =4,则⊙O 的半径为()A .B .4C .D .55.如图,ABC 和111A B C 关于点E 成中心对称,则点E 坐标是()A .() 3,1--B .() 3,3--C .()3,0-D .()4,1--6.已知一次函数()10y kx m k =+≠和二次函数()220y ax bx c a =++≠部分自变量和对应的函数值如表:x …-10245…y 1…01356…y 2…-159…当y 2>y 1时,自变量x 的取值范围是A .-1<x <2B .4<x <5C .x <-1或x >5D .x <-1或x >47.已知如图,PA 、PB 切O 于A 、B ,MN 切O 于C ,交PB 于N ;若7.5PA cm =,则PMN 的周长是()A .7.5cmB .10cmC .15cmD .12.5cm8.如图,Rt △ABC 中,∠BAC=90°,AB=AC ,将△ABC 绕点C 顺时针旋转40°得到△A'B'C ,CB'与AB 相交于点D ,连接AA',则∠B'A'A 的度数为()A .10°B .15°C .20°D .30°9.如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点E .F 分别在BC 和CD上,下列结论:①CE=CF ;②∠AEB=75︒;③BE+DF=EF ;④正方形对角线AC=1+,其中正确的序号是()A .①②④B .①②C .②③④D .①③④10.已知二次函数2y x bx 1=-+,当b 从1-逐渐变化到1的过程中,它所对应的抛物线位置也随之变动.下列关于抛物线的移动方向的描述中,正确的是()A .先往左上方移动,再往左下方移动B .先往左下方移动,再往左上方移动C .先往右上方移动,再往右下方移动D .先往右下方移动,再往右上方移动二、填空题11.若关于x 的方程220x ax +-=有一个根是1,则a =_________.12.将抛物线y =x 2+1向下平移3个单位长度得到的抛物线的解析式为__________.13.由于受“一带一路”国家战略策略的影响,某种商品的进口关税连续两次下调,由4000美元下调至2560美元,则平均每次下调的百分率为_____.14.如图,直线AB ,CD 相交于点O ,∠AOC=30°,半径为1cm 的的圆心P 在射线OA 上,且与点O 的距离为6cm ,以1cm/s 的速度沿由A 向B 的方向移动,那么与直线CD 相切时,圆心P 的运动时间为_____.15.如图,在△ABC 中,AB=10,AC=8,BC=6,经过点C 且与边AB 相切的动圆与CB ,CA 分别相交于点E ,F ,则线段EF 长度的最小值是_____.16.如图,在矩形ABCD 中,4AB =,2AD =,点E 在CD 上,1DE =,点F 在边AB 上一动点,以EF 为斜边作Rt EFP ∆.若点P 在矩形ABCD 的边上,且这样的直角三角形恰好有两个,则AF 的值是__________.三、解答题17.解下列方程(1)2450x x --=(2)()22(3)33x x -=-18.图①,图②,图③均为4×4的正方形网格,每个小正方形的顶点称为格点,小正方形的边长都为1.线段AB 的端点均在格点上.按要求在图①,图②,图③中画图.(1)在图①中,以线段AB 为斜边画一个等腰直角三角形,且直角的顶点为格点;(2)在图②中,以线段AB 为斜边画一个直角三角形,使其面积为2,且直角的顶点为格点;(3)在图③中,画一个四边形,使所画四边形是中心对称图形,不是轴对称图形,且其余两个顶点均为格点.19.为响应“美丽台州,美化环境”的号召,某校开展“美丽台州,清洁校园”的活动,该校经过精心设计,在绿化工作中设计一块170m2的矩形场地,矩形的长比宽的2倍长3m ,则这块矩形场地的长和宽各是多少米?20.如图,已知AB 是⊙O 中一条固定的弦,点C 是优弧AB 上一个动点(点C 不与A ,B 重合).(1)设∠ACB 的角平分线与劣弧AB 交于点P ,试猜想点P 在弧AB 上的位置是否会随点C 的运动而发生变化?请说明理由;(2)如图②,设A′B′=8,⊙O 的半径为5,在(1)的条件下,四边形ACBP 的面积是否为定值?若是定值,请求出这个定值;若不是定值,试确定四边形A′C′B′P′的面积的取值范围.21.一座拱桥的轮廓是抛物线型(如图所示),拱高6m ,跨度20m ,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图所示),其表达式是2y ax c =+的形式.请根据所给的数据求出a ,c 的值.(2)求支柱MN 的长度.(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶宽2m 、高3m 的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.22.如图①,在△ABC 中,∠BAC=90°,AB=AC ,点E 在AC 上(且不与点A ,C 重合),在△ABC 的外部作△CED ,使∠CED=90°,DE=CE ,连接AD ,分别以AB ,AD 为邻边作平行四边形ABFD ,连接AF .(1)请直接写出线段AF ,AE 的数量关系;(2)将△CED 绕点C 逆时针旋转,当点E 在线段BC 上时,如图②,连接AE ,请判断线段AF ,AE 的数量关系,并证明你的结论.23.如图,已知AB是⊙O的直径,C是圆周上的动点,P是优弧ABC的中点.(1)如图①,求证:OP∥BC;(2)如图②,PC交AB于点D,当△ODC是等腰三角形时,求∠PAO的度数.24.定义:对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数;当x≥0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=x﹣1,它的相关函数为()()1010x xyx x⎧-+<⎪=⎨-≥⎪⎩.(1)已知点A(﹣5,8)在一次函数y=ax﹣3的相关函数的图象上,求a的值;(2)已知二次函数21 42y x x=-+-.①当点B(m,32)在这个函数的相关函数的图象上时,求m的值;②当﹣3≤x≤3时,求函数21 42y x x=-+-的相关函数的最大值和最小值;(3)在平面直角坐标系中,点M ,N 的坐标分别为(﹣12,1),(92,1),连结MN .直接写出线段MN 与二次函数24y x x m =-++的相关函数的图象有两个公共点时m 的取值范围.答案与详解1.C 【分析】根据把一个图形绕某一点旋转180 ,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】A 、不是轴对称图形,是中心对称图形,故此选项错误;B 、是轴对称图形,不是中心对称图形,故此选项错误;C 、是轴对称图形,是中心对称图形,故此选项正确;D 、不是轴对称图形,不是中心对称图形,故此选项错误;故选C .【点睛】此题主要考查了轴对称图形和中心对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.D 【分析】利用因式分解法解方程.解:(x ﹣2)(x ﹣3)=0,x ﹣2=0或x ﹣3=0,∴x 1=2,x 2=3.故选:D .【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.3.C 【分析】根据二次函数图象上点的坐标特征,把点(0,2)直接代入解析式即可得到答案.【详解】∵二次函数2(1)(0)y a x b a =-+≠的图象经过点(0,2),∴22(01)a b =⋅-+,∴2a b +=.故选:C .【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.4.A 【详解】试题解析:连接OA ,OB .45,C ∠=︒ 90AOB ∴∠=︒,∴在Rt AOB △中,OA OB ==点睛:在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半.5.A【分析】先求出△ABC和△A1B1C1中对应的两点坐标,连接此两点坐标则E点必在其中点上,求出其中点坐标即可.【详解】由图可知:因为B、B1点的坐标分别是:B(-5,1)、B1(-1,-3),所以BB1的中点坐标为(512--,132-),即(-3,-1),则点E坐标是(-3,-1),故选A.【点睛】本题考查了坐标与图象变化-旋转,用到的知识点是图形旋转对称的性质等,图形旋转后时,其旋转中心必是其对应点连线的中点坐标.6.D【分析】利用表中数据得到直线与抛物线的交点为(-1,0)和(4,5),-1<x<4时,y1>y2,从而得到当y2>y1时,自变量x的取值范围.【详解】∵当x=0时,y1=y2=0;当x=4时,y1=y2=5;∴直线与抛物线的交点为(-1,0)和(4,5),而-1<x<4时,y1>y2,∴当y2>y1时,自变量x的取值范围是x<-1或x>4.故选D.【点睛】本题考查了二次函数与不等式:对于二次函数y=ax2+bx+c(a、b、c是常数,a≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.7.C【分析】已知MN、PA、PB是⊙O的三条切线,于是可得MA=MC、NC=NB、PA=PB;从而可得△PMN的周长用AP、BP来表示,代入数值即可求解.【详解】∵直线PA、PA、MN分别于圆相切于点A、B、C,∴MA=MC,NC=NB,PA=PB,∴△PMN的周长=PM+PN+MN=PM+AM+PN+BN=PA+PB=7.5+7.5=15.故选C.【点睛】考查圆的切线的性质定理,关键是掌握切线长定理;8.C【分析】先确定旋转角∠A′CA,根据旋转的性质A′C=AC,可求∠AA′C,∠B′A′C要求的∠B′A′A=∠B′A′C-∠AA′C即可.【详解】∵将△ABC绕点C顺时针旋转40°得到△A'B'C,∴∠A′CA=40º,∵A′C=AC,∴∠AA′C=180-40=702︒︒︒,∵∠BAC=∠B′A′C==90°,∴∠B′A′A=∠B′A′C-∠AA′C=90º-70º=20º.故选择:C .【点睛】本题考查图形旋转的性质和等腰三角形的性质等问题,掌握旋转的性质和等腰三角形的性质,会找旋转角,会利用等腰三角形求∠AA′C ,找到∠B′A′A 与∠AA′C 的关系是解题关键.9.A【分析】根据三角形的全等的判定和性质可以判断①的正误;根据角角之间的数量关系,以及三角形内角和为180°判断②的正误;根据线段垂直平分线的知识可以判断③的正误,根据三线合一的性质,可判定AC ⊥EF ,然后分别求得AG 与CG 的长,继而求得答案.【详解】∵四边形ABCD 是正方形,∴AB=AD=BC=DC ,∵△AEF 是等边三角形,∴AE=AF ,在Rt △ABE 和Rt △ADF 中,AB AD AE AF =⎧⎨=⎩,∴Rt △ABE ≌Rt △ADF (HL ),∴BE=DF ,AE=AF ,∵BC=DC ,∴BC-BE=CD-DF ,∴CE=CF ,故①正确;∵CE=CF ,∴△ECF 是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=180°-60°-45°=75°,故②正确;如图,连接AC ,交EF 于G 点,∵AE=AF,CE=CF,∴AC⊥EF,且AC平分EF,∵∠CAF≠∠DAF,∴DF≠FG,∴BE+DF≠EF,故③错误;∵△AEF是边长为2的等边三角形,∠ACB=∠ACD=45°,AC⊥EF,∴EG=FG=1,∴AG=AE•sin60°3232=⨯=CG=112EF=,∴31;故④正确.综上,①②④正确故选:A.【点睛】本题考查了正方形的性质,等边三角形的性质,等腰直角三角形的性质,全等三角形的判定和性质,线段垂直平分线的判定和性质以及解直角三角形.注意准确作出辅助线是解此题的关键.10.C【分析】先分别求出当b=-1、0、1时函数图象的顶点坐标即可得出答案.【详解】当b=-1时,此函数解析式为:y=x2+x+1,顶点坐标为:13 24⎛⎫- ⎪⎝⎭,;当b=0时,此函数解析式为:y=x2+1,顶点坐标为:(0,1);当b=1时,此函数解析式为:y=x2-x+1,顶点坐标为:13 24⎛⎫ ⎪⎝⎭,.故函数图象应先往右上方移动,再往右下方移动.故选C .【点睛】本题考查的是二次函数的图象与几何变换,解答此题的关键是熟练掌握二次函数的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭.11.1【分析】根据一元二次方程的解的定义,把x=1代入方程得到关于a 的一次方程,然后解此一次方程即可.【详解】解:把x=1代入方程220x ax +-=得1+a-2=0,解得a=1.故答案是:1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12.y =x 2﹣2【分析】根据抛物线平移的规律(左加右减,上加下减)求解.【详解】抛物线y =x 2+1向下平移3个单位得到的解析式为y =x 2+1﹣3,即y =x 2﹣2.故答案为y =x 2﹣2.【点睛】本题考查了二次函数图象与几何变换,掌握“左加右减,上加下减”的平移规律是解题的关键.13.20%.【分析】设平均每次下调的百分率为x,则第一次下调后的关税为4000(1-x),第二次下调的关税为40002(1)x -,根据题意可列方程为40002(1)x -=2560求解即可.【详解】解:设平均每次下调的百分率为x,根据题意得:(1)x =2560,40002解得:1x=0.2=20%,2x=1.8=180%(舍去),即:平均每次下调的百分率为20%.故答案是:20%.【点睛】本题主要考查一元二次方程的实际应用,根据已知条件列出方程是解题的关键.14.4秒或8秒【分析】⊙P与CD相切应有两种情况,一种是在射线OA上,另一种在射线OB上,设对应的圆的圆心分别在M,N两点.当P在M点时,根据切线的性质,在直角△OME中,根据30度的角所对的直角边等于斜边的一半,即可求得OM的长,进而求得PM的长,从而求得由P 到M移动的时间;根据ON=OM,即可求得PN,也可以求得求得由P到M移动的时间.【详解】①当⊙P在射线OA上,设⊙P于CD相切于点E,P移动到M时,连接ME.∵⊙P与直线CD相切,∴∠OEM=90°,∵在直角△OPM中,ME=1cm,∠AOC=30°,∴OM=2ME=2cm,则PM=OP-OM=6-2=4cm,∵⊙P以1cm/s的速度沿由A向B的方向移动,∴⊙P移动4秒时与直线CD相切;②当⊙P的圆移动到直线CD的右侧,同理可求ON=2则PN=6+2=8cm.∴⊙P移动8秒时与直线CD相切.故答案为:4秒或8秒.【点睛】本题主要考查了切线的性质和直角三角形的性质,注意已知圆的切线时,常用的辅助线是连接圆心与切点,本题中注意到分两种情况讨论是解题的关键.15.4.8【详解】设EF的中点为P,⊙P与AB的切点为D,连接PD,连接CP,CD,则有PD⊥AB;由勾股定理的逆定理知,△ABC是直角三角形PC+PD=EF,由三角形的三边关系知,PC+PD>CD;只有当点P在CD上时,PC+PD=EF有最小值为CD的长,即当点P在直角三角形ABC的斜边AB的高CD上时,EF=CD有最小值,由直角三角形的面积公式知,此时CD=BC·AC÷AB=4.8.故答案为:4.8.考点:切线的性质;垂线段最短;勾股定理的逆定理16.0或1113AF <<或4【详解】【分析】在点F 的运动过程中分别以EF 为直径作圆,观察圆和矩形矩形ABCD 边的交点个数即可得到结论.【解答】当点F 与点A 重合时,以EF 为斜边Rt EFP ∆恰好有两个,符合题意.当点F 从点A 向点B 运动时,当01AF <<时,共有4个点P 使EFP ∆是以EF 为斜边Rt EFP ∆.当1AF =时,有1个点P 使EFP ∆是以EF 为斜边Rt EFP ∆.当1113AF <<时,有2个点P 使EFP ∆是以EF 为斜边Rt EFP ∆.当113AF =时,有3个点P 使EFP ∆是以EF 为斜边Rt EFP ∆.当1143AF <<时,有4个点P 使EFP ∆是以EF 为斜边Rt EFP ∆.当点F 与点B 重合时,以EF 为斜边Rt EFP ∆恰好有两个,符合题意.故答案为0或1113AF <<或4【点评】考查圆周角定理,熟记直径所对的圆周角是直角是解题的关键.注意分类讨论思想在数学中的应用.17.(1)1251x x ,==-;(2)12932x x ==,【分析】(1)利用因式分解法解方程得出答案;(2)移项变形,利用因式分解法解方程得出答案.【详解】(1)2450x x --=,因式分解得:()()510x x -+=,解得:1251x x ,==-;(2)()22(3)33x x -=-,移项得:()22(3)330x x ---=,因式分解得:()()3290x x --=,∴30x -=或290x -=,解得:12932x x ==,.【点睛】本题主要考查了因式分解法解方程,正确掌握一元二次方程的解法是解题关键.18.(1)见解析;(2)见解析;(3)见解析【分析】(1)作AB 的垂直平分线,垂直平分线在端点处的点即为顶点;(2)如下图所示,满足面积条件和直角条件;(3)以AB 为对角线,绘制平行四边形即可【详解】(1)如下图,过线段AB 作垂直平分线,与网络交于格点C ,则点C 为等腰直角三角形顶点根据勾股定理,可求得,根据勾股定理逆定理,可得△ABC 是直角三角形,满足条件(2)图形如下:根据勾股定理,可求得:10,2,BC=22根据勾股定理逆定理,可判断△ACB是直角三角形面积=122×22=2,成立(3)平行四边形满足是中心对称图形,不是轴对称图形,图形如下:(答案不唯一)【点睛】本题考查格点问题,解题过程中,一方面需要结合几何特征,另一方面,还要敢于尝试19.这块矩形场地的长是23米、宽是10米.【分析】阅读试题,理解含义,分清题意,找出等量关系设矩形场地的宽为x米,则矩形场地的长为(2x+3)米,利用面积得:x(2x+3)=170,解方程要检验,负根舍去,最后作答即可.【详解】设这块矩形场地的宽为x米,则矩形场地的长为(2x+3)米,由面积得:x(2x+3)=170,因式分解得:(2x+17)(x-10)=0,∴x=10,x=-172(舍),∴2x+3=23,答:这块矩形场地的长是23米、宽是10米.【点睛】本题考查面积问题应用题,抓住矩形的长比宽的2倍长3m 来设元,抓住一块170m 2的矩形场地列方程是解题关键,掌握列方程解应用题的步骤与要求,分析题意,恰当设元,列出方程,解方程,检验,作答.20.(1)不变化,理由见详解;(2)8<S 四边形A′C′B′P′≤40【分析】(1)由∠ACP=∠BCP 得 AP BP=,P 为 AB 的中点,P 在弧AB 上的位置不动,p 点不变化,(2)四边形ACBP 的面积不是定值,连接OA ,OB ,OP ,OP 交AB 于D ,由 AP BP =,OP 为半径,由垂经定理知OP ⊥AB ,AB=BD ,由勾股定理得OD=,进而S △APB =12AB DP ,当PC 为直径时,S △ABC 最大=12AB DC 则0<S △ABC ≤32即可求出S 四边形ACBP =S △ABC +S △PAB =S △ABC +8的范围,即S 四边形A′C′B′P′的范围.【详解】(1)∵∠ACB 的角平分线与劣弧AB 交于点P ,∴∠ACP=∠BCP ,∴ AP BP=,∴P 为 AB 的中点,∴P 在弧AB 上的位置不动,为此不随点C 的运动而发生变化,P 点不变化.(2)四边形ACBP 的面积不是定值,连接OA ,OB ,OP ,OP 交AB 于D ,由 AP BP=,OP 为半径,∴OP ⊥AB ,AB=BD=4,OA=5,∴由勾股定理得3==,∴DP=OP-OD=5-3=2,∴S △APB =1182822AB DP =⨯⨯= ,当PC 为直径时,交AB 于点D ,则CD=PC-PD=10-2=8,S △ABC 最大=11883222AB DC =⨯⨯= ,0<S △ABC ≤32,S 四边形ACBP =S △ABC +S △PAB =S △ABC +8,8<S 四边形ACBP ≤40,即8<S 四边形A′C′B′P′≤40.【点睛】本题考查了圆周角定理,垂径定理,三角形面积,勾股定理等内容,熟练掌握圆周角定理是解题关键.21.(1)y=-350x 2+6;(2)5.5米;(3)一条行车道能并排行驶这样的三辆汽车.【解析】试题分析:(1)根据题目可知A .B ,C 的坐标,设出抛物线的解析式代入可求解.(2)设N 点的坐标为(5,y N )可求出支柱MN 的长度.(3)设DN 是隔离带的宽,NG 是三辆车的宽度和.做GH 垂直AB 交抛物线于H 则可求解.试题解析:(1)根据题目条件,A 、B 、C 的坐标分别是(-10,0)、(0,6)、(10,0).将B 、C 的坐标代入2y ax c =+,得6,0100.c a c =⎧⎨=+⎩解得3650a c =-=.∴抛物线的表达式是23650y x =-+.(2)可设N (5,N y ),于是2356 4.550N y =-⨯+=.从而支柱MN 的长度是10-4.5=5.5米.(3)设DE 是隔离带的宽,EG 是三辆车的宽度和,则G 点坐标是(7,0)(7=2÷2+2×3).过G 点作GH 垂直AB 交抛物线于H ,则23176335050H y =-⨯+=+>.根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车.22.(1)AE ;(2)AE ,证明见解析.【详解】解:(1)如图①中,∵四边形ABFD 是平行四边形,∴AB=DF ,∵AB=AC ,∴AC=DF ,∵DE=EC ,∴AE=EF ,∵∠DEC=∠AEF=90°,∴△AEF 是等腰直角三角形,∴AE .(2)如图②中,连接EF ,DF 交BC 于K .∵四边形ABFD 是平行四边形,∴AB ∥DF ,∴∠DKE=∠ABC=45°,∴EKF=180°﹣∠DKE=135°,∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE ,∵∠DKC=∠C ,∴DK=DC ,∵DF=AB=AC ,∴KF=AD ,在△EKF 和△EDA 中,{EK DKEKF ADE KF AD=∠=∠=,∴△EKF ≌△EDA ,∴EF=EA ,∠KEF=∠AED ,∴∠FEA=∠BED=90°,∴△AEF 是等腰直角三角形,∴AE.23.(1)证明见详解;(2)36º或1807︒.【分析】(1)连接PC ,由 AP PC=得AOP COP ∠=∠,利用△AOP ≌△COP ,得出∠APO=∠CPO ,由OA=OP 得∠APO=∠OAP ,由∠PCB=∠OAP 得∠PCO=∠PCB 即可;(2)如图,△OCD 是等腰三角形①当OD=CD 时,连接BC ,OP ,设∠BOC=∠DCO=xº,∠BDC=∠BOC+∠DCO=2xº,由(1)知OP ∥BC ,∠POD=∠OBC ,易证△POD ≌ΔOBC ,BC=OD=CD ,∠OBC=∠OCB=∠CDB=2xº,∠BAC+∠OBC+∠OCB=180º即x+2x+2x=180;②当OC=CD 时由OP ∥BC ,∠OPC=∠DCB ,由OP=OC ,∠OCP=∠OPC=∠DCB ,设∠OCP=∠OPC=DCB=yº,∠OCB=∠OCD+∠DCB=2xº,∠OBC=∠OCB=2xº,∠ODC 是ΔCDB 的外角,得∠COD=∠ODC=3xº,由∠OCD+∠COD+∠ODC=180º即x+3x+3x=180.【详解】(1)连接PC ,∵ AP PC =,∴AOP COP ∠=∠,在△AOP 和△COP 中,,,,OP OP AOP COP OA OC =⎧⎪∠=∠⎨⎪=⎩∴△AOP ≌△COP ,∴∠APO=∠CPO ,∵OA=OP ,∴∠APO=∠OAP ,又∵∠PCB=∠OAP ,∴∠PCO=∠PCB ,∴OP ∥BC,(2)如图,△OCD 是等腰三角形,①当OD=CD 时,连接BC ,OP ,设∠BOC=∠DCO=xº,∠BDC=∠BOC+∠DCO=2xº,由(1)知OP ∥BC ,∴∠POD=∠OBC,∵OP=OC,∴∠OPD=∠OCD=BOC=xº,∴△POD≌ΔOBC,∴BC=OD=CD,∴∠OBC=∠OCB=∠CDB=2xº,∠BAC+∠OBC+∠OCB=180º,x+2x+2x=180,x=36,∠PAB=∠PCB=36º,②当OC=CD时由OP∥BC,∠OPC=∠DCB,OP=OC,∠OCP=∠OPC=DCB,设∠OCP=∠OPC=DCB=yº,∠OCB=∠OCD+∠DCB=2xº,∠OBC=∠OCB=2xº,∠ODC是ΔCDB的外角,∠ODC=∠DCB+∠DBC=3xº,∠COD=∠ODC=3xº,在ΔOCD中,∠OCD+∠COD+∠ODC=180º,x+3x+3x=180,x=1807,∴∠PAB=∠PCB=1807︒,综合∠PAO=36º或1807︒.【点睛】不本题考查园中平行与等腰三角形中角度问题,掌握圆心角、圆周角、弧的关系,会利用全等三角形证相关的结论,会证等腰三角形,利用内角与外角关系,求角的度数,本题是一道有关圆的综合应用题,作出恰当的辅助线是解答本题的关键.24.(1)1;(2)①m =2m或m =2﹣;②最大值为432,最小值为﹣12;(3)﹣3<n ≤﹣1或1<n ≤54.【分析】(1)函数y =ax ﹣3的相关函数为3(0)3(0)ax x y ax x -+<⎧=⎨-≥⎩,将然后将点A (﹣5,8)代入y =﹣ax +3求解即可;(2)二次函数2142y x x =-+-的相关函数为2214(0)214(0)2x x x y x x x ⎧-+<⎪⎪=⎨⎪-+-≥⎪⎩,①分为m <0和m ≥0两种情况将点B 的坐标代入对应的关系式求解即可;②当﹣3≤x <0时,2142y x x =-+-,然后可此时的最大值和最小值,当0≤x ≤3时,函数2142y x x =-+-,求得此时的最大值和最小值,从而可得到当﹣3≤x ≤3时的最大值和最小值;(3)首先确定出二次函数24y x x n =-++的相关函数与线段MN 恰好有1个交点、2个交点、3个交点时n 的值,然后结合函数图象可确定出n 的取值范围.【详解】解:(1)函数y =ax ﹣3的相关函数为3(0)3(0)ax x y ax x -+<⎧=⎨-≥⎩,将点A (﹣5,8)代入y =﹣ax +3得:5a +3=8,解得:a =1.(2)二次函数2142y x x =-+-的相关函数为2214(0)214(0)2x x x y x x x ⎧-+<⎪⎪=⎨⎪-+-≥⎪⎩;①当m <0时,将B (m ,32)代入2142y x x =-+得213422m m -+=,解得:m=2+(舍去)或m =2当m ≥0时,将B (m ,32)代入2142y x x =-+-得:213422m m -+-=,解得:m=2+或m =2.综上所述:m =2m或m =2.②当﹣3≤x <0时,2142y x x =-+,抛物线的对称轴为x =2,此时y 随x 的增大而减小,∴此时y 的最大值为432.当0≤x ≤3时,函数2142y x x =-+-,抛物线的对称轴为x =2,当x =0有最小值,最小值为﹣12,当x =2时,有最大值,最大值y =72.综上所述,当﹣3≤x ≤3时,函数2142y x x =-+-的相关函数的最大值为432,最小值为﹣12;(3)如图1所示:线段MN 与二次函数24y x x n =-++的相关函数的图象恰有1个公共点.所以当x =2时,y =1,即﹣4+8+n =1,解得n =﹣3.如图2所示:线段MN 与二次函数24y x x n =-++的相关函数的图象恰有3个公共点∵抛物线24y x x n =-++与y 轴交点纵坐标为1,∴﹣n =1,解得:n =﹣1,∴当﹣3<n ≤﹣1时,线段MN 与二次函数24y x x n =-++的相关函数的图象恰有2个公共点.如图3所示:线段MN 与二次函数24y x x n =-++的相关函数的图象恰有3个公共点.∵抛物线24y x x n =-++经过点(0,1),∴n =1.如图4所示:线段MN 与二次函数24y x x n =-++的相关函数的图象恰有2个公共点.∵抛物线24y x x n =--经过点M (﹣12,1),∴14+2﹣n =1,解得:n =54,∴1<n ≤54时,线段MN 与二次函数24y x x n =-++的相关函数的图象恰有2个公共点.综上所述,n 的取值范围是﹣3<n ≤﹣1或1<n ≤54.【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了二次函数的图象和性质、函数图象上点的坐标与函数解析式的关系,求得二次函数24y x x n =-++的相关函数与线段MN 恰好有1个交点、2个交点、3个交点时n 的值是解题的关键.。
人教版九年级上册数学期中考试卷(含答案)秘密启用前在这场考试中,我们需要掌握一元二次方程、二次函数和旋转等知识。
全卷共三个大题,满分100分,考试时间120分钟。
一、选择题(每小题3分,共24分)1.下列图形中,既是轴对称图形又是中心对称图形的是()。
A。
B。
C。
D2.下列方程是一元二次方程的是()。
A、ax2bxcB、x22xx21C、(x1)(x2)D、1x23.用配方法解一元二次方程x2+8x+7=0,则方程可变形为()。
A、(x4)2=9B、(x4)2=9C、(x8)2=16D、(x8)2=574.抛物线y2x23的顶点在()。
A、第一象限B、第二象限C、x轴上D、y轴上5.一元二次方程x2-3x+3=的根的情况是()。
A、有两个相等的实数根B、有两个不相等的实数根C、只有一个相等的实数根D、没有实数根6.把抛物线y=x2向右平移一个单位,再向上平移3个单位,得到抛物线的解析式为()。
A、y=(x1)23B、y=(x1)23C、y=(x1)23D、y=(x1)237.一元二次方程x2-x-2=0的解是()。
A、x1=1,x2=2B、x1=1,x2=-2C、x1=-1,x2=-2D、x1=-1,x2=28.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率。
设该果园水果产量的年平均增长率为x,则根据题意可列方程为()。
A、144(1-x)2=100B、100(1-x)2=144C、144(1+x)2=100D、100(1+x)2=144二、填空题(每小题3分,共21分)9.一元二次方程2(x1)2x3化成一般形式ax2bxc后,若a=2,则b+c的值是_____。
10.抛物线y=2(x+1)2-3的顶点坐标为_____。
关于原点对称的点A坐标是_____。
11.平面直角坐标系中,P(2,3)。
12.若n(n≠0)是关于x的方程x2+mx+2n=的根,则m+n的值为_____。
新人教版九年级数学上册期中考试试题及答案一.选择题(满分36分,每小题3分)1.下列方程是一元二次方程的是()A.x2﹣y=1 B.x2+2x﹣3=0 C.x2+=3 D.x﹣5y=6 2.关于x的方程(m﹣2)x2﹣4x+1=0有实数根,则m的取值范围是()A.m≤6 B.m<6 C.m≤6且m≠2 D.m<6且m≠2 3.方程x2=4x的根是()A.x=4 B.x=0 C.x1=0,x2=4 D.x1=0,x2=﹣4 4.下列解方程中,解法正确的是()A.x2=4x,两边都除以2x,可得x=2B.(x﹣2)(x+5)=2×6,∴x﹣2=2,x+5=6,x1=4,x2=1C.(x﹣2)2=4,解得x﹣2=2,x﹣2=﹣2,∴x1=4,x2=0D.x(x﹣a+1)=a,得x=a5.把抛物线y=﹣2x2+4x+1的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是()A.y=﹣2(x﹣1)2+6 B.y=﹣2(x﹣1)2﹣6C.y=﹣2(x+1)2+6 D.y=﹣2(x+1)2﹣66.抛物线y=(x﹣2)2+3的顶点坐标是()A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)7.下列关于函数的图象说法:①图象是一条抛物线;②开口向下;③对称轴是y 轴;④顶点(0,0),其中正确的有()A.1个B.2个C.3个D.4个8.由二次函数y=2(x﹣3)2+1可知()A.其图象的开口向下B.其图象的对称轴为x=﹣3C.其最大值为1D.当x<3时,y随x的增大而减小9.已知关于x的一元二次方程x2﹣4x+c=0的一个根为1,则另一个根是()A.5 B.4 C.3 D.210.二次函数y=﹣2x2+bx+c的图象如图所示,则下列结论正确的是()A.b<0,c>0 B.b<0,c<0 C.b>0,c<0 D.b>0,c>0 11.若抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,则k的取值范围为()A.k>﹣1 B.k≥﹣1 C.k>﹣1且k≠0 D.k≥﹣1且k≠0 12.为满足消费者需要,红星厂一月份生产手提电脑200台,计划二、三月份共生产2500台.设二、三月份每月的平均增长率为x,根据题意列出的方程是()A.200(1+x)2=2500B.200(1+x)+200(1+x)2=2500C.200(1﹣x)2=2500D.200+200(1+x)+2000(1+x)2=250二.填空题(共6小题,满分18分,每小题3分)13.关于x的一元二次方程x2+2x+m=0有两个相等的实数根,则m的值是.14.方程x2﹣5x=4的根是.15.如图,⊙O的半径为2,C1是函数的图象,C2是函数的图象,C3是函数的图象,则阴影部分的面积是平方单位(结果保留π).16.若二次函数y=x2﹣3x+2m的最小值是2,则m=.17.某厂去年的产值为a元,今年比去年增长x%,则今年的产值为.18.设A(﹣1,y1),B(0,y2),A(2,y3)是抛物线y=﹣x2+2上的三点,则y1,y2,y3的大小关系为.三.解答题(共8小题,满分66分)19.(6分)解方程:x2+6x﹣2=0.20.(6分)在平面直角坐标系中,抛物线y=ax2+bx+2经过点(﹣2,6),(2,2).(1)求这条抛物线所对应的函数表达式.(2)求y随x的增大而减小时x的取值范围.21.(8分)已知关于x的一元二次方程x2+3x﹣m=0有实数根.(1)求m的取值范围(2)若两实数根分别为x1和x2,且x12+x22=11,求m的值.22.(8分)已知抛物线y=3(x+1)2﹣12如图所示(1)求出该抛物线与y轴的交点C的坐标;(2)求出该抛物线与x轴的交点A,B的坐标;(3)如果抛物线的顶点为D,试求四边形ABCD的面积.23.(9分)我县古田镇某纪念品商店在销售中发现:“成功从这里开始”的纪念品平均每天可售出20件,每件盈利40元.为了扩大销售量,增加盈利,尽快减少库存,该商店在今年国庆黄金周期间,采取了适当的降价措施,改变营销策略后发现:如果每件降价4元,那么平均每天就可多售出8件.商店要想平均每天在销售这种纪念品上盈利1200元,那么每件纪念品应降价多少元?24.(9分)出租车给市民出行带来了极大便利,某市某县现有出租车约400辆,为了提高每辆出租车的运营效益,一般每辆车是24小时运营,司机“三班倒”轮换,经过调查,每个司机有两种运营方案.方案一:部分出租车司机愿意在火车站、汽车站、码头、宾馆等固定的出租点接客,他们认为这样比在路上跑车接客相对轻松并且效益好些,这些司机平均每天可接4趟长途客,每次120元,总共花时约4小时,长途每次往返平均60千米.在剩余的20小时,在市内固定出租点营业,平均每次等客5分钟,送客20分钟,返回15分钟,一次市内生意为12元,市内每次往返平均8千米.方案二:部分司机愿意全部在市内跑车接客,调查结果为平均每次空载跑车(或等客)5分钟,接送客15分钟,一次市内生意为10元,市内每次往返平均5千米.(1)每辆出租车按方案一在固定站接客一天的营业额是元,每辆出租车按方案二在市内接客一天的营业额是元.(2)已知出租车每千米平均耗油0.32元,出租车在固定站接客需交停车费8元/天,跑长途平均每次(含往返)过境费10元,请比较出租车一天在固定站接客和在市内短途接客的纯收入大小(市内空载跑车行程忽略不计).25.(10分)如图,已知抛物线C:y=ax2+bx(a≠0)与x轴交于A、B两点(点A与点O 重合),点M(1,2)是抛物线上的点,且满足∠AMB=90°(1)求出抛物线C的解析式;(2)点N在抛物线C上,求满足条件S△ABM=S△ABN的N点(异于点M)的坐标.26.(10分)某市政府大力支持大学生创业.李明在政府的扶持下投资销售一种进价为20元的护眼台灯.销售过程中发现,每月销售量Y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500.(1)设李明每月获得利润为W(元),当销售单价定为多少元时,每月获得利润最大?(2)根据物价不门规定,这种护眼台灯不得高于32元,如果李明想要每月获得的利润2000元,那么销售单价应定为多少元?参考答案一.选择题1.解:A、x2﹣y=1是二元二次方程,不合题意;B、x2+2x﹣3=0是一元二次方程,符合题意;C、x2+=3不是整式方程,不合题意;D、x﹣5y=6是二元一次方程,不合题意,故选:B.2.解:当m﹣2=0,即m=2时,关于x的方程(m﹣2)x2﹣4x+1=0有一个实数根,当m﹣2≠0时,∵关于x的方程(m﹣2)x2﹣4x+1=0有实数根,∴△=(﹣4)2﹣4(m﹣2)•1≥0,解得:m≤6,∴m的取值范围是m≤6且m≠2,故选:A.3.解:方程整理得:x(x﹣4)=0,可得x=0或x﹣4=0,解得:x1=0,x2=4,故选:C.4.解:A、根据等式的性质,两边同除以一个不为0的数,等式仍然成立,在x未知的情况下,不能同除以2x,因为2x可能等于0,所以不对;B、两个式子的积是2×6=12,这两个式子不一定是2和6,还可能是其它值,故计算方法不对;C、利用直接开平方法求解,正确;D、两个数的积是a,这两个数不一定是a,故错误.故选:C.5.解:原抛物线的顶点坐标为(1,3),向左平移2个单位,再向上平移3个单位得到新抛物线的顶点坐标为(﹣1,6).可设新抛物线的解析式为:y=﹣2(x﹣h)2+k,代入得:y=﹣2(x+1)2+6.故选C.6.解:y=(x﹣2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A.7.解:①二次函数的图象是抛物线,正确;②因为a=﹣<0,抛物线开口向下,正确;③因为b=0,对称轴是y轴,正确;④顶点(0,0)也正确.故选:D.8.解:∵y=2(x﹣3)2+1,∴抛物线开口向上,对称轴为x=3,顶点坐标为(3,1),∴函数有最小值1,当x<3时,y随x的增大而减小,故选:D.9.解:设方程的另一个根为m,则1+m=4,∴m=3,故选:C.10.解:如图,抛物线的开口方向向下,则a<0.如图,抛物线的对称轴x=﹣<0,则a、b同号,即b<0.如图,抛物线与y轴交于正半轴,则c>0.综上所述,b<0,c>0.故选:A.11.解:∵二次函数y=kx2﹣2x﹣1的图象与x轴有两个交点∴b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0∴k>﹣1∵抛物线y=kx2﹣2x﹣1为二次函数∴k≠0则k的取值范围为k>﹣1且k≠0.12.解:由题意可得,200(1+x)+200(1+x)2=2500,故选:B.二.填空题(共6小题,满分18分,每小题3分)13.解:∵关于x的一元二次方程x2+2x+m=0有两个相等的实数根,∴△=0,∴22﹣4m=0,∴m=1,故答案为:1.14.解:∵x2﹣5x=4,∴x2﹣5x﹣4=0,∵a=1,b=﹣5,c=﹣4,∴x===,∴x1=,x2=.故答案为:x1=,x2=.15.解:抛物线y=x2与抛物线y=﹣x2的图形关于x轴对称,直线y=x与x轴的正半轴的夹角为60°,根据图形的对称性,把左边阴影部分的面积对折到右边,可以得到阴影部分就是一个扇形,并且扇形的圆心角为150°,半径为2,所以:S阴影==.故答案为:.16.解:由y=x2﹣3x+2m,得y=(x﹣)2+2m﹣,∴y最小=2m﹣=2,解得,m=;故答案是:.17.解:∵今年比去年增长x%,∴今年相对于去年的增长率为1+x%,∴今年的产值为a×(1+x%).故答案为a×(1+x%).18.解:∵A(﹣1,y1),B(0,y2),A(2,y3)是抛物线y=﹣x2+2上的三点,∴y1=1,y2=2,y3=﹣2.∵﹣2<1<2,∴y3<y1<y2.故答案为:y3<y1<y2.三.解答题(共8小题,满分66分)19.解:∵x2+6x﹣2=0,∴x2+6x=2,则x2+6x+9=2+9,即(x+3)2=11,∴x+3=±,∴x=﹣3±.20.解:(1)将点(﹣2,6),(2,2)代入y=ax2+bx+2中,得,∴a=,b=﹣1,∴y=x2﹣x+2;(2)∵抛物线y=x2﹣x+2对称轴为直线x=﹣=1,∵a=>0,则抛物线开口向上,∴y随x的增大而减小时x<1.21.解:(1)∵关于x的一元二次方程x2+3x﹣m=0有实数根,∴△=b2﹣4ac=32+4m≥0,解得:m≥﹣;(2)∵x1+x2=﹣3、x1x2=﹣m,∴x12+x22=(x1+x2)2﹣2x1•x2=11,∴(﹣3)2+2m=11,解得:m=1.22.解:(1)当x=0时,y=3(x+1)2﹣12=﹣9,则C点坐标为(0,﹣9);(2)当x=0时,3(x+1)2﹣12=0,解得x1=﹣3,x2=1,则A(﹣3,0),B(1,0);(3)D点坐标为(﹣1,﹣12),所以四边形ABCD的面积=×2×12+×(9+12)×1+×1×9=27.23.解:设每件纪念品应降价x元,则:化简得:x2﹣30x+200=0解得:x1=20,x2=10∵商店要尽快减少库存,扩大销量而降价越多,销量就越大∴x=20答:每件纪念品应降价20元.24.解:(1)方案一在固定站接客一天的营业额是:4×120+20×60÷(5+20+15)×12=840(元),案二在市内接客一天的营业额是:24×60÷(5+15)×10=720(元);(2)方案一的综合费用为:0.32×[60×4+20×60÷(5+20+15)×8×2]+8+10×4=278.4(元),其纯收入为840﹣278.4=561.6(元);方案二的综合费用为:0.32×[24×60÷(5+15)×5×2]=230.4(元),其纯收入为720﹣230.4=489.6(元);561.6>489.6,所以一辆出租车一天在固定站接客比在市内短途接客的纯收入大.25.解:(1)过点M作MH⊥AB于H,∵∠OMB=90°,MH⊥OB,∴△OMH∽△MBH,∴MH2=OH•HB,∴BH=4,∴B(5,0)设抛物线的解析式为y=ax2+bx,把M(1,2),B(5,0)代入得到,交点,∴抛物线的解析式为y=﹣x2+x.(2)由题意可知点N的纵坐标为±2时,当y=2时,2=﹣x2+,解得x=1或4,可得N(4,2),当y=﹣2时,﹣2=﹣x2+,解得x=,可得N(,﹣2)或(,﹣2);26.解:(1)由题意,得:w=(x﹣20)×y=(x﹣20)•(﹣10x+500)=﹣10x2+700x﹣10000=﹣10(x﹣35)2+2250.答:当销售单价定为35元时,每月可获得最大利润为2250元;(2)由题意,得:﹣10x2+700x﹣10000=2000,解得:x1=30,x2=40,又∵单价不得高于32元,∴销售单价应定为30元.答:李明想要每月获得2000元的利润,销售单价应定为30元.新九年级(上)数学期中考试题(答案)(1)一、选择题1.已知∠A=40°,则它的余角为( )A.40°B.50°C.130°D.140°答案 B2.如图,四个立体图形中,从左面看,所看到的图形为长方形的( )A.①③B.①④C.②③D.③④答案 B3.下面说法:①线段AC=BC,则C是线段AB的中点;②两点之间直线最短;③延长直线AB;④一个角既有余角又有补角,它的补角一定比它的余角大.其中正确的有( )A.0个B.1个C.2个D.3个答案 B4.如图,小于平角的角有( )A.9个B.8个C.7个D.6个答案 C5.如图,C,D是线段AB上两点,若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于( )A.3cmB.6cmC.11cmD.14cm答案 B6.小明由点A出发向正东方向走10m到达点B,再由点B向东南方向走10m到达点C,则下列结论正确的是( )A.∠ABC=22.5°B.∠ABC=45°C.∠ABC=67.5°D.∠ABC=135°答案 D7.如图,OC是∠AOB的平分线,OD是∠BOC的平分线,那么下列各式正确的是( )A.∠COD=∠AOBB.∠AOD=∠AOBC.∠BOD=∠AOBD.∠BOC=∠AOD答案 D8.在市委、市政府的领导下,全市人民齐心协力,将广安成功地创建为“全国文明城市”,为此小红特制作了一个正方体玩具,其展开图,原正方体中与“文”字所在的面相对的面上标的字应是( )A.全B.明C.城D.国答案 C9.若∠α与∠β互为补角,∠β的一半比∠α小30°,则∠α为( )A.30°B.80°C.100°D.140°答案 B10.射线OA上有B、C两点,若OB=8,BC=2,线段OB、BC的中点分别为D、E,则线段DE的长为( )A.5B.3C.1D.5或3答案 D11.用一副三角板不能画出的角为A.75°B.95°C.105°D.165°答案B12.如图所示,∠AOB=90°,∠AOC=40°,∠COD∶∠COB=1∶2,则∠BOD=A.40°B.50°C.25°D.60°答案C13.如图,C、D是线段AB上的点,若AB=8,CD=2,则图中以A、C、D、B为端点的所有线段的长度之和为A.24 B.22C.20 D.26答案D14.角α和β互补,α>β,则β的余角为A.α–βB.180°–α–βC.1()2αβ-D.90αβ︒-答案C二、填空题15.如图,从A到B的最短的路线是.答案A→F→E→B16.如图所示,延长线段AB到C,使BC=4,若AB=8,则线段AC的长是BC的倍.答案317.如图,已知M、N分别是AC、CB的中点,MN=6cm,则AB= cm.答案1218.如图所示,水平放置的长方体的底面是长为4和宽为2的长方形,从正面看到的形状图的面积为12,则长方体的体积等于.答案2419.如图所示,O是直线AB上一点,OC是∠AOB的平分线.(1)图中互余的角是;(2)图中互补的角是.答案(1)∠AOD与∠DOC(2)∠AOD与∠BOD,∠AOC与∠BOC20.如图,OM、ON分别是∠BOC和∠AOC的平分线,∠AOB=84°.(1)∠MON= ;(2)当OC在∠AOB内绕点O转动时,∠MON的值改变.(填“会”或“不会”)答案(1)42°(2)不会三、解答题21.计算:(1)48°39'40″+67°41'35″;(2)49°28'52″÷4.答案(1)116°21'15″.(2)12°22'13″.22.如果一个角的余角是它的补角的,求这个角的度数.答案设这个角的度数为x°,则它的余角为(90-x)°,它的补角为(180-x)°,根据题意得90-x=×(180-x),解得x=30.答:这个角的度数是30°.23.画图并计算:已知线段AB=2cm,延长线段AB至点C,使得BC=AB,再反向延长AC至点D,使得AD=AC.(1)准确地画出图形,并标出相应的字母;(2)哪个点是线段DC的中点?线段AB的长是线段DC长的几分之几?(3)求出线段BD的长度.答案(1)如图.(2)点A是线段DC的中点,AB=CD.(3)BC=AB=×2=1(cm),因而AC=AB+BC=2+1=3(cm).而AD=AC=3cm,故BD=DA+AB=3+2=5(cm).24.如图,七年级小林同学在一张透明纸上画了一条长8cm的线段MN,并在线段MN上任意找了一个不同于M、N的点C,然后用折纸的方法找出了线段MC、NC的中点A和B,并求出了线段AB的长为4cm.回答:(1)小林是如何找到线段MC、NC的中点的?又是如何求出线段AB的长为4cm的?(2)在反思解题过程时,小林想到:如果点C在线段MN的延长线上,“AB=4cm”这一结论还成立吗?请你帮小林画出图形,并解决这一问题.答案(1)纸是透明的,小林将纸对折,依次使点M、C重合,点N、C重合,两个折痕与线段MN 的交点就分别是中点A和B,AB=AC+BC=MC+NC=MN=×8=4(cm).(2)成立.理由:如图,若点C在线段MN的延长线上,AB=AC-BC=MC-NC=(MC-NC)=MN=×8=4(cm).25.如图所示,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠AOC和∠BOC 的度数.答案因为OE平分∠AOB,∠AOB=90°,所以∠BOE=45°.又∠EOF=60°,所以∠BOF=∠EOF-∠BOE=60°-45°=15°.又因为OF平分∠BOC,所以∠BOC=2∠BOF=30°,所以∠AOC=∠AOB+∠BOC=90°+30°=120°.26.该图是一个正方体盒子的表面展开图,该正方体六个面上分别标有不同的数字,且相对两个面上的数字互为相反数.(1)把-10,8,10,-3,-8,3分别填入图中的六个小正方形中;(2)若某相对两个面上的数字分别为和-5,求x的值.答案(1)答案不唯一,其中的一种情况如图.(2)依题意得=-,解得x=2.新人教版九年级(上)期中模拟数学试卷(答案)一、选择题(本大题共12小题,共36.0分)1.下列方程中是关于x的一元二次方程的是()A. B. C. D.2.观察下列汽车标志,其中是中心对称图形的是()A. B.C. D.3.x=2不是下列哪一个方程的解()A. B. C. D.4.已知一元二次方程3x2-2x+a=0有实数根,则a的取值范围是()A. B. C. D.5.若一元二次方程x2=m有解,则m的取值为()A. 正数B. 非负数C. 一切实数D. 零6.函数y=(m+2)x+2x+1是二次函数,则m的值为()A. B. 0 C. 或1 D. 17.函数y=ax2与函数y=ax+a,在同一直角坐标系中的图象大致是图中的()A. B.C. D.8.若抛物线y=x2-2x+c与y轴的交点为(0,-3),则下列说法不正确的是()A. 抛物线开口向上B. 抛物线的对称轴是C. 当时,y的最大值为4D. 抛物线与x轴的交点为,9.若三角形的两边长分别是4和6,第三边的长是方程x2-5x+6=0的一个根,则这个三角形的周长是()A. 13B. 16C. 12或13D. 11或1610.如图,△ABC绕点O旋转180°得到△DEF,下列说法错误的是()A. 点B和点E关于点O对称B.C. ≌D. 与关于点B中心对称11.如图所示,△ABC绕着点A旋转能够与△ADE完全重合,则下列结论成立的有()①AE=AC;②∠EAC=∠BAD;⑧BC∥AD;④若连接BD,则△ABD为等腰三角形A. 1个B. 2个C. 3个D. 4个12.二次函数y=ax2+bx+c中,b=4a,它的图象如图所示,有以下结论:①c>0;②a+b+c>0;③b2-4ac<0;④abc<0;⑤4a>c.其中正确的是()A.B.C.D.二、填空题(本大题共6小题,共18.0分)13.已知一元二次方程2x2+x+m=0的一个根是1,则m的值是______.14.在直角坐标系中,点(-3,6)关于原点的对称点是______.15.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是______.16.若抛物线y=-x2-8x+c的顶点在x轴上,则c的取值是______.17.把二次函数y=x2+2的图象向右平移2个单位,再向下平移5个单位,得到的函数图象对应的解析式为______.18.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连结AA′,若∠1=20°,则∠B=______度.三、计算题(本大题共2小题,共20.0分)19.已知抛物线y=ax2+bx-1的图象经过点(-1,2),其对称轴为x=-1.求抛物线的解析式.20.如图,A(-1,0)、B(2,-3)两点在一次函数y2=-x+m与二次函数y1=ax2+bx-3的图象上(1)求一次函数和二次函数的解析式;(2)请直接写出y2>y1时,自变量x的取值范围.四、解答题(本大题共5小题,共46.0分)21.用适当的方法解下列方程(1)(y+3)2-81=0(2)2x(3-x)=4(x-3)(3)x2+10x+16=0(4)x2-x-=022.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,问应邀请多少个球队参加比赛?23.已知:关于x的一元二次方程x2-3x-k=0有两个不相等的实数根.(1)求k的取值范围;(2)请选择一个k的负整数值,并求出方程的根.24.将进货单价为40元的商品按50元售出时,就能卖出500个.已知这种商品每个涨价1元,其销售量就减少10个.为了赚得8000元的利润,每个商品售价应定为多少元?这时应进货多少个?25.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.(1)求n的值;(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.答案和解析1.【答案】C【解析】解:A、2x-y=1,是二元一次方程,故此选项错误;B、x+3xy+y2=2,是二元二次方程,故此选项错误;C、=,是一元二次方程,正确;D、x2+=3,含有分式,故此选项错误.故选:C.直接利用一元二次方程的定义分析得出答案.此题主要考查了一元二次方程的定义,正确把握方程定义是解题关键.2.【答案】C【解析】解:A、不是中心对称图形,本选项错误;B、不是中心对称图形,本选项错误;C、是中心对称图形,本选项正确;D、不是中心对称图形,本选项错误.故选:C.结合中心对称图形的概念求解即可.本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【答案】D【解析】解:A,当x=2时,方程的左边=3×(2-2)=0,右边=0,则左边=右边,故x=2是A中方程的解;B,当x=2时,方程的左边=2×22-3×2=2,右边=2,则左边=右边,故x=2是B中方程的解;C,当x=2时,方程的左边=0,右边=0,则左边=右边,故x=2是C中方程的解;D,当x=2时,方程的左边=22-2+2=4,右边=0,则左边≠右边,故x=2不是D中方程的解;故选:D.把x=2分别代入各个方程的两边,根据方程的解的定义判断即可.本题考查的是一元二次方程的解的定义,掌握能使一元二次方程左右两边相等的未知数的值是一元二次方程的解是解题的关键.4.【答案】A【解析】解:∵一元二次方程3x2-2x+a=0有实数根,∴△≥0,即22-4×3×a≥0,解得a≤.故选:A.根据△的意义得到△≥0,即22-4×3×a≥0,解不等式即可得a的取值范围.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.5.【答案】B【解析】解:当m≥0时,一元二次方程x2=m有解.故选:B.利用平方根的定义可确定m的范围.本题考查了解一元二次方程-直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.6.【答案】D【解析】解:∵函数y=(m+2)x+2x+1是二次函数,∴m2+m=2,m+2≠0,解得:m=1.故选:D.直接利用二次函数的定义分析得出答案.此题主要考查了二次函数的定义,正确把握定义是解题关键.7.【答案】B【解析】解:当a>0时,y=ax2的图象是抛物线,顶点在原点,开口向上,函数y=ax+a的图象是一条直线,在第一、二、三象限,故选项A、D错误,选项B正确,当a<0时,y=ax2的图象是抛物线,顶点在原点,开口向下,函数y=ax+a的图象是一条直线,在第二、三、四象限,故选项C错误,故选:B.根据题目中的函数解析式,讨论a>0 和a<0时,两个函数的函数图象,从而可以解答本题.本题考查二次函数的图象、一次函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.8.【答案】C【解析】解:把(0,-3)代入y=x2-2x+c中得c=-3,抛物线为y=x2-2x-3=(x-1)2-4=(x+1)(x-3),所以:抛物线开口向上,对称轴是x=1,当x=1时,y的最小值为-4,与x轴的交点为(-1,0),(3,0);C错误.故选:C.把(0,-3)代入抛物线解析式求c的值,然后再求出顶点坐标、与x轴的交点坐标.要求掌握抛物线的性质并对其中的a,b,c熟悉其相关运用.9.【答案】A【解析】解:∵x2-5x+6=0,∴(x-3)(x-2)=0,解得:x1=3,x2=2,∵三角形的两边长分别是4和6,当x=3时,3+4>6,能组成三角形;当x=2时,2+4=6,不能组成三角形.∴这个三角形的第三边长是3,∴这个三角形的周长为:4+6+3=13故选:A.首先利用因式分解法求得一元二次方程x2-5x+6=0的两个根,又由三角形的两边长分别是4和6,利用三角形的三边关系,即可确定这个三角形的第三边长,然后求得周长即可.此题考查了因式分解法解一元二次方程与三角形三边关系的知识.此题难度不大,解题的关键是注意准确应用因式分解法解一元二次方程,注意分类讨论思想的应用.10.【答案】D【解析】解:A、点B和点E关于点O对称,说法正确;B、CE=BF,说法正确;C、△ABC≌△DEF,说法正确;D、△ABC与△DEF关于点B中心对称,说法错误;故选:D.根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可知△ABC≌△DEF,再根据全等的性质可得EC=BF,进而可得答案.此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.11.【答案】C【解析】解:∵△ABC绕着点A旋转能够与△ADE完全重合,∴△ABC≌△ADE,∴AE=AC,故①正确;∠CAB=∠EAD,AB=AD,∴∠CAB-∠EAB=∠EAD-∠EAB,∴∠EAC=∠BAD,故②正确;连接BD,则△ABD为等腰三角形,故④正确,故选:C.根据旋转的性质得到△ABC≌△ADE,根据全等三角形的性质即可得到结论.本题考查了旋转的性质,等腰三角形的判定,正确的识别图形是解题的关键.12.【答案】C【解析】解:由图象可得,c>0,a>0,b>0,故①正确,当x=1,y=a+b+c>0,故②正确,函数图象与x轴两个不同的交点,故b2-4ac>0,故③错误,∵b=4a,<0,a>0,解得,4a>c,故⑤正确,∵c>0,a>0,b>0,∴abc>0,故④错误,故选:C.根据函数图象可以判断a、b、c的正负,根据b=4a可以得到该函数的对称轴,从而可以判断各个小题是否正确,本题得以解决.本题考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.13.【答案】-3【解析】解:∵一元二次方程2x2+x+m=0的一个根为1,∴2×12+1+m=0,解得m=-3.故答案是:-3.把x=1代入已知方程列出关于m的一元一次方程,通过解该一元一次方程来求m 的值.本题考查了一元二次方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.14.【答案】(3,-6)【解析】解:点(-3,6)关于原点的对称点为(3,-6).故答案为:(3,-6).根据“两点关于原点对称,则两点的横、纵坐标都是互为相反数”解答.本题考查了关于原点对称的点的坐标,两点关于原点对称,则两点的横、纵坐标都是互为相反数.15.【答案】50(1-x)2=32【解析】解:由题意可得,50(1-x)2=32,故答案为:50(1-x)2=32.根据某药品经过连续两次降价,销售单价由原来50元降到32元,平均每次降价的百分率为x,可以列出相应的方程即可.本题考查由实际问题抽象出一元二次方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.16.【答案】-16【解析】解:∵抛物线y=-x2-8x+c的顶点在x轴上,∴=0,解得,c=-16,故答案为:-16.根据题意,可知抛物线顶点的纵坐标等于0,从而可以求得c的值.本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.17.【答案】y=(x-2)2-3【解析】解;将二次函数y=x2+2的图象向右平移2个单位,再向下平移5个单位后,所得图象的函数表达式是y=(x-2)2+2-5,即y=(x-2)2-3,故答案为:y=(x-2)2-3.根据函数图象向右平移减,向下平移减,可得答案.本题考查了二次函数图象与几何变换,函数图象平移的规律是左加右减,上加下减.18.【答案】65【解析】解:∵Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,∴∠ACA′=90°,CA=CA′,∠B=∠CB′A′,∴△CAA′为等腰直角三角形,∴∠CAA′=45°,∵∠CB′A′=∠B′AC+∠1=45°+20°=65°,∴∠B=65°.故答案为65.先根据旋转的性质得到∠ACA′=90°,CA=CA′,∠B=∠CB′A′,则可判断△CAA′为等腰直角三角形,所以∠CAA′=45°,然后利用三角形外角性质计算出∠CB′A′,从而得到∠B的度数.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.19.【答案】解:由题意得,,解得,,则抛物线的解析式为y=-3x2-6x-1.【解析】利用待定系数法求出抛物线的解析式.本题考查的是待定系数法求二次函数解析式,掌握二次函数的性质,待定系数法求解析式的一般步骤是解题的关键.20.【答案】解:(1)把A(-1,0)代入y=-x+m得1+m=0,解得m=-1,∴一次函数解析式为y=-x-1;把A(-1,0)、B(2,-3)代入y=ax2+bx-3得,解得,∴抛物线解析式为y=x2-2x-3;(2)当-1<x<2时,y2>y1.【解析】(1)利用待定系数法求一次函数和抛物线解析式;(2)利用函数图象,写出一次函数图象在二次函数图象上方所对应的自变量的范围即可.本题考查了二次函数与不等式(组):函数值y与某个数值m之间的不等关系,一般要转化成关于x的不等式,解不等式求得自变量x的取值范围或利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.21.【答案】解:(1)(y+3)2-81=0y+3=±9,解得:y1=-12,y2=6;(2)2x(3-x)=4(x-3)2x(3-x)-4(x-3)=0,2(3-x)(x+2)=0,解得:x1=3,x2=-2;(3)x2+10x+16=0(x+2)(x+8)=0,解得:x1=-2,x2=-8;(4)x2-x-=0∵△=b2-4ac=3+1=4,∴x=,解得:x1=,x2=.【解析】(1)利用直接开平方法解方程得出答案;(2)直接利用提取公因式法分解因式进而得出答案;(3)直接利用十字相乘法分解因式解方程即可;(4)利用公因式法解方程得出答案.此题主要考查了一元二次方程的解法,正确掌握相关解方程的方法是解题关键.22.【答案】解:设邀请x个球队参加比赛,依题意得1+2+3+…+x-1=21,即=21,∴x2-x-42=0,∴x=7或x=-6(不合题意,舍去).答:应邀请7个球队参加比赛.【解析】设邀请x个球队参加比赛,那么第一个球队和其他球队打(x-1)场球,第二个球队和其他球队打(x-2)场,以此类推可以知道共打(1+2+3+…+x-1)场球,然后根据计划安排21场比赛即可列出方程求解.此题和实际生活结合比较紧密,准确找到关键描述语,从而根据等量关系准确的列出方程是解决问题的关键.此题还要判断所求的解是否符合题意,舍去不合题意的解.23.【答案】解:(1)∵一元二次方程x2-3x-k=0有两个不相等的实数根,∴△=(-3)2-4×1×(-k)>0,解得k>-;(2)当k=-2时,方程为x2-3x+2=0,因式分解得(x-1)(x-2)=0,解得x1=1,x2=2.【解析】(1)根据方程有两个不相等的实数根根,则根的判别式△=b2-4ac>0,建立关于k 的不等式,求出k的取值范围;(2)k取负整数,再解一元二次方程即可.本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)中,当△>0时,方程有两个不相等的两个实数根是解答此题的关键.。
人教版九年级上册数学《期中》测试卷(及参考答案)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.把 )A B .C D .2.关于x 的一元二次方程2(1)210k x x +-+=有两个实数根,则k 的取值范围是( )A .0k ≥B .0k ≤C .0k <且1k ≠-D .0k ≤且1k ≠-3.已知⊙O 的半径为10,圆心O 到弦AB 的距离为5,则弦AB 所对的圆周角的度数是( )A .30°B .60°C .30°或150°D .60°或120°4.已知关于x 的一元二次方程(a+1)x 2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是( )A .1一定不是关于x 的方程x 2+bx+a=0的根B .0一定不是关于x 的方程x 2+bx+a=0的根C .1和﹣1都是关于x 的方程x 2+bx+a=0的根D .1和﹣1不都是关于x 的方程x 2+bx+a=0的根5.等腰三角形的一个角是80°,则它的顶角的度数是( )A .80°B .80°或20°C .80°或50°D .20°6.下列运算正确的是( )A .(﹣2a 3)2=4a 6B .a 2•a 3=a 6C .3a +a 2=3a 3D .(a ﹣b )2=a 2﹣b 27.如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B 为( )A .66°B .104°C .114°D .124°8.如图,正方形ABCD 的边长为2cm ,动点P ,Q 同时从点A 出发,在正方形的边上,分别按A D C →→,A B C →→的方向,都以1/cm s 的速度运动,到达点C 运动终止,连接PQ ,设运动时间为x s ,APQ ∆的面积为2y cm ,则下列图象中能大致表示y 与x 的函数关系的是( )A .B .C .D .9.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y (米)与甲出发的时间t (分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分; ②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米。
人教版九年级上学期期中考试数学试卷(一)一、选择题1、下列关于 x的方程:①ax2+bx+c=0;②x2+ =6;③x2=0;④x=3x2⑤(x+1)(x﹣1)=x2+4x中,一元二次方程的个数是()A、1个B、2个C、3个D、4个2、下列标志既是轴对称图形又是中心对称图形的是()A、 B、 C、 D、3、已知关于x的一元二次方程(a﹣1)x2﹣2x+1=0有两个不相等的实数根,则a的取值范围是()A、a>2B、a<2C、a<2且a≠lD、a<﹣24、若(2,5)、(4,5)是抛物线y=ax2+bx+c上的两个点,则它的对称轴是()A、x=﹣B、x=1C、x=2D、x=35、一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则该等腰三角形的周长是()A、12B、9C、13D、12或96、如图,某小区规划在一个长30m、宽20m的长方形土地ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分钟花草,要使每一块花草的面积都为78cm2,那么通道宽应设计成多少m?设通道宽为xm,则由题意列得方程为()A、(30﹣x)(20﹣x)=78B、(30﹣2x)(20﹣2x)=78C、(30﹣2x)(20﹣x)=6×78D、(30﹣2x)(20﹣2x)=6×787、如图,△ABC为⊙O的内接三角形,∠AOB=100°,则∠ACB的度数为()A、100°B、130°C、150°D、160°8、如图,在⊙O中,P是弦AB的中点,CD是过点P的直径,则下列结论中不正确的是()A、AB⊥CDB、∠AOB=4∠ACDC、=9、已知抛物线y=﹣x2+2x﹣3,下列判断正确的是()A、开口方向向上,y有最小值是﹣2B、抛物线与x轴有两个交点C、顶点坐标是(﹣1,﹣2)D、当x<1时,y随x增大而增大10、有下列四个命题中,其中正确的有()①圆的对称轴是直径;②等弦所对的弧相等;③圆心角相等所对的弦相等;④半径相等的两个半圆是等弧.A、4个B、3个C、2个D、1个11、将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为()A、y=3(x+2)2+3B、y=3(x﹣2)2+3C、y=3(x+2)2﹣3D、y=3(x﹣2)2﹣312、下列说法正确的是()A、弦是直径B、平分弦的直径垂直弦C、长度相等的两条弧是等弧D、圆的对称轴有无数条,而对称中心只有一个13、已知抛物线y=ax2+bx+c的开口向下,顶点坐标为(2,﹣3),那么该抛物线有()A、最小值﹣3B、最大值﹣3C、最小值2D、最大值214、钟表的时针匀速旋转一周需要12小时,经过2小时,时针旋转了________度.15、一元二次方程x2﹣4x+6=0实数根的情况是________.16、如图,在Rt△ABC中,∠BAC=90°,∠B=60°,△AB′C′可以由△ABC绕点A顺时针旋转90°得到(点B′与点B是对应点,点C′与点C是对应点),连接CC′,则∠CC′B′的度数是________.17、将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、B的读数分别为86°、30°,则∠ACB的大小为________18、已知二次函数y=ax2+bx+c的图象如图所示,有下列5个结论,①abc<0;②2a+b=0;③b2﹣4ac<0;④a+b+c>0;⑤a﹣b+c<0.其中正确的结论有________(填序号)19、分式值为0,则x=________20、某商店四月份的利润为6.3万元,此后两个月进入淡季,利润均以相同的百分比下降,至六月份利润为5.4万元.设下降的百分比为x,由题意列出方程________.21、已知m是关于x的方程x2﹣2x﹣3=0的一个根,则2m2﹣4m=________.22、下列图形中,①等腰三角形;②平行四边形;③等腰梯形;④圆;⑤正六边形;⑥菱形;⑦正五边形,是中心对称图形的有________(填序号)23、如图所示:点M、G、D在半圆O上,四边形OEDF、HMNO均为矩形,EF=b,NH=c,则b与c之间的大小关系是b________c(填<、=、>)三、解下列方程24、解下列方程(1)x2+6x﹣1=0(2)(2x+3)2﹣25=0.四、解答题25、在方格纸上建立如图所示的平面直角坐标系,将△ABO绕点O按顺时针方向旋转90°,得△A′B′O.(1)画出旋转后的图形;(2)写出点A′,B′的坐标.26、如图,是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面宽8cm,水的最大深度为2cm,求该输水管的半径是多少?27、如图,在Rt△ABC中,∠ACB=90,AD平分∠BAC,过A,C,D三点的圆与斜边AB交于点E,连接DE.(1)求证:AC=AE;(2)若AC=6,CB=8,求△ACD的外接圆的直径.28、如图,已知抛物线与x交于A(﹣1,0)、E(3,0)两点,与y轴交于点B (0,3).(1)求抛物线的解析式;(2)设抛物线顶点为D,求四边形AEDB的面积.29、某体育用品店购进一批单件为40元的球服,如果按单价60元销售样,那么一个月内可售出240套,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元,销售量为y套.(1)求出y与x的函数关系式;(2)当销售单件为多少元时,月销售额为14000元?(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?答案解析部分一、<b >选择题</b>1、【答案】B【考点】一元二次方程的定义【解析】【解答】解:①当a=0时,ax2+bx+c=0不是一元二次方程;②x2+ =6是分式方程;③x2=0是一元二次方程;④x=3x2是一元二次方程⑤(x+1)(x﹣1)=x2+4x,整理后不含x的二次项,不是一元二次方程.故选:B.【分析】依据一元二次方程的定义求解即可.2、【答案】A【考点】轴对称图形【解析】【解答】解:A、是轴对称图形,是中心对称图形.故正确;B、是轴对称图形,不是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故错误.故选:A.【分析】根据中心对称图形与轴对称图形的概念判断即可.3、【答案】C【考点】根的判别式【解析】【解答】解:△=4﹣4(a﹣1)=8﹣4a>0得:a<2.又a﹣1≠0∴a<2且a≠1.故选C.【分析】利用一元二次方程根的判别式列不等式,解不等式求出a的取值范围.4、【答案】D【考点】二次函数的性质【解析】【解答】解:因为点(2,5)、(4,5)在抛物线上,根据抛物线上纵坐标相等的两点,其横坐标的平均数就是对称轴,所以,对称轴x= =3;故选D.【分析】由已知,点(2,5)、(4,5)是该抛物线上关于对称轴对称的两点,所以只需求两对称点横坐标的平均数.5、【答案】A【考点】解一元二次方程-因式分解法,三角形三边关系,等腰三角形的性质【解析】【解答】解:x2﹣7x+10=0,(x﹣2)(x﹣5)=0,x﹣2=0,x﹣5=0,x 1=2,x2=5,①等腰三角形的三边是2,2,5∵2+2<5,∴不符合三角形三边关系定理,此时不符合题意;②等腰三角形的三边是2,5,5,此时符合三角形三边关系定理,三角形的周长是2+5+5=12;即等腰三角形的周长是12.故选:A.【分析】求出方程的解,即可得出三角形的边长,再求出即可.6、【答案】C【考点】一元二次方程的应用【解析】【解答】解:设道路的宽为xm,由题意得:(30﹣2x)(20﹣x)=6×78,故选C.【分析】设道路的宽为xm,将6块草地平移为一个长方形,长为(30﹣2x)m,宽为(20﹣x)m.根据长方形面积公式即可列方程(30﹣2x)(20﹣x)=6×78.7、【答案】B【考点】圆周角定理【解析】【解答】解:在优弧AB上取点D,连接AD,BD,∵∠AOB=100°,∴∠D= ∠AOB=50°,∴∠ACB=180°﹣∠D=130°.故选B.【分析】首先在优弧AB上取点D,连接AD,BD,然后由圆周角定理,求得∠D 的度数,又由圆的内接四边形的性质,求得∠ACB的度数.8、【答案】D【考点】垂径定理,圆心角、弧、弦的关系【解析】【解答】解:∵P是弦AB的中点,CD是过点P的直径,∴AB⊥CD,= ,△AOB是等腰三角形,∴∠AOB=2∠AOP,∵∠AOP=2∠ACD,∴∠AOB=2∠AOP=2×2∠ACD=4∠ACD.故选D.【分析】根据垂径定理及圆周角定理可直接解答.9、【答案】D【考点】二次函数的性质【解析】【解答】解:y=﹣x2+2x﹣3=﹣(x﹣1)2﹣2,a=﹣1,抛物线开口向下,对称轴为直线x=1,顶点坐标为(1,﹣2),△=4﹣12=﹣8<0,抛物线与x轴没有交点,当x<1时,y随x的增大而增大.故选:D.【分析】根据二次函数解析式化为顶点式,判断抛物线的开口方向,计算出对称轴顶点坐标以及增减性判断得出答案即可.10、【答案】D【考点】命题与定理【解析】【解答】解:①圆的对称轴是圆的直径所在的直线,故本选项错误;②在同圆或等圆中,相等的弦所对的弧相等,故本选项错误;③在同圆或等圆中,相等的圆心角所对的弦相等,故本选项错误;④半径相等的两个半圆是等弧,故本选项正确;其中正确的有1个;故选D.【分析】根据轴对称图形的概念和弧、弦和圆心角之间的关系,分别对每一项进行分析即可得出答案.11、【答案】A【考点】二次函数图象与几何变换【解析】【解答】解:由“上加下减”的原则可知,将抛物线y=3x2向上平移3个单位所得抛物线的解析式为:y=3x2+3;由“左加右减”的原则可知,将抛物线y=3x2+3向左平移2个单位所得抛物线的解析式为:y=3(x+2)2+3.故选A.【分析】直接根据“上加下减,左加右减”的原则进行解答即可.12、【答案】D【考点】垂径定理【解析】【解答】解:A、直径是弦,但弦不一定是直径,选项错误;B、平分弦的直径垂直弦,被平分的弦不是直径,故选项错误;C、能重合的两个弧是等弧,选项错误;D、圆的对称轴有无数条,而对称中心只有一个,正确.故选D.【分析】根据弦的定义以及垂径定理、等弧的定义即可作出判断.13、【答案】B【考点】二次函数的最值【解析】【解答】解:因为抛物线开口向下和其顶点坐标为(2,﹣3),所以该抛物线有最大值﹣3.故选B.【分析】根据抛物线开口向下和其顶点坐标为(2,﹣3),可直接做出判断.二、<b >填空题</b>14、【答案】60【考点】生活中的旋转现象【解析】【解答】解:∵钟表上的时针匀速旋转一周的度数为360°,钟表上的时针匀速旋转一周需要12小时,则钟表上的时针匀速旋转一小时的度数为:360÷12=30°,那么小时,时针旋转了2×30°=60°.故答案为:60.【分析】先求出钟表上的时针匀速旋转一小时的度数为30°,再求2小时时针旋转的度数.15、【答案】方程没有实数根【考点】根的判别式【解析】【解答】解:∵△=(﹣4)2﹣4×1×6=﹣8<0,∴方程没有实数根.故答案为方程没有实数根.【分析】先根据判别式的值,然后根据判别式的意义判断方程根的情况.16、【答案】15°【考点】旋转的性质【解析】【解答】解:∵∠BAC=90°,∠B=60°,∴∠ACB=90°﹣60°=30°,∵△AB′C由△ABC绕点A顺时针旋转90°得到,∴AC′=AC,∠C′AB′=∠CAB=90°,∠AC′B′=30°,∴△ACC′为等腰直角三角形,∴∠AC′C=45°,∴∠CC′B′=∠AC′C﹣∠AC′B′=45°﹣30°=15°.故答案为15°.【分析】先根据三角形内角和计算出∠ACB=90°﹣60°=30°,由于△AB′C由△ABC绕点A顺时针旋转90°得到,根据旋转的性质得到AC′=AC,∠C′AB′=∠CAB=90°,∠AC′B′=30°,则△ACC′为等腰直角三角形,得到∠AC′C=45°,然后利用∠CC′B′=∠AC′C﹣∠AC′B′计算即可.17、【答案】28°【考点】圆周角定理【解析】【解答】解:设半圆圆心为O,连OA,OB,如图,∵∠ACB= ∠AOB,而∠AOB=86°﹣30°=56°,∴∠ACB= ×56°=28°.故答案为:28°.【分析】设半圆圆心为O,连OA,OB,则∠AOB=86°﹣30°=56°,根据圆周角定理得∠ACB= ∠AOB,即可得到∠ACB的大小.18、【答案】①②④⑤【考点】二次函数图象与系数的关系【解析】【解答】解:∵抛物线开口向下,∴a<0,∵对称轴x=1=﹣,∴b>0,∵抛物线与y轴的交点在x轴的上方,∴c>0,∴abc<0,故①正确;∵对称轴x=1=﹣,∴2a=﹣b,∴2a+b=0,故②正确;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故③错误;根据图象可知,当x=1时,y=a+b+c>0,故④正确;根据图象知道当x=﹣1时,y=a﹣b+c<0,故⑤正确;故答案为:①②④⑤.【分析】首先根据开口方向确定a的取值范围,根据对称轴的位置确定b的取值范围,根据抛物线与y轴的交点确定c的取值范围,根据抛物线与x轴是否有交点确定b2﹣4ac的取值范围,根据x=﹣1和x=1的函数值可以判断④⑤.19、【答案】3【考点】分式的值为零的条件,解一元二次方程-因式分解法【解析】【解答】解:∵分式值为0,∴x2﹣2x﹣3=0,x+1≠0,∴(x﹣3)(x+1)=0,x≠﹣1,解得:x1=3,x2=﹣1(不合题意舍去).故x=3.故答案为:3.【分析】根据分式的值为0得出分子为0,分母不能为0,进而求出即可.20、【答案】6.3(1﹣x)2=5.4【考点】一元二次方程的应用【解析】【解答】解:设下降的百分比为x,由题意得,5月份的利润为:6.3(1﹣x)万元,6月份的利润为:6.3(1﹣x)(1﹣x)万元,则可得方程:6.3(1﹣x)2=5.4.故答案为6.3(1﹣x)2=5.4.【分析】根据题意可得出5月份的利润为:6.3(1﹣x)万元,6月份的利润为:6.3(1﹣x)(1﹣x)万元,再由两个月内将利润降到5.4万元,可得出方程.21、【答案】6【考点】一元二次方程的解【解析】【解答】解:∵m是关于x的方程x2﹣2x﹣3=0的一个根,∴m2﹣2m﹣3=0,∴m2﹣2m=3,∴2m2﹣4m=6,故答案为:6.【分析】根据m是关于x的方程x2﹣2x﹣3=0的一个根,通过变形可以得到2m2﹣4m值,本题得以解决.22、【答案】②④⑤⑥【考点】中心对称及中心对称图形【解析】【解答】解:是中心对称图形的有:②平行四边形;④圆;⑤正六边形;⑥菱形.故答案为:②④⑤⑥.【分析】结合中心对称图形的概念进行求解即可.23、【答案】=【考点】矩形的性质,圆的认识【解析】【解答】解:连OM,OD.∵四边形OEDF是矩形.∴b=EF=OD同理a=OM∵OM=OD∴b=c故答案为:=.【分析】根据矩形的两条对角线相等,即可作出判断.三、<b >解下列方程</b>24、【答案】(1)解:x2+6x﹣1=0,b2﹣4ac=62﹣4×1×(﹣1)=40,x= ,则x1=﹣3﹣,x2=﹣3+(2)解:(2x+3)2﹣25=0,(2x+3)2=25,2x+3=±5,2x=±5﹣3,x 1=1 x2=﹣4【考点】解一元二次方程-直接开平方法,解一元二次方程-公式法【解析】【分析】(1)方程利用公式法求出解即可;(2)方程利用平方根定义开方即可求出解.四、<b >解答题</b>25、【答案】(1)解:如图,△OA′B′即为旋转后的三角形(2)解:由图可知,A′(2,3),B′(4,1).【考点】作图-旋转变换【解析】【分析】(1)根据旋转的性质画出△OA′B′即可;(2)根据各点在坐标系中的位置写出其坐标即可.26、【答案】解:过点O做OC⊥AB于点D,连接OA.设半径长为rcm,∵OC⊥AB,∴AD= AB= ×8=4(cm),∵CD=2cm∴OD=r﹣2(cm)在Rt△AOD中,由勾股定理得:(r﹣2)2+42=r2r2﹣4r+4+42=424r=20r=5,答:该水管的半径是5cm.【考点】垂径定理的应用【解析】【分析】先过点O作OD⊥AB于点D,连接OA,由垂径定理可知AD= AB,设OA=r,则OD=r﹣2,在Rt△AOD中,利用勾股定理即可求出r的值.27、【答案】(1)证明:∵AD平分∠BAC,∴∠CAD=∠EAD,∴ = ,∴CD=ED∵∠ACD=90°,∴AD是⊙O的直径,∴ = ,∴AC=AE(2)在Rt△ABC中,∠ACB=90°,AC=6,BC=8,∴AB= =10,BE=10﹣AE=10﹣6=4,设CD=DE=x,BD=8﹣x,在Rt△BDE中.BD2=DE2+BE2(8﹣x)2+x2=42x=3,即BD=3,在Rt△ACD中,AD= =3【考点】三角形的外接圆与外心【解析】【分析】(1)根据角平分线的性质、圆周角、弧、弦之间的关系得到= ,证明结论;(2)根据勾股定理求出AB,设CD=DE=x,根据勾股定理列出方程,求出x,计算即可.28、【答案】(1)解:设抛物线的解析式为:y=a(x+1)(x﹣3),则有:a(0+1)(0﹣3)=3,a=﹣1;∴抛物线的解析式为:y=﹣x2+2x+3(2)解:由(1)知:y=﹣x2+2x+3=﹣(x﹣1)2+4,即D(1,4);过D作DF⊥x轴于F;S四边形AEDB =S△AOB+S△DEF+S梯形BOFD= ×1×3+ ×2×4+ ×(3+4)×1=9;即四边形AEDB的面积为9.【考点】二次函数的图象,二次函数的性质【解析】【分析】(1)已知了抛物线图象上的三点坐标,可用待定系数法求出抛物线的解析式;(2)根据抛物线的解析式,易求得抛物线顶点D的坐标;过D作DF⊥x轴于F,那么四边形AEDB的面积就可以由△AOB、△DEF、梯形BOFD 的面积和求得.29、【答案】(1)解:销售单价为x元,则销售量减少×20,故销售量为y=240﹣×20=﹣4x+480(x≥60);(2)解:根据题意可得,x(﹣4x+480)=14000,解得x1=70,x2=50(不合题意舍去),故当销售价为70元时,月销售额为14000元(3)解:设一个月内获得的利润为w元,根据题意得:w=(x﹣40)(﹣4x+480)=﹣4x2+640x﹣19200=﹣4(x﹣80)2+6400.当x=80时,w的最大值为6400.故当销售单价为80元时,才能在一个月内获得最大利润,最大利润是6400元【考点】二次函数的应用【解析】【分析】(1)由销售单价为x元得到销售减少量,用240减去销售减少量得到y与x的函数关系式;(2)直接用销售单价乘以销售量等于14000,列方程求得销售单价;(3)设一个月内获得的利润为w元,根据题意得:w=(x﹣40)(﹣4x+480),然后利用配方法求最值.人教版九年级上学期期中考试数学试卷(二)一、选择题1、下列图形中既是轴对称图形又是中心对称图形的是()A、 B、 C、 D、2、下列关于x的方程中,是一元二次方程的有()A、2x+1=0B、y2+x=1C、x2﹣1=0D、x2+ =13、若关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0的常数项为0,则m的值等于()A、﹣2B、2C、﹣2或2D、04、将方程2x2﹣4x﹣3=0配方后所得的方程正确的是()A、(2x﹣1)2=0B、(2x﹣1)2=4C、2(x﹣1)2=1D、2(x﹣1)2=55、已知直角三角形两条直角边为方程x2﹣5x+6=0的两根,则此直角三角形的斜边为()A、3B、13C、D、6、设x1、x2是方程x2+3x﹣3=0的两个实数根,则的值为()A、5B、﹣5C、1D、﹣17、运动会上,某运动员掷铅球时,所掷的铅球的高y(m)与水平的距离x(m)之间的函数关系式为y=﹣x2+ x+ ,则该运动员的成绩是()A、6mB、12mC、8mD、10m8、已知点A(2,﹣2),如果点A关于x轴的对称点是B,点B关于原点的对称点是C,那么C点的坐标是()A、(2,2)B、(﹣2,2)C、(﹣1,﹣1)D、(﹣2,﹣2)9、在下面的四个三角形中,不能由如图的三角形经过旋转或平移得到的是()A、 B、 C、 D、10、二次函数y=ax2+bx+c的图象如图所示,对称轴x=﹣1,下列五个代数式ab、ac、a﹣b+c、b2﹣4ac、2a+b中,值大于0的个数为()A、5B、4C、3D、2二、细心填一填,你一定是最优秀的11、若是关于x的一元二次方程(m﹣1)x2+x+|m|﹣1=0有的一个根为0,则m的值是________12、(x﹣3)2+5=6x化成一般形式是________,其中一次项系数是________.13、函数y=2(x﹣1)2图象的顶点坐标为________.14、函数y= (x﹣1)2+3,当x________时,函数值y随x的增大而增大.15、已知(a2+b2)(a2+b2﹣1)=6,则a2+b2的值为________16、方程x2=x的解是________.17、若二次函数y=x2﹣2013x+2014与x轴的两个交点为(m,0)(n,0)则(m2﹣2013m+2013)(n2﹣2013n﹣2014)的值为________.18、如图,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,∠AOD=90°,则∠D的度数是________°.19、如图,四边形ABCD中,∠BAD=∠C=90°,AB=AD,AE⊥BC于E,若线段=________.AE=5,则S四边形ABCD20、如图,在6×4方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是________.三、解答题21、解方程:(1)x2﹣6x﹣16=0(2)(x﹣3)2=3x(x﹣3)(3)(x+3)(x﹣2)=50(4)(2x+1)2+3(2x+1)+2=0.22、如图,在正方形网格中,△ABC各顶点都在格点上,点A,C的坐标分别为(﹣5,1)、(﹣1,4),结合所给的平面直角坐标系解答下列问题:(1)①画出△ABC关于y轴对称的△A1B1C1;②画出△ABC关于原点O对称的△A2B2C2;(2)点C1的坐标是________;点C2的坐标是________;(3)试判断:△A1B1C1与△A2B2C2是否关于x轴对称?(只需写出判断结果)________.23、关于x的一元二次方程x2﹣3x﹣k=0有两个不相等的实数根.(1)求k的取值范围;(2)请选择一个k的负整数值,并求出方程的根.24、学校要把校园内一块长20米,宽12米的长方形空地进行绿化,计划中间种花,四周留出宽度相同的地种草坪,且花坛面积为180平方米,求草坪的宽度.25、已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.(4)若抛物线顶点为D,点Q为直线AC上一动点,当△DOQ的周长最小时,求点Q的坐标.答案解析部分一、<b >选择题</b>1、【答案】D【考点】轴对称图形【解析】【解答】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;B、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;C、此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.2、【答案】C【考点】一元二次方程的定义【解析】【解答】解:A、方程未知数是1次,不是一元二次方程;B、方程含有两个未知数,不是一元二次方程;C、符合一元二次方程的定义,是一元二次方程;D、不是整式方程,不是一元二次方程;故选:C.【分析】只含有1个未知数,并且未知数的最高次数为2的整式方程就是一元二次方程,依据定义即可判断.3、【答案】A【考点】一元二次方程的定义【解析】【解答】解:由题意得:m2﹣4=0,解得:m=±2,∵m﹣2≠0,∴m≠2,∴m=﹣2,故选:A.【分析】根据题意可得m2﹣4=0,且m﹣2≠0,再解即可.4、【答案】D【考点】解一元二次方程-配方法【解析】【解答】解:移项得,2x2﹣4x=3,二次项系数化为1,得x2﹣2x= ,配方得,x2﹣2x+1= +1,得(x﹣1)2= ,即2(x﹣1)2=5.故选D.【分析】首先把二次项系数化为1,然后进行移项,再进行配方,方程左右两边同时加上一次项系数一半的平方,即可变形成左边是完全平方,右边是常数的形式.5、【答案】D【考点】解一元二次方程-因式分解法,勾股定理【解析】【解答】解:∵x2﹣5x+6=0解得x1=2,x2=3∴斜边长= = = ,故选D.【分析】解方程求出两根,得出两直角边的长,然后根据勾股定理可得斜边的长.6、【答案】B【考点】根与系数的关系【解析】【解答】解:∵x1、x2是方程x2+3x﹣3=0的两个实数根,∴x1+x2=﹣3,x1x2=﹣3,则原式= = =﹣5.故选B【分析】先利用根与系数的关系求出两根之和与两根之积,所求式子通分并利用同分母分式的加法法则计算,再利用完全平方公式变形,将两根之和与两根之积代入计算即可求出值.7、【答案】D【考点】二次函数的应用【解析】【解答】解:由题意可知,把y=0代入解析式得:﹣x2+ x+ =0,解方程得x1=10,x2=﹣2(舍去),即该运动员的成绩是10米.故选D.【分析】铅球落地才能计算成绩,此时y=0,即﹣x2+ x+ =0,解方程即可.在实际问题中,注意负值舍去.8、【答案】D【考点】关于x轴、y轴对称的点的坐标,关于原点对称的点的坐标【解析】【解答】解:A关于x轴的对称点是B的坐标是(2,2),∵点B关于原点的对称点是C,∴C点的坐标是(﹣2,﹣2).故选D.【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),关于原点的对称点是(﹣x,﹣y).9、【答案】B【考点】平移的性质,旋转的性质【解析】【解答】解:A、图形是由△ABC经过平移得到,故A正确B、图形不能由△ABC经过旋转或平移得到,故B错误;C、图形由△ABC经过旋转得到,故C正确;D、图形由△ABC经过旋转或平移得到,故D正确;故选:B【分析】根据旋转是绕某个点旋转一定角度得到新图形,平移是沿直线移动一定距离得到新图形,可得答案.10、【答案】C【考点】二次函数图象与系数的关系【解析】【解答】解:从函数图象上可以看到,a>0,b>0,c<0,对称轴x=﹣1,令y=0,方程有两正负实根,①ab>0;②ac<0;③当x=﹣1时,a﹣b+c<0;④令y=0,方程有两不等实根,b2﹣4ac>0;⑤对称轴x=﹣=﹣1,2a+b>0;故值大于0的个数为3.故选C.【分析】由函数图象可以得到a>0,b>0,c<0,对称轴x=﹣1,令y=0,方程有两正负实根,根据以上信息,判断五个代数式的正负.二、<b >细心填一填,你一定是最优秀的</b>11、【答案】﹣1【考点】一元二次方程的定义,一元二次方程的解【解析】【解答】解:∵关于x的一元二次方程(m﹣1)x2+x+|m|﹣1=0有的一个根为0,∴|m|﹣1=0,∴m=±1,又∵m﹣1≠0,∴m≠1,∴m=﹣1.故答案为﹣1.【分析】把方程的根代入方程得出|m|﹣1=0,再根据m﹣1≠0即可求出m的值.12、【答案】x2﹣12x+5=0①﹣12【考点】一元二次方程的定义【解析】【解答】解:由原方程,得x2﹣12x+5=0,则一次项系数是﹣12.故答案是:x2﹣12x+5=0;﹣12.【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.13、【答案】(1,0)【考点】二次函数的性质【解析】【解答】解:∵抛物线y=2(x﹣1)2,∴抛物线y=2(x﹣1)2的顶点坐标为:(1,0),故答案为:(1,0).【分析】根据二次函数的性质,由顶点式直接得出顶点坐标即可.14、【答案】>1【考点】二次函数的性质【解析】【解答】解:可直接得到对称轴是x=1,∵a= >0,∴函数图象开口向上,∴当x>1时,函数值y随x的增大而增大.【分析】先求对称轴,再利用函数值在对称轴左右的增减性可得x的范围.15、【答案】3【考点】换元法解分式方程【解析】【解答】解:设a2+b2=y,据题意得y2﹣y﹣6=0,解得y1=3,y2=﹣2,∵a2+b2≥0,∴a2+b2=3.故答案为3.【分析】把a2+b2看作一个整体,设a2+b2=y,利用换元法得到新方程y2﹣y﹣6=0,求解即可.16、【答案】x1=0,x2=1【考点】解一元二次方程-因式分解法【解析】【解答】解:x2=x,移项得:x2﹣x=0,分解因式得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为:x1=0,x2=1【分析】将方程化为一般形式,提取公因式分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解即可得到原方程的解.17、【答案】4028【考点】抛物线与x轴的交点【解析】【解答】解:∵抛物线y=x2﹣2013x+2014与x轴的两个交点是(m,0)、(n,0),∴n2﹣2013n+2014=0,m2﹣2013m+2014=0,∴n2﹣2013n=﹣2014,m2﹣2013m=﹣2014,∴(m2﹣2013m+2013)(n2﹣2013n﹣2014)=﹣1×(﹣4028)=4028,故答案为:4028.【分析】由抛物线与x轴交点的特点求得n2﹣2013n+2014=0,m2﹣2013m+2014=0,再把以上两个等式变形,得到n2﹣2013n=﹣2014,m2﹣2013m=﹣2014.将其代入所求的代数式求值即可.18、【答案】60【考点】旋转的性质【解析】【解答】解:由旋转的性质可知,∠AOC=40°,而∠AOD=90°,∴∠COD=90°﹣∠AOC=50°又∵点C恰好在AB上,OA=OC,∠AOC=40°,∴∠A= =70°,由旋转的性质可知,∠OCD=∠A=70°在△OCD中,∠D=180°﹣∠OCD﹣∠COD=60°.【分析】由旋转角∠AOC=40°,∠AOD=90°,可推出∠COD的度数,再根据点C 恰好在AB上,OA=OC,∠AOC=40°,计算∠A,利用内角和定理求∠B,根据对应关系可知∠D=∠B.19、【答案】25【考点】全等三角形的判定与性质【解析】【解答】解:过A点作AF⊥CD交CD的延长线于F点,如图,∵AE⊥BC,AF⊥CF,∴∠AEC=∠CFA=90°,而∠C=90°,∴四边形AECF为矩形,∴∠2+∠3=90°,又∵∠BAD=90°,∴∠1=∠2,在△ABE和△ADF中∴△ABE≌△ADF,∴AE=AF=5,S△ABE =S△ADF,∴四边形AECF是边长为5的正方形,∴S四边形ABCD =S正方形AECF=52=25.故答案为25.【分析】过A点作AF⊥CD交CD的延长线于F点,由AE⊥BC,AF⊥CF,∠C=90°可得四边形AECF为矩形,则∠2+∠3=90°,而∠BAD=90°,根据等角的余角相等得∠1=∠2,加上∠AEB=∠AFD=90°和AB=AD,根据全等三角形的判定可得△ABE≌△ADF,由全等三角形的性质有AE=AF=5,S△ABE =S△ADF,则S四边形ABCD=S正方形AECF,然后根据正方形的面积公式计算即可.20、【答案】点N【考点】旋转的性质【解析】【解答】解:如图,连接N和两个三角形的对应点;发现两个三角形的对应点到点N的距离相等,因此格点N就是所求的旋转中心;故答案为点N.【分析】此题可根据旋转前后对应点到旋转中心的距离相等来判断所求的旋转中心.三、<b >解答题</b>21、【答案】(1)解:原方程变形为(x﹣8)(x+2)=0x﹣8=0或x+2=0∴x1=8,x2=﹣2(2)解:(x﹣3)2=3x(x﹣3),(x﹣3)(1﹣3x)=0,则x﹣3=0或1﹣3x=0,∴x1=3,x2=(3)解:(x+3)(x﹣2)=50,x2+x﹣56=0,(x﹣7)(x+8)=0,则x﹣7=0或x+8=0,∴x1=7,x2=﹣8.(4)解:设2x+1=t,则t2+3t+2=0,(t+1)2+(t+2)=0.t=﹣1或t=﹣2,故2x+1=﹣1或2x+1=﹣2,∴x1=﹣1,x2=﹣1.5【考点】解一元二次方程-因式分解法【解析】【分析】(1)解此一元二次方程选择因式分解法最简单,因为﹣16=﹣8×2,﹣6=﹣8+2,所以x2﹣6x﹣16=(x﹣8)(x+2),这样即达到了降次的目的.(2)先移项,然后利用提取公因式对等式的左边进行因式分解,再来解方程即可;(3)先把原方程转化为一般式方程,然后利用因式分解法解方程;(4)利用换元法解方程.22、【答案】(1)解:①△ABC关于y轴对称的△A1B1C1如图所示②如图所示(2)(1,4)①(1,﹣4)(3)是【考点】作图-轴对称变换,作图-旋转变换【解析】【解答】解:(2)由图可知,C1(1,4),C2(1,﹣4).故答案为:(1,4),(1,﹣4);(4)由图可知△A1B1C1与△A2B2C2关于x轴对称.故答案为:是.【分析】(1)作出各点关于y轴的对称点,再顺次连接各点即可;作出各点关于原点的对称点,再顺次连接各点即可;(2)根据各点在坐标系中的位置写出各点坐标即可;(3)根据关于x轴对称的点的坐标特点进行判断即可.23、【答案】(1)解:∵方程有两个不相等的实数根,∴(﹣3)2﹣4(﹣k)>0,即4k>﹣9,解得(2)解:若k是负整数,k只能为﹣1或﹣2;如果k=﹣1,原方程为x2﹣3x+1=0,解得,,.(如果k=﹣2,原方程为x2﹣3x+2=0,解得,x1=1,x2=2)【考点】解一元二次方程-公式法,根的判别式【解析】【分析】(1)因为方程有两个不相等的实数根,△>0,由此可求k 的取值范围;(2)在k的取值范围内,取负整数,代入方程,解方程即可.24、【答案】解:设草坪的宽度为x米,则(20﹣2x)(12﹣2x)=180,解得x1=1 x2=15(舍去).故草坪的宽度为1米【考点】一元二次方程的应用【解析】【分析】设草坪的宽度为x米,那么花坛的长为(20﹣x),宽为(12﹣x),花坛面积为180平方米,可列方程求解.25、【答案】(1)解:方法一:将A(﹣1,0)、B(3,0)、C(0,3)代入抛物线y=ax2+bx+c 中,得:[MISSING IMAGE: , ],解得: [MISSING IMAGE: , ]∴抛物线的解析式:y=﹣x2+2x+3方法二:∵A(﹣1,0)、B(3,0)、C(0,3),∴y=﹣(x+1)(x﹣3),即y=﹣x2+2x+3(2)解:方法一:连接BC,直线BC与直线l的交点为P;∵点A、B关于直线l对称,。
人教版九年级上册期中考试试卷
一、选择题(18分)
1. 下列各式一定是二次根式的是( )
A.
B.
C.
D.
2. 对右图的对称性表述,正确的是( )
A
、轴对称图形 B 、中心对称图形 C 、既是轴对称图形又是中心对称图形
D 、既不是轴对称图形又不是中心对称图形 3. 是同类二次根式的是(
)
A.
B.
C.
D. 4. 为了改善居民住房条件,我市计划用未来两年的时间,将城镇居民的住房面积由现在的人均约为10m 2提高到12.1m 2若每年的 年增长率相同,则年增长率为( )
A 、9%
B 、10%
C 、11%
D 、12%
5. 现有如图所示的四张牌,若只将其中一张牌旋转180°后仍是本身,则旋转的牌是( )
A 、
B 、
C 、
D 、
6. 如图,A 、B 、C 是⊙O 上的三点,已知∠O=60°,则∠C=( )
A 、20°
B 、25°
C 、30°
D 、45°
7. 已知两圆半径分别为2和3,圆心距为d ,若两圆没 有公共点,则下列结论正确的是( ) A 、0<d <1 B 、d >5 C 、0<d <1或d >5 D 、0≤d <1或d >5 8. ⊙O 的半径为5cm ,弦AB//CD ,且AB=8cm,CD=6cm,则AB 与CD 之间的距离为( ) A 1 cm B 7cm C 3 cm 或4 cm D 1cm 或7cm 9.下列命题中的假命题是( )
A 三角形的外心到三角形各顶点的距离相等
B 三角形的外心到三角形三边的距离相等
C 三角形外心一定在三角形一边的中垂线上
D 三角形任意两边的中垂线的交点是三角形的外心
二、填空题(26分)
10.正比例函数y=(a+1)x 的图像经过第二四象限,若a 同时满足方程x 2+(1-2a)x+a 2,判断此方程根的情况 11.方程(x+2)(x-3)=0的根是
12.从正方形的铁皮上截去2cm 宽的一条长方形,余下的面积为48cm 2,则原来正方形铁皮的面积为
13.
1
1m +有意义,则m 的取值范围是
14.若
1
a b -+
与
互为相反数,则()
2005
_____________
a b -=。
15..若x ,y 为实数,且y =x 41-+14-x +21
.则x+y=
16.已知⊙O 的半径5=r ,O 到直线l 的距离OA=3,点B,C,D 在直线l 上,且AB=2,AC=4,AD=5,则点B 在⊙O
点C 在⊙O 点D 在⊙O . 17.如图,A,B,C 三点在⊙O 上,且AB 是⊙O 的直径,半径OD ⊥AC,垂足为F,
若∠A=30º,OF=3,则OA= ,AC= ,BC= .
18.如图为直径是10cm 圆柱形油槽,装入 油后,油深CD 为2cm,那么油面宽度 AB= cm.
19.半径为1,圆心角是300º的弧长为
20.在Rt △ABC 中,直角边AC=5cm,BC=12cm,以BC 为轴旋转一周所得圆锥的侧面积为2
cm ________,以AC 为轴旋转一周所得圆锥的侧面积为2
cm ________.
F
A
D
C
B
O
三、解答题(56分) 23.计算与解方程(12分)
(1)=-222425
(2)
(3)解方程
)4(5)4(2
+=+x x
(4)解方程2x 2+3=7x
24.已知:如图,AB 是⊙O 的直径,直线l 与⊙O 相切于点C , AD ⊥l ,垂足是D 。
求证:AC 平分∠DAB. (8分)
25. 已知关于x的一元二次方程x2+(2m-1)x+m2=0有两个实数根x1和x2.(1)求实数m的取值范围;
(2)当x12-x22=0时,求m的值.(8分)
26. 如图,在平面直角坐标系中,已知点B(4,2),BA⊥x轴于A.
(1)画出将△OAB绕原点逆时针旋转90°后所得的△OA1B1,并写
出点A1、B1的坐标;
(2)△OAB关于原点O的中心对称图形,并写出点A、B对称点
的坐标..(6分)
27. 如图AB是⊙O的直径,PA切⊙O于A,OP交⊙O于C,连接BC,若∠P=30度,求∠B的度数.(6分)
28.如图,AB是半圆的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.
(1)判断直线PD是否为⊙O的切线,并说明理由;
(2)如果∠BDE= 60°,PD= ,求PA的长.(8分)
29.如图:靠着18 m的房屋后墙,围一块150 m2的矩形鸡场,现在有篱笆共35 m,求长方形地的长与宽..(8分)
/////////////////////////////////////////。