Sm3+掺杂纳米TiO2的制备及其可见光光催化性能
- 格式:pdf
- 大小:567.40 KB
- 文档页数:4
TiO2纳米材料的改性及其光催化性能研究TiO2是一种广泛应用于光催化领域的半导体材料,其广泛应用主要归功于其良好的化学稳定性、光催化性能和较低的成本。
然而,TiO2的光催化活性主要集中在紫外光区域,限制了其在可见光范围内的应用。
因此,对于纳米TiO2材料的改性研究变得尤为重要,以提高其可见光催化性能,并扩大其应用范围。
研究表明,改性TiO2纳米材料可以通过掺杂、表面修饰以及复合等方法来实现。
其中,掺杂是最常用的改性策略之一。
通过引入铁、氮、碳等元素来改变TiO2的能带结构,可以使其光催化活性发生显著改善。
铁掺杂的TiO2在可见光催化领域具有良好的应用前景。
研究发现,铁掺杂的TiO2具有更窄的能带间隙,能够吸收更多的可见光,并产生更多的电子-空穴对,从而提高催化活性。
同时,还有研究表明,通过调节铁掺杂浓度和制备条件,可以进一步提高光催化性能。
表面修饰也是改性TiO2纳米材料的重要策略之一。
常见的表面修饰方法包括溶液热处理、沉积溶胶、负载其他半导体等。
例如,通过溶液热处理可以在TiO2表面形成一层导电聚合物薄膜,改善其可见光催化性能。
通过沉积溶胶可以在TiO2表面引入二氧化铕、氧化亚铜等光敏剂,增强其可见光催化活性。
此外,将其他半导体负载在TiO2纳米材料上,可以通过协同作用来提高光催化性能,例如Pt-TiO2和Ag-TiO2等复合材料。
此外,纳米TiO2的复合改性也是提高其光催化性能的重要手段之一。
常见的复合改性方法包括纳米TiO2与碳材料的复合、纳米TiO2与其他半导体的复合等。
例如,将纳米TiO2与石墨烯、碳纳米管等碳材料复合,可以通过增加可见光吸收和电子传输来提高光催化性能。
此外,将纳米TiO2与ZnO、CdS等其他半导体复合,也可以通过异质结构的形成来提高光催化活性。
综上所述,纳米TiO2材料的改性研究对于提高其光催化性能以及拓宽应用领域具有重要意义。
掺杂、表面修饰和复合是常用的改性策略,通过这些方法可以有效地调控纳米TiO2的能带结构、光吸收性能和电子传输性能。
TiO2纳米管阵列的制备及其光催化性能研究近年来,TiO2纳米管阵列因其高催化性能和广泛的应用领域备受关注。
TiO2纳米管阵列作为一种新型、高效的催化材料,在环境净化、光电催化等领域有着广泛的应用前景。
本文将详细介绍TiO2纳米管阵列的制备方法及其光催化性能研究进展。
一、TiO2纳米管阵列的制备方法TiO2纳米管阵列可以通过多种方法制备,例如电化学阵列氧化法、离子注入法、水热法等。
其中电化学阵列氧化法是最为常用的制备方法之一。
电化学阵列氧化法可以通过三电极系统来制备,即工作电极、对电极、参比电极。
通常情况下,纳米管的直径、长度和间距可以通过改变电解液成分、电解电压、电解时间和电极距离等参数来控制。
采用此法制备的TiO2纳米管阵列在表面形貌和催化性能方面均有优异的表现。
二、TiO2纳米管阵列的光催化性能研究进展TiO2纳米管阵列的光催化性能主要表现在光催化净化和光电催化等方面,其研究进展如下:1. 光催化净化TiO2纳米管阵列的光催化净化主要指利用其优异的催化性能去除水和空气中的有害物质。
研究表明,TiO2纳米管阵列具有优异的催化性能,可以有效去除水中的有机污染物和空气中的氮氧化物等有害物质。
2. 光电催化TiO2纳米管阵列的光电催化主要利用光伏效应和催化反应,将太阳能转化为化学能,用于水分解、CO2还原等反应中。
研究表明,TiO2纳米管阵列可以在可见光区域内催化反应,同时具有良好的稳定性和周期性反应能力。
三、结论TiO2纳米管阵列作为一种新型的催化材料,在环境净化、光电催化等领域有着广泛的应用前景。
其制备方法主要包括电化学阵列氧化法、离子注入法、水热法等。
TiO2纳米管阵列的光催化性能主要包括光催化净化和光电催化,可以有效去除水中的有机污染物和空气中的氮氧化物等有害物质,同时具有良好的稳定性和周期性反应能力。
未来,TiO2纳米管阵列的研究将会在新能源、环境净化等领域继续发挥重要作用。
小研锰掺杂纳米二氧化钛的制备及其可见光催化性能1.引言TiO2光催化剂具有光催化活性高、化学性质稳定、降解有机物彻底和不引起二次污染等优点 [1-4],因而在空气净化和污水处理等领域得到了广泛的关注。
但是,TiO2电子和空穴易复合,光催化效率低,带隙较宽,只能被紫外光激发,太阳能利用率低[5]。
针对该问题,研究人员采用了多种手段对纳米TiO2进行改性, 其中过渡金属离子掺杂是一种有效的改性方法[6] , 如在TiO2体系中掺杂Fe、Cr、Co、V等离子,已被证实可以提高其可见光响应光催化活性[7-12]。
Anpo[13] 等认为加入金属离子可取代Ti4+离子,减小禁带宽度,从而使TiO2在可见光区域有吸收。
本研究分别以MnSO4?H2O和MnC2O4?4H2O为锰源,采用水热法制备Mn掺杂的TiO2光催化剂。
通过X-射线衍射光谱(XRD)和紫外-可见光吸收光谱(UV-vis)对其进行表征。
以罗丹明B为目标污染物进行光催化活性考察,探讨不同锰源和锰掺杂量对Mn-TiO2光催化剂的催化性能的影响。
2.实验2.1 催化剂的制备以 MnSO4?H2O 为锰源制备Mn-TiO2(Mn-TiO2-S 系列):把3.4 g 钛酸丁酯(TNB)溶解在30 mL 无水乙醇中,加入一定量的MnSO4?H2O 进行强烈搅拌直至溶液完全透明,记为溶液A;把一定量的蒸馏水(根据摩尔比(Mn+Ti):H2O=1:4 确定加入量)溶解在20 ml 乙醇中,形成溶液B;将B 缓慢滴入A 中,静置陈化24 h 后,转入180 °C 高温高压反应釜中反应12 h,再进行洗涤,110°C 干燥,即得所需样品。
其中制备的Mn/Ti (摩尔比)分别为1:400、1:200、1:100 和1:50 的样品分别记为Mn-TiO2-S-400、Mn-TiO2-S-200、Mn-TiO2-S-100和Mn-TiO2-S-50。
纳米TiO2的制备及其光催化性能的检验实验报告一、实验目的:1、了解纳米TiO2的性质及应用。
2、掌握制备纳米TiO2的原理和方法,并比较不同方法的优缺点。
3、掌握检验纳米TiO2光催化性能的一般方法。
4、掌握离心机、分光光度计等仪器的使用方法。
二、性质:(1)基本化学性质:纳米TiO2化学性能稳定,常温下几乎不与其它化合物反应,不溶于水、稀酸,溶于氢氟酸和热浓硫酸。
不与空气中CO2 ,SO2 ,O2等反应,具有生物惰性。
纳米TiO2具有热稳定性,无毒性。
与硫酸氢钾或与氢氧化碱或碳酸碱共同熔融成钛酸碱后可溶于水。
相对密度约4.0。
熔点1855℃。
(2)光催化:纳米TiO2是一种n型半导体材料,禁带宽度较宽,其中锐钛型为3.2eV,金红石型为3.0eV,当它吸收了波长小于或等于387.5nm 的光子后,价带中的电子就会被激发到导带,形成带负电的高活性电子e-,同时在价带上产生带正电的空穴h+,吸附在TiO2表面的氧俘获电子形成•O2-,而空穴则将吸附在TiO2表面的OH-和H2O氧化成具有强氧化性的•OH,反应生成的原子氧、氢氧自由基都有很强的化学活性, 氧化降解大多数有机污染物,同时空穴本身也可夺取吸附在半导体表面的有机物质中的电子,使原本不吸收光的物质被直接氧化分解,这两种氧化方式可能单独起作用也可能同时起作用,对于不同的物质两种氧化方式参与作用的程度有所不同。
这些原子氧、氢氧自由基和空穴还能与细菌内的有机物反应,生成CO2、H2O 及一些简单的无机物,从而杀死细菌,清除恶臭和油污。
此外,半导体表面产生的高活性电子具有很强的还原能力,电子受体可直接接受光生电子而被还原, 故也可用来还原去除环境中的某些特定污染物,如: Cu2+等有毒离子。
另外,光催化效率与激发态电子、空穴到达表面的时间有关, 纳米TiO2粒子作为光催化剂, 其粒径越小,电子、空穴到达反应表面的数量越多,光催化效率越高但是,由于TiO2本身禁带宽, 产生的电子-空穴对不仅极易复合而且寿命较短, 光响应范围较窄, 使光催化活性受到了一定的限制,且利用的光谱范围受到一定的限制。
TiO2溶胶的制备及其光催化性能一、实验目的1•掌握水解法制备TiO2溶胶的基本原理;2.掌握多相光催化反应的催化剂活性评价方法;3•掌握紫外分光光度计的测试原理。
二、TiO2光催化简介1•光催化反应原理自从1972年日本学者Fujishima和Honda在n型半导体TiO2单晶电极上实现了水的光电催化分解制氢气以来,多相光催化技术开始引起世界各行各业科技研究者的极大关注。
半导体多相光催化技术作为一种环境友好型的新型催化技术,在环境治理、新能源开发以及有机合成等领域都有着广泛的应用。
TiO2是n型半导体,根据固体能带理论,TiO2半导体的能带结构是由一个充满电子的低能价带(valenceband,V.B.)和空的高能导带(conductionband,C.B.)构成。
价带和导带之间的不连续区域称为禁带(禁带宽度Eg)。
TiO2(锐钛矿)的Eg=3.2eV,相当于387nm光子的能量。
当TiO2受到波长小于387nm的紫外光照射时,处于价带的电子就可以从价带激发到导带(e-),同时在价带产生带正电荷的空穴(h+),从而形成电子-空穴对。
当光生电子和空穴分别扩散到催化剂表面时,和吸附物质作用后会发生氧化还原反应。
其中空穴是良好的氧化剂,电子是良好的还原剂。
大多数光催化氧化反应是直接或间接利用空穴的氧化能力。
空穴一般与TiO2表面吸附的H2O或OH-离子反应形成具有强氧化性的氢氧自由基OH・,它能够无选择性氧化多种有机物并使之彻底矿化,最终降解为CO2、H2O等无害物质。
而光生电子具有强的还原性可以还原去除水体中的金属离子。
光催化过程的基本反应式如下:TiO2+hv(>TiO2的禁带宽度3.2eV)—h++e-h ++e -—>hv (或热量)H 2OH ++OH -OH -+h +f•OHH 2O+h +f•OH +H+空气中游离氧的作用就犹如电子的受体,可形成超氧负离子・02-,超氧负 离子与羟基自由基一样也是强氧化还原活性的离子,它们可以氧化和降解半导 体表面上甚至其附近的许多细菌和其他有机物。
Ti3+自掺杂纳米TiO2的制备、表征与可见光催化活性王潇彤;李延敏;陈玉静;高善民【期刊名称】《鲁东大学学报(自然科学版)》【年(卷),期】2015(31)1【摘要】Rice-shaped Ti3+ self-doped TiO2 nanoparticles were prepared by hydrothermal treatment of TiH2 in H2 O2 aqueous solution. The structure,crystallinity,morphology,and other properties of the as-prepared samples were characterized by X-ray diffraction ( XRD ) , transmission electron microscopy ( TEM ) , high-resolution transmission electron microcopy ( HRTEM) and X-ray photoelectron spectra ( XPS) . Electron spin resonance ( ESR) spectroscopy confirmed the presence of paramagneticTi3+ in the bulk and surface of the as-prepared samples. The particles showed a strong absorption in the visible light region. Under visible light irradiation,the samples exhibited higher photocatalytic activity for hydrogen evolution and photooxidation of methylene blue than that of the commercial P25 TiO2 nanoparticles. The sample obtained at 160℃ for 27 h showed a 9-fold en-hancement for the visible light decomposition of methylene blue and 12. 5 times higher for H2 production in comparison to P25 TiO2 .%以TiH2和H2 O2为原料,采用水热法制备了米粒状 Ti3+自掺杂的TiO2纳米颗粒.采用 X-射线衍射( XRD)、透射电子显微镜( TEM)、高分辨透射电子显微镜( HRTEM)和X-射线光电子能谱( XPS)对所制备样品的结构、结晶性、形貌和元素的存在状态进行了表征分析.电子顺磁共振谱( ESR)结果表明所制备的样品中含有晶格Ti3+和表面Ti3+.紫外—可见( UV-Vis)漫反射光谱表明这种Ti3+自掺杂的纳米TiO2在可见光区中有较强的吸收.在可见光辐射下,所制备的样品具有优于商业化P25 TiO2的光催化分解水和光催化降解次甲基蓝( MB)溶液的性能.其中160℃下水热处理27 h所得样品光催化降解MB的性能是P25 TiO2的9倍,而光催化分解水制氢的性能是P25 TiO2的12.5倍.【总页数】8页(P44-51)【作者】王潇彤;李延敏;陈玉静;高善民【作者单位】鲁东大学化学与材料科学学院山东烟台 264039;鲁东大学生命科学学院山东烟台 264039;鲁东大学化学与材料科学学院山东烟台 264039;鲁东大学化学与材料科学学院山东烟台 264039【正文语种】中文【中图分类】O614.4【相关文献】1.拓扑相变制备具有拓宽可见光响应范围的Ti3+自掺杂3D空盒状TiO2 [J], 张成江;田丽君;陈连清;黎小芳;吕康乐;邓克俭2.Ti3+自掺杂的纳米TiO2的制备及其可见光催化性能 [J], 王潇彤;李延敏;刘新;高善民;黄柏标;戴瑛3.强悬浮性纳米TiO2的制备、表征及光催化活性研究(Ⅱ)光催化活性研究 [J], 赵金伟;袁敏;刘孝恒4.强悬浮性纳米TiO2的制备、表征及光催化活性研究(Ⅰ)制备与表征 [J], 赵金伟;袁敏;刘孝恒;汪信5.Ti3+自掺杂的TiO2(A)/TiO2(R)/In2O3纳米异质结的制备与可见光催化性能[J], 刘冰;付荣荣;高善民;黄柏标;戴瑛因版权原因,仅展示原文概要,查看原文内容请购买。
掺杂二氧化钛光催化剂的制备、表征及可见光光催化性能自1972年Fujishima和Honda发现Ti02电极光解水以来,二氧化钛半导体光催化材料由于在水和空气净化及太阳能转化方面具有广泛的潜在应用前景而被人们深入研究。
Ti02的禁带较宽(锐钛矿为3.2 eV),只能被紫外光激发,不能充分利用太阳光,限制了它在实际中的应用。
对其进行掺杂改性,使其成为能够被可见光激发的光催化剂,多年来成为光催化研究领域的热点。
本文主要围绕掺杂Ti02可见光光催化剂的合成、表征和性能等方面的研究开展了如下工作:以钛酸盐纳米管为前驱体和硝酸铁为掺杂剂,通过浸渍煅烧的方法制备了Fe3+掺杂Ti02纳米棒光催化剂。
所制备的样品用扫描电镜,透射电镜,X射线衍射,X射线光电子能谱,N:吸附-脱附和紫外可见漫反射光谱进行了表征。
以丙酮作为污染物,来测定样品在空气中的可见光光催化活性。
光催化试验表明,Fe3+掺杂增强了Ti02纳米棒可见光光催化活性,当铁钛原子比在0.1-1.0%的掺杂浓度时,其光催化活性高于商用Degussa P25和没有掺杂Ti02纳米棒。
尤其是当铁钛原子比在0.5%时,Fe3+掺杂Ti02纳米棒的光催化活性是P25的2倍多。
这种高活性是下列因素协同作用的结果:一维纳米结构增强载流子的传输,Fe3+掺杂增强了对光子的吸收和对可见光的响应范围,缩小了Ti02的禁带宽度以及降低了其光生电子和空穴的复合速率。
同时,我们也采用第一性原理对Fe3+掺杂Ti02纳米棒的电子结构进行了研究和讨论。
以水热合成法制备的高能面Ti02纳米片为前驱体和硫脲为掺杂剂,采用热处理的方法制备了高可见光活性的氮和硫共掺杂的高能面Ti02纳米片光催化剂。
掺杂剂硫脲的含量影响热处理后掺杂样品的结晶程度和晶粒尺寸。
N、S共掺杂通过N2p、S3p轨道和02p 轨道间的杂化,降低了掺杂后高能面Ti02纳米片光催化剂的禁带宽度,从而使掺杂的Ti02纳米片具有强的吸收可见光光子的能力,且使掺杂后的Ti02纳米片对光的响应吸收范围拓宽到可见光区。
纳米TiO2光催化剂的制备、改性及其应用研究纳米TiO2光催化剂的制备、改性及其应用研究摘要:纳米TiO2光催化剂因其优异的光催化性质在环境净化、水处理、能源转换等领域得到广泛应用。
本文以纳米TiO2为研究对象,重点探讨了其制备、改性方法以及在不同领域的应用研究内容和进展。
一、纳米TiO2的制备方法目前常用的纳米TiO2制备方法主要包括溶胶-凝胶法、水热法、气相沉积法等。
其中,溶胶-凝胶法通过溶胶的制备和凝胶的成型过程来得到纳米TiO2颗粒,可以控制颗粒的尺寸和形貌;水热法则是通过在高温高压的水环境下合成纳米TiO2颗粒,可制备出高度结晶的颗粒;气相沉积法则通过在气相中加热激活气体产生纳米TiO2颗粒。
这些方法各有优劣,适用于不同的研究需求。
二、纳米TiO2的改性方法为了提升纳米TiO2的光催化性能和稳定性,研究者在其表面进行改性。
常用的改性方法包括复合杂化技术、离子掺杂、表面修饰等。
复合杂化技术将纳米TiO2与其他材料进行复合,例如薄膜包覆、共混等方式,可以增加纳米TiO2的吸光性能和光生载流子的分离效率;离子掺杂则通过将单质离子或化合物引入纳米TiO2晶格中,改变其能带结构和光吸收性能;表面修饰通过在纳米TiO2颗粒表面修饰有机物或无机物,改变其表面性质和光催化性能。
三、纳米TiO2的应用研究纳米TiO2光催化剂具有优异的光催化性能和广泛的应用前景。
在环境净化方面,纳米TiO2可用于有机污染物的降解和空气净化,通过紫外光的激发产生活性氧自由基,降解有机污染物;在水处理领域,纳米TiO2可用于水的净化和废水处理,能够高效去除重金属离子和有机物,同时使用纳米TiO2光催化剂可以提高水的透明度和亮度;在能源转换方面,纳米TiO2可应用于太阳能电池、光电催化水分解等领域,用于转化光能为电能或储存能。
综上所述,纳米TiO2光催化剂具有制备简单、光催化效率高等优势,通过改性可以进一步提升其性能。
未来,随着对纳米材料研究的深入,纳米TiO2光催化剂将在环境净化、水处理和能源转化等领域发挥更大的作用。
掺杂钇的纳米tio2的制备及光催化性能研究近年来,随着全球能源短缺和环境污染日益严重,人类正在研究各种可再生能源以替代传统能源。
太阳能是可再生能源中最受瞩目的一种,其中光催化技术是一种用光照射溶液中的有机物以得到可再生能源的方法。
光催化反应的本质是由光照射催化剂而产生的光子触发的电子转移反应,在光子能量的影响下,催化剂的表面上的电子可以被触发,从而衍生出一系列化学反应。
Tio2作为一种代表性的催化剂,具有良好的光催化性能。
然而,由于它极低的电子密度密度,传统的Tio2很难激活有机物,因此,人们近年来大力研究结构和性能调控Tio2的催化剂,以提高它的催化性能。
为了提高Tio2的光催化性能,最近开始大量使用金属离子掺杂Tio2的制备方法。
这类离子掺杂Tio2具有更大的比表面积,更强的稳定性,更薄的形貌,和更高的活性中心的密度。
其中,钇离子掺杂Tio2(Y-Tio2)因其良好的光催化性能而被广泛研究。
本文将研究Y-Tio2的制备方法,研究其在光催化反应中的性能。
本文采用水热法法制备Y-Tio2。
首先,将tio2和反应性化合物混合在一起,再加入相应的溶剂,掺入钇离子,在保持一定的温度、pH值、搅拌速度和反应时间条件下,将其放置在加热装置中反应,当反应到达特定的程度,即可将反应液放入凉水中,终止反应。
基于X射线衍射(XRD),紫外可见分光光度计(UV-Vis),扫描电镜(SEM),透射电子显微镜(TEM),以及X射线光电子能谱(XPS)对Y-Tio2进行分析,以确定其制备方法和特性。
研究结果显示,制备出的Y-Tio2具有极佳的粒径均匀性,其粒径的绝对值在30-40 nm之间,表面结构平整,且分散性优良。
此外,我们还发现Y-Tio2表面上有许多钇离子,其电子配对密度较高,为证实Y-Tio2的制备方法提供了详细的依据。
经过相应的实验,证明Y-Tio2具有良好的光催化性能,但因其机理尚不明确,仍需进一步研究以深入了解离子掺杂Tio2的光催化过程。
离子掺杂TiO2光催化剂的制备及性能研究摘要本文以钛酸丁酯为钛源、稀土元素Sm为掺杂物、煤渣为载体,采用溶胶-凝胶法制备了掺杂型TiO2光催化剂;以紫外光为光源,甲基橙为光催化降解目标物,考察了光催化剂的光催化活性。
实验结果表明:Sm掺杂TiO2光催化剂具有较强的紫外光吸收性能,当酞酸丁酯:无水乙醇的体积比为1:3、煅烧温度为500℃、光催化时间为120min、负载次数为3次、Sm的掺入量为Sm/Ti摩尔百分比=0.5%时,光催化效果最好,光催化降解率达到74.4%。
关键字光催化,TiO2,甲基橙,掺杂,负载1 引言自Fujishima和Honda[1]发现TiO2单晶电极光分解水以来,多相光催化反应引起人们的极大兴趣。
由于TiO2具有化学性质稳定、难溶、无毒、价廉等优点[2],在氮氧化合物及有机污染物的降解、水处理、杀菌、除臭、表面自洁等方面得到广泛研究与应用。
但是,TiO2也有自身的局限性:禁带宽度约为3.2eV,需在(近)紫外光下才能激发产生光催化效应,对光的利用率较低;在ns到ps时间范围内光生载流子就能迅速复合,光催化效率不高等,这些不足极大地限制了TiO2的实际应用[3]。
因此,在过去的30多年中,人们深入研究了TiO2的改性技术,如掺杂[4]、复合[5]、表面增敏[6]等,以提高其光催化效率或产生可见光活性。
考虑到稀土元素具有f电子,易产生多电子组态,其氧化物也具有多晶型、强吸附选择性、热稳定性和电子型导电性等特点,并在光学、电子学以及催化剂领域有着广泛的应用[7],因此,本文采用溶胶—凝胶法制备稀土Sm掺杂型二氧化钛光催化剂,将制得的二氧化钛光催化剂用来光催化降解甲基橙废水,通过测定废水吸光度考察所制得二氧化钛光催化剂的光催化性能以及光催化条件对处理效果的影响。
2 实验部分2.1 实验原料钛酸丁脂,分析纯;冰乙酸,分析纯;硝酸,分析纯;无水乙醇,分析纯;氧化钐,分析纯;30%双氧水,分析纯;甲基橙,分析纯。
硅掺杂TiO2纳米管阵列的制备及光电催化活性的研究3吴建生,宿 艳,陈 硕,全 燮(大连理工大学环境与生命学院,工业生态与环境工程教育部重点实验室,辽宁大连116024)摘 要: 通过电化学沉积,在阳极氧化法制备的高度有序TiO2纳米管阵列表面均匀地沉积Si元素。
扫描电子显微照片显示Si掺杂的TiO2纳米管垂直于基底定向生长。
X射线衍射分析表明,所引入的Si可能掺入到TiO2的晶格中,因而提高了TiO2的热稳定性,抑制了金红石相的生成及晶粒的长大。
紫外2可见漫反射分析表明Si掺杂的TiO2纳米管吸收边带发生了明显的蓝移,并且在紫外区的吸收强度明显增强。
与未掺杂的TiO2纳米管相比,Si掺杂TiO2纳米管电极的紫外光电化学响应显著提高,其光电流密度是未掺杂的1.48倍。
硅掺杂TiO2纳米管阵列光电催化降解五氯酚的动力学常数(1.651h-1)是未掺杂TiO2纳米管电极(0.823h-1)的2.0倍。
关键词: TiO2纳米管阵列;硅掺杂;光电催化中图分类号: O613文献标识码:A 文章编号:100129731(2009)09214292031 引 言由于具有其它半导体无法比拟的催化活性高、稳定性好、无毒、价廉等优点,TiO2纳米管受到了广泛的关注。
高度有序的纳米管阵列具有较大的比表面积、独特的结构特性和良好的晶体结构,这些使其对界面间矢量电荷的转移提供了很好的电子浸透路径[1,2]。
阳极化的制备方法容易操控,而且从钛基底表面生长的纳米管与钛导电基底之间以肖特基势垒直接相连,结合牢固,不易脱落。
此外,管的孔径、长度和壁厚等参数可以通过精确调控电化学条件得以控制[3,4]。
TiO2是多相光催化中使用较多的一种催化剂,但是它对紫外光的利用率却比较低。
通过在TiO2中掺杂金属或化合物,如Pt、Fe、ZnO、CdS和Sr TiO3[5,6]等,能够有效提高光能利用率。
特别是,硅修饰的TiO2体系由于具有很高的光催化活性而引起了广泛的关注。
PCZSis 纳米ric>2材料的制备及其光催化效能研究姚秉琳摘要环境问题已严重影响现代文明的发展,有机污染物具有持久性飾特点而长期威胁人类健康,开发和设计仅利用太阳能即可完成对有机污染物降解的新材料将会是解决环境问题的有效方法之一.纳米TiO:作为一种光催化材料,具有优异的物理和化学性质,因而被广泛应用和重点研究.文章从纳米TiO2能带结构和光催化反应机制出发,综述了TiO:在形貌可控制备及掺杂改性等方面的研究及其在光催化方面的应用,展望了TiO:光催化材料的发展方向.关键词纳来TiO:;光催化;制备方法;光催化效能中图分类号U283.5文献标识码A文章编号1674-6708(2019)230-0193-03随着我国改革开放的不断深入和社会主义市场经济体制的不断发展,我国的工业门类逐渐增多,各项工业的生产规模也在不断扩大。
然而,工业生产所引发的的废气、废液和废渣及固体垃圾等一直在加剧环境的恶化,环境自身很难完成对这些污染物的自行降解。
如何有效利用太阳能加速污染物的降解将会是解决环境问题的有效方法之一。
二氧化钛(俗称钛白粉)是一种无机半导体材料,属于两性氧化物,有其独特的光学、电学和催化性能等物理化学性质-1972年,Fujishima⑴在Nature发表文章称半导体二氧化钛单晶具有光解水的现象。
TiO?作为光催化法最重要的一种催化剂,一直被广泛使用。
二氧化钛具有金红石、锐钛矿和板钛矿三种晶型,其中以锐钛矿应用最为广泛。
锐钛矿TiO?禁带宽度约为3.2eV,能吸收太阳光中的紫外线,导致价带上的电子受激跃迁至导带,价带则相应的生成相同数目的空穴。
一方面,光生电子和空穴容易复合,从而降低光催化效率;另一方面,二氧化钛表面的电子和空穴会引发环境中氧气和水的活化而产生表面活性氧化物种,从而被广泛应用于有机污染物降解等领域。
TiO?纳米材料的形貌、离子掺杂及贵金属改性等均对其催化性能有着直接影响。
针对以上3个方面,本文从制备方法、能带结构和光催化效应机制等角度综述了TiO2纳米材料在光催化方面的应用。