七年级(上)数学期中试题集锦(创制五) -
- 格式:doc
- 大小:203.82 KB
- 文档页数:4
新课标七年级数学(上)精品好题(中考版二)2015/12/20一、精心选一选(每小题只有一个正确选项,请把正确选项的字母代号填在题后的括号内). 1、填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是( )A .110B .158C .168D .1782、下面是解方程的部分步骤:①由7x=4x -3,变形得7x -4x=3;②由3-2x =1+23-x ,变形得2(2-x)=1+3(x -3);③由2(2x -1)-3(x -3)=1,变形得4x -2-3x -9=1;④由2(x+1)=7+x ,变形得x=5.其中变形正确的个数是( )A .0个B .1个C .2个D .3个3、如图,用火柴棍拼成一排由三角形组成的图形,如果图形中含有16个三角形,则需要( )根火柴棍 A .30根 B .31根 C .32根 D .33根4、某商品进价a 元,商店将价格提高30%作零售价销售,在销售旺季过后,商店以8折(即售价的80%)的价格开展促销活动,这时一件商品的售价为( )A.a 元;B.0.8a 元C.1.04a 元;D.0.92a 元 5、实数a ,b 在数轴上对应的点的位置如图,则必有( )A .B . a b >0C . a ﹣|b|>0D . a +b >06、某商场将某种商品按原价的8折出售,此时商品的利润率是10%,已知这种商品的进价为1600元,则该商品的原价为每件( ) A . 2200元 B . 2280元 C . 1840元 D . 1760元7、甲从一个鱼摊买三条鱼,平均每条a 元,又从另一个鱼摊买了两条鱼,平均每条b 元,6 2 22 4 2 0 4 8 84 446 m 10 ……后来他又以每条2a b元的价格把鱼全部卖给了乙,结果发现赔了钱,原因是 ( )A. a >b B. a <b C. a=b D. 与a 和b 大小无关 8、身份证号码告诉我们很多信息,某人的身份证号码是321284************,其中32、12、84是此人所属的省(市、自治区)、市、县(市、区)的编码, 1967、04、01是此人出生的年、月、日, 001是顺序码,2为校验码。
七年级数学上册期中考试卷及答案虽然在学习的过程中会遇到许多不顺心的事,但古人说得好——吃一堑,长一智。
多了一次失败,就多了一次教训;多了一次挫折,就多了一次经验。
下面给大家分享一些关于七年级数学上册期中考试卷及答案,希望对大家有所帮助。
一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号哦字母填入题后括号内1.如果水位升高6m时水位变化记作+6m,那么水位下降6m时水位变化记作( )A.﹣3mB.3mC.6mD.﹣6m【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【解答】解:因为上升记为+,所以下降记为﹣,所以水位下降6m时水位变化记作﹣6m.故选:D.【点评】考查了正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.在0,﹣2,5,,﹣0.3中,负数的个数是( )A.1B.2C.3D.4【考点】正数和负数.【分析】根据小于0的是负数即可求解.【解答】解:在0,﹣2,5,,﹣0.3中,﹣2,﹣0.3是负数,共有两个负数,故选:B.【点评】本题主要考查了正数和负数,熟记概念是解题的关键.注意0既不是正数也不是负数.3.在数轴上表示﹣2的点与表示3的点之间的距离是( )A.5B.﹣5C.1D.﹣1【考点】数轴.【分析】根据正负数的运算方法,用3减去﹣2,求出在数轴上表示﹣2的点与表示3的点之间的距离为多少即可.【解答】解:3﹣(﹣2)=2+3=5.所以在数轴上表示﹣2的点与表示3的点之间的距离为5.故选A【点评】此题主要考查了正负数的运算方法,关键是根据在数轴上表示﹣2的点与表示3的点之间的距离列出式子.4.|﹣ |的相反数是( )A. B.﹣ C.3 D.﹣3【考点】绝对值;相反数.【专题】常规题型.【分析】一个负数的绝对值是它的相反数,求一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:∵|﹣ |= ,∴ 的相反数是﹣ .故选:B.【点评】本题考查了相反数的意义,求一个数的相反数就是在这个数前面添上“﹣”号,不要把相反数的意义与倒数的意义混淆.同时考查了绝对值的性质:一个负数的绝对值是它的相反数.5.地球绕太阳每小时转动经过的路程约为110000米,将110000用科学记数法表示为( )A.11×104B.0.11×107C.1.1×106D.1.1×105【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1 时,n是负数.【解答】解:110000=1.1×105,故选:D.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.下列说法错误的是( )A.3.14×103是精确到十位B.4.609万精确到万位C.近似数0.8和0.80表示的意义不同D.用科学记数法表示的数2.5×104,其原数是25000【考点】近似数和有效数字;科学记数法—原数.【分析】根据近似数的精确度对A、B、C进行判断;根据科学记数法对D进行判断.【解答】解:A、.14×103是精确到十位,所以A选项的说法正确;B、4.609万精确到十位,所以B选项的说法错误;C、近似数0.8精确到十分位,0.80精确到百分位,所以C选项的说法正确;D、用科学记数法表示的数2.5×104,其原数为25000,所以,D 选项的说法正确.故选B.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数称为近似数;从一个近似数左边第一个不为0的数数起到这个数完,所以这些数字都叫这个近似数的有效数字.7.下列说法中,正确的是( )A. 不是整式B.﹣的系数是﹣3,次数是3C.3是单项式D.多项式2x2y﹣xy是五次二项式【考点】整式;单项式;多项式.【分析】利用单项式、多项式及整式的定义判定即可.【解答】解:A、是整式,错误;B、﹣的系数是﹣,次数是3,错误;C、3是单项式,正确;D、多项式2x2y﹣xy是三次二项式,错误;故选C【点评】本题主要考查了单项式、多项式及整式,解题的关键是熟记单项式、多项式及整式的定义.8.在数学活动课上,同学们利用如图的程序进行计算,发现无论x 取任何正整数,结果都会进入循环,下面选项一定不是该循环的是( )A.4,2,1B.2,1,4C.1,4,2D.2,4,1【考点】代数式求值.【专题】压轴题;图表型.【分析】把各项中的数字代入程序中计算得到结果,即可做出判断.【解答】解:A、把x=4代入得: =2,把x=2代入得: =1,本选项不合题意;B、把x=2代入得: =1,把x=1代入得:3+1=4,把x=4代入得: =2,本选项不合题意;C、把x=1代入得:3+1=4,把x=4代入得: =2,把x=2代入得: =1,本选项不合题意;D、把x=2代入得: =1,把x=1代入得:3+1=4,把x=4代入得: =2,本选项符合题意,故选D【点评】此题考查了代数式求值,弄清程序框图中的运算法则是解本题的关键.二、填空题(每小题3分,共21分)9.有理数中,的负整数是﹣1.【考点】有理数.【分析】根据小于零的整数是负整数,再根据的负整数,可得答案.【解答】解:有理数中,的负整数是﹣1,故答案为:﹣1.【点评】本题考查了有理数,根据定义解题是解题关键.10.如图,数轴的单位长度为1,如果R表示的数是﹣1,则数轴上表示相反数的两点是P,Q.【考点】相反数;数轴.【分析】首先根据R表示的数是﹣1,求出P、Q、T三点表示的数各是多少;然后根据相反数的含义,判断出数轴上表示相反数的两点是多少即可.【解答】解:∵R表示的数是﹣1,∴P点表示的数是(﹣3,0),Q点表示的数是(3,0),T点表示的数是(4,0),∵﹣3和3互为相反数,∴数轴上表示相反数的两点是:P,Q.故答案为:P,Q.【点评】此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”,并能求出P、Q、T三点表示的数各是多少.11.在数1,0,﹣1,|﹣2|中,最小的数是﹣1.【考点】有理数大小比较.【专题】计算题.【分析】利用绝对值的代数意义化简后,找出最小的数即可.【解答】解:在数1,0,﹣1,|﹣2|=2中,最小的数是﹣1.故答案为:﹣ 1.【点评】此题考查了有理数的大小比较,弄清有理数的比较方法是解本题的关键.12.已知|a+2|与(b﹣3)2互为相反数,则ab=﹣8.【考点】非负数的性质:偶次方;相反数;非负数的性质:绝对值.【分析】根据非负数的性质解答.有限个非负数的和为零,那么每一个加数也必为零,即若a1,a2,…,an为非负数,且a1+a2+…+an=0,则必有a1=a2=…=an=0.【解答】解:∵|a+2|与(b﹣3)2互为相反数,∴|a+2|+(b﹣3)2=0,则a+2=0,a=﹣2;b﹣3=0,b=3.故ab=(﹣2)3=﹣8.【点评】本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.13.在式子,﹣1,x2﹣3x,,中,是整式的有3个.【考点】整式.【分析】单项式和多项式统称整式,准确理解其含义再去判断是否为整式,式子,中,分母中含有字母,故不是整式.问题可求.【解答】解:式子,和x2﹣3x是多项式,﹣1是单项式,三个都是整式;,中,分母有字母,故不是整式.因此整式有3个.【点评】判断是否为整式,关键是看分母是否含有字母,有则不是;圆周率π或另有说明的除外,如就是整式.14.一列单项式:﹣x2,3x3,﹣5x4,7x5,…,按此规律排列,则第7个单项式为﹣13x8.【考点】单项式.【专题】规律型.【分析】根据规律,系数是从1开始的连续奇数且第奇数个是负数,第偶数个是正数,x的指数是从2开始的连续自然数,然后求解即可.【解答】解:第7个单项式的系数为﹣(2×7﹣1)=﹣13,x的指数为8,所以,第7个单项式为﹣13x8.故答案为:﹣13x8.【点评】本题考查了单项式,此类题目,难点在于根据单项式的定义从多个方面考虑求解.15.多项式 x+7是关于x的二次三项式,则m=2.【考点】多项式.【分析】由于多项式是关于x的二次三项式,所以|m|=2,但﹣(m+2)≠0,根据以上两点可以确定m的值.【解答】解:∵多项式是关于x的二次三项式,∴|m|=2,∴m=±2,但﹣(m+2)≠0,即m≠﹣2,综上所述,m=2,故填空答案:2.【点评】本题解答时容易忽略条件﹣(m+2)≠0,从而误解为m=±2.三、解答题(本大题共8小题,满分65分)16.把下列各数表示在数轴上,再按从大到小的顺序用大于号把这些数连接起来.|﹣3|,﹣5,,0,﹣2.5,﹣22,﹣(﹣1).【考点】有理数大小比较;数轴.【分析】先在数轴上表示出各数,从右到左用“>”连接起来即可.【解答】解:如图所示,,由图可知,|﹣3|>﹣(﹣1)> >0>﹣2.5>﹣22>﹣5.【点评】本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.17.单项式 x2ym与多项式x2y2+ y4+ 的次数相同,求m的值.【考点】多项式;单项式.【分析】利用多项式及单项式的次数列出方程求解即可.【解答】解:∵单项式 x2ym与多项式x2y2+ y4+ 的次数相同,∴2+m=7,解得m=5.故m的值是5.【点评】本题主要考查了多项式及单项式,解题的关键是熟记多项式及单项式的次数.18.某服装店以每件82元的价格购进了30套保暖内衣,销售时,针对不同的顾客,这30套保暖内衣的售价不完全相同,若以100元为标准,将超过的钱数记为正,不足的钱数记为负,则记录结果如表所示:售出件数 7 6 7 8 2售价(元) +5 +1 0 ﹣2 ﹣5请你求出该服装店在售完这30套保暖内衣后,共赚了多少钱?【考点】正数和负数.【分析】首先由进货量和进货单价计算出进货的成本,然后再根据售价计算出赚了多少钱.【解答】解:7×(100+5)+6×(100+1)+7×100+8×(100﹣2)+2×(100﹣5)=735+606+700+784+190=3015,30×82=2460(元),3015﹣2460=555(元),答:共赚了555元.【点评】本题主要考查有理数的混合运算,关键在于根据表格计算出一共卖了多少钱.19.将多项式按字母X的降幂排列.【考点】多项式.【专题】计算题.【分析】按x的降幂排列就是看x的指数从大到小的顺序把多项式的各个项排列即可,【解答】解:将多项式按字母x的降幂排列为:﹣7x4y2+3x2y﹣ xy3+ .【点评】本题考查了对多项式的有关知识的理解和运用,注意按字母排列是要带着各个项的符号.20.计算题(1)(﹣4)﹣(﹣1)+(﹣6)÷2(2)﹣3﹣[﹣2﹣(﹣8)×(﹣0.125)](3)﹣25(4) .【考点】有理数的混合运算.【分析】(1)先化简,再计算加减法;(2)按照有理数混合运算的顺序,先乘除后算加减,有括号的先算括号里面的;(3)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的;(4),先将乘法变为乘法,再运用乘法的分配律计算.【解答】解:(1)原式=﹣4+1﹣3=﹣6;=﹣3.【点评】本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.(3)整式中如果有多重括号应按照先去小括号,再去中括号,最后大括号的顺序进行.21.已知ab2<0,a+b>0,且|a|=1,|b|=2,求的值.【考点】绝对值.【分析】计算绝对值要根据绝对值的定义求解,注意在条件的限制下a,b的值剩下1组.a=﹣1,b=2,所以原式=|﹣1﹣ |+(2﹣1)2= .【解答】解:∵ab2<0,a+b>0,∴a<0,b>0,且b的绝对值大于a的绝对值,∵|a|=1,|b|=2,∴a=﹣1,b=2,∴原式=|﹣1﹣ |+(2﹣1)2= .【点评】本题是绝对值性质的逆向运用,此类题要注意两个绝对值条件得出的数据有4组,再添上a,b大小关系的条件,一般剩下1组答案符合要求,解此类题目要仔细,看清条件,以免漏掉答案或写错.22.观察:4×6=24,14×16=224,24×26=624,34×36=1224…,(1)上面两数相乘后,其末尾的两位数有什么规律?(2)如果按照上面的规律计算:124×126(请写出计算过程).(3)请借助代数式表示这一规律!【考点】规律型:数字的变化类.【分析】(1)仔细观察后直接写出答案即可;(2)将124×126写成12×(12+1)×100+24后计算即可;(3)分别表示出两个因数后即可写出这一规律.【解答】解:(1)末尾都是24;(2)124×126=12×(12+1)×100+24=15600+24=15624;(3)(10a+4)(10a+6)=100a2+100a+24=100a(a+1)+24.【点评】本题考查了数字的变化类问题,仔细观察算式发现规律是解答本题的关键.23.已知x、y为有理数,现规定一种新运算※,满足x※y=xy+1.(1)求2※4的值;(2)求(1※4)※(﹣2)的值;(3)任意选择两个有理数(至少有一个是负数),分别填入下列□和○中,并比较它们的运算结果:□※○和○※□;(4)探索a※(b+c)与a※b+a※c的关系,并用等式把它们表达出来.【考点】有理数的混合运算.【专题】压轴题;新定义.【分析】读懂题意,掌握规律,按规律计算每个式子.【解答】解:(1)2※4=2×4+1=9;(2)(1※4)※(﹣2)=(1×4+1)×(﹣2)+1=﹣9;(3)(﹣1)※5=﹣1×5+1=﹣4,5※(﹣1)=5×(﹣1)+1=﹣4;(4)∵a※(b+c)=a(b+c)+1=ab+ac+1,a※b+a※c=ab+1+ac+1.∴a※(b+c)+1=a※b+a※c.【点评】解答此类题目的关键是认真观察已知给出的式子的特点,找出其中的规律.。
七年级上学期期中数学试卷(有答案)阅历了半学期的努力奋战,检验学习效果的时辰就要到了,期中考试考察的不只是同窗们对知识点的掌握还考察先生的灵敏运用才干,我们一同来经过这篇2021年七年级上学期期中数学试卷提升一下自己的解题速率和才干吧!一、选择题(每题3分,共36分)1、5的相反数是( )A.5 B .--5 C.5 D.2、在中,正数的个数为( )A.0个B.1个C.2个D.3个3、一个两位数,个位数字为a,十位数字为b,那么这个两位数为( )A abB baC 10a+bD 10b+a4、一列火车长m米,以每秒n米的速度经过一个长为p米的桥洞,用代数式表示它经过桥洞所需的时间为( )A. 秒B. 秒C. 秒D. 秒5、一个代数式的2倍与-2a+b的和是a+2b,这个代数式是( )A.3a+bB. - a+ bC. a+ bD. a+ b6、下面几何体中,截面图形不能够是圆的是( )A.圆柱B.圆锥C.球D.正方体7、以下两项中,属于同类项的是( )A. 与B. 与C. 与D. 和8、以下计算正确的选项是:( )A. B. C. D.9. 一个多项式加上那么这个多项式是:( )A. x3+3xy2B. x3-3xy2C. x3-6x2y+3xy2D. x3-6x2y-3x2y10、以下说法正确的选项是( ).A. 单项式- X 的系数是- ;B. 0和a都是代数式;C. 数a的与这个数的和表示为 +D. 兼并同类项-11、文具店、书店和玩具店依次座落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在( A )A.文具店B.玩具店C.文具店西40米处D.玩具店西60米处12、,那么ba的值是()A、9B、8C、6D、-9二、填空题(每题4分,共32分)13、平方得的数是,立方得-8的数是,倒数是的数是的相反数是_______,14、数轴上表示有理数-3.5与4.5两点的距离是 .15、假定和是同类项,那么16、38400万千米用迷信记数表示为米。
七年级上册数学期中考试卷及答案七年级上册数学期中考试卷及答案马上就到2017年七年级数学期中考试了,愿你用坚强的心,微笑的情开拓自己的精彩未来!以下是店铺为你整理的七年级上册数学期中考试卷,希望对大家有帮助!2017年七年级上册数学期中考试卷一、选择题(本大题共12个小题;每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.16的平方根是( )A.4B.﹣4C.±4D.±22.如果点P在第二象限内,点P到x轴的距离是4,到y轴的距离是5,那么点P的坐标是( )A.(﹣4,5)B.(﹣4,﹣5)C.(﹣5,4)D.(﹣5,﹣4)3.下列命题中,真命题的个数是( )①同位角相等;②a,b,c是三条直线,若a⊥b,b⊥c,则a⊥c.③a,b,c是三条直线,若a∥b,b∥c,则a∥c;④过一点有且只有一条直线与已知直线平行.A.1个B.2个C.3个D.4个4.用代入法解方程组时,代入正确的是( )A.x﹣2﹣x=4B.x﹣2﹣2x=4C.x﹣2+2x=4D.x﹣2+x=45.估计的值在哪两个整数之间( )A.75和77B.6和7C.7和8D.8和96.已知不等式组,其解集在数轴上表示正确的是( )A. B. C. D.7.已知∠A的两边与∠B的两边互相平行,且∠A=20°,则∠B的度数为( )A.20°B.80°C.160°D.20°或160°8.如,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB∥CD 的条件为( )A.①②③④B.①②④C.①③④D.①②③9.已知方程组和有相同的解,则a,b的值为( )A. B. C. D.10.某校书管理员清理阅览室的课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如不完整的统计,已知甲类书有30本,则丙类书的本数是( )A.90B.144C.200D.8011.小明用100元钱购得笔记本和笔共30件,已知每本笔记本2元,每支笔5元,那么小明最多能买笔的数目为( )A.14B.13C.12D.1112.已知方程组:的解是:,则方程组:的解是( )A. B. C. D.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.已知点P(a+1,a﹣1)在第四象限,则a的取值范围是.14.在下列各数中:3.1415、0.2060060006(相邻的两个6之间依次多一个0)、0、、﹣π、、、、,无理数的个数是.15.为了解某市七年级学生的身体素质情况,随机抽取了1000名七年级学生进行检测,身体素质达标的有950人,请你估计该市12万名七年级学生,身体素质达标的大约有人.16.已知是二元一次方程ax+by=2的一组解,则4﹣2a+b= .17.已知点P的坐标是(a+2,3a﹣6),且点P到两坐标轴的距离相等,则点P的坐标是.18.关于x的不等式3x﹣a≤0,只有两个正整数解,则a的取值范围是.19.如,将周长为8的三角形ABC向右平移1个单位后得到三角形DEF,则四边形ABFD的周长等于.20.对于有理数x,y,定义新运算:x*y=ax+by,其中a,b是常数,等式右边是通常的加法和乘法运算,已知1*2=1,(﹣3)*3=6,则2*(﹣5)的值是.三、解答题(本大题共7个小题,共72分.解答应写出文字说明,说理过程或演算步骤)21.计算(1)(2) .22.计算(1)解方程组:(2)解不等式组: .23.已知:如,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′(1)在中画出△A′B′C′;(2)写出点A′、B′、C′的坐标;A′的坐标为;B′的坐标为;C′的坐标为;(3)在y轴上是否存在一点P,使得△BCP与△ABC面积相等?若存在,请直接写出点P的坐标;若不存在,说明理由.24.①表示的是某综合商场今年1~5月的商品各月销售总额的情况,②表示的是商场服装部各月销售额占商场当月销售总额的百分比情况,观察①、②,解答下列问题:(1)来自商场财务部的数据报告表明,商场1~5月的商品销售总额一共是410万元,请你根据这一信息将①中的统计补充完整;(2)商场服装部5月份的销售额是多少万元?(3)小刚观察②后认为,5月份商场服装部的销售额比4月份减少了.你同意他的看法吗?请说明理由.25.根据中给出的信息,解答下列问题:(1)放入一个小球水面升高cm,放入一个大球水面升高cm;(2)如果要使水面上升到50cm,应放入大球、小球各多少个?26.在“老人节”前夕,某旅行社组织了一个“夕阳红”旅行团,共有253名老人报名参加,旅行前,旅行社承诺每车保证有且只有一名随团医生,并为此次旅行请了7名医生,现打算选租甲、乙两种客车,其中甲种客车每辆载客40人,乙种客车每辆载客30人.(1)请帮助旅行社设计租车方案.(2)若甲种客车租金为350元每辆,乙种客车租金为280元每辆,旅行社按照哪种方案租车最省钱?此时租金是多少?27.已知:如,直线a∥b,直线c与直线a、b分别相交于C、D 两点,直线d与直线a、b分别相交于A、B两点.(1)如1,当点P在线段AB上(不与A、B两点重合)运动时,∠1、∠2、∠3之间有怎样的大小关系?请说明理由;(2)如2,当点P在线段AB的延长线上运动时,∠1、∠2、∠3之间的大小关系为;(3)如3,当点P在线段BA的延长线上运动时,∠1、∠2、∠3之间的大小关系为.2017年七年级上册数学期中考试卷答案与解析一、选择题(本大题共12个小题;每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.16的平方根是( )A.4B.﹣4C.±4D.±2【考点】平方根.【分析】根据平方根定义求出即可.【解答】解:16的平方根是±4,故选C.2.如果点P在第二象限内,点P到x轴的距离是4,到y轴的距离是5,那么点P的坐标是( )A.(﹣4,5)B.(﹣4,﹣5)C.(﹣5,4)D.(﹣5,﹣4)【考点】点的坐标.【分析】根据P到x轴的距离可得P的纵坐标的绝对值,根据P 到y轴的距离可得P的横坐标的绝对值,根据第二象限的点的符号特点可得点P的坐标.【解答】解:∵点P到x轴的距离是4,到y轴的距离是5,∴P的纵坐标的绝对值为4,横坐标的绝对值为5,∵点P在第二象限内,∴横坐标的符号为负,纵坐标的符号为正,∴P的坐标为(﹣5,4).故选C.3.下列命题中,真命题的个数是( )①同位角相等;②a,b,c是三条直线,若a⊥b,b⊥c,则a⊥c.③a,b,c是三条直线,若a∥b,b∥c,则a∥c;④过一点有且只有一条直线与已知直线平行.A.1个B.2个C.3个D.4个【考点】命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:①同位角相等,是假命题;②a,b,c是三条直线,若a⊥b,b⊥c,则a∥c,是假命题.③a,b,c是三条直线,若a∥b,b∥c,则a∥c,是真命题;④过直线外一点有且只有一条直线与已知直线平行,是假命题,故选A4.用代入法解方程组时,代入正确的是( )A.x﹣2﹣x=4B.x﹣2﹣2x=4C.x﹣2+2x=4D.x﹣2+x=4【考点】解二元一次方程组.【分析】将①代入②整理即可得出答案.【解答】解:,把①代入②得,x﹣2(1﹣x)=4,去括号得,x﹣2+2x=4.故选C.5.估计的值在哪两个整数之间( )A.75和77B.6和7C.7和8D.8和9【考点】估算无理数的大小.【分析】先对进行估算,再确定是在哪两个相邻的整数之间.【解答】解:∵ < < ,∴8<<9,∴ 在两个相邻整数8和9之间.故选:D.6.已知不等式组,其解集在数轴上表示正确的是( )A. B. C. D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】求出每个不等式的解集,找出不等式组的解集,再在数轴上把不等式组的解集表示出来,即可得出选项.【解答】解:∵解不等式①得:x>3,解不等式②得:x≥﹣1,∴不等式组的解集为:x>3,在数轴上表示不等式组的解集为:故选:B.7.已知∠A的两边与∠B的两边互相平行,且∠A=20°,则∠B的度数为( )A.20°B.80°C.160°D.20°或160°【考点】平行线的性质.【分析】首先根据题意画出形,由∠A的两边与∠B的两边互相平行,根据平行线的性质,即可求得∠B的度数.【解答】解:如1:∵∠A的两边与∠B的两边互相平行,∴∠1=∠A,∠B=∠1,∵∠A=20°,∴∠B=∠A=20°;如2:∵∠A的两边与∠B的两边互相平行,∴∠1=∠A,∠1+∠B=180°,∴∠B=180°﹣∠A=160°.故选D.8.如,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB∥CD 的条件为( )A.①②③④B.①②④C.①③④D.①②③【考点】平行线的判定.【分析】根据平行线的判定定理求解,即可求得答案.【解答】解:①∵∠B+∠BCD=180°,∴AB∥CD;②∵∠1=∠2,∴AD∥BC;③∵∠3=∠4,∴AB∥CD;④∵∠B=∠5,∴AB∥CD;∴能得到AB∥CD的条件是①③④.故选C.9.已知方程组和有相同的解,则a,b的值为( )A. B. C. D.【考点】二元一次方程组的解.【分析】因为方程组和有相同的解,所以把5x+y=3和x﹣2y=5联立解之求出x、y,再代入其他两个方程即可得到关于a、b的方程组,解方程组即可求解.【解答】解:∵方程组和有相同的解,∴方程组的解也它们的解,解得:,代入其他两个方程得,解得:,故选D.10.某校书管理员清理阅览室的课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如不完整的统计,已知甲类书有30本,则丙类书的本数是( )A.90B.144C.200D.80【考点】扇形统计.【分析】根据甲类书籍有30本,占总数的15%即可求得总书籍数,丙类所占的比例是1﹣15%﹣45%,所占的比例乘以总数即可求得丙类书的本数.【解答】解:总数是:30÷15%=200(本),丙类书的本数是:200×(1﹣15%﹣45%)=200×40%=80(本)故选D.11.小明用100元钱购得笔记本和笔共30件,已知每本笔记本2元,每支笔5元,那么小明最多能买笔的数目为( )A.14B.13C.12D.11【考点】一元一次不等式的应用.【分析】本题可设钢笔数为x,则笔记本有30﹣x件,根据小明用100元钱购得笔记本和钢笔共30件,就是已知不等关系:买笔记本用的钱数+买钢笔用的'钱数≤100元.根据这个不等关系就可以得到一个不等式.求出钢笔数的范围.【解答】解:设钢笔数为x,则笔记本有30﹣x件,则有:2(30﹣x)+5x≤10060﹣2x+5x≤100即3x≤40x≤13 因此小明最多能买13只钢笔.故选B.12.已知方程组:的解是:,则方程组:的解是( )A. B. C. D.【考点】二元一次方程组的解.【分析】在此题中,两个方程组除未知数不同外其余都相同,所以可用换元法进行解答.【解答】解:在方程组中,设x+2=a,y﹣1=b,则变形为方程组,由题知,所以x+2=8.3,y﹣1=1.2,即 .故选C.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.已知点P(a+1,a﹣1)在第四象限,则a的取值范围是﹣1【考点】点的坐标;解一元一次不等式组.【分析】根据第四象限的点的横坐标是正数,纵坐标是负数列出不等式组求解即可.【解答】解:∵点P(a+1,a﹣1)在第四象限,∴ ,由①得:a>﹣1,由②得:a<1,所以,a的取值范围是﹣1故答案为:﹣114.在下列各数中:3.1415、0.2060060006(相邻的两个6之间依次多一个0)、0、、﹣π、、、、,无理数的个数是 3 .【考点】无理数.【分析】无理数就是无限不循环小数,依据定义即可作出判断.【解答】解:在3.1415、0.2060060006(相邻的两个6之间依次多一个0)、0、、﹣π、、、、中,0.2060060006(相邻的两个6之间依次多一个0)、3.1415、0、、是有理数,﹣π、、这3个数是无理数,故答案为3.15.为了解某市七年级学生的身体素质情况,随机抽取了1000名七年级学生进行检测,身体素质达标的有950人,请你估计该市12万名七年级学生,身体素质达标的大约有114000 人.【考点】用样本估计总体.【分析】根据题意计算出身体素质达标的人数所占百分比,然后再计算出该市12万名七年级学生身体素质达标的人数.【解答】解:120000× =114000,故答案为:114000.16.已知是二元一次方程ax+by=2的一组解,则4﹣2a+b= 2 .【考点】二元一次方程的解.【分析】将方程的解代入方程可得到关于a、b的方程,最后应用整体代入法求解即可.【解答】解:将代入ax+by=2得:2a﹣b=2.原式4﹣(2a﹣b)=4﹣2=2.故答案为:2.17.已知点P的坐标是(a+2,3a﹣6),且点P到两坐标轴的距离相等,则点P的坐标是(6,6)或(3,﹣3) .【考点】点的坐标.【分析】分点的横坐标与纵坐标相等和互为相反数两种情况讨论求解.【解答】解:∵点P(a+2,3a﹣6)到两坐标轴的距离相等,∴a+2=3a﹣6或a+2+3a﹣6=0,解得a=4或a=1,当a=4时,a+2=4+2=6,此时,点P(6,6),当a=1时,a+2=3,此时,点P(3,﹣3),综上所述,点P(6,6)或(3,﹣3).故答案为:(6,6)或(3,﹣3).18.关于x的不等式3x﹣a≤0,只有两个正整数解,则a的取值范围是6≤a<9.【考点】一元一次不等式的整数解.【分析】解不等式得x≤ ,由于只有两个正整数解,即1,2,故可判断的取值范围,求出a的取值范围.【解答】解:原不等式解得x≤ ,∵解集中只有两个正整数解,则这两个正整数解是1,2,∴2≤<3,解得6≤a<9.故答案为:6≤a<9.19.如,将周长为8的三角形ABC向右平移1个单位后得到三角形DEF,则四边形ABFD的周长等于10 .【考点】平移的性质.【分析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.【解答】解:根据题意,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=8,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.故答案为:10.20.对于有理数x,y,定义新运算:x*y=ax+by,其中a,b是常数,等式右边是通常的加法和乘法运算,已知1*2=1,(﹣3)*3=6,则2*(﹣5)的值是﹣7 .【考点】解二元一次方程组;有理数的混合运算.【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题意得:,①+②得:a=﹣1,b=1,则原式=2a﹣5b=﹣2﹣5=﹣7.故答案为:﹣7三、解答题(本大题共7个小题,共72分.解答应写出文字说明,说理过程或演算步骤)21.计算(1)(2) .【考点】实数的运算.【分析】(1)原式利用二次根式性质,乘方的意义,以及立方根定义计算即可得到结果;(2)原式利用二次根式乘法法则,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:(1)原式=4﹣1﹣3=0;(2)原式=2+2 ﹣2+ =3 .22.计算(1)解方程组:(2)解不等式组: .【考点】解一元一次不等式组;解二元一次方程组.【分析】(1)先把①变形为x﹣y=5的形式,再用代入消元法求解即可;(2)分别求出各不等式的解集,再求出其公共解集即可.【解答】解:(1)解方程组:由①得,x﹣y=5③,把③代入②得,20﹣y=5,解得,y=15.把y=11代入③得,x=20,所以方程组的解为: ;(2) ,由①得,x≥ ,由②得,x> ,故方程组的解为:x≥ .23.已知:如,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′(1)在中画出△A′B′C′;(2)写出点A′、B′、C′的坐标;A′的坐标为(0,4) ;B′的坐标为(﹣1,1) ;C′的坐标为(3,1) ;(3)在y轴上是否存在一点P,使得△BCP与△ABC面积相等?若存在,请直接写出点P的坐标;若不存在,说明理由.【考点】作-平移变换.【分析】(1)根据形平移的性质画出△A′B′C′即可;(2)根据各点在坐标系中的位置写出各点坐标即可;(3)根据同底等高的三角形面积相等即可得出结论.【解答】解:(1)略;(2)由可知,A′(0,4);B′(﹣1,1);C′(3,1);故答案为:(0,4);(﹣1,1);(3,1);(3)设P(0,y),∵△BCP与△ABC同底等高,∴|y+2|=3,即y+2=3或y+2=﹣3,解得y1=1,y2=﹣5,∴P(0,1)或(0,﹣5).24.①表示的是某综合商场今年1~5月的商品各月销售总额的情况,②表示的是商场服装部各月销售额占商场当月销售总额的百分比情况,观察①、②,解答下列问题:(1)来自商场财务部的数据报告表明,商场1~5月的商品销售总额一共是410万元,请你根据这一信息将①中的统计补充完整;(2)商场服装部5月份的销售额是多少万元?(3)小刚观察②后认为,5月份商场服装部的销售额比4月份减少了.你同意他的看法吗?请说明理由.【考点】条形统计;折线统计.【分析】(1)根据①可得,1235月份的销售总额,再用总的销售总额减去这四个月的即可;(2)由可知用第5月的销售总额乘以16%即可;(3)分别计算出4月和5月的销售额,比较一下即可得出答案.【解答】解:(1)410﹣=410﹣335=75;如:(2)商场服装部5月份的销售额是80万元×16%=12.8万元;(3)4月和5月的销售额分别是75万元和80万元,服装销售额各占当月的17%和16%,则为75×17%=12.75万元,80×16%=12.8万元,故小刚的说法是错误的.25.根据中给出的信息,解答下列问题:(1)放入一个小球水面升高 2 cm,放入一个大球水面升高 3 cm;(2)如果要使水面上升到50cm,应放入大球、小球各多少个?【考点】二元一次方程组的应用;一元一次方程的应用.【分析】(1)设一个小球使水面升高x厘米,一个大球使水面升高y厘米,根据象提供的数据建立方程求解即可;(2)设应放入大球m个,小球n个,根据题意列二元一次方程组求解即可.【解答】解:(1)设一个小球使水面升高x厘米,由意,得3x=32﹣26,解得x=2;设一个大球使水面升高y厘米,由意,得2y=32﹣26,解得:y=3.所以,放入一个小球水面升高2cm,放入一个大球水面升高3cm;(2)设应放入大球m个,小球n个.由题意,得解得:,答:如果要使水面上升到50cm,应放入大球4个,小球6个.26.在“老人节”前夕,某旅行社组织了一个“夕阳红”旅行团,共有253名老人报名参加,旅行前,旅行社承诺每车保证有且只有一名随团医生,并为此次旅行请了7名医生,现打算选租甲、乙两种客车,其中甲种客车每辆载客40人,乙种客车每辆载客30人.(1)请帮助旅行社设计租车方案.(2)若甲种客车租金为350元每辆,乙种客车租金为280元每辆,旅行社按照哪种方案租车最省钱?此时租金是多少?【考点】一次函数的应用;一元一次不等式组的应用.【分析】(1)设租甲种客车x辆,则租乙种客车(7﹣x)辆,依题意关系式为:40x+30(7﹣x)≥253+7,(2)分别算出各个方案的租金,比较即可.【解答】解:(1)设租甲种客车x辆,则租乙种客车(7﹣x)辆,依题意,得40x+30(7﹣x)≥253+7,解得x≥5,又x≤7,即5≤x≤7,x=5,6,7,有三种租车方案:租甲种客车5辆,则租乙种客车2辆,租甲种客车6辆,则租乙种客车1辆,租甲种客车7辆,则租乙种客车0辆;(2)∵5×350+2×280=2310元,6×350+1×280=2380元,7×350=2450元,∴租甲种客车5辆;租乙种客车2辆,所需付费最少为2310(元).27.已知:如,直线a∥b,直线c与直线a、b分别相交于C、D 两点,直线d与直线a、b分别相交于A、B两点.(1)如1,当点P在线段AB上(不与A、B两点重合)运动时,∠1、∠2、∠3之间有怎样的大小关系?请说明理由;(2)如2,当点P在线段AB的延长线上运动时,∠1、∠2、∠3之间的大小关系为∠1=∠2+∠3;(3)如3,当点P在线段BA的延长线上运动时,∠1、∠2、∠3之间的大小关系为∠2=∠1+∠3.【考点】平行线的性质.【分析】(1)过点P作a的平行线,根据平行线的性质进行解题;(2)过点P作b的平行线PE,由平行线的性质可得出a∥b∥PE,由此即可得出结论;(3)设直线AC与DP交于点F,由三角形外角的性质可得出∠1+∠3=∠PFA,再由平行线的性质即可得出结论.【解答】解:(1)如1,过点P作PE∥a,则∠1=∠CPE.∵a∥b,PE∥a,∴PE∥b,∴∠2=∠DPE,∴∠3=∠1+∠2;(2)如2,过点P作PE∥b,则∠2=∠EPD,∵直线a∥b,∴a∥PE,∴∠1=∠3+∠EPD,即∠1=∠2+∠3.故答案为:∠1=∠2+∠3;(3)如3,设直线AC与DP交于点F,∵∠PFA是△PCF的外角,∴∠PFA=∠1+∠3,∵a∥b,∴∠2=∠PFA,即∠2=∠1+∠3.故答案为:∠2=∠1+∠3.【七年级上册数学期中考试卷及答案】。
(-2)11+(-2)10七年级第一学期期中考试数学试卷一、选择题(每题3分,共30分)1.-3的相反数是()A.-13B.-3C.13D.32.2010年5月1日至2010年10月31日期间在上海举行的世界博览会总投资约450亿元人民币,其中“450亿”用科学计数法表示为()元A. 4.5⨯1010B. 4.5⨯109C. 4.5⨯108D.0.45⨯1093.下列说法错误的是()A.2x2-3xy-1是二次三项式B.-x+1不是单项式2C.-πxy2的系数是-323π D.-22xab2的次数是64.│3.14-π|的值是()A.0B.3.14-πC.π-3.14D.3.14+π5.若-3x2m y3与2x4y n是同类项,那么m-n=()A.0B.1C.-1D.-26.有理数a、b在数轴上的对应的位置如图所示:则()a b-101A.a+b<0B.a+b>0C.a-b=0D.a-b>07.计算的值是()A.-2B.(-2)21C.0D.-2108.减去-3x得x2-3x+6的式子为()A.x2+6 B.x2+3x+6 C.x2-6x D.x2-6x+69.若(a-1)2+|b+2|=0,则a+b的值是()A.3B.1C.2D.-113. 观察一列数: 1 1 210.化简 2a - [3b - 5a - (2a - 7b )] 的结果是( )A. - 7a + 10bB. 5a + 4bC. - a - 4bD. 9a - 10b二、填空题(每题 3 分,共 30 分)5ab 311.单项式 - 的系数是,次数是 .812.已知|x | =3, (y + 1)2 = 4 , 且 xy <0,则 x -y 的值是.2 3 4 5 6, - , , - , , - ……根据规律,请你写出第 10 个数是________2 5 10 17 26 3714. 化简 3x 2 - ⎡⎣7 x - (4 x - 3) - 2 x 2 ⎤⎦ 的结果是________15. 规定一种新运算: a ∆b = a ⋅ b - a - b + 1 , 如 3∆ 4 = 3 ⨯ 4 - 3 - 4 + 1,则(△-2) 5=________16. 已知 a 、b 互为相反数,m 、n 互为倒数,x 的绝对值为 2 ,计算 -2mn +17.计算: -15 - (-8) + (-11) - 12 =________18.汽车向东行驶 5 千米记作+5 千米,那么汽车向西行驶 5 千米记作________a +b m - n- x 2=______。
2024年最新人教版七年级数学(上册)期中试卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列哪个数是有理数?A. √2B. 3/4C. πD. √12. 下列哪个数是整数?A. 1.5B. 2/3C. 3/4D. 53. 下列哪个数是无理数?A. 2/3B. 3.25C. √3D. 1/24. 下列哪个式子是正确的?A. √9 = 3B. √9 = 3C. √9 = 2D. √9 = 45. 下列哪个式子是错误的?A. 2^3 = 8B. 3^2 = 9C. 4^2 = 16D. 5^2 = 20二、判断题5道(每题1分,共5分)1. 任何两个有理数的和都是有理数。
()2. 任何两个整数的积都是整数。
()3. 任何两个无理数的积都是无理数。
()4. 任何两个实数的和都是实数。
()5. 任何两个实数的积都是实数。
()三、填空题5道(每题1分,共5分)1. 两个有理数的和是______数。
2. 两个整数的积是______数。
3. 两个无理数的积是______数。
4. 两个实数的和是______数。
5. 两个实数的积是______数。
四、简答题5道(每题2分,共10分)1. 请简要说明有理数的定义。
2. 请简要说明整数的定义。
3. 请简要说明无理数的定义。
4. 请简要说明实数的定义。
5. 请简要说明有理数和无理数的区别。
五、应用题:5道(每题2分,共10分)1. 计算下列式子的值:2^3 + 3^2 4^22. 计算下列式子的值:√9 + √16 √253. 计算下列式子的值:3/4 + 2/3 1/24. 计算下列式子的值:2/3 3/4 4/55. 计算下列式子的值:√2 √3 √6六、分析题:2道(每题5分,共10分)1. 请分析并解释为什么√1是无理数。
2. 请分析并解释为什么π是无理数。
七、实践操作题:2道(每题5分,共10分)1. 请用计算器计算下列式子的值:2^10 + 3^5 4^32. 请用计算器计算下列式子的值:√9.6 + √36.9 √81.25八、专业设计题:5道(每题2分,共10分)1. 设计一个函数,使其输入一个正整数n,输出n的所有正因数。
2020~2020学年度上学期七年级数学期中调考试卷满分:120分 时间:120一、选一选,比比谁细心(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.12-的绝对值是( ).(A) 12 (B)12- (C)2 (D) -22.武汉长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长16800m ,用科学记数法表示这个数为( ).(A)1.68×104m (B)16.8×103 m (C)0.168×104m (D)1.68×103m3.如果收入15元记作+15元,那么支出20元记作( )元. (A)+5 (B)+20 (C)-5 (D)-204.有理数2(1)-,3(1)-,21-, 1-,-(-1),11--中,其中等于1的个数是( ). (A)3个 (B)4个 (C)5个 (D)6个5.已知p 与q 互为相反数,且p ≠0,那么下列关系式正确的是( ). (A).1p q = (B)1qp= (C) 0p q += (D) 0p q -=-6.方程5-3x=8的解是( ).(A )x=1 (B )x=-1 (C )x=133 (D )x=-1337.下列变形中, 不正确的是( ).(A) a +(b +c -d)=a +b +c -d (B) a -(b -c +d)=a -b +c -d (C) a -b -(c -d)=a -b -c -d (D) a +b -(-c -d)=a +b +c +d8.如图,若数轴上的两点A 、B 表示的数分别为a 、b ,则下列结论正确的是( ). (A) b -a>0(B) a -b>0(C) ab >0(D) a +b>09.按括号内的要求,用四舍五入法,对( ). (A)1022.01(精确到0.01) (B)1.0×103()(C)1020(精确到十位) (D)1022.010(10.“一个数比它的相反数大-4”,若设这数是x ,则可列出关于x 的方程为( ).(A)x=-x+4 (B)x=-x+(-4) (C)x=-x-(-4) (D)x-(-x )=411. 下列等式变形:①若a b =,则a b xx =;②若a bx x=,则a b =;③若47a b =,则74a b=;④若74a b=,则47a b =.其中一定正确的个数是( ).(A)1个 (B)2个 (C)3个 (D)4个12.已知a 、b 互为相反数,c 、d 互为倒数,x 等于-4的2次方,则式子1()2cd a b x x ---的值为( ). (A)2 (B)4 (C)-8 (D)8二、填一填, 看看谁仔细(本大题共4小题, 每小题3分, 共12分, 请将你的答案写在“_______”处)13.写出一个比12-小的整数: .14.已知甲地的海拔高度是300m ,乙地的海拔高度是-50m ,那么甲地比乙地高____________m .15.十一国庆节期间,吴家山某眼镜店开展优惠学生配镜的活动,某款式眼镜的广告如图,请你为广告牌补上原价.16输出 (1)225310417526…时,输出的数据为.三、解一解, 试试谁更棒(本大题共9小题,共72分)17.(本题10分)计算(1)13(1)(48)64-+⨯-(2)4)2(2)1(310÷-+⨯-解:解:18.(本题10分)解方程(1)37322x x+=- (2)11 1326x x -=-解:解:19.(本题6分)某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,星期一二三四五六日增减/辆-1 +3 -2 +4 +7 -5 -10(2)本周总的生产量是多少辆?(3分)解:20.(本题7分)统计数据显示,在我国的664座城市中,按水资源情况可分为三类:暂不缺水城市、一般缺水城市和严重缺水城市.其中,暂不缺水城市数比严重缺水城市数的3倍多52座,一般缺水城市数是严重缺水城市数的2倍.求严重缺水城市有多少座?解:21. (本题9分)观察一列数:1、2、4、8、16、…我们发现,这一列数从第二项起,每一项与它前一项的比都等于2.一般地,如果一列数从第二项起,每一项与它前一项的比都等于同一个常数,这一列数就叫做等比数列,这个常数就叫做等比数列的公比.(1)等比数列5、-15、45、…的第4项是_________.(2分)(2)如果一列数1234,,,a a a a 是等比数列,且公比为q .那么有:21a a q =,23211()a a q a q q a q ===,234311()a a q a q q a q ===则:5a =.(用1a 与q 的式子表示)(2分) (3)一个等比数列的第2项是10,第4项是40,求它的公比. (5分) 解:22.(本题8分)两种移动电话记费方式表(1)一个月内本地通话多少分钟时,两种通讯方式的费用相同?(5分)(2)若某人预计一个月内使用本地通话费180元,则应该选择哪种通讯方式较合算?(3分)解:23.(本题10分)关于x 的方程234x m x -=-+与2m x -=的解互为相反数.(1)求m 的值;(6分) (2)求这两个方程的解.(4分) 解:24.(本题12分)如图,点A 从原点出发沿数轴向左运动,同时,点B 也从原点出发沿数轴向右运动,3秒后,两点相距15个单位长度.已知点B 的速度是点A 的速度的4倍(速度单位:单位长度/秒).(1)求出点A 、点B 运动的速度,并在数轴上标出A 、B 两点从原点出发运动3全球通 神州行 月租费 50元/分 0本地通话费 0.40元/分 0.60元/分秒时的位置;(4分)解:(2)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A、点B的正中间?(4分)解:(3)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C同时从B点位置出发向A点运动,当遇到A点后,立即返回向B点运动,遇到B点后又立即返回向A点运动,如此往返,直到B点追上A点时,C点立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?(4分)解:2020-2020学年度上学期七年级数学期中考试参考答案与评分标准一、选一选,比比谁细心1.A2.C3.D4.B5.C6.B7.C8.A9.A 10.B 11.B 12.D二、填一填,看看谁仔细13.-1等 14. 350 15.200 16.865三、解一解,试试谁更棒17.(1)解: 13(1)(48)64-+⨯-= -48+8-36 ....................................3分 =-76 (5)分(2)解: 4)2(2)1(310÷-+⨯-=1×2 +(-8)÷4 ………………………………2分 =2-2=0 ………………………………5分18.(1)解:37322x x +=-3x+2x=32-7 ………………………………2分5x=25 (4)分x=5 (5)分(2) 解:111326x x -=-113126x x -+=- ………………………………2分 13x -=2 ………………………………4分x=-6 (5)分19. 解: (1)7-(-10)=17 ………………………………3分(2) (-1+3-2+4+7-5-10 )+100×7=696 ………………………………6分20.解:设严重缺水城市有x 座,依题意有: ………………………………1分3522664x x x +++= ………………………………4分 解得x=102 ………………………………6分答:严重缺水城市有102座. ………………………………7分21.(1)81……2分 (2) 41a q …………………4分(3)依题意有:242a a q = ………………………………6分 ∴40=10×2q ∴2q =4 ………………………………7分 ∴2q =± ……………………………9分22.(1)设一个月内本地通话t 分钟时,两种通讯方式的费用相同.依题意有:50+0.4t=0.6t ………………………………3分解得t=250 ………………………………4分(2)若某人预计一个月内使用本地通话费180元,则使用全球通有:50+0.4t=180 ∴1t =325 ………………………………6分若某人预计一个月内使用本地通话费180元,则使用神州行有: 0.6t=180 ∴2t =300∴使用全球通的通讯方式较合算. ………………………………8分23.解:(1) 由234x m x -=-+得:x=112m + …………………………2分依题意有:112m ++2-m=0解得:m=6 ………………………6分(2)由m=6,解得方程234x m x -=-+的解为x=4 ……………8分 解得方程2m x -=的解为x=-4 ………………………10分 24. (1)设点A 的速度为每秒t 个单位长度,则点B 的速度为每秒4t 个单位长度.依题意有:3t+3×4t=15,解得t=1 …………………………2分∴点A 的速度为每秒1个单位长度, 点B 的速度为每秒4个单位长度. …3分画图 ……………4分(2)设x 秒时,原点恰好处在点A 、点B 的正中间. ………………5分根据题意,得3+x=12-4x (7)分解之得 x=1.8即运动1.8秒时,原点恰好处在A、B两点的正中间………………8分(3)设运动y秒时,点B追上点A根据题意,得4y-y=15,解之得 y=5 (10)分即点B追上点A共用去5秒,而这个时间恰好是点C从开始运动到停止运动所花的时间,因此点C行驶的路程为:20×5=100(单位长度) ………………12分。
七年级上册数学期中考试试题一、单选题1.一天早晨的气温是-3°C,中午上升到15°C,则这天中午比早晨的气温上升了()A .15℃B .18°C C .-3℃D .-18°C2.下列各个运算中,结果为负数的是()A .2-B .()2--C .2(2)-D .22-3.下列说法正确的是()A .一个数的绝对值一定比0大B .最小的正整数是1C .绝对值等于它本身的数一定是正数D .一个数的相反数一定比它本身小4.下列各式12mn -,8,1a ,226x x ++,25x y-,1y ,a -中,整式有()A .4个B .5个C .6个D .7个5.对于多项式2235x x -+,下列说法错误的是()A .它是二次三项式B .最高次项的系数是2C .它的常数项是5D .它的项分别是22x ,3x ,56.若-2a 2b m+2与﹣a n -1b 4的和是单项式,则m ﹣n 的值为()A .0B .-1C .1D .-27.已知一个多项式与239x x +的和等于2541x x +-,则这个多项式是()A .28131x x +-B .2251x x -++C .2851x x -+D .2251x x --8.若|2|2a a -=,则下列结论正确的是()A .0a >B .0a <C .0a ≥D .0a ≤9.a,b,c 在数轴上的对应点的位置如图所示,化简|b-c|+|a+b|-|a|的结果是()A .cB .c-2bC .2a+cD .-c10.下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x 的值为()A .135B .170C .209D .252二、填空题11.﹣13的相反数是_____.12.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法可表示为_____.13.(用“>”,“<”或“=”填空):13-________25-.14.绝对值大于1.1而小于3.9的所有整数有________.15.已知233m m --的值为2,那么代数式2202126m m -+的值是________.16.数轴上有一动点A ,从原点出发沿着数轴移动,第一次点A 向左移动1个单位长度到达点1A ,第二次将点A 向右移动2个单位长度到达点2A ,第三次将点A 向左移动3个单位长度到达点3A ,按照这种移动规律移动下去,第n 次移动到点n A ,当2022n =时,点A 与原点的距离是________个单位.三、解答题17.计算:(1)()()()()10125+-++---;(2)()()3432⎛⎫+⨯+÷- ⎪⎝⎭;(3)()25124382⎛⎫-⨯-+ ⎪⎝⎭;(4)()()()24083218÷-+-⨯-+;(5)()()()20213116822⎛⎫-+-⨯--÷- ⎪⎝⎭;(6)()()222104132⎡⎤-+---⨯⎣⎦.18.化简:(1)232322343a a a a a --++;(2)2211218522a a a a ⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭.19.先化简,后求值:()()32323224a ab b a ab b -+---+,其中1a =-,17b =.20.已知多项式2512A x my =+-与多项式21B nx y =++(m 、n 为常数),如果23A B +中不含x 和y ,求mn 的值.21.某同学绘制了如图所示的火箭模型截面图,图的下面是梯形,中间是长方形,上面是三角形.(1)用含有a 、b 的代数式表示该截面的面积S ;(2)当 2.8a cm =, 2.2b cm =时,求这个截面的面积.22.某登山队5名队员以大本营为基地,向海拔距离大本营500米的顶峰发起登顶冲击,假设向上走为正,向下走为负,行程记录如下(单位:米)+120,-30,-45,+205,-30,+25,-20,-5,+30,+105,-25,+90.(1)他们有没有登上顶峰?如果没有登上顶峰,他们距离顶峰多少米?(2)登山时,5名队员在进行中全程均使用了氧气,每人每100米消耗氧气0.5升,求共使用了多少升氧气?23.观察下面三行数:2-,4,8-,16,32-,64,…;①0,6,6-,18,30-,66,…;②1-,2,4-,8,16-,32,…;③(1)第一行的第8个数是________,第二行的第8个数是________,第三行的第n 个数是________;(2)在第三行中,某三个连续数的和为96,求这三个数.24.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是________,表示3-和2两点之间的距离是________.(2)一般地,数轴上表示数m 和数n 的两点之间的距离等于m n -.如果表示数a 和1-的两点之间的距离是3,那么=a ________.(3)若数轴上表示数a 的点位于4-与2之间,则42a a ++-的值为________;(4)利用数轴找出所有符合条件的整数点x ,使得|x +2|+|x -5|=7,这些点表示的数的和是.(5)当=a ________时,314a a a ++-+-的值最小,最小值是________.25.如图,若点A 在数轴上对应的数为a ,点B 在数轴上对应的数为b ,且a ,b 满足2|1|(2)0a b -++=.(1)求线段AB 的长.(2)点C 在数轴上对应的数是c ,且c 是方程1232x x -=的解,在数轴上是否存在点P ,使得PA +PB =PC ?若存在,求出点P 对应的数;若不存在,请说明理由.(3)在(1)、(2)的条件下,点A 、B 、C 开始在数轴上运动,若点B 以每秒1个单位长度的速度向左运动,同时点A 和点C 分别以每秒4个单位长度和9个单位长度的速度向右运动,t 秒钟后,若点A 和点C 之间的距离表示为AC ,点A 和点B 之间的距离表示为AB ,那么AB -AC 的值是否随着时间的变化而变化?若变化,请说明理由;若不变,请求出AB -AC 的值.参考答案1.B【解析】【分析】利用有理数的减法运算,即可.【详解】--=,故选B.15(3)18【点睛】本题主要考查有理数的减法运算的实际运用,对题意的准确理解,列出算式,是解题的关键. 2.D【解析】【分析】先把各项分别化简,再根据负数的定义,即可解答.【详解】A、|-2|=2,不是负数;B、-(-2)=2,不是负数;C、(-2)2=4,不是负数;D、-22=-4,是负数.故选D.【点睛】本题考查了正数和负数,解决本题的关键是先进行化简.3.B【解析】【分析】根据绝对值的定义即可判断A和C,根据正整数的定义即可判断B,根据相反数的定义即可判断D.【详解】解:∵0的绝对值是0,∴A选项不合题意,∵由正整数的定义知最小的正整数是1,∴B选项符合题意,∵0的绝对值是0,但0不是正数,∴C选项不合题意,∵负数的相反数是正数,而正数大于负数,∴D选项不合题意,故选B.【点睛】本题主要考查了绝对值的定义,相反数的定义,整数的定义,解题的关键在于能够熟知定义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;如果两个数只有符号不同,数字相同,那么这两个数就叫做相反数,0的相反数是0.4.B【解析】【分析】根据整式的定义,结合题意即可得出答案.单项式和多项式都统称为整式.【详解】解:1a和1y的分母含有字母,是分式,不是整式;整式有12mn-,8,226x x++,25x y-,a-,共有5个,故选:B.【点睛】本题考查了整式的判断,理解整式的定义是解题的关键.5.D【解析】【分析】根据多项式的项以及单项式的次数、系数的定义即可作出判断.【详解】多项式2x2−3x+5是二次三项式,它的项分别是2x2,-3x,5;最高次项的系数是2,它的常数项是5,故A、B、C、正确,只有D 错误.故选D.【点睛】此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.6.B【解析】【分析】两个单项式的和是单项式,说明这两个单项式是同类项,根据同类项的定义可知n-1=2,m+2=4,从而求出m 、n ,继而求出m-n 的值.【详解】解:由题意可知:n-1=2,m+2=4,解得:n=3,m=2,∴m-n=2-3=-1.故选B.【点睛】本题考查了同类项的定义.7.D【解析】【分析】由和减去一个加数等于另一个加数,列出关系式,去括号合并即可得到结果.【详解】解:根据题意列得:2541x x +--(239x x +)=2251x x --,故选D .【点睛】此题考查了整式的加减运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.8.C【解析】根据非正数的绝对值是它的相反数即可求解.【详解】∵|-2a|=2a,∴-2a≤0,解得a≥0.故选:C.【点睛】此题考查绝对值,解题关键在于掌握如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a 的绝对值是它的相反数-a;③当a是零时,a的绝对值是零.9.B【解析】【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】根据题意得:a<b<0<c,∴b-c<0,a+b<0,则原式=c-b-a-b+a=c-2b.故选B.【点睛】此题考查整式的加减,熟练掌握运算法则是解本题的关键.10.C【解析】【分析】观察数字的变化设表格中左上角的数字为a,则左下角的数字为a+1,右上角的数字为2a+2,右下角的数字为(a+1)(2a+2)+a,进而可得结论.【详解】解:∵a+(a+2)=20,∵b=a+1,∴b=a+1=9+1=10,∴x=20b+a=20×10+9=200+9=209故选C.【点睛】本题考查了规律型:数字的变化类,解决本题的关键是观察数字的变化寻找规律,总结规律,运用规律.11.1 3【解析】【详解】解:根据相反数的定义可知1-3的相反数是13.故答案为:1 3.12.6.75×104【解析】【详解】解:67500=6.75×104.故答案为:6.75×104.13.>【解析】【分析】根据两个负数绝对值大的反而小进行比较即可.【详解】解:1153315-==,2265515-==,∵56 1515<,∴1235->-.故答案为:>.【点睛】本题考查了有理数大小比较,要熟练掌握并正确运用有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数比较大小,绝对值大的其值反而小.14.2±,3±【解析】【分析】根据绝对值意义以及有理数的大小比较即可求得答案.【详解】解:绝对值大于1.1而小于3.9的所有整数有2±,3±.故答案为:2±,3±.【点睛】本题考查了绝对值的意义,有理数的大小比较,理解绝对值的意义是解题的关键.15.2011【解析】【分析】将所求代数式适当变形,利用整体代入的思想方法解答即可得出结论.【详解】解:∵233m m --的值为2,∴2332m m --=,∴235m m -=.∴()222021262021232021252021102011m m m m -+=--=-⨯=-=.故答案为:2011.【点睛】此题考查了代数式求值,解题的关键是掌握整体代入的求解方法.16.1011【解析】【分析】由点的运动方式,可得到规律运动次数是奇数时,A 点在数轴上表示的数为1-,2-,3-,…运动次数是偶数时,A 点在数轴上表示的数为1,2,3,…,由于2022n =是偶数,则可求解.【详解】解:第一次A 点在数轴上表示的数为1-,第二次A 在数轴上表示的数为1,第三次A 在数轴上表示的数为到2-,第四次A 在数轴上表示的数为2,第五次A 在数轴上表示的数为3-,第六次A 在数轴上表示的数为3,⋯由此发现,运动次数是奇数时,A 点在数轴上表示的数为1-,2-,3-,⋯运动次数是偶数时,A 点在数轴上表示的数为1,2,3,⋯当2022n =时,A 点在数轴上表示的数为1011,∴点A 与原点的距离是1011个单位,故答案为:1011.【点睛】本题考查数字的变化规律;能够理解题意,并能由点运动后在数轴上表示的数总结出规律是解题的关键.17.(1)12;(2)-8;(3)-13;(4)1;(5)3;(6)-68【解析】【分析】(1)先把减法转化为加法,然后根据有理数加法的计算方法计算即可;(2)根据有理数的乘除法计算即可;(3)根据乘法分配律计算即可;(4)(5)先算乘方、再算乘除法、最后算加减法即可;(6)先算乘方和括号内的式子,然后算括号外的加法即可.【详解】解:(1)()()()()()()101251012512+-++---=+-+-+=;(2)()()324343823⎛⎫+⨯+÷-=-⨯⨯=- ⎪⎝⎭;(3)()25124382⎛⎫-⨯-+ ⎪⎝⎭()()()251242424382=-⨯--⨯-⨯()()161512=-++-13=-;(4)()()()()()()()2408321853418512181÷-+-⨯-+=-+-⨯+=-+-+=;(5)()()()()()()2021311682138813132⎛⎫-+-⨯--÷-=-+-÷-=-++= ⎪⎝⎭;(6)()()222104132⎡⎤-+---⨯⎣⎦()10016192=-+--⨯⎡⎤⎣⎦()1001682=-+--⨯⎡⎤⎣⎦()1001616=-++10032=-+68=-.【点睛】本题考查了有理数的混合运算,正确的计算是解题的关键.18.(1)2a -;(2)2734a a +-【解析】【分析】(1)根据合并同类项法则求解即可求出答案.(2)先去括号,然后合并同类项即可求出答案.【详解】解:(1)232322343a a a a a --++222332433a a a a a =-++-2a =-.(2)2211218522a a a a ⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭2235285522a a a a =-+-+-2235258522a a a a =++---2734a a =+-【点睛】本题考查整式的加减,熟练运用整式的加减运算法则是解题的关键.19.3257a b -,157-【解析】【分析】去括号,合并同类项,再把1a =-,17b =,代入化简后的多项式计算.【详解】解:()()32323224a ab b a ab b -+---+323232228a ab b a ab b ++=-+-3257a b =-,当1a =-,17b =,原式()2311517577⎛⎫=⨯--⨯=- ⎪⎝⎭.【点睛】本题考查了整式的加减—化简求值,熟练掌握整式的加减—化简求值的步骤:先化简,再把给定字母的值代入计算,得出整式的值,合并同类项是解题关键.20.5【解析】【分析】先根据整式的加减计算法则求出()()2231032321A B n x m y +=+++-,然后;令含x 和含y的项的系数为0,即可得到m 、n 的值,然后代值计算即可【详解】解:∵2512A x my =+-,21B nx y =++,∴()()2223251231A B x my nx y +=+-+++2210224333x my nx y =+-+++()()21032321n x m y =+++-,∵23A B +中不含x 和y ,∴1030 230nm+=⎧⎨+=⎩,∴32103 mn⎧=-⎪⎪⎨⎪=-⎪⎩,∴310523mn⎛⎫=-⨯-=⎪⎝⎭.【点睛】本题主要考查了整式的加减计算,代数式求值,解题的关键在于熟知如果一个多项式中不含某个字母,则含有这个字母的项的系数为0.21.(1)S=2a2+2ab;(2)28cm2.【解析】【分析】(1)根据题意和图形中的数据可以用代数式表示出截面的面积S;(2)将a、b的值代入(1)中的代数式即可解答本题.【详解】解:(1)由题意可得,该截面的面积S=12ab+a•2a+12(a+2a)•b=12ab+2a2+12ab+ab=2a2+2ab,即该截面的面积S是2a2+2ab;(2)当a=2.8cm,b=2.2cm时,S=2×2.82+2×2.8×2.2=15.68+12.32=28cm2,答:这个截面的面积是28cm2.【点睛】本题考查代数式求值、列代数式,解答本题的关键是明确题意,列出相应的代数式,求出代数式的值,利用数形结合的思想解答.22.(1)他们没有登上顶峰,他们距离顶峰80米;(2)18.25【解析】【分析】(1)将行程的数据相加,与500比较,进而判断是否登上顶峰,再计算距离顶峰多少米;(2)将行程的数据的绝对值相加,根据每人每100米消耗氧气0.5升,计算即可【详解】(1)12030452053025205301052590--+-+--++-+420=(米).50042080-=(米),答:他们没有登上顶峰,他们距离顶峰80米.(2)12030452053025205301052590730+++++++++++=(米),每人每100米消耗氧气0.5升,∴73051000.518.25⨯÷⨯=(升),答:他们共消耗18.25升氧气.【点睛】本题考查了有理数加减法的应用,有理数的混合运算,理解题意正确的计算是解题的关键.23.(1)256,258,()22n-÷;(2)32,64-,128【解析】【分析】(1)观察每一行数的规律即可写出每一行的第n 个数;(2)根据(1)中得到的规律得第三行的第n 个数为()12n --,根据条件建立方程,就可解决问题.【详解】解:(1)观察三行数的规律可知:第1行第1个数为:()122-=-,第1行第2个数为:()224-=,第1行第3个数为:()328-=-,第1行第4个数为:()4216-=,∴第1行数的第n 个数为:()2n-;第2行数的第1个数为:()122220-+=-+=,第2行数的第2个数为:()222426-+=+=,第2行数的第3个数为:()322826-+=-+=-,第2行数的第4个数为:()42216218-+=+=,∴第2行数的第n 个数为:()22n -+;第3行数的第1个数为:()122221-÷=-÷=-,第3行数的第2个数为:()222422-÷=÷=,第3行数的第3个数为:()322824-÷=-÷=-,第3行数的第4个数为:()4221628-÷=÷=,∴第3行数的第n 个数为:()22n -÷.∴第一行的第8个数是()82256-=,第二行的第8个数是()8222562258-+=+=,第三行的第n 个数是()22n -÷,故答案为:256,258,()22n-÷;(2)第三行的第n 个数为()22n -÷,若第三行的第n 个数、第()1n +个数、第()1n -个数的和为96,则有()()()1122222296n n n -+-÷+-÷+-÷=,∴()()()11222192n n n -+-+-+-=,∴()()()()()()111222222192n n n ----+-⨯-+-⨯-⨯-=∴()()12124192n --⨯-+=,∴()162642n --==,∴16n -=,∴7n =,∴()712232--÷=,()72264-÷=-,()7122128+-÷=,∴这三个数为32,64-,128.【点睛】本题主要考查了含乘方的有理数混合计算,数字类的规律问题,解题的关键在于能够根据题意准确得到规律.24.(1)3,5;(2)2或-4;(3)6;(4)12;(5)1;7【解析】【分析】(1)根据数轴上两点之间的距离等于两点所表示数的绝对值进行解答即可;(2)根据数轴上两点之间的距离等于两点所表示数的绝对值得到13a +=,解得即可;(3)先根据表示数a 的点位于5-与2之间可知52a -<<,再根据绝对值的性质把原式去掉绝对值符号求出a 的值即可;(4)根据线段上的点到线段两端点的距离的和最小,可得答案.(5)根据分类讨论的数学思想可以解答本题.【详解】解:(1)由数轴上两点之间的距离公式可知:数轴上表示4和1的两点之间的距离是413-=;表示3-和2两点之间的距离是325--=;故答案为:3,5;(2)若表示数a 和1-的两点之间的距离是3,则13a +=,解得2a =或4a =-,故答案为:2或4-;(3)∵42a -<<,∴42426a a a a ++-=++-=;故答案为:6;(4)当5x >时,7252523x x x x x ++-=++=->-,当25x -≤≤时,25257x x x x ++-=++-=,当2x <-时,2525237x x x x x ++-=--+-=-+>,∴使得257x x ++-=的所有整数为:2-,1-,0,1,2,3,4,5,∵()2101234512-+-++++++=,故答案为:12;(5)当4a >时,3143143210a a a a a a a ++-+-=++-+-=->,当14a <≤时,3143146a a a a a a a ++-+-=++-+-=+,则7610a <+≤,当31a -<≤时,3143148a a a a a a a ++-+-=++-+-=-,则7181a ≤-<,当3x ≤-时,3143143211a a a a a a a ++-+-=--+-+-=-+≥,由上可得,当1a =时,314a a a ++-+-的值最小,最小值是7,故答案为:1,7.【点睛】本题考查数轴、绝对值等知识点,明确题意,利用数轴的特点和分类讨论的数学思想解答是解答本题的关键.25.(1)3;(2)存在,3-或1-;(3)2,理由见解析【解析】【分析】(1)根据非负数的性质可确定,a b 的值,进而求得AB 的长度;(2)先解方程求得x 的值,再根据PA PB PC +=,求得点P 对应的数;(3)根据,,A B C 的运动情况,即可确定,AB AC 的变化情况,进而确定AB BC -的值.【详解】(1) 2|1|(2)0a b -++=,10,20a b ∴-=+=,解得1,2a b ==-,∴线段AB 的长为:1(2)3--=;(2)解1232x x -=,解得2x =,C ∴点对应的数是2,如图,设P 对应的数为y , PA PB PC +=,由图可知P 在A 的右侧时不存在,①当P 在B 点的左侧时,122y y y ---=-,解得3y =-,②当P 点在A ,B 之间时,32y =-,解得1y =-,∴存在点P 使得PA PB PC +=,P 对应的数是3-或1-;(3)AB AC -的值不随着时间t 的变化而变化,理由如下:t 秒钟后,A 点的位置为:14t +,B 点的位置为2t --,C点的位置为29t+,=+---=+,14(2)53AB t t t=+-+=+,AC t t t29(14)51-=+-+=,AB AC t t53(51)2∴AB AC-的值不随着时间t的变化而变化,值为2.。
彭州市三界镇罗万九年制学校初2020级七年级(上)数学期中考试题(时间120分钟,满分150分) 命题人:王勇 审题人:李均元温馨提示:亲爱的同学们,经过这段时间的学习,相信你已经拥有了许多知识财富!下面这套试卷是为了展示你最近的学习效果而设计的,只要你仔细审题,认真 作答,遇到困难时不要轻易放弃,就一定会有出色的表现!注意:请将选择题 和填空题的答案填在后面的表格中 A 卷(100分)、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中, 只有一项是符合题目要求的.1.1的相2()A. 1 2B.2C.-2D.2. 钓鱼岛是位于我国东海钓鱼岛列岛的主岛,被誉为“深海中的翡翠”,面积约4400000平方米,数据4400000用科学记数法表示为( )3. 用一个平面去截一个几何体,得到的截面是四边形,这个几何体可能是(7. 下列各组数中,结果相等的是33A 12 与 1 2B 、—与-3 3A.圆锥B.球体C.圆柱D.以上都有可能4. 下列各式符合代数式书写规范的是(B § t A 、 a85. 将右图折叠成正方体后,与 A 、爱6. B 、南 F 列去括号正确的是( C 、m 1 元 “是”字相对面上的汉字是 1?x5)B 、C 、 65A 4.4 10B 0.44 105C 、44 105D 4.4 10C 、338. 下列语句()A.数字0也是单项式B.C. 1xy是二次单项式D.29. 女口果a 3, b 1,且a b()A. 4 B . 2 C中错误的是单项式-a的系数与次数都是12ab的系数是_ 233,那么a b的值是4D4或210.某植物园沿路护栏纹饰部分设计成若干个相同的菱形图案,如图所示,形的横向对角线长为30 cm,每增加一个菱形图案,纹饰长度就增加该纹饰总长度L为6010cm,则需要这样的菱形图案的个数为(每个菱20cm ,)B、299 301C 300 D二、填空题:本大题共5小题,每小题3分,共15分,把答案填写在题中横线上.11.比较大小:-n _________ - 3.14 (填=,>,V号).212.单项式厶亠的系数是15,次数是次.13.在数轴上,点M表示的数是一2,将它先向右移动4.5个单位,再向左移5个单位到达点N,则点N表示的数是___________________ .14.若代数式3a5b m 1与2a n b2是同类项,那么m n15. 为了节约用水,某市规定:每户居民每月用水不超过15立方米,按每立方米1.6元收费,超过15立方米,则超过部分按每立方米 2.4元收费.小明家六月份交水费33. 6元,则小明家六月份实际用水_____________________ 立方米三、图形题:本大题每小题6分,共12分.16. (本题6分)如图,这是一个由小立方块塔成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数.请你画出它的主视图与左视图主视图17. (本题6分)如图:正方形的边长为a其中有一直径为a的圆,阴影部分面积为S .(1)用含a的代数式表示阴影面积S ;(2)当a 4cm时,求阴影部分面积S.(取3.14)四、运算题:本题共2大题,7小题,共34分,解答应写出必要的计算过程.18. 计算:(每小题5分)1 4 28 29 24 ⑵(4)( £)I 4|c 3 7 5 1 Q ___ __ _____ O 4 14 1 0.5 21 23每小题每题6分)4 12 9 3619.化简((1)(2)每小题每题4分,(3)1 3a 2b 5b a 6b2 1 22a ab 4(—a ab 2)23先化简,再求值:已知2( 3xy x2) [2x2 3(5xy 2x2) xy],其中x, y 满足x 2 (y 3)20.六、解答题:本大题共9分,解答应写出必要的计算过程或文字说明.20.“十一”黄金周期间,九寨沟在7天假期中每天接待游客的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数)(1)若9月30日的游客人数为a万人,则10月2日的游客人数为 ____________ 万人;(2)七天内游客人数最大的是10月 _____________ 日;(3)若9月30日游客人数为3万人,门票每人220元。
七年级上册数学期中考试试题一、单选题1.在0.15-、 1.3+、0、32-这四个数中,最小的数是()A .0.15-B . 1.3+C .0D .32-2.计算()32-,正确结果是()A .-6B .-8C .6D .83.1x =-是下列哪个方程的解()A .56x -=B .1262x +=C .314x +=D .440x +=4.2||3-的相反数是()A .32B .23-C .32-D .235.下列去括号正确的是()A .-2(a +b)=-2a +bB .-2(a +b)=-2a -bC .-2(a +b)=-2a -2bD .-2(a +b)=-2a +2b6.下列说法中正确的是()A .单项式235xy 的系数是3,次数是2B .单项式15ab -的系数是15,次数是2C .12xy -是二次多项式D .多项式243x -的常数项是37.已知a 是三位数,b 是两位数,将a 放在b 的左边,所得的五位数是()A .abB .a b+C .10a b+D .100a b+8.代数式227y y ++的值是6,则2485y y +-的值是()A .9B .9-C .18D .18-9.如果a >0,b <0,且|a|<|b|,则下列正确的是()A .a+b <0B .a+b >0C .a+b=0D .ab=010.如图,两个正方形的面积分别为16,9,两阴影部分的面积分别为a ,b (a b >),则()-a b 等于()A .7B .6C .5D .4二、填空题11.如果80m 表示向东走80m ,那么60m -表示________.12.中国领水面积约为370000km 2,用科学记数法表示370000为_______.13.若单项式3m ab 和4-n a b 是同类项,则m n +=_________.14.已知|a|=5,|b|=7,且|a+b|=a+b ,则a−b 的值为___________.15.近似数63.2010⨯精确到____________位.16.若()223310a b ++-=,则ab =__________.17.观察下列式子:22222210101;21213;32325;-=+=-=+=-=+=222243437;54549-=+=-=+=……若字母n 表示自然数,请把你观察到的规律用字母n 表示出来:______________.18.如图所示,用火柴棍拼成一排由三角形组成的图形,如果图形中包含2个三角形就需要5根火柴棍,如果图形中包含8个三角形就需要______根火柴棍,如果图形中包含n 个三角形就需要____根火柴棍.(用含n 的代数式表示)三、解答题19.计算()()16252435+-++-20.解方程:23(1)12(10.5)-+=-+x x 21.计算:2335(2)10.8(2)4⎡⎤⎛⎫---+-⨯÷- ⎪⎢⎥⎝⎭⎣⎦22.先化简,再求值.224[62(42)]1x y xy xy x y ----+,其中12x =-,1y =.23.若多项式2||25(3)2m x y n y +--是关于x ,y 的四次二项式,求222m mn n -+的值.24.有理数a 、b 在数轴上的对应点位置如图所示(1)用“<”连接0、a -、b -、1-;(2)化简:||2||||-+--a a b b a .25.某出租车驾驶员从公司出发,在东西向的路上连续接送5批客人,行驶路程记录分别为:+5,+2,﹣4,﹣3,+10(规定向东为正,向西为负,单位:千米)(1)接送完第5批客人后,该驾驶员在公司的什么方向?距离公司多少千米?(2)若该出租车每千米耗油0.2升,则在这个过程中共耗油多少升?(3)若该出租车的计价标准为行驶路程不超过3千米收费10元,超过3千米的部分按每千米1.8元收费,在这过程该驾驶员共收到车费多少?26.观察下列各算式:221342,13593,1357164+==++==+++==.(1)试猜想:135720052007++++++ 的值?(2)推广:13579(21)(21)++++++-++ n n 的和是多少?27.一个跑道由两个半圆和一个长方形组成.已知长方形的长为a 米,宽为b 米.(1)用代数式表示该跑道的周长C .(2)用代数式表示该跑道的面积S .(3)当100a =,40b =时,求跑道的周长()π3C ≈.参考答案1.D【解析】【分析】根据有理数比较大小的方法求解即可.正数大于负数,两个负数比较大小,绝对值大的反而小.【详解】解:∵正数大于负数,又∵3 0.15<2--,∴3 0.15>2 --,∴这四个数中,最小的数是3 2-.故选:D.【点睛】此题考查了有理数比较大小,解题的关键是熟练掌握有理数比较大小的方法.正数大于负数,两个负数比较大小,绝对值大的反而小.2.B【解析】【分析】根据乘方的性质计算,即可得到答案.【详解】()328-=-故选:B.【点睛】本题考查了乘方的知识;解题的关键是熟练掌握乘方的性质,从而完成求解.3.D【解析】【分析】把1x=-分别代入四个选项的方程中,能够使得方程左右两边相等的选项即为所求.解:A 、把1x =-代入方程56x -=得156--=,即66=-不成立,故不符合题意;B 、把1x =-代入方程1262x +=得1262-+=,即362=不成立,故不符合题意;C 、把1x =-代入方程314x +=得314-+=,即24-=不成立,故不符合题意;D 、把1x =-代入方程440x +=得440-+=,即00=成立,故符合题意;故选D .【点睛】本题主要考查了一元一次方程的解,解题的关键在于能够熟练掌握一元一次方程解的定义.4.B 【解析】【分析】利用相反数的定义,先列式,再化简绝对值即可.【详解】−2-3的相反=-2-3=-23.故选择:B .【点睛】本题考查相反数与绝对值问题,掌握相反数与绝对值概念是关键.5.C 【解析】【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【详解】A.原式=−2a−2b ,故本选项错误;B.原式=−2a−2b ,故本选项错误;C.原式=−2a−2b ,故本选项正确;D.原式=−2a−2b ,故本选项错误;故选C.【点睛】考查去括号法则,当括号前面是“-”号时,把括号去掉,括号里的各项都改变正负号.6.C【分析】根据单项式与多项式的概念进行判断,即可得出正确结论.【详解】解:A .单项式235xy 的系数是35,次数是3,故本选项错误,不符合题意;B .单项式15ab -的系数是15-,次数是2,故本选项错误,不符合题意;C .12xy -是二次二项式,故本选项正确,符合题意;D .多项式243x -的常数项是3-,故本选项错误,不符合题意,故选:C .【点睛】本题主要考查了单项式与多项式的概念,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数,熟练掌握单项式与多项式的概念是解决本题的关键.7.D 【解析】【分析】组成五位数后,a 是原来的100倍,b 不变,相加即可.【详解】解:a 原来的最高位是百位,组成五位数后,a 的最高位是万位,是原来的100倍,b 的大小不变,那么这个五位数应表示成100a+b .故选:D .【点睛】本题主要考查列代数式,关键是看哪个数变大了,只把那个数变化即可.8.B 【解析】【详解】∵227y y ++=6,∴22y y +=-1,=4×(-1)-5=-9,故选B.9.A【解析】【分析】根据a>0,b<0,且|a|<|b|,可得a<-b,即a+b<0.【详解】∵a>0,b<0,且|a|<|b|,∴a<-b,即a+b<0.故选A.【点睛】本题考查了有理数的大小比较,解答本题的关键是根据题意得出a<-b.10.A【解析】【分析】设重叠部分面积为c,(a-b)可理解为(a+c)-(b+c),即两个正方形面积的差.【详解】设重叠部分面积为c,a-b=(a+c)-(b+c)=16-9=7,故选A.【点睛】本题考查了等积变换,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.11.向西走60米【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负来表示;【详解】80m表示向东走80m,规定向东为正,则-60m表示向西走60米.故答案为向西走60米.【点睛】本题主要考查了正数和负数的概念,掌握正数和负数的概念是解题的关键.12.3.7×105【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.确定a×10n(1≤|a|<10,n 为整数)中n的值,由于370000有6位,所以可以确定n=6-1=5.【详解】370000=3.7×105,故答案为3.7×105.【点睛】此题考查科学记数法—表示较大的数,解题关键在于掌握其一般表示形式.13.2【解析】【分析】根据同类项的概念求解.【详解】ab和4-n a b是同类项,解:∵单项式3m∴n=1,m=1,+=2,∴m n故答案为:2.【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.14.−2或−12.【解析】【分析】根据绝对值的性质求出a 、b 的值,然后代入进行计算即可求解.【详解】∵|a|=5,|b|=7,∴a=5或−5,b=7或−7,又∵|a+b|=a+b ,∴a+b ⩾0,∴a=5或−5,b=7,∴a−b=5−7=−2,或a−b=−5−7=−12.故答案为−2或−12.【点睛】此题考查绝对值,解题关键在于掌握其性质.15.万【解析】【分析】3.20×106精确到0.01×106位即万位.【详解】近似数3.20×106=3200000精确到万位,故答案为:万.【点睛】本题主要考查近似数,对于用科学记表示的数,精确到哪一位是需要识记的内容,经常会出错.16.12-【解析】【分析】由绝对值和平方的非负性结合已知条件求得a 、b 的值,再代入ab 中计算即可.【详解】解:∵223(31)0a b ++-=,∴3123a b =-=,∴311232ab =-⨯=-.故答案为12-.17.22(1)(1)21n n n n n --=+-=-【解析】【分析】观察式子即可得出结论.【详解】解:观察式子可发现22(1)(1)21n n n n n --=+-=-,故答案为:22(1)(1)21n n n n n --=+-=-.【点睛】本题考查规律型,观察式子得到规律是解题的关键.18.1721n +##12n+【解析】【分析】一个三角形时,将左边一根固定,后面每增加一个三角形就加2根火柴棍,据此可分别计算出有8个及n 个三角形时,火柴棍数量.【详解】有1个三角形时,需要123+=根火柴棍,有2个三角形时,需要1225+⨯=根火柴棍,有3个三角形时,需要1327+⨯=根火柴棍,有4个三角形时,需要1429+⨯=根火柴棍,……有8个三角形时,需要18217+⨯=根火柴棍,有n 个三角形,需要1221n n +⨯=+根火柴棍.故答案为:17,21n +.【点睛】本题考查了图形的变化规律,找出图形之间的联系是关键,并将得出的运算规律解决问题,属中档题.19.-20【解析】【分析】先根据有理数加法的交换律和结合律,得到()()16242535++-+-⎡⎤⎣⎦,再利用有理数加法法则,计算即可求解.【详解】解:()()16252435+-++-()()16242535=++-+-⎡⎤⎣⎦()406020=+-=-.【点睛】本题主要考查了有理数的加法运算,能利用有理数加法的交换律和结合律简化运算是解题的关键.20.x =0【解析】【分析】根据解一元一次方程的基本步骤依次去括号、移项、合并同类项、系数化为1即可.【详解】解:去括号,得:2﹣3x ﹣3=1﹣2﹣x ,移项,得:﹣3x+x =1﹣2﹣2+3,合并同类项,得:﹣2x =0,系数化为1,得:x =0.【点睛】本题主要考查解一元一次方程,解题的关键是熟练掌握等式的基本性质和解一元一次方程的基本步骤.21.4165-.【解析】【分析】先计算乘方,小数化分数,把除化乘,计算小括号的乘方,再计算小括号减法,计算中括号乘法,去括号,进行有数加法即可.【详解】解:2335(2)10.8(2)4⎡⎤⎛⎫---+-⨯÷- ⎢⎥⎝⎭⎣⎦,=4312581()542⎡⎤⎛⎫---+-⨯⨯- ⎪⎢⎥⎝⎭⎣⎦,=312581()52⎡⎤⎛⎫---+-⨯- ⎪⎢⎥⎝⎭⎣⎦,=21258()52⎡⎤---+⨯-⎢⎥⎣⎦,=12585⎛⎫---- ⎪⎝⎭,=12585-++,=4165-.【点睛】本题考查含乘方的有理数混合运算,掌握有理数混合运算顺序为先乘法,再乘除,最后加减,有括号先计算小括号,再算中括号,最后大括号是解题关金.22.2523x y xy +-,114-.【解析】【详解】解:原式=224[684]1x y xy xy x y --+-+=224[24]1x y xy x y --+-+,=224241x y xy x y +-++=2523x y xy +-,把12x =-,1y =代入上式得:原式=211115()12()13224⨯-⨯+⨯-⨯-=-.23.1,25.【解析】【分析】先根据多项式的次数与项数得出2430m n ⎧+=⎨-=⎩,解方程组,然后分类代入代数式计算即可.【详解】解:∵多项式2||25(3)2m x y n y +--是关于x ,y 的四次二项式,∴2430m n ⎧+=⎨-=⎩,解得23m n =±⎧⎨=⎩,当2,3m n ==时,222222223341291m mn n -+=-⨯⨯+=-+=;当2,3m n =-=时,()()2222222233412925m mn n -+=--⨯-⨯+=++=.【点睛】本题考查多项式的项数与次数,方程组,代数式求值,根据多项式的次数与项数得出2430m n ⎧+=⎨-=⎩是解题关键.24.(1)﹣1<﹣b <0<﹣a ;(2)2a+b 【解析】【分析】(1)先根据相反数的意义在数轴上分别表示出﹣a ,﹣b ,所对应的点,再根据数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,由此即可比较出0,﹣a ,﹣b ,﹣1的大小关系;(2)首先根据数轴可得a <0,a+b <0,b ﹣a >0,由此可得|a|=﹣a ,|a+b|=﹣(a+b ),|b ﹣a|=b ﹣a ,然后根据整式加减的运算法则化简即可.【详解】解:(1)由题意可得:由此可得:﹣1<﹣b <0<﹣a .(2)由数轴可得:a <0,a+b <0,b ﹣a >0,∴|a|=﹣a ,|a+b|=﹣(a+b ),|b ﹣a|=b ﹣a ,∴|a|﹣2|a+b|﹣|b﹣a|=﹣a+2(a+b)﹣(b﹣a)=﹣a+2a+2b﹣b+a=2a+b.【点睛】(1)此题主要考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.(2)此题还考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.(3)此题还考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a 是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.(4)此题还考查了整式的加减运算,要熟练掌握,解答此类问题的关键是要明确:整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.25.(1)接送完第五批客人后,该驾驶员在公司的东边10千米处.(2)4.8升.(3)68元.【解析】【分析】(1)根据有理数加法即可求出答案.(2)根据题意列出算式即可求出答案.(3)根据题意列出算式即可求出答案.【详解】解:(1)5+2+(−4)+(−3)+10=10(km)答:接送完第五批客人后,该驾驶员在公司的东边10千米处.(2)(5+2+|−4|+|−3|+10)×0.2=24×0.2=4.8(升)答:在这个过程中共耗油4.8升.(3)[10+(5−3)×1.8]+10+[10+(4−3)×1.8]+10+[10+(10−3)×1.8]=68(元)答:在这个过程中该驾驶员共收到车费68元.【点睛】本题考查正负数的意义,解题的关键是熟练运用正负数的意义,本题属于基础题型.n+.26.(1)1008016;(2)()21【分析】(1)根据2213134=22+⎛⎫+== ⎪⎝⎭,2215135932+⎛⎫++=== ⎪⎝⎭,221713571642+⎛⎫+++=== ⎪⎝⎭,2219135792552+⎛⎫++++=== ⎪⎝⎭,发现规律是n 个连续奇数的和等于第一个奇数与最后一个奇数和的一半的平方,由此可求135720052007++++++ =221200710042+⎛⎫= ⎪⎝⎭(2)根据规律可得一般形式,2212113579(21)2n n n +-⎛⎫+++++⋅⋅⋅+-== ⎪⎝⎭,从而可以求解推广.【详解】解:(1)2213134=22+⎛⎫+== ⎪⎝⎭,2215135932+⎛⎫++=== ⎪⎝⎭,221713571642+⎛⎫+++=== ⎪⎝⎭,2219135792552+⎛⎫++++=== ⎪⎝⎭,∴135720052007++++++ =221200710042+⎛⎫= ⎪⎝⎭=1008016;(2)一般形式2212113579(21)2n n n +-⎛⎫+++++⋅⋅⋅+-== ⎪⎝⎭,由此可以发现()()221211357921(21)12n n n n ++⎛⎫+++++⋅⋅⋅-++==+ ⎪⎝⎭,【点睛】本题主要考查了数字类规律,解题的关键在于能够根据题意发现规律是n 个连续奇数的和等于第一个奇数与最后一个奇数和的一半的平方,2212113579(21)2n n n +-⎛⎫+++++⋅⋅⋅+-== ⎪⎝⎭.27.(1)()2πa b +米(2)2π44b ab +平方米(3)320米【分析】(1)跑道的周长是两条“直道”和两条“弯道”的长度和;(2)长方形的面积与圆的面积和即可;(3)将a=100,b=40代入(1)中的代数式计算即可.(1)两条“直道”的长为2a 米,两条“弯道”的长为πb 米,因此该跑道的周长()2πC a b =+(米),答:该跑道的周长C 为()2πa b +米.(2)两个半圆的面积为22ππ24b b ⎛⎫⨯= ⎪⎝⎭(平方米),长方形的面积为ab (平方米),因此跑道的面积为22ππ444ab b b ab=+=+(平方米).(3)当100a =,40b =时,2π20040π200120320a b +=+≈+=(米),答:当100a =,40b =时跑道的周长C 约为320米.【点睛】本题考查列代数式和代数式求值,正确的列代数式是求值的前提.。
2024-2025学年人教版七年级数学上册期中考试检测试卷一、选择题(每题3分,共计36分)1.有关正负数的概念和运算法则的系统论述,记载于我国古代数学名著《九章算术》一书中,书中明确提出“正负数”,这是世界上至今发现的最早详细的记载.如果水位上升5米记作5+米,那么水位下降8米记作( )A.8− B.3C.13D.3−2.在2−、1−、0、1这四个数中,最小的数是( )A.1B.0C.-1D.-23.某市某天的最高气温为8C °,最低气温为9C −°,则最高气温与最低气温的差为( )A.17C° B.1C° C.17C−° D.1C−°4.水结成冰体积增大111,现有体积为a 水结成冰后体积为( )A 111a B.1211a C.1011a D.1112a 5.截至目前中国森林面积达到175000000公顷,森林覆盖率为18.21%,人工林面积居世界首位,其中数字175000000用科学记数法表示为( ) A.717.510× B.81.7510× C.91.7510× D.90.17510×6.李伯家有山羊m 2倍多18只,绵羊的数量为( )A.18m + B.18m − C.218m − D.218m +7.“△”表示一种运算符号,其意义是:2a b a b =− ,那么13 等于( )A.1B.1− C.5D.5−8.已知表示有理数a ,b 的点在数轴上的位置如图所示,则a ba b+的值是()A.2−B.1−C.0D.29.如果13x +=,5y =,0yx−>,那么y x −的值是()A.2或0B.2−或0C.1−或3D.7−或910.用8m 长的铝合金做成一个如图所示的长方形窗框,设长方形窗框的横条长度为m x ,则长方形窗框的面积为()的.A.()24m x x − B.()283m x x −C.234m 2x x −D.228m 3x x −11.如果()32a =−−,()33b =−,223c =−,那么a bc +的值为( )A.4− B.4C.20D.20−12.小强根据学习“数与式”积累的经验,111111111111122232334344545=−=−=−=−×××× ,,,,,则111111223344520202021+++++××××× 的值为( ).A.2020B. 20212022C.2021D.20202021二、填空题(每题4分,共计24分)13.计算:23−=____________. 14.对于有理数a b 、,若规定a b a ab ∗=−,则(2)5−∗的值为_______.15.若()22430||a b ++−-=,则b =___________;a =___________.16.若220230x y −−=,则代数式202424x y −+的值是__________.17.如图,一个瓶身为圆柱体的玻璃瓶内装有高a 厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h 厘米,则瓶内的墨水的体积约占玻璃瓶容积的_____.18.计算:111123344520132014++++=×××× ()三、解答题(19、20、21每题10分,22-26题每题12分,共计90分,写出必要的解答过程和步骤才给分)19.计算:(1)112712623 −−++−;(2)273132515858 ++−−−−+.20.把下列各数分别填入相应的集合里.1,0.20−,135,325,789−,0,23.13−,0.618,2004−非正数集合:{ …}; 非负数集合:{ …}; 非正整数集合:{ …}; 非负整数集合:{ …}.21.如图,在一条数轴上,点O 为原点,点A 、B 、C 表示数分别是1m +,2m −,94m −.(1)求AC 的长;(用含m 的代数式表示)(2)若5AB =,求BC 中点D 表示的数.22.已知:()21102a b −++=,c 是最小的自然数,d 是最大负整数. (1)求a ,b ,c ,d 值:(2)试求代数式()()328b ac d −+−的值.23.已知,如图,某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为20米,宽为10米,正方形的边长为1米,求阴影部分的面积.24.先阅读下列解题过程,再解答问题:解方程:32x +=. 解:当30x +≥时,原方程可化为32x +=,解得1x =−;当30x +<时,原方程可化为32x +=−,解得 5.x =−所以原方程的解是1x =−或5x =−.(1)解方程:3150x −−=;的的的(2)若1x a x −++的最小值为4,求a 的值.25.随着手机的普及,微信的兴起,许多人做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上实行包邮销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);星期一二三四五六日与计划量的差值4+3−5−14+8−21+6−(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售斤;(2)本周实际销售总量达到了计划数量没有?(3)若冬季每斤按8元出售,每斤冬枣的运费平均3元,那么小明本周一共收入多少元?26.阅读材料:求2342020122222++++++ 的值.解:设234201920201222222S =+++++++ ,将等式两边同时乘2,得 ,23452020202122222222S =+++++++将下式减上式,得2021221S S −=−,即 202121S =−, 即 2342020202112222221++++++=− . 请你仿照此法计算:(1)23410122222++++++ ;(2)234133333n ++++++ (其中n 为正整数).2024-2025学年人教版七年级数学上册期中考试检测试卷一、选择题(每题3分,共计36分)1.有关正负数的概念和运算法则的系统论述,记载于我国古代数学名著《九章算术》一书中,书中明确提出“正负数”,这是世界上至今发现的最早详细的记载.如果水位上升5米记作5+米,那么水位下降8米记作( )A.8− B.3C.13D.3−【答案】A 【解析】【分析】本题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.【详解】解:“正”和“负”相对,所以,如果水位上升5米记作5+米,那么水位下降8米记作8−米. 故选:A .2.在2−、1−、0、1这四个数中,最小的数是( )A 1 B.0C.-1D.-2【答案】D 【解析】【分析】本题考查有理数大小比较法则,熟练掌握此法则是解答此题的关键.由有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,即可判断.【详解】解:由有理数的大小比较法则,可得:2101−<−<<,∴在2−,1−,0,1这四个数中,最小的数是2−.故选:D .3.某市某天的最高气温为8C °,最低气温为9C −°,则最高气温与最低气温的差为( )A.17C ° B.1C° C.17C−° D.1C−°【答案】A 【解析】【分析】本题主要考查的是有理数的减法.用最高气温减去最低气温进行计算即可.【详解】解:()()8917C −−=°..故选:A .4.水结成冰体积增大111,现有体积为a 的水结成冰后体积为( )A.111a B.1211a C.1011a D.1112a 【答案】B 【解析】【分析】本题是基础题型,弄清冰的体积=(1+增长率)×水的体积是解题的关键.体积为a 的水结成冰后体积,冰的体积为1111a +.【详解】解:依题意有水结成冰后体积为11211111a a += .故选:B .5.截至目前中国森林面积达到175000000公顷,森林覆盖率为18.21%,人工林面积居世界首位,其中数字175000000用科学记数法表示为( ) A.717.510× B.81.7510× C.91.7510× D.90.17510×【答案】B 【解析】【分析】本题考查用科学记数法表示较大的数,一般形式为10n a ×,其中110a ≤<,n 可以用整数位数减去1来确定.用科学记数法表示数,一定要注意a 的形式,以及指数n 的确定方法.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】解:175000000用科学记数法表示为81.7510×. 故选:B .6.李伯家有山羊m 只,绵羊的数量比山羊的2倍多18只,绵羊的数量为( )A.18m + B.18m − C.218m − D.218m +【答案】D 【解析】【分析】本题考查列代数式,根据题意可知:绵羊的只数=山羊只数的2倍+18,根据此解答即可.【详解】∵李伯家有山羊m 只,∴绵羊的数量比山羊的2倍多18只,绵羊的数量为()218m +只,故选:D .7.“△”表示一种运算符号,其意义是:2a b a b =− ,那么13 等于( )A.1 B.1− C.5D.5−【答案】B 【解析】【分析】此题考查了有理数的混合运算,新定义运算的含义,熟练掌握运算法则是解本题的关键.根据新定义运算的运算法则先列式,再计算即可.【详解】解:∵2a b a b =− , ∴13213231=×−=−=− , 故选:B .8.已知表示有理数a ,b 点在数轴上的位置如图所示,则a ba b+的值是()A.2−B.1−C.0D.2【答案】C 【解析】【分析】本题考查了数轴和去绝对值,根据数轴分别判断0a <,0b >,然后去掉绝对值即可,解题的关键是结合数轴判断绝对值符号里面代数式的正负.【详解】由数轴可得,0a <,0b >,∴a b a b+a b a b=+−,110=−+=,故选:C .9. 如果13x +=,5y =,0yx−>,那么y x −的值是()A.2或0B.2−或0C.1−或3D.7−或9【答案】D 【解析】的【分析】本题考查了绝对值的意义,有理数的除法,有理数的减法.先根据绝对值的意义得出2x =或4x =−,5y =±,再根据有理数的除法法则得出x 和y 异号,最后进行分类讨论即可.【详解】解:∵13x +=, ∴13x +=±,解得:2x =或4x =−, ∵5y =, ∴5y =±, ∵0yx−>,∴0yx<,即x 和y 异号, ∴当2x =时5y =−,当4x =−时,5y =, ①当2x =,5y =−时,527y x −=−−=−,②当4x =−,5y =时,()549y x −=−−=,∴y x −的值是7−或9,故选:D .10.用8m 长的铝合金做成一个如图所示的长方形窗框,设长方形窗框的横条长度为m x ,则长方形窗框的面积为()A.()24m x x − B.()283m x x −C.234m 2x x −D.228m 3x x −【答案】C 【解析】【分析】本题考查了列代数式,要注意长方形窗框的横条有3条,观察图形求出长方形窗框的竖条长度是解答本题的关键.根据长方形窗框的横条长度求出长方形窗框的竖条长度,再根据长方形的面积公式计算即可求解.【详解】解:∵长方形窗框的横条长度为m x , ∴长方形窗框的竖条长度为8334m 22x x −=−,∴长方形窗框的面积为:234m 2x x −,故选∶C .11.如果()32a =−−,()33b =−,223c =−,那么a bc +的值为( )A.4− B.4 C.20 D.20−【答案】A 【解析】【分析】本题考查有理数的乘方,有理数的混合运算,求代数式的值,分别求出a 、b 、c 并代入a bc +计算即可.掌握相应的运算法则是解题的关键.【详解】解:∵()328a =−−=,()3327b =−=−, ∴()827481249a bc ×=−+=+=−, ∴a bc +的值为4−. 故选:A .12.小强根据学习“数与式”积累的经验,111111111111122232334344545=−=−=−=−×××× ,,,,,则111111223344520202021+++++××××× 的值为( ).A.2020B. 20212022C. 2021D.20202021【答案】D 【解析】【分析】本题考查了有理数的混合运算,利用拆项法解答即可求解,掌握拆项法是解题的关键.【详解】解:∵111111111111122232334344545=−=−=−=−×××× ,,,,, ∴111111223344520202021+++++×××××1111111111223344520202021=−+−+−+−++− ,112021=−,20202021=,故选:D .二、填空题(每题4分,共计24分)13.计算:23−=____________. 【答案】23【解析】【分析】本题考查求一个数的绝对值,根据负数的绝对值等于它的相反数,即可得出结果.【详解】解:23−=23;故答案为:23.14.对于有理数a b 、,若规定a b a ab ∗=−,则(2)5−∗的值为_______.【答案】12 【解析】根据新定义得到()(2)5225−∗=−−−×,再计算即可.【详解】解:由题意得,()(2)522512−∗=−−−×=,故答案为:12.15.若()22430||a b ++−-=,则b =___________;a =___________.【答案】①.3 ②. 2【解析】【分析】根据有理数的非负性解答即可.本题考查了有理数的非负性,熟练掌握性质是解题的关键.【详解】解:∵()22430||a b ++−-=, ∴20,30a b +=−=-,解得:3,2b a ==.故答案为:3,2.16.若220230x y −−=,则代数式202424x y −+的值是__________.【答案】2022−【解析】【分析】本题考查了代数式求值,整体代入是解题的关键.将202424x y −+变形为()202422x y −−,然后将22023x y −=代入求解即可. 【详解】解:∵220230x y −−=, ∴22023x y −=, 则()2024242024222024202322022x y x y −+=−−=−×=−,故答案为:2022−.17.如图,一个瓶身为圆柱体的玻璃瓶内装有高a 厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h 厘米,则瓶内的墨水的体积约占玻璃瓶容积的_____. 【答案】a ab +##a b a+【解析】【分析】本题考查了列代数式,第一个图形中下底面积为未知数,利用第一个图可得墨水的体积,利用第二个图可得空余部分的体积,进而可得玻璃瓶的容积,让求得的墨水的体积除以玻璃瓶容积即可,掌握知识点的应用是解题的关键.【详解】解:设第一个图形中下底面积为S .倒立放置时,空余部分的体积为bS ,正立放置时,有墨水部分的体积是aS ,因此墨水体积约占玻璃瓶容积的as a as bs a b=++,故答案为:a a b+.的18.计算:111123344520132014++++=×××× ()【答案】5031007【解析】【分析】本题主要考查了有理数的混合运算,解答此题关键是找出解题的规律.根据裂项相消的方法把原式化为1111111123344520132014−+−+−++− ,再计算即可.【详解】解:111123344520132014++++×××× 1111111123344520132014=−+−+−++− 1122014=−1007120142014−10062014=5031007=;故答案为5031007.三、解答题(19、20、21每题10分,22-26题每题12分,共计90分,写出必要的解答过程和步骤才给分)19.计算:(1)112712623 −−++−;(2)273132515858 ++−−−−+ .【答案】(1)10 (2)5【解析】【分析】本题主要考查有理数的加减混合运算;(1)先去括号,再把分数通分成分母相同的分数,最后根据有理数的加减混合运算法则即可求解;(2)先去括号,再运用加法结合律把分母相同的分数结合,最后根据有理数的加减混合运算法则即可求解.【小问1详解】 解:112712623−−++−112712623=++−71547666=++−71547666 =++−73=+10=;【小问2详解】 解:273132515858++−−−−+273132515858=−+−237135215588 =+−+94=−5=.20.把下列各数分别填入相应的集合里.1,0.20−,135,325,789−,0,23.13−,0.618,2004− 非正数集合:{ …};非负数集合:{ …};非正整数集合:{ …};非负整数集合:{ …}.【答案】0.20−,789−,0,23.13−,2004−;1,135,325,0,0.618;789−,0,2004−;1,325,0【解析】【分析】本题考查有理数的分类(正数和分数统称为有理数;有理数的分类:按整数、分数的关系分类;按正数、负数与零的关系分类),根据非正数(负数和零)、非负数(正数和零)、非正整数(负整数和零)和非负整数(正整数和零)的意义进行选取即可.准确理解相关概念的意义是解题的关键.【详解】解:非正数集合:{0.20−,789−,0,23.13−,2004−,…};非负数集合:{1,135,325,0,0.618,…};非正整数集合:{789−,0,2004−,…};非负整数集合:{1,325,0,…}.故答案为:0.20−,789−,0,23.13−,2004−;1,135,325,0,0.618;789−,0,2004−;1,325,0.21.如图,在一条数轴上,点O 为原点,点A 、B 、C 表示的数分别是1m +,2m −,94m −.(1)求AC 的长;(用含m 的代数式表示)(2)若5AB =,求BC 的中点D 表示的数.【答案】(1)58m −(2)2−【解析】【分析】本题考查了数轴的知识,代数式,正确认识数轴并理解数轴,能够表示数轴上两点的距离是解题的关键.(1)根据数轴上的两点间的距离公式求解即可;(2)首先由5AB =建立方程求解m ,再求解、B 、C 对应的数即可得到答案.【小问1详解】解: 点A 、C 表示数分别是1m +,94m −,∴()19458AC m m m =+−−=−;【小问2详解】()125AB m m =+−−=,∴()125m m +−−=,解得:3m =,∴2231m −=−=−,949123m −=−=−,∴当5AB =时,B 点表示的数是1−,C 点表示的数是3−,∴BC 的中点D 表示的数是()1322−+−=−. 22.已知:()21102a b −++=,c 是最小的自然数,d 是最大负整数. (1)求a ,b ,c,d 的值:的(2)试求代数式()()328b a c d −+−的值.【答案】(1)11,2a b ==−,0,1c d ==− (2)8−【解析】【分析】本题考查了非负数的性质和求代数式的值,解题关键是根据题意求出字母的值.(1)根据非负数的性质及有理数相关概念求出a 、b 、c 、d 的值即可;(2)将求出的a 、b 、c 、d 的值代入代数式求值即可.【小问1详解】解:()21102a b -++= , 110,02a b ∴-=+=, 11,2a b ∴==-, c 是最小的自然数,d 是最大负整数,0,1c d ∴==-;【小问2详解】 解:11,2a b ==- ,0,1c d ==− ()()328b a c d ∴-+-()32181012⎛⎫⎡⎤ ⎪=⎦⎡⎤⎢⎥⎢⎥⨯--+-- ⎪⎣⎝⎭⎣⎦18118⎛⎫ ⎪=⎪⎡⎤⎢⨯--+ ⎢⎝⎥⎥⎣⎦⎭ 9818⎛⎫ ⎪=⨯-+ ⎪⎝⎭()91=-+8=−.23.已知,如图,某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为20米,宽为10米,正方形的边长为1米,求阴影部分的面积.【答案】(1)()24ab x −平方米 (2)196平方米【解析】【分析】(1)根据图形中的数据,可以用含a 、b 、x 的代数式表示出阴影部分的面积; (2)将20a =,10b =,1x =代入(1)中的代数式,即可求得阴影部分的面积.本题考查列代数式、代数式求值,解答本题的关键是明确题意,列出相应的代数式,求出相应的代数式的值.小问1详解】解:∵某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米. ∴由图可得,阴影部分的面积是2(4)ab x −平方米;【小问2详解】解:当20a =,10b =,1x =时,24ab x −2201041×−×2004−196=(平方米), 即阴影部分的面积是196平方米.24. 先阅读下列解题过程,再解答问题:解方程:32x +=. 解:当30x +≥时,原方程可化为32x +=,解得1x =−;当30x +<时,原方程可化为32x +=−,解得 5.x =−所以原方程的解是1x =−或5x =−.(1)解方程:3150x −−=; (2)若1x a x −++的最小值为4,求a 的值.【答案】(1)2x =或43x =−; (2)3a =或5a =−.【【解析】【分析】本题考查了绝对值方程的解法,数轴上两点间的距离,熟练掌握绝对值的定义是解答本题的关键,对值等于一个正数的数有2个,它们是互为相反数的关系.(1)根据题中所给解法求解即可;(2)根据1x a x −++的最小值为4,得出表示a 的点与表示1−的点的距离为4,求解即可.【小问1详解】 解:3150x −−=, 移项,得315x −=, 当310x −≥,即13x ≥时,原方程可化为:315x −=,解得:2x =, 当310x −<,即13x <时,原方程可化为:315x −=−,解得43x =−. ∴原方程的解是:2x =或43x =−. 【小问2详解】 解:1x a x −++ 的最小值为4,∴表示a 的点与表示1−的点的距离为4,143−+= ,145−−=−,3a ∴=或5a =−.25.随着手机的普及,微信的兴起,许多人做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上实行包邮销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);星期一二三四五六日与计划量的差值4+3−5−14+8−21+6−(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售斤;(2)本周实际销售总量达到了计划数量没有?(3)若冬季每斤按8元出售,每斤冬枣的运费平均3元,那么小明本周一共收入多少元?【答案】(1)29 (2)达到了(3)3585元【解析】【分析】此题考查了正数与负数,有理数混合运算的应用,熟练掌握运算法则是解本题的关键.(1)根据最大正数和最小负数的差值得出结论即可;(2)根据所有差值的和的正负来判断即可;(3)根据售价﹣运费得出收入即可.【小问1详解】()21829−−=(斤),故答案为:29;【小问2详解】43514821617+−−+−+−=(斤),∴本周实际销售总量达到了计划数量;【小问3详解】()()100717833585×+×−=(元),答:小明本周一共收入3585元.26.阅读材料:求2342020122222++++++ 的值.解:设234201920201222222S =+++++++ ,将等式两边同时乘2,得 ,23452020202122222222S =+++++++将下式减上式,得2021221S S −=−,即 202121S =−, 即 2342020202112222221++++++=− .请你仿照此法计算:(1)23410122222++++++ ;(2)234133333n ++++++ (其中n 为正整数).【答案】(1)123410112222221++++++=− ;(2)()23411133333312n n +++++++=− . 【解析】【分析】本题考查的是探索运算规律题,根据已知材料中的方法,探索出运算规律是解决此题的关键.(1)设23410122222S =++++++ ,两边乘以2后得到关系式,与已知等式相减,变形即可求出所求式子的值;(2)设234133333n S =++++++ ,两边乘以3后得到关系式,与已知等式相减,变形即可求出所求式子的值.【小问1详解】设23410122222S =++++++ ,将等式两边同时乘2,得23410112222222S =++++++ ,将下式减上式,得 11221S S −−,即 1121S =−则123410112222221++++++=−【小问2详解】设 234133333,n S =++++++将等式两边同时乘3,得 23413333333,n n S +=++++++下式减上式,得1331n S S +−=−,即 ()11312n S +−,即 )234113333331n n +++++++=− .。
七年级上册数学期中考试题(有答案)以下是查字典数学网为您推荐的七年级上册数学期中考试题(有答案),希望本篇文章对您学习有所帮助。
七年级上册数学期中考试题(有答案)一、仔细选一选(此题有10个小题,每题3分,共30分) 下面每题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案.1.计算的结果是( ▲ )A. B. C. D.2.杭州市2021年元旦的最高气温为8℃,最低气温为-4℃,这天的最高气温比最低气温高( ▲ )A.-12℃B.12℃C. -4℃D.4℃3.2.大于-2.5而小于的整数共有( ▲ )A. 6个B.5个C.4个D.3个4.以下运算正确的选项是( ▲ )A. B. C. D.5.如果是的立方根,那么以下结论正确的选项是( ▲ )A. B. C. D.6.在,-,0,3.14,,0.3,,中,无理数的个数有( ▲ )A.1个B.2个C.3个D.4个7.据杭州市××局公布的第六次人口普查数据,本市常住人口870.04万人,其中870.04万人用科学记数法表示为( ▲ )A.8.7004105人B.8.7004106人C.8.7004107人D.0.87004107人8.今年苹果的价格比去年廉价了20%,今年苹果的价格是每千克a元,那么去年的价格是每千克( ▲ )元A.(1+20%)aB.(1-20%)aC.D.9.如果 , ,且aA.-2或8B.8或-8C.2或8D.-2或-810.古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如:他们研究过图中的1,3,6,10,,由于这些数能够表示成三角形,将其称为三角形数,以下属于三角数的是( ▲ )A. 55B.60C. 65D.75二、认真填一填(此题有6个小题,每题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案.11.4的算术平方根是_▲__,的倒数是▲ .12.如图,是一个简单的数值运算程序,当输入x的值为 -4时,那么输出的数值为_ ▲__.13.数轴上点A到-2的距离是3,点B表示的数的6,那么A、B两点距离是▲ .14. ,是两个连续的整数,那么= ▲ ,= ▲ .15.设多项式,当 =0时, ;当时, ;那么:⑴ = ▲ ; ⑵ 当时,=▲.16.如图,横、竖各12个方格,每个方格都有1个数,横行上任意3个相邻数之和为18,竖列上任意3个相邻数之和为20.图中已填入3、5、8和x四个数.那么x代表的数是▲.三、全面答一答(此题有8个小题,共66分)解容许写出计算过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一局部也可以.17.(此题总分值6分)把以下实数表示在数轴上,并比拟它们的大小(用连接). ,,,,-3, 1.518.计算(此题总分值18分)⑴ -7+11-9 ⑵(3) (-18)2 (-16) (4)(5) (6)19.(本小题总分值6分)操作与运用:(1)在77的方格纸中,以线段AB为一边,画一个正方形;(2)假设图中小方格的面积为1平方厘米,求所画的正方形的面积和边长.20.(此题总分值8分)有20筐白菜,以每筐25千克为标准,超过或缺乏的千克数分别用正、负数来表示,记录如下:与标准质量的差值(单位:千克) -3 -2 -1.5 0 1 2.5筐数 1 4 2 3 2 8⑴20筐白菜中,最重的一筐比最轻的一筐重多少千克?⑵与标准重量比拟,20筐白菜总计超过或缺乏多少千克?⑶假设白菜每千克售价2.6元,那么出售这20筐白菜可卖多少元?(结果保存整数)21.(此题总分值8分)求代数式的值(1)当,时,求代数式的值;(2) ,假设互为相反数,求的值.22.(此题总分值10分)杭州湾跨海大桥于2021年5月1日通车,从此宁波到上海有了更便捷的通道,而无需再绕道杭州,实现了节时、节能.下表是宁波到上海两条线路的有关数据:线路弯路(宁波杭州上海) 直路(宁波跨海大桥上海)路程 316千米 196千米过路费 140元 180元⑴ 假设小车的平均速度为千米/小时,那么小车走直路比走弯路节省多少时间?⑵ 当为80千米/小时,那么小车走直路比走弯路节省多少时间?⑶ 假设小车每千米的油耗为升,汽油价格为5.00元/升,小车走直路和走弯路的总费用分别为元、元,试用的代数式表示、 (总费用=过路费+油消耗).23.(此题10分):b是最小的正整数,且a、b满足,请答复以下问题:(1)请直接写出a、b、c的值:a=__________ b=__________ c =__________;(2)a、b、c所对应的点分别为A、B、C,点M是A、B之间的一个动点,其对应的数为m,请化简 (请写出化简过程);(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,假设点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,假设点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:的值是否随着时间t的变化而改变?假设变化,请说明理由;假设不变,请求其值.2021学年第一学期亭趾实验学校七年级期中数学卷【参考答案与评分标准】(4)原式= 2分= 1分(5)原式= 1分= 1分= 1分(6) 原式= 1分= 1分= 1分22. (本小题总分值10分)解:(1) (小时) 3分(2) (小时)小车走直路比走弯路节省小时.3分(3)设小车走直路和走弯路的总费用分别为元、元,那么2分2分23.解:(1)∵b是最小的正整数,b=1.根据题意得:c=5∵ a+b=0 a=-1,b=1,c=5 3分(2)当-1(3)不变.∵点A以每秒1个单位长度的速度向左运动,点B每秒2个单位长度向右运动,A, B每秒钟增加3个单位长度;∵点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,B,C每秒钟增加3个单位长度.BC-AB=0,BC-AB的值不随着时间t的变化而改变. 4分【说明】用其他方法,可酌情给分。
初一上册数学期中试题及答案【四篇】【导语】上学期期中考试马上到了,想要测试一下自己数学半个学期的学习水平吗?下面是为您整理的初一上册数学期中试题及答案【四篇】,仅供大家参考。
【篇一】初一上册数学期中试题及答案一、精心选一选(每题3分,共计24分)1.在2、0、﹣3、﹣2四个数中,最小的是()A.2B.0C.﹣3D.﹣2【考点】有理数大小比较.【分析】在数轴上表示出各数,利用数轴的特点即可得出结论.【解答】解:如图所示,,由图可知,最小的数是﹣3.故选C.【点评】本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.2.下列式子,符合代数式书写格式的是()A.a÷3B.2xC.a×3D.【考点】代数式.【分析】利用代数式书写格式判定即可【解答】解:A、a÷3应写为,B、2a应写为a,C、a×3应写为3a,D、正确,故选:D.【点评】本题主要考查了代数式,解题的关键是熟记代数式书写格式.3.在﹣,3.1415,0,﹣0.333…,﹣,﹣0.,2.010010001…中,无理数有()A.1个B.2个C.3个D.4个【考点】无理数.【分析】无理数是指无限不循环小数,根据定义逐个判断即可.【解答】解:无理数有﹣,2.010010001…,共2个,故选B.【点评】本题考查了对无理数定义的应用,能理解无理数的定义是解此题的关键,注意:无理数包括三方面的数:①含π的,②开方开不尽的根式,③一些有规律的数.4.若|m﹣3|+(n+2)2=0,则m+2n的值为()A.﹣1B.1C.4D.7【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】先根据非负数的性质求出m、n的值,再代入代数式进行计算即可.【解答】解:∵|m﹣3|+(n+2)2=0,∴m﹣3=0,n+2=0,解得m=3,n=﹣2,∴m+2n=3﹣4=﹣1.故选A.【点评】本题考查的是非负数的性质,熟知几个非负数的和为0时,其中每一项必为0是解答此题的关键.5.下列计算的结果正确的是()A.a+a=2a2B.a5﹣a2=a3C.3a+b=3abD.a2﹣3a2=﹣2a2【考点】合并同类项.【专题】常规题型.【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,判断各选项即可.【解答】解:A、a+a=2a,故本选项错误;B、a5与a2不是同类项,无法合并,故本选项错误;C、3a与b不是同类项,无法合并,故本选项错误;D、a2﹣3a2=﹣2a2,本选项正确.故选D.【点评】本题考查合并同类项的知识,要求掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数.6.用代数式表示“m的3倍与n的差的平方”,正确的是()A.(3m﹣n)2B.3(m﹣n)2C.3m﹣n2D.(m﹣3n)2【考点】列代数式.【分析】认真读题,表示出m的3倍为3m,与n的差,再减去n 为3m﹣n,最后是平方,于是答案可得.【解答】解:∵m的3倍与n的差为3m﹣n,∴m的3倍与n的差的平方为(3m﹣n)2.故选A.【点评】本题考查了列代数式的知识;认真读题,充分理解题意是列代数式的关键,本题应注意的是理解差的平方与平方差的区别,做题时注意体会.7.下列各对数中,数值相等的是()A.(2)3和(﹣3)2B.﹣32和(﹣3)2C.﹣33和(﹣3)3D.﹣3×23和(﹣3×2)3【考点】有理数的乘方.【分析】分别利用有理数的乘方运算法则化简各数,进而判断得出答案.【解答】解:A、∵(﹣3)2=9,23=8,∴(﹣3)2和23,不相等,故此选项错误;B、∵﹣32=﹣9,(﹣3)2=9,∴﹣23和(﹣2)3,不相等,故此选项错误;C、∵﹣33=﹣27,(﹣33)=﹣27,∴﹣33和(﹣3)3,相等,故此选项正确;D、∵﹣3×23=﹣24,(﹣3×2)3=,﹣216,∴﹣3×23和(﹣3×2)3不相等,故此选项错误.故选:C.【点评】此题主要考查了有理数的乘方运算,正确掌握运算法则是解题关键.8.等边△ABC在数轴上的位置如图所示,点A、C对应的数分别为0和﹣1.若△ABC绕顶点沿顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为1,则连续翻转2015次后,点B()A.不对应任何数B.对应的数是2013C.对应的数是2014D.对应的数是2015【考点】数轴.【专题】规律型.【分析】结合数轴根据翻折的次数,发现对应的数字依次是:1,1,2.5;4,4,5.5;7,7,8.5…即第1次和第二次对应的都是1,第四次和第五次对应的都是4,第7次和第8次对应的都是7.根据这一规律:因为2015=671×3+2=2013+2,所以翻转2015次后,点B所对应的数2014.【解答】解:因为2015=671×3+2=2013+2,所以翻转2015次后,点B所对应的数是2014.故选:C.【点评】考查了数轴,本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.注意翻折的时候,点B对应的数字的规律:只要是3n+1和3n+2次翻折的对应的数字是3n+1.二、细心填一填(每空2分,共计30分)9.﹣5的相反数是5,的倒数为﹣.【考点】倒数;相反数.【分析】根据相反数及倒数的定义,即可得出答案.【解答】解:﹣5的相反数是5,﹣的倒数是﹣.故答案为:5,﹣.【点评】本题考查了倒数及相反数的知识,熟练倒数及相反数的定义是关键.10.火星和地球的距离约为34000000千米,这个数用科学记数法可表示为3.4×107千米.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|1时,n是正数;当原数的绝对值﹣(填“>”、“﹣.故答案为:=,>.【点评】本题考查的是有理数的大小比较,熟知负数比较大小的法则是解答此题的关键.12.单项﹣的系数是﹣,次数是4次;多项式xy2﹣xy+24是三次三项式.【考点】多项式;单项式.【分析】根据单项式的系数及次数的定义,多项式的次数及项数的概念解答.【解答】解:单项﹣的系数是﹣,次数是4次,多项式xy2﹣xy+24是三次三项式.【点评】根据单项式的单项式的系数是单项式前面的数字因数,次数是单项式所有字母指数的和;多项式是由单项式组成的,常数项也是一项,多项式的次数是“多项式中次数的项的次数”.13.若﹣7xyn+1与3xmy4是同类项,则m+n=4.【考点】同类项.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.【解答】解:根据题意,得:m=1,n+1=4,解得:n=3,则m+n=1+3=4.故答案是:4.【点评】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.14.一个多项式加上﹣3+x﹣2x2得到x2﹣1,这个多项式是3x2﹣x+2.【考点】整式的加减.【分析】本题涉及整式的加减运算、合并同类项两个考点,解答时根据整式的加减运算法则求得结果即可.【解答】解:设这个整式为M,则M=x2﹣1﹣(﹣3+x﹣2x2),=x2﹣1+3﹣x+2x2,=(1+2)x2﹣x+(﹣1+3),=3x2﹣x+2.故答案为:3x2﹣x+2.【点评】解决此类题目的关键是熟练掌握同类项的概念和整式的加减运算.整式的加减实际上就是合并同类项,这是各地中考的常考点,最后结果要化简.15.按照如图所示的操作步骤,若输入x的值为﹣3,则输出的值为22.【考点】有理数的混合运算.【专题】图表型.【分析】根据程序框图列出代数式,把x=﹣3代入计算即可求出值.【解答】解:根据题意得:3x2﹣5=3×(﹣3)2﹣5=27﹣5=22,故答案为:22【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.16.一只蚂蚁从数轴上一点A出发,沿着同一方向在数轴上爬了7个单位长度到了B点,若B点表示的数为﹣3,则点A所表示的数是4或﹣10.【考点】数轴.【分析】“从数轴上A点出发爬了7个单位长度”,这个方向是不确定的,可以是向左爬,也可以是向右爬.【解答】解:分两种情况:从数轴上A点出发向左爬了7个单位长度,则A点表示的数是4;从数轴上A点出发向右爬了7个单位长度,则A点表示的数是﹣10,故答案为:4或﹣10.【点评】考查了数轴,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,在学习中要注意培养数形结合的数学思想以及分类的思想.17.若3a2﹣a﹣2=0,则5+2a﹣6a2=1.【考点】代数式求值.【专题】整体思想.【分析】先观察3a2﹣a﹣2=0,找出与代数式5+2a﹣6a2之间的内在联系后,代入求值.【解答】解;∵3a2﹣a﹣2=0,∴3a2﹣a=2,∴5+2a﹣6a2=5﹣2(3a2﹣a)=5﹣2×2=1.故答案为:1.【点评】主要考查了代数式求值问题.代数式中的字母表示的数没有明确告知,而是隐含在题设中,把所求的代数式变形整理出题设中的形式,利用“整体代入法”求代数式的值.18.已知f(x)=1+,其中f(a)表示当x=a时代数式的值,如f(1)=1+,f(2)=1+,f(a)=1+,则f(1)•f(2)•f(3)…•f(100)=101.【考点】代数式求值.【专题】新定义.【分析】把数值代入,计算后交错约分得出答案即可.【解答】解:∵f(1)=1+=2,f(2)=1+=,…f(a)=1+=,∴f(1)•f(2)•f(3)…•f(100)=2×××…××=101.故答案为:101.【点评】此题考查代数式求值,理解题意,计算出每一个式子的数值,代入求得答案即可.三、认真答一答(共计46分)19.画一条数轴,然后在数轴上表示下列各数:﹣(﹣3),﹣|﹣2|,1,并用“【篇二】初一上册数学期中试题及答案一、选择题(每题3分,共30分)1-的相反数是().A.-2016B.2016C.D.-2.甲乙两地的海拔高度分别为300米,-50米,那么甲地比乙地高出().A.350米B.50米C.300米D.200米3.下面计算正确的是()A.5x2-x2=5B.4a2+3a2=7a2C.5+y=5yD.-0.25mn+mn=04.学校、家、书店依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家北边100米,李明同学从家里出发,向北走了50米,接着又向北走了-70米,此时李明的位置()A.在家B.在书店C.在学校D.不在上述地方5.下列去括号正确的是()A.-(3x+7)=-3x+7B.-(6x-3)=-2x+3C.(3m-5n)=m+nD.-(m-2a)=-m+2a6.下列方程中,是一元一次方程的为()A.5x-y=3B.C.D.7.已知代数式x+2y+1的值是5,则代数式2x+4y+1的值是()A.1B.5C.9D.不能确定8.已知有理数,所对应的点在数轴上如图所示,化简得()A.a+bB.b-aC.a-bD.-a-b9.列说法错误的是().A.若,则x=y;B.若x2=y2,则-4x2=-4y2;C.若-x=6,则x=-;D.若6=-x,则x=-6.10.某区中学生足球赛共赛8轮(即每队均参赛8场),胜一场得3分,平一场得1分,输一场得0分,在这次足球联赛中,猛虎足球队踢平的场数是所负场数的2倍,共得17分,则该队胜了()场.A.6B.5C.4D.3二、填空题(每题3分,共24分)11.地球绕太阳每小时转动经过的路程约为110000千米,用科学记数法记为米12.若,,且,则的值可能是:.13.当时,代数式的值为2015.则当时,代数式的值为。
七年级上学期数学期中考试试卷及答案锦集篇1:七年级上学期数学期中考试试卷及答案(完整版)命题范围(1----2章内容)选择题(每小题3分,共36分)1、绝对值小于5的整数有( )a、1个b、2个c、3个d、4个2、下列各组数中相等的是( )a、-2与b、-2与c、与d、与3、已知a、b 都是有理数,且,则a+b =( )a、-1b、1c、3d、54、单项式与是同类项,则等于( )a、-8b、8c、-9d、95、一个两位数,十位数字是x,个位数字比十位数字的2倍少3,这个两位数是( )a、x(2x-3)b、x(2x+3)c、12x-3d、12x+36、去括号后等于a-b+c的是( )a、a-(b+c)b、a+(b-c)c、a-(b-c)d、a+(b+c)7、已知,则多项式的值等于( )a、1b、4c、-1d、-48、在①近似数 39.0有三个有效数字;②近似数 2.5万精确到十分位;③如果a<0,b>0,那么ab <0;④多项式是二次三项式中,正确的个数有( )a、1个b、2个c、3个d、4个9、计算所得结果是( )a、-2b、0c、1d、210、减去-2m等于多项式是( )a、b、+m+2 c、-5m-2 d、-m-211、一件商品的进价是a 元,提价20%后出售,则这件商品的售价是( )a、0.8a元b、a元c、1.2a元d、2a元12、已知0a、二、填空题(每小题3分,共24分)13、太阳光的速度是米/秒,用科学记数法表示为米/秒14、设三个连续整数的中间一个数是n,则它们三个数的和是。
15、若 =4, =2且x16、规定一种关于a、b的运算:a*b= ,那么3 *(-2)= 。
17、计算 12= 。
18、化简(x+y)- (x-y)的结果是。
19、已知甲地的海拔高度是300m,乙地的海拔高度是-50m,那么甲地比乙地高 m。
20、观察数字-1,2,7,14,23,34,……的规律,照此规律第n个数为。
七年级上册数学期中考试试题一、单选题1.|﹣2021|等于()A .﹣2021B .2021C .12021D .﹣120212.在(1.5)+-,4-,0,(2)--中,非负整数的个数有()A .1个B .2个C .3个D .4个3.下列各组数中,互为相反数的是()A .16-与6-B .|6|-与6C .16-与16-D .16-与16--4.数据11090000用科学记数法表示为()A .80.110910⨯B .611.0910⨯C .81.10910⨯D .71.10910⨯5.点A 在数轴上距原点4个单位长度,将点A 向左移4个单位长度,再向右移3个单位长度,此时该点所表示的数是()A .3B .3±C .5±D .3或5-6.下列代数式的书写格式正确的是()A .112abB .3x ⨯C .23y D .3()a b ÷+7.下列说法中,正确的是()A .单项212xy 的系数是12xB .单项式22x -的次数为2-C .多项式219x x ++是二次多项式D .多项式227x y +-的常数项是78.下列去括号正确的是()A .2()2n m n n m n +--=+-B .2(35)610a a a a --=-+C .()n m n n m n---=+-D .222()2n n m n n m+-+=+-9.代数式2346x x -+的值为9,则2463x x -+的值为()A .7B .18C .12D .910.已知有理数a 、b 、c 满足||||||1a b c a b c++=,则||abc abc =()A .3B .3-C .1D .1-二、填空题11.﹣2的倒数是___.12.比较大小:23-_________15-13.若||5a =,||3b =,且a b >,则a b +=__________.14.如果253m a b +与51n a b --是同类项,则m n -=_________.15.某微商平台有一商品,标价为a 元,按标价的8折再降价10元销售,则该商品的售价用代数式表示为____________元.16.如图,是一个运算程序的示意图,若开始输入x 的值为625,则第2021次输出的结果为________.17.多项式||21(5)63m x m x --+是关于x 的五次三项式,则m 的值为__________.18.已知,021=,122=,224=,328=,24的个位数字是6,25的个位数字是2,……,则20212的个位数字是____________.三、解答题19.计算:(1)248(2)5(6)-÷--⨯+-(2)157()(24)2612+-⨯-20.画出数轴,在数轴上表示下列各数,并按从小到大的顺序用“<”连接起来4-,112,0, 2.5-,321.化简(1)23325356a b b a --+(2)222(()4)22xy y x xy y --+-22.先化简,再求值:22223()()4431a b ab a b ab +----,其中2(2)4|3|0a b ++-=23.出租车司机小李某天上午运营是在儿童公园门口出发,沿南北走向的人民大街进行的,如果规定向北为正,向南为负,那么他这天上午所接送七位乘客的行车里程(单位:km )如下:3-,6+, 2.8-,4-,2-,9+,5-.(1)将最后一位乘客送到目的地时,小李在儿童公园的哪个方向?距离是多少?(2)若出租车消耗天然气量为0.3m 3/km ,小李接送七位乘客,出租车共消耗天然气多少立方米?24.已知m 和n 互为相反数,a 和b 互为倒数,k 是最大的负整数,求202133m n ab k +-+的值25.已知代数式2342A x x =-+(1)若221B x x =--,①求2A B -;②当2x =-时,求2A B -的值;(2)若21B ax x =--(a 为常数),且A 与B 的和不含2x 项,求整式2452a a +-的值.26.观察下列等式的规律,解答下列问题:1122(212a =⨯+;2122(223a =⨯+;3122()234a =⨯+;4122(245a =⨯+;(1)第5个等式为5a =,第n 个等式为n a =(用含n 的式子表示,n 为正整数);(2)设112S a a =-,234S a a =-,356S a a =-,……,202140414042S a a =-,求12342021S S S S S +++++ 的值.参考答案1.B 【解析】【分析】根据绝对值的性质求解即可.正数和0的绝对值是它本身,负数的绝对值是它的相反数.【详解】解:|2021|2021-=,故选:B 【点睛】此题考查了绝对值的性质,掌握绝对值的性质是解题的关键.2.B 【解析】【分析】非负整数是0和正整数的统称,依据定义即可作出判断.【详解】解:+(-1.5)=1.5,-(-2)=2非负整数有:0,﹣(﹣2)共有2个.故选:B .【点睛】本题主要考查非负整数,掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点和多重符号的化简是解题的关键.3.C 【解析】【分析】根据相反数的定义即可一一判定.【详解】解:A.16-与6-不是互为相反数,故该选项不符合题意;B.|6|6-=,故|6|-与6不是互为相反数,故该选项不符合题意;C.1166-=,故16-与16-是互为相反数,故该选项符合题意;D.1166--=-,故16-与16--不是互为相反数,故该选项不符合题意;故选:C .【点睛】本题考查了相反数的判别,熟练掌握和运用相反数的判别方法是解决本题的关键.4.D 【解析】【分析】根据科学记数法的定义即可得.【详解】科学记数法:将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数的方法叫做科学记数法则711090000 1.10910⨯=故选:D .【点睛】本题考查了科学记数法的定义,熟记定义是解题关键.5.D 【解析】【分析】分两种情况,分别计算即可求得.【详解】解: 点A 在数轴上距原点4个单位长度,∴点A 表示的数为4或-4,当点A 表示的数为4时,将点A 向左移4个单位长度,再向右移3个单位长度,此时该点所表示的数是:4-4+3=3,当点A 表示的数为-4时,将点A 向左移4个单位长度,再向右移3个单位长度,此时该点所表示的数是:-4-4+3=-5,故选:D .【点睛】本题考查了数轴上表示的数,理解在数轴上向左移为负,向右移为正是解决本题的关键.6.C 【解析】【分析】根据代数式的书写要求判断各项即可.【详解】解:A.112bc 正确的书写格式是32bc ,故选项错误;B.3x ⨯正确的书写格式是3x ,故选项错误;C.代数式23y 书写正确;D.()3a b ÷+正确的书写格式是3a b+,故选项错误.故选:C .【点睛】本题考查了代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.7.C 【解析】【分析】利用单项式、多项式的定义即可解答.【详解】解:A 、单项212xy 的系数是12,故本选项说法错误;B 、单项式22x -的次数为2,故本选项说法错误;C 、多项式219x x ++是二次多项式,故本选项正确;D 、多项式227x y +-的常数项是-7,故本选项说法错误;故选:C .【点睛】此题考查了多项式,单项式,熟练掌握多项式和单项式的有关定义是解本题的关键.8.B 【解析】【分析】根据去括号法则依次判断即可.【详解】A.2()2n m n n m n +--=--,故A 选项错误,不符合题意;B.2(35)610a a a a --=-+,故B 选项正确,符合题意;C.()n m n n m n ---=++,故C 选项错误,不符合题意;D.222()22n n m n n m +--+=+,故D 选项错误,不符合题意.故选:B 【点睛】本题主要考查了去括号法则:括号前面是“+”号,去掉括号和“+”号,原括号里的各项不改变符号;括号前面是“-”号,去掉括号和“-”号,原括号里的各项要改变符号.熟练掌握去括号法则是解题的关键.9.A 【解析】【详解】解:∵3x 2-4x+6=9,两边同时除以3可得:x 2﹣43x =1,所以x 2-43x +6=7,故选:A .10.D 【解析】【分析】此题首先根据已知条件和绝对值的意义得到a ,b ,c 的符号关系,在进一步求解即可.【详解】解:根据绝对值的意义知:一个非零数的绝对值除以这个数等于1或-1,又||||||1a b c a b c++=,则a ,b ,c 中必有两个1和一个-1,即a ,b ,c 中两正一负,∴abc<0,则||abcabc =−1;故选:D .【点睛】本题主要考查了绝对值的性质应用,掌握绝对值的性质和有理数的乘、除法法则是解决此题的关键.11.12-【解析】【分析】直接利用倒数的定义得出答案.【详解】根据两个数乘积是1的数互为倒数的定义,因此求一个数的倒数即用1除以这个数.所以2-的倒数为()1122÷-=-.故答案为:12-.【点睛】此题主要考查了倒数的定义,正确掌握相关定义是解题关键12.<【解析】【分析】根据两个负数相比较,绝对值大的反而小解答.【详解】解:2211,3355-=-=,2135>,∴2135-<--.故答案为:<.【点睛】本题考查了有理数比较大小的方法:负数是小于0的数,正数大于0,两个负数比较大小绝对值大的反而小.13.8或2【解析】【分析】根据绝对值的定义,再结合a>b 求出a 、b 的值,再进行计算即可.【详解】∵||5a =,||3b =,∴a=±5,b=±3.又∵a>b ∴a=5,b=±3.①a=5,b=3时,a+b=8;②a=5,b=-3时,a+b=2.∴a+b=8或2.故答案为:8或2.【点睛】本题主要考查了绝对值的定义和绝对值的性质.注意若x a =,则x=±a ,防止漏掉一个解.掌握以上知识是解题的关键.14.3-【解析】【分析】根据同类项的定义可得到关于m 、n 的等式,求出字母的值并代入式中可得解.【详解】解:由题意可知m+2=5,n-1=5,解得m=3,n=6,则m-n=3-.故答案为:3-.【点睛】本题主要考查了同类项.关键是熟练掌握同类项定义中的两个“相同”:所含字母相同,相同字母的指数相同.15.(0.810)a-##(-10+0.8a)【解析】【分析】直接利用打折与原价的关系得出关系式即可.【详解】解:由题意可得,该商品售价为:(0.8a-10)元.故答案为:(0.8a-10).【点睛】此题主要考查了列代数式,正确掌握打折与原价的关系是解题关键.16.5【解析】【分析】根据运算程序,第一次运算结果为125,第二次运算结果为25,第三次运算结果为5,第四次运算结果为1,…发现规律从第三次开始每两次为一个循环,再根据题目所给625的2021次运算即可得出答案.【详解】解:第一次运算结果为:15×625=125;第二次运算结果为:15×125=25;第三次运算结果为:15×25=5;第四次运算结果为:15×5=1;第五次运算结果为:1+4=5;第六次运算结果为:15×5=1;…由此可得出运算结果从第三次开始为5和1循环,奇数次运算结果5,偶数次运算结果为1,因为2021为奇数,所以运算结果为5.故答案为:5.【点睛】本题主要考查了代数式的求值和有理数的计算,根据题目给出的程序运算图找出输出结果的规律是解决本题的关键.17.5-【解析】【分析】直接利用多项式的概念得出关于m 的关系式,求出常数m 的值即可.【详解】解:∵||21(5)63m x m x --+是关于x 的五次三项式,∴|m|=5,-(m-5)≠0,解得:m=-5.故答案为:-5.【点睛】此题主要考查了多项式的定义,得出关于m 的关系式是解题关键.单项式的个数就是多项式的项数,如果一个多项式含有a 个单项式,次数是b ,那么这个多项式就叫b 次a 项式.18.2【解析】【分析】此题根据观察、验证可得2n 的个位数按2、4、8、6的周期规律出现,由2021÷4=505…1可知,22021的个位数字与21的个位数相同,结果是2.【详解】解:由题意可知2n 的个位数按2、4、8、6、2……的周期规律出现,每四个数循环出现一次,由2021÷4=505…1可知,22021的个位数字与21的个位数相同,结果是2.故结果应为:2.【点睛】此题考查了数字规律探究,关键是通过观察发现数字的周期循环规律.19.(1)2(2)-18【解析】【分析】(1)先计算乘方,去括号,再计算乘除法,最后计算加减法求解;(2)先根据乘法分配律进行变形,再计算乘除法,最后计算加减法求解.(1)解:248(2)5(6)-÷--⨯+-168256=-÷+⨯-2106=-+-810=-+2=;(2)解:157((24)2612+-⨯-1572424242612=-⨯-⨯+⨯122014=--+3214=-+18=-.【点睛】本题主要考查了有理数的混合运算,理解有理数的混合运算法则是解答关键.20.数轴见解析,14 2.50132-<-<<<【解析】【分析】把各个数在数轴上画出表示出来,根据数轴上的数右边的数总是大于左边的数,即可把各个数按由大到小的顺序“<”连接起来.【详解】解:在数轴上画出表示下列各数的点:用“<”号连接起来为:14 2.50132-<-<<<【点睛】此题综合考查了数轴的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.21.(1)23118a b -(2)222y x -【解析】【分析】(1)合并同类项即可得到答案;(2)先去括号,再进行合并同类项即可得到答案.(1)解:3322325356118a a b b b a ---+=;(2)解:22222222(4)22424()22xy y x xy y x y y x y x y xy =--+--=---+.【点睛】本题主要考查了整式的加减运算,掌握整式的运算方法是解题的关键.22.215a b -+,3【解析】【分析】根据整式的混合运算法则将整式化简即可,根据“几个非负数和为0,则这几个非负数分别为0”求出a 和b 的值,最后将a 和b 的值代入化简得式子即可.【详解】由题意得:20a +=,30b +=,2a ∴=-,3b =,原式22223341631a b ab a b ab =+-+--22223433161a b a b ab ab =-+-+-215a b =-+,把2a =-,3b =代入上式得:()223153--⨯+=.【点睛】本题主要考查了整式的混合运算及非负数的性质,熟练地掌握展开括号的法则以及整式的混合运算法则是解题的关键.23.(1)小李在儿童医院的南方1.8km ;(2)9.54立方米.【解析】【分析】(1)求出这几个数的和,根据符号、绝对值判断位置;(2)求出所有数的绝对值的和,即行驶的总路程,进而求出消耗天然气;(1)解:由题意可得:36 2.84295 1.8(km)-+---+-=-答:小李在儿童医院的南方1.8km (2)解:|3||6|| 2.8||4||2||9||5|31.8(km)-+++-+-+-+++-=31.80.39.54⨯=(立方米)答:出租车共消耗天然气9.54立方米.【点睛】本题考查正负数的意义以及有理数的混合运算的实际应用,理解有理数的意义,明确符号和绝对值的意义是正确解答的关键.24.-2【解析】【分析】利用相反数、倒数的性质,以及最大负整数为-1求出各自的值,代入原式计算即可求出值.【详解】解:∵m 和n 互为相反数,a 和b 互为倒数,k 是最大的负整数,∴0m n +=,1ab =,1k =-,202133m n ab k ∴+-+,20213()m n ab k =+-+,2021301(1)=⨯-+-,1(1)=-+-,2=-【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.25.(1)①24x +;②8(2)19【解析】【分析】(1)根据整式的加减运算化简求值即可;(2)根据整式的加减运算顺序即可求解;(3)根据和中不含x 2项即是此项的系数为0即可求解.(1)①222(342)2(21)A B x x x x -=-+---22342242x x x x =-+-++24x =+,②由①知224A B x -=+,当2x =-时,22(2)4448A B -=-+=+=;(2)2342A x x =-+ ,21B ax x =--22(342)(1)A B x x ax x ∴+=-++--223421x x ax x =-++--2(3)51a x x =+-+,∵A 与B 的和不含2x 项,30a ∴+=,即3a =-,224524(3)5(3)2a a ∴+-=⨯-+⨯--49152=⨯--36152=--19=.【点睛】本题考查了整式的加减,解答本题的关键是掌握多项式加减的运算法则,合并同类项的法则.26.(1)122()256⨯+,122()21n n ⨯++(2)40424043【解析】【分析】(1)根据题意,找出规律即可作答;(2)将12342021S S S S S 、、、分别表示出来即可进行计算.(1)根据题意得,5122(256a =⨯+、122(21n a n n =⨯++,故答案为:122()256⨯+,122()21n n ⨯++;(2)12342021S S S S S +++++ 1222222222222(2122334454041404240424043=+--++--+++-- 12(2)24043=⨯-114043=-40424043=.。
七年级数学上学期期中水平测试题及答案The document was prepared on January 2, 2021春雨中学七年级数学上学期期中水平测试(三)一、选择题(让你算的少,要你想的多,只选一个可要认准啊!每小题3分,共30分)1.(太原)巴黎与北京的时差为-7时(正数表示同一时刻比北京早的时数),如果北京时间是7月2日14︰00,那么巴黎时间是( ).(A )7月2日21时 (B )7月2日7时 (C )7月1日7时 (D )7月2日5时2. (2005,无锡)比较111234--,,的大小,结果正确的是( ). (A )111234-<-< (B )111243-<<- (C )111432<-<- (D )111324-<-< 3. (2005,四川)甲地的海拔高度为5米,乙地比甲地低7米,乙地的海拔高度为( ).(A )-7米 (B )-2米 (C )2米 (D )7米4.数轴上的点A 、B 、C 、D 分别表示数a b c d 、、、,已知A 在B 的右侧,C 在B 的左侧,D 在B 、C 之间,则下列式子成立的是( ).(A )a b c d <<< (B )b c d a <<<(C )c d a b <<< (D )c d b a <<<5. (2005,梅州)由梅州到广州的某一次列车,运行途中停靠的车站依次是:梅州——兴宁——华城——河源——惠州——东莞——广州,那么要为这次列车制作的火车票有……( )(A )6种 (B )12种 (C )21种 (D )42种6. (2005,资阳)若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则100!98!的值为 (A )5049 (B ) 99! (C ) 9900 (D ) 2!7.(石景山)已知15a -=,则a 的值为( ).(A )6 (B )-4 (C )6或-4 (D )-6或48.(眉山)小李在解方程513a x -=(x 为未知数)时,误将-x 看作+x ,得方程的解为2x =-,则原方程的解为( ).(A )3x =- (B )0x = (C )2x = (D )15x =9.(江由)若23(2)5m m x --=是一元一次方程,则m 的值是( ).(A )±2 (B )-2 (C )2 (D )410. (桂林)某原料供应商对购买其原料的顾客实行如下优惠办法:(1)一次购买金额不超过1万元,不予优惠;(2)一次购买金额超过1万元,但不超过3万元,给九折优惠;(3)一次购买超过3万元的,其中3万元九折优惠,超过3万元的部分八折优惠.某厂因库容原因,第一次在该供应商处购买原料付款7800元,第二次购买付款26100元,如果他是一次购买同样数量的原料,可少付金额为( ).(A )1460元(B )1540元(C )1560元(D )2000元二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)11.计算:211×(-455)+365×455-211×545+545×365=_________.12.(崇文)观察下列算式,并根据你发现的规律填空:45203618.⨯=⎧⎨⨯=⎩,56304728.⨯=⎧⎨⨯=⎩,67425840.⨯=⎧⎨⨯=⎩,已知122×123=15006,则121×124=__________.13.若a 、b 互为相反数,c 、d 互为倒数,则a cdb +=___________. 14. (2005,天津)已知|x|=4,|y|=12,且xy <0,则x y 的值等于 .15. (2005,苏州)温家宝总理有句名言:“多么小的问题乘以13亿,都会变得很大;多么大的经济总量,除以13亿都会变得很小”据国家统计局的公布,2004年我国淡水资源总量为26520亿立方米,居世界第四位,但人均只有 立方米,是全球人均水资源最贫乏的十三个国家之一。
初中七年级数学上册期中考试试卷数学的知识是需要我们认认真真去学习的,学习不好的话那我们的成绩也不会提升的,下面小编就给大家整理一下七年级数学,仅供参考哦有关七年级数学上期中试卷一、选择题(共4小题,每小题3分,满分12分)1.(3分)在x2y,,,四个代数式中,单项式有( )A.1个B.2个C.3个D.4个2.(3分)下列运算正确的是( )A.x2+x3=x5B.(﹣a3)•a3=a6C.(﹣x3)2=x6D.4a2﹣(2a)2=2a23.(3分)如果一个两位数的个位、十位上的数字分别是a、b,那么这个数可用代数式表示为( )A.baB.10b+aC.10a+bD.10(a+b)4.(3分)从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( )A.a2﹣b2=(a﹣b)2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a+b)(a﹣b)二、填空题(共14小题,每小题2分,满分28分)5.(2分)x与y的和的倒数,用代数式表示为.6.(2分)单项式﹣的系数是,次数是.7.(2分)多项式2a2﹣3a+4是a的次项式.8.(2分)把多项式32x3y﹣y2+ xy﹣12x2按照字母x降幂排列:.9.(2分)若﹣2x3ym与3xny2是同类项,则m+n= .10.(2分)计算:3a2﹣6a2= .11.(2分)当x=﹣2时,代数式x2+2x+1的值等于.12.(2分)计算:(a﹣b)•(b﹣a)2= (结果用幂的形式表示).13.(2分)计算:(﹣2x2y)•(﹣3x2y3)= .14.(2分)把(2×109)×(8×103)的结果用科学记数法表示为.15.(2分)计算( )2016×(﹣ )2017= .16.(2分)已知x﹣y=2,xy=3,则x2+y2的值为.17.(2分)若2m=5,2n=3,则2m+2n= .18.(2分)如果代数式4y2﹣2y+5的值为7,那么代数式2y2﹣y+5的值等于.三、解答题(共6小题,19、20每题5分,其余每题6分,共34分)19.(5分)计算:(3x2﹣ 2x+1)﹣(x2﹣x+3)20.(5分)用乘法公式计算:99.82.21.(6分)计算:(﹣a)2•(﹣a3)•(﹣a)+(﹣a2)3﹣(﹣a3)2.22.(6分)计算: .23.(6分)计算:(2x﹣3)(x+4)﹣(x﹣1)(x+1)24.(6分)计算:(2a﹣b+c)(2a﹣b﹣c).四.简答题(本大题共4题,25、26每题6分,其余每题7分,满分26分)25.(6分)先化简后求值:(x﹣y)(y﹣x)﹣[x2﹣2x(x+y)],其中 .26.(6分)解方程:2x(x+1)﹣(3x﹣2)x=1﹣x2.27.(7分)用3根火柴棒搭成1个三角形,接着用火柴棒按如图所示的方式搭成2个三角形,再用火柴棒搭成3个三角形、4个三角形…(1)若这样的三角形有6个时,则需要火柴棒根.(2)若这样的三角形有 n个时,则需要火柴棒根.(3)若用了2017根火柴棒,则可组成这样图案的三角形有个.28.(7分)如图,在长方形ABCD中,放入6个形状和大小都相同的小长方形,已知小长方形的长为a,宽为b,且a>b.(1)用含a、b的代数式表示长方形ABCD的长AD、宽AB;(2)用含a、b的代数式表示阴影部分的面积.七年级(上)期中数学试卷参考答案与试题解析一、选择题(共4小题,每小题3分,满分12分)1.(3分)在x2y,,,四个代数式中,单项式有( )A.1个B.2个C.3个D.4个【解答】解:根据单项式的定义可知,∴在x2y,,,四个代数式中,单项式有x2y, .故选:B.2.(3分)下列运算正确的是( )A.x2+x3=x5B.(﹣a3)•a3=a6C.(﹣x3)2=x6D.4a2﹣(2a)2=2a2【解答】解:A、x2与x3不是同类项,不能合并;故本选项错误;B、(﹣a3)•a3=﹣a3+3=﹣a6 ;故本选项错误;C 、(﹣x3)2=(﹣1)2•(x3)2=x6 ;故本选项正确;D、4a2﹣(2a)2=4a2﹣4a2=0;故本选项错误.故选:C.3.(3分)如果一个两位数的个位、十位上的数字分别是a、b,那么这个数可用代数式表示为( )A.baB.10b+aC.10a+bD.10(a+b)【解答】解:∵个位上的数字是a,十位上的数字是b,∴这个两位数可表示为 10b+a.故选:B.4.(3分)从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( )A.a2﹣b2=(a﹣b)2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a+b)(a﹣b)【解答】解:由图1将小正方形一边向两方延长,得到两个梯形的高,两条高的和为a﹣b,即平行四边形的高为a﹣b,∵两个图中的阴影部分的面积相等,即甲的面积=a2﹣b2,乙的面积=(a+b)(a﹣b).即:a2﹣b2=(a+b)(a﹣b).所以验证成立的公式为:a2﹣b2=(a+b)(a﹣b).故选:D.二、填空题(共14小题,每小题2分,满分28分)5.(2分)x与y的和的倒数,用代数式表示为.【解答】解:根据题意可以列代数式为,故答案为: .6.(2分)单项式﹣的系数是,次数是 6 .【解答】解:系数是:,次数是:2+1+3=6,故答案为:,6.7.( 2分)多项式2a2﹣3a+4是a的二次三项式.【解答】解:多项式2a2﹣3a+4最高次项2a2的次数为二,有三项.故答案为:二,三.8.(2分)把多项式32x3y﹣y2+ xy﹣12x2按照字母x降幂排列:.【解答】解:多项式按照字母x降幂排列: .故答案为: .9.(2分)若﹣2x3ym与3xny2是同类项,则m+n= 5 .【解答】解:∵﹣2x3ym与3xny2是同类项,∴n=3,m=2,∴m+n=5,故答案为5.10.(2分)计算:3a2﹣6a2= ﹣3a2 .【解答】解:3a2﹣6a2=﹣3a2,故答案为:﹣3a2.11.(2分) 当x=﹣2时,代数式x2+2x+1的值等于 1 .【解答】解:原式=4﹣4+1=1.故答案为1.12.(2分)计算:(a﹣b)•(b﹣a)2= (a﹣b)3 (结果用幂的形式表示).【解答】解:(a﹣b)•(b﹣a)2=(a﹣b)•(a﹣b)2=(a﹣b)3.故应填:(a﹣b)3.13.(2分)计算:(﹣2x2y)•(﹣3x2y3)= 6x4y4 .【解答】解:(﹣2x2y)•(﹣3x2y3)=6x4y4.故答案为:6x4y4.14.(2分)把(2×109)×(8×103)的结果用科学记数法表示为1.6×1013.【解答】解:(2×109)×(8×103)=1.6×1013,故答案为:1.6×101315.(2分)计算( )2016×(﹣ )2017= ﹣.【解答】解:( )2016×(﹣ )2017=( )2016×(﹣)2016×(﹣ )=( × )2016×(﹣ )=﹣,故答案为:﹣ .16.(2分)已知x﹣y=2,xy=3,则x2+y2的值为10 .【解答】解:x2+y2=(x﹣y)2+2xy,把x﹣y=2,xy=3代入得:(x﹣y)2+2xy=4+6=10.即:x2+y2=10.故答案为:1017.(2分)若2m=5,2n=3,则2m+2n= 45 .【解答】解:2m+2n=2m•22n=5×9=45.故答案为:45.18.(2分)如果代数式4y2﹣2y+5的值为7,那么代数式2y2﹣y+5的值等于 6 .【解答】解:∵4y2﹣2y+5=7,即4y2﹣2y=2,∴2y2﹣y=1,则原式=1+5=6,故答案为:6三、解答题(共6小题,19、20每题5分,其余每题6分,共34分)19.(5分)计算:(3x2﹣2x+1)﹣(x2﹣x+3)【解答】解:原式=3x2﹣2x+1﹣x2+x﹣3=2x2﹣x﹣ 220.(5分)用乘法公式计算:99.82.【解答】解:99.82,=(100﹣0.2)2,=1002﹣2×100×0.20.+22,=9960.04.21.(6分)计算:(﹣a)2•(﹣a3)•(﹣a)+(﹣a2)3﹣(﹣a3)2.【解答】解:原式=﹣a2•(﹣a3)•(﹣a)+(﹣a6)﹣a6=a6﹣a6﹣a6=﹣a6.22.(6分)计算: .【解答】解:原式=4x2y4( y2﹣ x2﹣ xy)=x2y6﹣2x4 y4﹣6x3y5.23.(6分)计算:(2x﹣3)(x+4)﹣(x﹣1)(x+1)【解答】解:原式=2x2+8x﹣3x﹣12﹣(x2﹣1),=2x2+8x﹣3x﹣12﹣x2+1,=x2+5x﹣11.24.(6分)计算:(2a﹣b+c)(2a﹣b﹣c).【解答】解:原式=[(2a﹣b)+c][(2a﹣b)﹣c],=(2a﹣b)2﹣c2,=4a2﹣4ab+b2﹣c2.四.简答题(本大题共4题,25、26每题6分,其余每题7分,满分26分)25.(6分)先化简后求值:(x﹣y)(y﹣x)﹣[x2﹣2x(x+y)],其中 .【解答】解:(x﹣y)(y﹣x)﹣[x2﹣2x(x+y)]=﹣x2+2xy﹣y2﹣x2+2x2+2xy=4xy﹣y2,当时,原式= =﹣4﹣4=﹣8.26.(6分)解方程:2x(x+1)﹣(3x﹣2)x=1﹣x2.【解答】解:2x(x+1)﹣(3x﹣2)x=1﹣x2,去括号得:2x2+2x﹣3x2+2x=1﹣x2,整理得:4x=1,解得:x= .27.(7分)用3根火柴棒搭成1个三角形,接着用火柴棒按如图所示的方式搭成2个三角形,再用火柴棒搭成3个三角形、4个三角形…(1)若这样的三角形有6个时,则需要火柴棒13 根.(2)若这样的三角形有n个时,则需要火柴棒2n+1 根.(3)若用了2017根火柴棒,则可组成这样图案的三角形有1008 个.【解答】解:(1)根据图形可得出:当三角形的个数为1时,火柴棒的根数为3;当三角形的个数为2时,火柴棒的根数为5;当三角形的个数为3时,火柴棒的根数为7;当三角形的个数为4时,火柴棒的根数为9;当三角形的个数为5时,火柴棒的根数为11;当三角形的个数为6时,火柴棒的根数为13;…由此可以看出:当三角形的个数为n时,火柴棒的根数为3+2(n ﹣1)=2n+1.(2)当三角形的个数为n时,火柴棒的根数为3+2(n﹣1)=2n+1.(3)由题意2n+1=2017,∴n=1008故答案为:9,2n+1,1008.28.(7分)如图,在长方形ABCD中,放入6个形状和大小都相同的小长方形,已知小长方形的长为a,宽为b,且a>b.(1)用含a、b的代数式表示长方形AB CD的长AD、宽AB;(2)用含a、b的代数式表示阴影部分的面积.【解答】解:(1)由图形得:AD=a+2b,AB=a+b;(2)S阴影=(a+b)(a+2b)﹣6ab=a2+2ab+ab+2b2﹣6ab=a2﹣3ab+2b2.人教版七年级数学上册期中检测卷一、选择题(共10小题,每小题3分,共30分)1.a的相反数是( )A.|a|B.1aC.-aD.以上都不对2.计算(-16)÷12的结果为( )A.32B.-32C.8D.-83.在1,-2,0,53这四个数中,最大的数是( )A.-2B.0C.53D.14.中共十九大召开期间,十九大代表纷纷利用休息时间来到北京展览馆,参观“砥砺奋进的五年”大型成就展.据统计,9月下旬开幕至10月22日,展览累计参观人数已经超过78万.请将780000用科学记数法表示为( )A.78×104B.7.8×105C.7.8×106D.0.78×1065.下列计算正确的是( )A.-2-2=0B.8a4-6a2=2a2C.3(b-2a)=3b-2aD.-32=-96.若2x2my3与-5xy2n是同类项,则|m-n|的值是( )A.0B.1C.7D.-17.长方形窗户上的装饰物如图所示,它是由半径均为b的两个四分之一圆组成,则能射进阳光部分的面积是( )A.2a2-πb2B.2a2-π2b2C.2ab-πb2D.2ab-π2b2第7题图第9题图8.已知|a|=5,|b|=2,且|a-b|=b-a,则a+b的值为( )A.3或7B.-3或-7C.-3D.-79.在数学活动课上,同学们利用如图所示的程序进行计算,发现无论x取任何整数,结果都会进入循环.下面选项一定不是该循环的是( )A.4,2,1B.2,1,4C.1,4,2D.2,4,110.一列数,按一定规律排列成-1,3,-9,27,-81,…,从中取出三个相邻的数,若这三个数的和为a,则这三个数中最大的数与最小的数的差为( )A.87aB.87|a|C.127|a|D.127a二、填空题(共6小题,每小题3分,共18分)11.计算:(1)(-3)-(-5)=;(2)5a2-3(a2-2b)-3b= .12.若数轴上表示互为相反数的两点之间的距离是16,则这两个数是.13. 已知多项式x|m|+(m-2)x-10是二次三项式,m为常数,则m 的值为.14.若关于a,b的多项式3(a2-2ab-b2)-(a2+mab+2b2)中不含有ab项,则m= .15.用符号(a,b)表示a、b两数中较小的一个数,用符号[a,b]表示a、b两数中较大的一个数,计算:-1,-12-(-2,0)= .16.如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成……按照此规律,第n个图中正方形和等边三角形的个数之和为个.三、解答题(共8小题,共72分)17.(8分)计算:(1)36×14-23; (2)-32--5-0.2÷45×(-2)2.18.(8分)化简:(1)3a2+2a-4a2-7a; (2)13(9x-3)+2(x+1).19.(8分)先化简,再求值:5xy2-[2x2y-(2x2y-3xy2)],其中(x-2)2+|y+1|=0.20.(8分)对于有理数a,b,定义一种新运算“?”,规定:a?b=|a|-|b|-|a-b|.(1)计算-2?3的值;(2)当a,b在数轴上的位置如图所示时,化简a?b.21.(8分)如图,将面积为a2的小正方形和面积为b2的大正方形放在同一水平面上(b>a>0).(1)用a、b表示阴影部分的面积;(2)计算当a=3,b=5时,阴影部分的面积.22.(10分)邮递员骑车从邮局O出发,先向西骑行2km到达A村,继续向西骑行3km到达B村,然后向东骑行8km,到达C村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用1cm表示1km,画出数轴,并在该数轴上表示出A、B、C三个村庄的位置;(2)C村距离A村有多远?(3)邮递员共骑行了多少km?23.(10分)“十一”黄金周期间,淮安动物园在7天假期中每天接待的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数):日期 10月1日 10月2日 10月3日 10月4日 10月5日 10月6日 10月7日+1.6 +0.8 +0.4 -0.4 -0.8 +0.2 -1.2(1)若9月30日的游客人数记为a万人,请用含a的代数式表示10月2日的游客人数;(2)请判断七天内游客人数最多的是哪天,有多少人?(3)若9月30日的游客人数为2万人,门票每人10元,则黄金周期间淮安动物园门票收入是多少元?24.(12分)探索规律,观察下面算式,解答问题.1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52;……(1)请猜想:1+3+5+7+9+…+19=;(2)请猜想:1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)= ;(3)试计算:101+103+…+197+199.参考答案与解析1.C2.B3.C4.B5.D6.B7.D8.B9.D10.C 解析:设这三个数中第一个数为x,则另两个数分别为-3x、9x.根据题意,得x-3x+9x=a,解得x=17a.因为-3x与9x异号,x与9x同号,所以这三个数中最大的数与最小的数的差为|9x-(-3x)|=12|x|=127|a|.故选C.11.(1)2 (2)2a2+3b 12.-8、8 13.-2 14.-615.32 16.(9n+3)17.解:(1)原式=36×14-36×23=9-24=-15.(4分)(2)原式=-9--5-15×54×4=-9-(-5-1)=-9+6=-3.(8分)18.解:(1)原式=-a2-5a.(4分)(2)原式=5x+1.(8分)19.解:原式=5xy2-2x2y+2x2y-3xy2=2xy2.(3分)因为(x-2)2+|y+1|=0,所以x=2,y=-1,(5分)则原式=4.(8分)20.解:(1)根据题中的新定义得,原式=|-2|-|3|-|-2-3|=2-3-5=-6.(4分)(2)由a,b在数轴上的位置,可得b<00,(5分)则a?b=|a|-|b|-|a-b|=a+b-a+b=2b.(8分)21.解:(1)阴影部分的面积为12b2+12a2+12ab.(4分)(2)当a=3,b=5时,12b2+12a2+12ab=12×25+12×9+12×3×5=492,即阴影部分的面积为492.(8分)22.解:(1)如图所示.(4分)(2)C、A两村的距离为3-(-2)=5(km).答:C村距离A村5km.(7分)(3)|-2|+|-3|+|+8|+|-3|=16(km).答:邮递员共骑行了16km.(10分)23.解:(1)10月2日的游客人数为(a+2.4)万人.(2分)(2)10月3日游客人数最多,人数为(a+2.8)万人.(5分)(3)(a+1.6)+(a+2.4)+(a+2.8)+(a+2.4)+(a+1.6)+(a+1.8)+(a+0.6)=7a+13.2.(7分)当a=2时,(7×2+13.2)×10=272(万元).(9分)答:黄金周期间淮安动物园门票收入是272万元.(10分)24.解:(1)102(3分) (2)(n+2)2(6分)(3)原式=(1+3+5+…+197+199)-(1+3+…+97+99)=1002-502=7500.(12分)第三章检测卷1.A2.D3.C4.A5.D6.C7.B8.C9.B 10.D11.x=1 12.-5 13.21 14.x=6 15.325999 16.(70-2n)17.解:(1)去括号,得3x-7x+7=3-2x-6,移项,得3x-7x+2x=3-6-7,合并同类项,得-2x=-10,系数化为1,得x=5.(4分)(2)去分母、去括号,得9y-3-12=10y-14,移项、合并同类项,得-y=1,系数化为1,得y=-1.(8分)18.解:因为方程(m-2)x|m|-1+16=0是关于x的一元一次方程,所以|m|-1=1且m-2≠0,解得m=-2.(4分)则原方程为-4x+16=0,解得x=4.综上所述,m=-2,x=4.(8分)19.解:由题意得3+a2+-13(2a-1)-1=0,(4分)解得a=5.(8分)20.解:设这个班胜了x场,则负(28-x)场.根据题意得3x+(28-x)=48,(4分)解得x=10.(7分)答:这个班胜了10场.(8分)21.解:解方程2x-35=23x-2,得x=5.25.(2分)因为两个关于x的方程的解相同,所以3a-14=3(5.25+a)-2a,解得a=8,(5分)所以(a-3)2=(8-3)2=25.(8分)22.解:设应往甲处调去x名武警部队战士,则向乙处调去(200-x)名武警部队战士.根据题意,得130+x=2(70+200-x)+10,(4分)解得x=140,所以200-x=60.(8分)答:应往甲处调去140名,往乙处调去60名武警部队战士.(10分)23.解:(1)由题意得5020-92×40=1340(元).(3分)答:甲、乙两班联合起来给每位同学购买一套服装,比单独购买可以节省1340元.(4分)(2)设甲班有x名同学准备参加演出(依题意46答:甲班有50名同学,乙班有42名同学.(10分)24.解:(1)x+8 x+7 x+1(3分)(2)由题意得x+x+1+x+7+x+8=416,解得x=100.(7分)(3)不能.(8分)理由如下:因为当4x+16=622,解得x=15112,不为整数.(12分)秋七年级数学上册期中试题一、选择题(本大题10小题,每小题3分,共30分)1. 如果电梯上升5层记为+5,那么电梯下降2层应记为(B)A.+2B.-2C.+5D.-52. 图中立体图形从正面看到的图形是(A)3. 在国家“一带一路”倡议下,我国与欧洲开通了互利互惠的中欧专列.行程最长,途经城市和国家最多的一趟专列全程长13000 km,将13000用科学记数法表示应为(B)A.0.13×105B.1.3×104C.1.3×105D.13×1034. 计算-(-1)+|-1|,其结果为(B)A.-2B.2C.0D.-15. 下列各式中,不是同类项的是(D)A.2ab2与-3b2aB.2πx2与x2C.-12m2n2与5n2m2D.-xy2与6yz26. 如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“害”字一面的相对面上的字是(C)A.了B.我C.的D.国7. 数轴上点A,B表示的数分别是5,-3,它们之间的距离可以表示为(D)A.-3+5B.-3-5C.|-3+5|D.|-3-5|8. 下列说法正确的是(D)A.a是代数式,1不是代数式B.-3πa2b10的系数-3π10,次数是4C.xy的系数是0D.a,b两数差的平方与a,b两数的积的4倍的和表示为(a-b)2+4ab9. M=4x2-5x+11,N=3x2-5x+10,则M与N的大小关系是(A)A.M>NB.M=NC.M10. 如图所示的三角形数阵叫“莱布尼茨调和三角形”,它们是由整数的倒数组成的,第n行有n个数,且两端的数均为1n,每个数是它下一行左右相邻两数的和,则第8行第3个数(从左往右数)为(B)1112121316131411211214……A.160B.1168C.1252D.1280二、填空题(本大题6小题,每小题4分,共24分)11. -3的相反数是3;-0.5的倒数是-2.12. 四棱锥共有五个面,其中底面是四边形,侧面都是三角形.13. 若m2+3mn=5,则5m2-3mn-(-9mn+3m2)=10.14. 如图,是由一些相同的小正方体搭成的几何体从三个方向看到的图形,搭成这个几何体的小正方体的个数是4.15. 单项式2xm+3y4与-6x5y3n-1是同类项,这两个单项式的和是-4x5y4.16. 若有理数在数轴上的位置如图所示,则化简:|a+c|+|a-b|-|c+b|=-2a-2c.三、解答题(一)(本大题3小题,每小题6分,共18分)17. 如图,下列①~④是由小正方体搭成的简单几何体,分别画出它们从左面看到的图形.解:18. 计算下列各题.(1)(-2)2+3×(-2)-(-12); (2)-24×(-56+38-112).解:-32 解:1319. 先化简,再求值:5(3a2b-ab2)-(ab2+3a2b-1),其中a=-2,b=1.解:原式=12a2b-6ab2+1,当a=-2,b=1时,原式=61四、解答题(二)(本大题3小题,每小题7分,共21分)20. 已知单项式3a2b2m-n与-2a2b是同类项(ab≠0),c,d互为倒数,e,f互为相反数,试求89(e+f)-2cd+(2m-n)2的值.解:因为单项式3a2b2m-n与-2a2b是同类项(ab≠0),所以2m-n=1,因为c,d互为倒数,e,f互为相反数,所以cd=1,e+f=0,所以89(e+f)-2cd+(2m-n)2=0-2×1+12=-2+1=-121. 某中学七年级一班有44人,某次活动中分为四个组,第一组有a人,第二组比第一组的一半多5人,第三组人数等于前两组人数的和.(1)求第四组的人数(用含a的代数式表示);(2)试判断a=12时,是否满足题意.解:(1)由题意得第二组的人数为12a+5,第三组的人数为a+12a+5=32a+5,所以第四组的人数为44-a-(12a+5)-(32a+5)=(34-3a)人(2)当a=12时,第四组的人数为34-3×12=-2,不符合题意22. 如图,将-2,-1,0,1,2,3,4,5,6,7这10个数分别填写在五角星中每两条线的交点处(每个交点处只填写一个数),将每一条线上的4个数相加,共得5个数,设为a1,a2,a3,a4,a5.(1)求12(a1+a2+a3+a4+a5)的值;(2)交换其中任何两位数的位置后,12(a1+a2+a3+a4+a5)的值是否改变?并说明理由.解:(1)12(a1+a2+a3+a4+a5)=(-2)+(-1)+0+1+2+3+4+5+6+7=25(2)交换其中任何两数的位置后,12(a1+a2+a3+a4+a5)的值不变,因为a1+a2+a3+a4+a5中这10个数每个重复一次,所以12(a1+a2+a3+a4+a5)的值等于这10个数的和五、解答题(三)(本大题3小题,每小题9分,共27分)23.如图,在长和宽分别是a,b的长方形的四个角都剪去一个边长为x的正方形,折叠后,做成一无盖的盒子(单位:cm).(1)用a,b,x表示纸片剩余部分的面积;(2)用a,b,x表示盒子的体积;(3)当a=10,b=8且剪去的每一个小正方形的面积等于4 cm2时,求剪去的每一个正方形的边长及所做成的盒子的体积.解:(1)剩余部分的面积为(ab-4x2)cm2(2)盒子的体积为x(a-2x)(b-2x)cm3(3)由题意得x=2 cm,当a=10,b=8,x=2时,x(a-2x)(b-2x)=2×(10-2×2)×(8-2×2)=2×6×4=48(cm3)24. 某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20).(1)若该客户按方案①购买,需付款(40x+3200)元(用含x的代数式表示);若该客户按方案②购买,需付款(36x+3600)元(用含x的代数式表示);(2)若x=30,通过计算说明此时按哪种方案购买较为合算?解:(2)当x=30时,方案①需付款为40x+3200 =40×30+3200 =4400(元);方案②需付款为36x+3600 =36×30+3600=4680(元).因为4400 <4680,所以选择方案①购买较为合算25. 已知a是最大的负整数,b是多项式2m2n-m3n2-m-2的次数,c是单项式-2xy2的系数,且a,b,c分别是点A,B,C在数轴上对应的数.(1)求a,b,c的值,并在数轴上标出点A,B,C;(2)若动点P,Q同时从A,B出发沿数轴负方向运动,点P的速度是每秒12个单位长度,点Q的速度是每秒2个单位长度,求运动几秒后,点Q可以追上点P?(3)在数轴上找一点M,使点M到A,B,C三点的距离之和等于10,请直接写出所有点M对应的数.(不必说明理由)解:(1)a=-1,b=5,c=-2,如图(2)因为动点P,Q同时从A,B出发沿数轴负方向运动,点P的速度是每秒12个单位长度,点Q的速度是每秒2个单位长度,又因为AB=6,两点速度差为:2-12,所以6÷(2-12)=4,运动4秒后,点Q可以追上点P(3)存在点M,使P到A,B,C的距离和等于10,当M在AB之间,则M对应的数是2;当M在C点左侧,则M对应的数是-223。
七年级数学(上)学习质量期中测评 数学试题(五) 温馨提示: 亲爱的同学,勤奋好学的你很想显露自己的数学才华吧!老师提供了展示自我的平台,请你在限定时间内完成答卷,老师会给你作出恰当的评价! 一、选择题(本大题共6小题,每小题3分,共18分.在每小题所给的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上.) 1. ﹣的倒数是( ) A .﹣ B . C .﹣3 D .3 2. 下列各式中,不是同类项的是( ) A . x 2y 和x 2y B .﹣ab 和ba C . abcx 2和﹣x 2abc D . x 2y 和xy 3 3. 下面四个数中比﹣2小的数是( ) A .1 B .0 C .﹣1 D .﹣3 4.某日中午,北方某地气温由早晨的零下2℃上升了9℃,傍晚又下降了3℃,这天傍晚北方某地的气温是( )℃ A .﹣14 B .﹣2 C .4 D .10 5. 下列去括号中,正确的是( ) A .a 2﹣(1﹣2a )=a 2﹣1﹣2a B .a ﹣[5b ﹣(2c ﹣1)]=a ﹣5b +2c ﹣1 C .a 2+(﹣1﹣2a )=a 2﹣l +2a D .﹣(a +b )+(c ﹣d )=﹣a ﹣b ﹣c +d 6. 数轴上标出若干个点,每相邻两点相距一个单位,点A ,B ,C ,D 分别表示整数a 、b 、c 、d ,且d ﹣2a=10,则原点在( )的位置. A .点A B .点B C .点C D .点D 二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请将答案直接写在答题卡相应位置上) 7. 数轴上,将表示﹣1的点向右移动3个单位后,对应点表示的数是 . 8. 单项式的系数是 .
10. 若代数式2x ﹣y 的值等于1,则代数式9+4x ﹣2y 的值是 . 11. 若关于x 的方程2x ﹣k +4=0的解是x=3,那么k 的值是 . 12. 用代数式表示“a 的3倍与b 的和的平方”是 . 13. 中国共产党第十九次全国代表大会吸引全球目光.据十九大新闻中心介绍,报名采访十九大的记者共计3068人.用科学记数法表示为 人. 14. 根据如图的程序计算,若输入x 的值为1,则输出y 的值为 . 15. 下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第8个图中所贴剪纸“○”的个数为 个. 16. 若有理数在数轴上的位置如图所示,则化简|a +c |+|a ﹣b |﹣|c +b |= . 三、解答题(本大题共10小题,共82分.请在答题卡指定区域内作答,解答时应写出文字说明,推理过程或演算步骤) 17.(16分)计算题 (1)﹣8+3﹣5+8; (2)(﹣4)×6+(﹣125)÷(﹣5); (3)()÷(); (4)﹣32÷(﹣3)2﹣(﹣1)3×||. 18.(8分)解方程: (1)4﹣x=6﹣2x ;
(2)=﹣1. 19.(8分)化简求值: (1)3y 2﹣1﹣2y +5﹣3y ﹣y 2,其中y=﹣1; (2)3(4mn ﹣m 2)﹣4mn ﹣2(3mn ﹣m 2),其中m=﹣2,n=. 20.(4分)在数轴上表示下列各数,并按从小到大的顺序用“<”把这些数连接起来. 3.5,﹣4,0,2, 21.(4分)已知多项式3x 2+my ﹣8与多项式﹣nx 2+2y +7的差中,不含有x 2、y 的项,求n m +mn 的值. 22.(6分)老师在黑板上写了一个正确的演算过程,随后用手捂住了多项式,形式如下: ﹣(a 2+4ab +4b 2)=a 2﹣4b 2 (1)求所捂住的多项式; (2)当a=﹣1,b=3时求所捂住的多项式的值. 23.(8分)设计一个商标图案(如图阴影部分),其中O 为半圆的圆心,AB=a ,BC=b , (1)用关于a ,b 的代数式表示商标图案的面积S ; (2)求当a=6cm ,b=4cm 时S 的值.(本题结果都保留π) 24.(9分)小王在解关于x 的方程3a ﹣2x=15时,误将﹣2x 看作2x ,得方程的解x=3, (1)求a 的值; (2)求此方程正确的解; (3)若当y=a 时,代数式my 3+ny +1的值为5,求当y=﹣a 时,代数式my 3+ny +1的值. 25.(9分)情景创设 ,…是一组有规律的数,我们如何求这些连续数的和呢? 探索活动
(1)根据规律第6个数是 ,是第 个数;
阅读理解 =1﹣=1﹣ = 实践应用 根据上面获得的经验完成下面的计算: (2); (3). 26.(10分)已知:数轴上A 、B 两点表示的有理数为 a 、b ,且(a ﹣2)2+|b +3|=0. (1)求a ,b 的值; (2)点C 在数轴上表示的数为c ,且与A 、B 两点的距离和为13,求数c 的值; (3)某天小明和小亮在河边钓鱼,鱼饵在B 点左边5个单位长度处.(小明,小华均在数轴上行走)小明以1个单位长度/秒的速度从B 点出发拿鱼饵,3秒后位于A 的小亮收到小明的信号,以2个单位长度/秒的速度向小明走去,小明拿到鱼饵立刻返回,与小亮在数轴上的D 点相遇,则点D 表示的有理数是 ;小明从出发到与小亮相遇,共用时间 秒.(直接写出答案)。