微波滤波器的设计与仿真毕设论文
- 格式:doc
- 大小:1.20 MB
- 文档页数:29
毕业设计(论文)任务书题目:大功率双模微波滤波器的仿真设计系名信息工程系专业电子信息工程学号学生姓名指导教师种楠楠职称助教年月日一、原始依据(包括设计或论文的工作基础、研究条件、应用环境、工作目的等。
)工作基础:在全球无线通讯市场成长发展的趋势下,人们对各种无线通讯工具的要求越来越高,功率辐射小、作用距离远、覆盖范围大已成为各运营商乃至无线通讯设备制造商的普遍要求。
这就对无线通讯系统中的器件提出了更高的要求。
微波滤波器具有低插入损耗、边带陡峭度高、体积和重量小等优点,能够满足通信、航天航空、军事等领域的高速发展的需求,因此通过高效的设计方法开发出符合现代要求的GHz以上的微波滤波器具有十分重要的现实意义。
应用环境:本设计依据微波原理和电磁场与电磁波理论,设计一款能达到10W以上的L波段大功率滤波器。
学生完成对理论基础的熟悉和掌握后,通过在Genesys、ADS、Sonnet中仿真优化,设计符合要求的滤波器。
工作目的:本课题的主要任务是利用现有资源,设计仿真功率更高、选择性更好的滤波器。
二、参考文献[1] 张裕恒等.超导物理(第三版).合肥:中国科学技术大学出版社,2009[2] David M. Pozar[著],张肇仪,周乐柱,吴德明等[译].微波工程(第三版)[M]. 北京:电子工业出版社.2006.3[3] M. Nisenoff and W. J. Meyers, ‘On-orbit status of the high temperaturesuperconductivity space experiment’, IEEE Trans. Appl. Supercond., 2001, Vol. 11, No. 1, pp. 799-805.[4]M. Nisenoff, J. C. Ritter, G. Price, et al. ‘The high temperature superconductivityspace experiment: HTSSE I-components and HTSSE II subsystems and advanced devices’, IEEE Trans. Appl. Supercond., 1993, Vol. 3, pp. 2885-2890.[5] T. G. Kawecki, G. A. Golba, G. E. Price, V. S. Rose and W. J. Meyers, ‘The hightemperature superconductivity space experiment (HTSSE-II) design’, IEEE Trans.Microwave Theory Tech., 1996, Vol. 44, No. 7, pp. 1198-1212.[6] 黄席椿,高顺泉.滤波器综合法设计原理.北京:人民邮电出版社.1978.74[7] J.S. Hong,M.J. Lancaster.Microstrip Filters for RF/Microwave Applications.NewYork:Wiley,2001.384[8]Richard J. Cameron. ‘General Coupling Matrix Synthesis Methods for ChebyshevFiltering Fu nctions’. IEEE Trans. Microwave Theory Tech.,1999, Vol.17,pp.433-442 [9] Richard J. Cameron. ‘Advanced Coupling Matrix Synthesis Techniques for MicrowaveFilters’. IEEE Trans. Microwave Theory Tech.,2003, Vol.51,pp.1-10[10]R.Levy,’Direct synthesis of cascaded quadruplet(CQ) filter ‘, IEEE Trans.Microwave Theory Tech.,1995,vol.43,no.12,pp.2940-2945[11]H.C.Bell,’Canonical asymmetric coupled-resonator filters’, IEEE Trans.Microwave Theory Tech.,1982, vol.30,no.9,pp.1335-1340[12]Stefano Tamiazzo,Giuseppe M acchiarella.’An Analytical Technique for theSynthesis of Cascaded N-Tuplets Cross-Coupled Resonators Microwave Filters Using Matrix Rptations’ .IEEE Trans. Microwave Theory Tech.,2005,vol.53,no.5,pp.1693-1698.[13] W. A. Atia, K. A. Zaki, A. E. Atia. Synthesis of general topology multiple coupledresonator filters by optimization. IEEE Microwave Theory Tech. Dig,1998, 821~824 [14]A. B. Jayyousi, M. J. Lancaster. A Gradient-Based Optimization Technique EmployingDeterminants for the Synthesis of Microwave Coupled Filters. IEEE Microwave Theory Tech. Dig, 2004, 1369~1372[15]Smain Amari. Synthesis of Cross-coupled Resonator Filters Using an Analyticalradient Based Optimization Technique. IEEE Trans. Microwave Theory and Tech. ,2000 ,48 (9):1559~1564[16]左涛. ‘高温超导滤波器研究’.[博士学位论文]. 天津:南开大学,2008.[17]夏侯海.‘面向微波系统应用的高温超导器件研究’。
阶跃阻抗微波低通滤波器设计与仿真设计总说明微波滤波器在无线通信系统中至关重要,起到频带和信道选择的作用,并且能滤除谐波,抑制杂散。
在射频电路设计时,经常会用滤波器从各种信号中提取出想要的频谱信号。
Angilent ADS 软件可以支持从模块到系统设计,能够完成微波电路设计、通信系统设计、射频集成电路设计,因此是当前射频和微波电路设计的首选工程软件。
本文主要用三种方法达到了任务书的要求,其具体参数指标为截止频率ω=2.5GHz;在ω=4GHz处的插入损耗大于20dB;输入输出阻抗为50Ω,依c据理论是巴特沃兹、切比雪夫、Richards变换与Kuroda规则,并得出了三种方法设计的滤波器。
利用滤波器向导设计在基于Richards变换与Kuroda规则最低需采用五阶,就可以达到最平坦响应,但其过渡带过于平坦;采用最平坦响应阶跃阻抗低通滤波器原理图设计需要六阶就可以达到设计参数要求,同时该方法设计的滤波器过渡带比采用向导设计的要陡峭;采用切比雪夫设计的滤波器所需节数需五阶,但其通带内会出现波纹。
本文的设计结果和结论为微波滤波器的设计提供了重要的理论参考。
关键词:ADS,巴特沃兹,切比雪夫,Richards ,Kuroda,低通滤波器。
Stepped impedance of microwave low-pass filter design and simulationDesign DescriptionMicrowave filters in a wireless communication system is essential , and play a role in band and channel selection, and harmonic, suppr ession of spurious.When the RF circuit design, often used filter want s spectrum signal is extracted from the signal. Angilent ADS softwar e can support from the module to the system design, able to complet e microwave circuit design,communication design, RFIC design, so i s the current choice for RF and microwave circuit design engineerin g software.This article mainly three ways to meet the requirements of the tas k, the specific parameters for as at frequencies low pass cut-off freq uency of=2.5GHz ; insertion loss greater than 20dB at the =4GHz in put output impedance is 50, based on the theory of Butterworth, Ch ebyshev , Richards rules of transformation and Kuroda, and the thre e methods of design of the filter. In based on Richards transform an d Kuroda rules using Filter Wizard design just used four order, o n can reached most flat response, but its transition with too flat; used principle figure design of has most flat response order jump impedance low pass filter need six order to reached design parameter requirements, while the method design of filter transition with than used wizard design of to steep; used cut than snow husban d design of filter by needed section number just five order, while t ransition with than former are stee,But it appears in the pass ban d ripple.This design results and conclusions for the design of microwave fil ters offer theory reference.Keyword:ADS, Butterworth, Chebyshev ,Richards ,Kuroda and low-pa ss filters.目录目录 (3)1绪论 (5)1.1阶跃阻抗微波低通滤波器简介 (5)2 滤波器的基本原理 (14)2.1二端口射频网络参量 (15)2.1.1归一化参量 (15)2.1.2散射参量的定义 (16)2.2 微带线 (20)2.2.1 微带线的有效介电常数和特性阻抗 (20)2.2.1 微带线的损耗与衰减 (23)2.3 微带阶跃阻抗低通滤波器的理论基础 (24)2.3.1微带传输线段的近似等效电路 (24)2.3.2阻抗变换 (27)2.3.3频率变换 (27)3微带阶跃阻抗低通滤波器的设计 (29)3.1 利用ADS中的滤波器设计向导设计 (29)3.1.1 滤波器电路生成 (30)3.1.2 集总参数滤波器转化为微带滤波器 (31)3.1.3微带滤波器版图生成与仿真 (34)3.2 巴特沃兹响应的阶跃阻抗微波低通滤波器的设计 (35)3.2.1滤波器原理图设计 (36)3.2.2 仿真参数设置和原理图仿真 (38)3.2.4微带滤波器版图生成与仿真 (42)3.3波纹为0.5dB切比雪夫阶跃阻抗微波低通滤波器设计 (44)3.3.1低通滤波器原型设计 (44)3.3.2仿真参数设置和原理图仿真 (48)3.3.3滤波器电路参数优化 (49)参考文献 (54)1绪论1.1阶跃阻抗微波低通滤波器简介在无线通信系统中,如何选择合适的信道,并运用微带滤波器提取有用的频谱信号,同时抑制干扰滤除谐波分量是非常重要的环节。
射频滤波器的设计与仿真摘要射频滤波器,主要用于电子设备、频率高工作更大的衰减高频电子设备产生的干扰信号。
射频滤波器是最基本射频设备。
能够由微带线组成,也能够由电阻,电容等组成。
由实践可知,很多射频系统中的元件不存在准确频率选择性,因此往往需要添加滤波器,用来极其准确地完成设定的选择特性,所以对射频滤波器的设计有重要的意义。
在射频有源电路的各级之间都可以借助滤波器对射频信号进行隔离、选择或是重新组合。
在设计模拟电路时,需要对高频信号在特定频率或频段内的频率分量做放大或衰减处理。
这是十分重要的任务,因此本文将重点研究如何设计和实现这个任务的射频电路——射频滤波器。
关键词:射频,微波滤波器,微带线,workbench ,Advanced Design System;The design and simulation of radio frequency filtersABSTRACTRf filter, mainly used in electronic devices, high frequency work greater interference signal attenuation of high frequency electronic device. Rf filter is the most basic radio frequency devices. Can consist of microstrip line, also can by resistance, capacitance, etc.The practice shows that a lot of rf components do not exist in the system accurate frequency selective, so often need to add the filter, used extremely accurately complete set of selected features, so the design of rf filter has an important significance. Between active rf circuit at all levels can use filter to segregate, choice or rearrange the rf signal.In analog circuit design, the need for high frequency signal at a particular frequency or frequency component in the spectrum for amplification or decay process. It is very important task, so this article will focus on how to design and implement the task of rf circuit, rf filter. Keywords: R f, Microwave filter, Microstrip line, The workbench; ADS;目录第一章绪论 (1)1.1 课题研究的背景及意义 (1)1.2 国内外滤波器的研究现状及发展趋势 (2)1.2.1 国内外滤波器的发展现状 (2)1.3 论文组织 (3)第二章射频滤波器 (4)2.1 滤波器的分类 (4)2.2 滤波器的主要参数 (4)2.3 滤波器的综合设计和分析方法 (6)2.3.1 综合设计方法 (6)2.3.2 分析方法 (7)2.4 常见的射频滤波器 (7)第三章 worhbench设计与仿真 (9)3.1 workbench软件介绍 (9)3.2 模拟带通滤波器设计 (9)3.2.1 设计目的 (9)3.2.2 设计要求 (9)3.3滤波器的设计原理及组件选择 (9)3.3.1 滤波器介绍 (9)3.3.2 有源滤波器的设计 (10)3.3.3 滤波器类型的选择分析 (10)3.3.4 741运算放大器 (12)3.4.workbench电路仿真设计 (13)3.4.1 仿真电路图: (13)第四章微带滤波器的设计与仿真 (16)4.1微带线 (16)4.1.1 微带线传输的主模 (16)4.1.2 微带线的特性参量 (16)4.2耦合微带线 (16)4.3微波谐振器 (18)4.3.1 微波谐振器的基本参量 (18)4.3.2 谐振腔的等效电路 (20)4.4基本阻抗匹配理论 (20)4.4.1匹配电路的概念和意义 (20)4.4.2射频电路匹配网络 (21)4.5 微带滤波器的设计与仿真 (21)4.5.1 微带滤波器的基本原理 (21)4.5.2 微带耦合滤波器的设计 (22)4.5.3 电路参数设置 (22)4.5.4 原理图仿真 (23)4.5.5 滤波器电路的优化 (25)4.6 本章小结 (28)参考文献: (29)第一章绪论1. 1课题研究的背景及意义根据电气和电子工程师协会对于频谱划分的方式,通常把频30MHz,--4GHz 的频段范围称为射频,另外处于300MHz~300GHz的频段范围。
毕业设计题目微波双频带通滤波器的仿真设计学生姓名学号所在学院物理与电信工程学院专业班级电子1201班指导教师完成地点物电学院实验室2016 年 06 月 5 日微波双频带通滤波器的仿真设计作者:(陕西理工学院物理与电信工程学院电子信息工程专业 12级1班陕西汉中 723000)指导教师:[摘要] 为了满足无线通信向着多频段、多模式方向发展的需要,并简化多频段通信系统的结构,减小其体积和重量,降低生产成本,对多通带微波滤波器的研究及设计有重要的意义。
基于此提出了一种双频带通滤波器的设计。
该设计首先运用分立元件通过两次频率变换由一个低通原型滤波器变换成为双频带通滤波器,以此来验证双频带通滤波器的可行性。
然后通过电路转换,引入导纳倒置变换器,将电路简化成为只有导纳倒置变换器和串联LC谐振器的双频带通滤波器。
最后通过引入λ/4微带开路线将双频带通滤波器转换成为微波双频带通滤波器,并利用ADS (Advanced Design system) 软件对滤波器进行仿真,仿真结果表明达到设计指标要求。
[关键词]:双频滤波器;频率转换;导纳倒置变换;微带线The simulation of microwave dual-band bandpassfilter designAuthor: Gao Yuyang(Grade 12,Class 1,Major of Electronic and Information Engineering,School of Physics and Telecommunication Engineering,Shaanxi University of Technology, Hanzhong 723000,Shaanxi)Tutor: Jia JiankeAbstract:I n order to meet the wireless communication to the needs of the development of multiband, multimode direction, and simplify the structure of multiband communication system, reduce the volume and weight, reduce production cost, to research and design of microwave bandpass filter has an important on this proposed a dual-band bandpass filter , the design applies discrete component by twice frequency conversion by a low-pass prototype filter transformation become the dual-band bandpass filter, in order to verify the feasibility of the dual-band bandpass filter. And then through the circuit transformation, the introduction of admittance inversion converter, to simplify the circuit become only admittance inversion converter and series LC resonator dual-band bandpass filter. Finally, by introducing the λ / 4 microstrip line into dual-band bandpass filter microwave dual-band bandpass filter, and by using ADS (Advanced Design system) software, the simulation was carried out on the filter, the simulation results show that meet the requirements of design index.Keywords:Dual-band filter Frequency conversion Admittance inverted transform Microstrip line目录1引言 (1)2 微波滤波器基本原理 (3)滤波器简介 (3)滤波器的基本类型 (3)巴特沃士滤波器 (3)切比雪夫滤波器 (4)椭圆函数滤波器 (5)频率变换 (5)低通滤波器与低通原型的变换 (6)高通滤波器与低通原型的变换 (7)带通滤波器与低通原型的变换 (7)带阻滤波器与低通原型的转换 (8) (9) (9)倒置变换器的实现 (12)3 设计方案 (12) (12)电路变换 (14)4设计实例 (19)集总参数元件设计 (19) (22) (22) (22)微带线参数计算 (22) (23) (26) (27)仿真优化 (29)版图生成 (31)5 总结与展望 (33)参考文献 (34)致谢 (35)附录A 外文文献 (36)附录B 外文文献翻译 (42)1引言科技的快速发展将人类带到了一个信息化的时代,通信领域的信息传递经历了从电话线、光纤等导线作为通信传输信息的有线传输到依靠电磁波在空间内传播信息的无线传输,从固定电话到手机电脑,从低频段到高频段的巨大变化。
《微波滤波器智能优化设计的关键技术研究》篇一一、引言微波滤波器作为无线通信系统中的关键元件,其性能的优劣直接影响到整个系统的性能。
随着无线通信技术的快速发展,对微波滤波器的设计要求也越来越高。
传统的微波滤波器设计方法往往依赖于设计师的经验和试错法,这种方法效率低下且难以满足复杂的设计需求。
因此,研究微波滤波器智能优化设计的关键技术,对于提高设计效率、优化滤波器性能具有重要意义。
二、微波滤波器的基本原理与现状微波滤波器是一种用于信号选择的装置,其主要功能是允许某些频率的信号通过,同时阻止或减小其他频率信号的通过。
传统的微波滤波器设计主要依靠人工进行参数优化和仿真验证,这种方法存在周期长、效率低、成本高等问题。
目前,随着计算机技术和人工智能的快速发展,智能优化设计方法在微波滤波器设计中的应用越来越广泛。
这些方法包括基于遗传算法、神经网络、深度学习等人工智能技术的优化算法。
这些算法能够自动寻找最优解,大大提高了设计效率和优化效果。
三、智能优化设计关键技术研究1. 优化算法研究针对微波滤波器设计中的复杂性和多目标性,需要研究高效的优化算法。
目前,基于遗传算法、神经网络、深度学习等人工智能技术的优化算法在微波滤波器设计中得到了广泛应用。
这些算法能够自动寻找最优解,避免了传统设计方法中的试错过程,提高了设计效率。
2. 参数化建模技术研究参数化建模技术是微波滤波器智能优化设计的基础。
通过建立滤波器的参数化模型,可以将设计问题转化为参数优化问题。
这就需要研究如何准确地建立滤波器的参数化模型,以及如何将复杂的物理问题转化为数学问题。
3. 仿真验证与实验研究智能优化设计的最终目的是为了提高微波滤波器的性能。
因此,需要对优化后的设计进行仿真验证和实验研究。
这需要研究如何将仿真结果与实际实验结果相结合,以验证优化设计的有效性。
四、应用实例与分析以某款微波滤波器为例,采用智能优化设计方法进行设计。
首先,建立该滤波器的参数化模型,然后采用优化算法进行参数优化。
滤波器的设计设计论文摘要21世纪是数字化的时代,纵观当代通信的发展趋势,已成为引领通信变革的主潮流。
通信是在数字化浪潮的背景下,在计算机技术的应用和信息技术的发展的结果。
数字信号滤波器在各种数字信号处理中发挥着重要的作用,数字信号设计一直是数字信号处理领域的重要研究课题。
近年来,数字信号技术在我国也得到迅速发展,不论是在科学技术研究,还是在开发等发面,其应用越来越广泛,并取得了丰硕的成果。
本文主要介绍如何用窗函数法和雷米兹交换法设计FIR滤波器的的具体步骤与方法,以及相关数字信号处理的一些具体算法,并在MATLAB环境下进行仿真。
根据仿真运行的结果来说明各项运行指标均达到设计要求。
分析和比较两种设计方法性,以及它们分别所适用的范围,通过设计表达这两种方法的运算简单、精度高、设计过程简单易行,适合于工程设计。
关键词:FIR数字滤波器线性相位MATLAB仿真窗函数雷米兹法AbstractThe 21st century is the era of digital, looking back at the development trend of contemporary communications, has become the main changes leading communications trend. This is the communication in the digital wave of context, the application of computer technology and the development of information technology results. Digital signal filter in a variety of digital signal processing plays an important role, digital signal design digital signal processing has been an important research topic in the field. In recent years, Digital Signal Technology in China has been developing rapidly, both in scientific and technological research and development is failing in its application more and more widely, and achieved fruitful results.Therefore, this artcle introduced the FIR filter may realize the strict linear phase under the window function and Remez function, designs gronp of filters coefficients ,vses least squares method to optimize these coefficients .in the foundation which smallest two rides to unify the Lagrange law first to restrain the belt is smallest two rides transfers asks the condition extreme value ,introduces Lagrange to leave the Lagrange function while the structure ,then carries on the solution Finally the full use data analysis carries on the simulation realization under the MATLAB environment .Thas may know,restraint least squares method designs the filter has the algorithm simply.Key words:FIR Digital Filter Minimum MATLAB simulation Linear phase Window function Remez function目录摘要 (I)Abstract (II)目录 (III)绪论 (1)1数字滤波器的简介 (2)1.1数字滤波器的介绍 (2)1.2数字滤波器的原理 (2)1.3数字滤波器的设计 (4)1.3.1 数字滤波器的设计过程 (4)1.3.2 数字滤波器的设计方法 (5)2 FIR数字滤波器的基本结构 (6)2.1 FIR滤波器的基本结构 (6)2.2 最大误差最小化准则 (9)3 线性相位的FIR数字滤波器 (12)3.1线性相位的概念 (12)3.2线性相位滤波器 (13)3.3线性相位FIR数字滤波器的设计方法 ................................................................ . (15)3.3.1 雷米兹交换法设计FIR数字滤波器 (15)3.3.2 FIR数字滤波器的线性规划设计 (18)4线性相位FIR滤波器的仿真设计 (20)4.1信号处理工具箱中的最优设计函数 (20)4.2MATLAB设计FIR数字滤波器的方法 (21)4.3 线性相位FIR滤波器的仿真设计 (22)4.4 线性相位FIR滤波器的窗函数法的仿真设计 (23)4.5 线性相位FIR滤波器的雷米兹交换法的仿真设计 (25)4.6 结果分析 (28)结论 (30)致谢 (31)参考文献 (32)绪论随着信息时代和数字世界的到来,数字信号处理己成为当今一门极其重要的学科和技术领域,数字信号处理在通信、雷达、军事、航空航天、语音、图像、自动控制、医疗和家用电器等众多领域得到了广泛的应用。
文献综述一、课题国内外现状微波滤波器在通信、信号处理、雷达等各种电路系统中具有广泛用途。
随着移动通信、电子对抗和导航技术的飞速发展,对新的微波元器件的需求和现有器件性能的改善提出了更高的要求。
发达国家都在利用新材料和新技术来提高器件性能和集成度,同时,尽可能地降低成本,减小器件尺寸和降低功耗。
与国外相比,我国的微波滤波器的发展还有一定的差距。
下面介绍一下滤波器的主要分类及其优缺点:1、微带滤波器微带滤波器主要包括平行耦合微带线滤波器、发夹型滤波器、微带类椭圆函数滤波器。
半波长平行耦合微带线带通滤波器是微波集成电路中广为应用的带通滤波器形式。
其结构紧凑、第二寄生通带的中心频率位于主通带中心频率的3倍处、适应频率范围较大、适用于宽带滤波器时相对带宽可达20%。
其缺点为插损较大,同时,谐振器在一个方向依次摆开,造成滤波器在一个方向上占用了较大空间。
和平行耦合线滤波器结构相比,发夹型滤波器具有紧凑的电路结构,减小了滤波器占用的空间,容易集成,并且降低了成本。
在电路尺寸有较严格要求的场合发夹型滤波器得到了较为广泛的应用。
发夹型滤波器是由发夹型谐振器并排排列耦合而成,是半波长耦合微带滤波器的一种变形结构,是将半波长耦合谐振器折合成U字型构成的,因此与交指式、梳状线式等其他微波滤波器结构相比,其电路结构更加紧凑,具有体积小,微带线终端开路无需过孔接地,易于制造等优点。
发夹型滤波器耦合拓扑结构属于交叉耦合,交叉耦合实质是从信号源到负载端有不止一条耦合路径,包括主耦合路径和相对较弱的辅耦合路径,任意两谐振器之间都可以产生耦合。
相对于级联耦合,交叉耦合的最大优点是能够在通带附近的有限频率处产生传输零点,因而滤波器的带外抑制能力将获得极大提高,使用交叉耦合的谐振器滤波器比普通级联型的滤波器具有更好的频率选择性,同时可以减少所需谐振器的数目。
平行耦合线滤波器、交指型滤波器等,获得在带内较平坦的幅频特性,但带外抑制特性较差。
滤波器的设计毕业设计滤波器的设计毕业设计引言:滤波器是电子领域中常用的一种电路元件,它可以对信号进行滤波处理,去除不需要的频率成分,使得信号更加纯净和稳定。
在各种电子设备中,滤波器的设计和优化是非常重要的一环。
本文将探讨滤波器的设计原理、常见的滤波器类型以及滤波器在实际应用中的一些案例。
一、滤波器的设计原理滤波器的设计原理基于信号的频域分析和滤波特性。
信号可以分解为不同频率的成分,而滤波器的作用就是选择性地通过或阻断特定频率范围内的信号。
滤波器的设计需要考虑到滤波器的频率响应、幅频特性、相频特性等多个因素。
二、常见的滤波器类型1. 低通滤波器:低通滤波器可以通过滤除高频信号,只保留低频信号。
在音频设备中,低通滤波器常用于去除噪音和杂音,提高音质。
在无线通信中,低通滤波器可以用于滤除高频干扰信号,保证通信质量。
2. 高通滤波器:与低通滤波器相反,高通滤波器可以通过滤除低频信号,只保留高频信号。
在音频设备中,高通滤波器常用于增强音乐的高频部分,提高音质。
在图像处理中,高通滤波器可以用于边缘检测和图像锐化。
3. 带通滤波器:带通滤波器可以选择性地通过一定范围内的频率信号,滤除其他频率范围的信号。
在无线通信中,带通滤波器可以用于选择性地接收特定频率范围的信号,提高通信效果。
4. 带阻滤波器:带阻滤波器可以选择性地阻断一定范围内的频率信号,保留其他频率范围的信号。
在音频设备中,带阻滤波器可以用于去除特定频率的噪音信号。
三、滤波器在实际应用中的案例1. 音频设备中的滤波器设计:在音频设备中,滤波器的设计对于音质的提升至关重要。
通过合理设计低通滤波器和高通滤波器,可以去除杂音和不需要的频率成分,使得音乐更加清晰和纯净。
在音响系统中,带通滤波器的设计可以用于调节音乐的频率范围,使得音乐更加丰富和动感。
2. 通信系统中的滤波器设计:在无线通信系统中,滤波器的设计对于信号的接收和发送至关重要。
通过合理设计带通滤波器和带阻滤波器,可以选择性地接收或阻断特定频率范围的信号,提高通信质量和抗干扰能力。
滤波微波器件的研究与设计滤波微波器件的研究与设计随着通信技术的飞速发展,微波器件在无线通信系统中扮演着越来越重要的角色。
而滤波微波器件作为微波系统中最基本的组成部分之一,对于信号的处理和传输质量具有关键影响。
本文将探讨滤波微波器件的研究与设计,讨论其原理、分类、应用以及未来的发展趋势。
首先,我们来了解一下滤波微波器件的原理。
滤波器是一种能够选择性地通过或者抑制特定频率范围内信号的电路。
在微波频率下,滤波器主要基于电感、电容、电阻和传输线等元件构成。
通过合适的电路设计和参数选择,可以实现对不同频率信号的处理,实现滤波效果。
基于滤波器的功能和特性,可以对滤波微波器件进行分类。
常见的微波滤波器可以分为低通、高通、带通和带阻四种类型。
低通滤波器将低于截止频率的频率通过,而高通滤波器则是将高于截止频率的频率通过。
带通滤波器则能够选择性地通过某个频率范围内的信号,而带阻滤波器则是将特定频率范围内的信号进行抑制。
不同类型的滤波器根据所需的滤波效果来实现信号处理。
滤波微波器件在各个方面的应用广泛。
以通信系统为例,滤波器能够帮助实现频率复用和信号分离,保证通信质量。
在雷达系统中,滤波器能够对回波信号进行处理,提取目标的特征信息。
此外,滤波器还应用于天线系统、无线电频率调谐器等。
在滤波微波器件的设计上,电路参数的选择和优化是至关重要的。
首先,需要确定所需的滤波器类型和频率特性,包括中心频率、带宽、插入损耗、抑制频段等。
然后,根据这些要求选择合适的电感、电容和电阻等元件以及它们的参数。
最后,通过电路仿真和优化,得到满足设计要求的滤波器电路。
未来,滤波微波器件的发展趋势将朝着多功能、低损耗和小型化发展。
随着通信系统对频谱资源的不断需求,滤波器需要具备更好的频率选择性和抑制性能。
同时,对于滤波器的尺寸和重量也提出了更高的要求,以适应无线设备的小型化趋势。
此外,滤波器也需要能够在更广泛的频段范围内工作,以满足多种应用需求。
微波低通滤波器的仿真设计[摘要]近年来,随着军事、通迅、科研的发展,市场对微波滤波器在机能方面的需要不断地升迁。
在微波电路系统中,滤波器的性能对电路的性能指标有很大的影响,于是设计一个高性能的滤波器,对设计微波电路系统具有很重要的影响。
本文设计了一个微带线微波低通滤波器.低通滤波器的原型为切比雪夫低通滤波器,输入输出阻抗为50 ,截止频率为4GHz,3阶,带内波纹为3dB. 首先依据理查德变换和科洛达规则对切比雪夫低通滤波器原型进行转换。
然后在射频软件(ADS)中计算出微带线的尺寸并且进行建模仿真。
最后对仿真结果进行调谐优化,仿真结果达到设计要求.[关键字] 微波低通滤波器微带线 ADS陕西理工学院毕业设计Simulation design of microwave low-pass filterxxxx(Grade 10,Class 04,Major electronics and information engineering,School of Physics and Telecommunication Engineering.,Shaanxi University of Technology,Hanzhong Shaanxi,723003)Tutor: xxxxxAbstract: In recent years, with the development of military, communications, research, and market need for microwave filters constantly promoted in the function aspect. In microwave circuit system, the performance of filter circuit has great influence on the performance index of the circuit, so to design a high performance filter has a significant impact on the design of microwave circuit system. This paper describes the design of a microstrip line microwave low-pass filter. The low-pass filter prototype is the Chebyshev low-pass filter, input and output impedance is 50 , and cut-off frequency is 4GHz, 3 bands, the band ripple is 3dB. Firstly according to Richard transformation and Kuroda rules on Chebyshev low-pass filter prototype conversion. Then calculate the size of microstrip line and simulation in the RF software (ADS). Finally, the simulation results are tuned to optimization, and the simulation results meets the design requirements.Keywords:Microwave low-pass filter line ADS目录1 绪论 (1)1.1 课题的研究背景及意义 (1)1.2 发展历程及国内外研究现状 (1)1.3 ADS软件简介 (1)2 微波低通滤波器的设计理论 (3)2.1 滤波器的定义及分类 (3)2.2滤波器的主要指数指标 (3)2.3 切比雪夫低通滤波器设计理论 (5)2.3.1 切比雪夫低通滤波器原理 (5)3 微带传输线 (7)3.1 传输线理论 (7)3.2 微带传输线 (7)3.3 微带线的设计方法 (8)4 微带线低通滤波器的设计 (9)4.1 由集总元件低通滤波器变换为分布参数低通滤波器 (9)4.1.1利用理查德变换将集总元件转换为分布参数元件 (9)4.2 利用科洛达规则将串联短截线转换为并联短截线 (10)4.3 微带低通滤波器原理图 (12)5 微带线滤波器原理图和版图的仿真设计及优化 (14)5.1原理图的设计 (14)5.2 电路参数设置 (14)5.3 仿真参数设置和原理图仿真 (16)5.3.1 仿真参数设置 (16)5.3.2 原理图仿真 (16)5.4微带滤波器版图生产与仿真 (17)5.4.1 版图的生产 (17)5.5 对原理图和版图的优化 (20)5.5.1 原理图的优化 (20)5.5.2版图的仿真 (22)6设计总结 (25)参考文献 (26)致谢 (27)附录A 外文文献 (28)附录B 外文翻译 (33)1 绪论1.1 课题的研究背景及意义对于无线通信体系来讲,滤波器是一个关键的射频元器件。
写一篇用ads进行微波射频滤波器设计与仿真的实验心得
100字
作为一名电子工程师,我经常使用ADS(Advanced Design System)软件进行微波射频滤波器的设计与仿真。
在此,我想分享我的实验心得。
实验目的在于设计并验证一个微波射频滤波器,以满足现代通信系统的需求。
ADS软件具有强大的微波电路设计和仿真功能,为我们提供了便捷的工具。
首先,在ADS中,我们选择合适的滤波器类型(如Butterworth、Chebyshev等),并根据设计指标设置滤波器的频率响应参数。
接下来,利用ADS内置的微带线模型和射频器件库,构建滤波器的电路结构。
在仿真阶段,我们通过调整滤波器的参数,观察其对频率响应、传输特性等性能指标的影响。
根据仿真结果,优化滤波器的设计,直至满足预设指标。
实验过程中,我深刻体会到ADS软件在微波射频滤波器设计中的优势。
通过仿真,我们能快速评估滤波器设计的可行性,并有效提高设计效率。
同时,实验也提醒我要不断学习和掌握ADS的新功能,以便更好地应对实际工程需求。
总之,运用ADS进行微波射频滤波器设计与仿真,不仅提高了我的技术水平,还使我深刻认识到软件在现代通信技术发展中的重要性。
目录摘要—————————————————————————————2前言—————————————————————————————2一、微波概论—————————————————————————31.微波————————————————————————————32.微波的特点和应用——————————————————————42.1 微波波长段易于实现定向辐射————————————————42.2 频率高、频带宽、信号容量大————————————————52.3 视距传播能穿透电离层———————————————————52.4 微波的热效应和微波能的应用————————————————6二、滤波器原理———————————————————————61.滤波器的基本概念——————————————————————62. 滤波器设计的两种出发点——————————————————103.滤波器原型————————————————————————11 3.1 最平坦低通原型滤波器———————————————————11 3.2 切比雪夫低通原型滤波器—————————————————123.3 椭圆函数低通原型————————————————————13三、微波传输线———————————————————————141.微波传输线—————————————————————————142.微带线———————————————————————————14 2.1微带传输线的构成——————————————————————142.2微带线的特性阻抗——————————————————————153.微带线的特点与应用—————————————————————18四、直接耦合短截线带通滤波器的设计与仿真———————————191.两种短截线滤波器——————————————————————192.设计步骤——————————————————————————213.仿真运行与优化———————————————————————24五、总结———————————————————————————28六、参考文献—————————————————————————29[摘要]本文对微波理论及微波滤波器作了详细的介绍。
微波滤波器设计与仿真一、实验原理:二、实验步骤:一、低通滤波器设计与仿真:。
三、实验结果:m1m22.8 2.93.0 3.1 3.2 3.32.7 3.4-60-50-40-30-20-10-700f req, GHzd B (S (1,2))m2freq=dB(S(1,2))=-1.2173.050GHz 2.82.93.03.13.23.32.73.4-60-50-40-30-20-10-700f req, GHzd B (S (2,1))2.82.93.03.13.23.32.73.4-30-25-20-15-10-5-350f req, GHz d B (S (2,2))2.8 2.93.0 3.1 3.2 3.32.73.4-30-25-20-15-10-5-350f req, GHzd B (S (1,1))m1freq=dB(S(1,1))=-20.83.0GHz四、实验思考题:(1)如果仿真中发现微带带通滤波器通带的中心频率偏高50MHz ,则应当增加还是减小耦合线的长度,才能使通带移到正确的频率? 答:因为耦合线节的长L 约为四分之一波长。
如果测试中发现滤波器通带的中心频率偏高50MHz ,则说明波长变小,则耦合线节的长L 偏小。
所以应该增加耦合线节的长度,使波长变长,从而使频率降低。
(2)在优化仿真中加大S 参数仿真的频率范围,微带带通滤波器的寄生通带将会出现在什么频率上。
答:微带带通滤波器的寄生通带将会出现在12GHZ 附近。
(3)信号通过滤波器时产生的衰减可能来自哪几个方面?答:1、阻抗不匹配造成的反射,可通过匹配削弱2、导体损耗可选择合适的谐导体材料。
3、介质损耗选择损耗角正切小的介质。
五、实验心得:本次实验是设计集总参数微波滤波器和分布参数滤波器,个人觉得集总参数滤波器的设计过程简单,具体功能容易实现,分布参数所调配的参数相对较难,花了比较就久的时间才得了结果。
微波滤波器的综合、仿真和计算机辅助调试研究微波滤波器的综合、仿真和计算机辅助调试研究引言:微波滤波器在微波通信和雷达等系统中起着关键作用,能够实现对无线信号的滤波和调制等功能,对信号的传输质量和系统性能起着重要影响。
然而,由于其工作频率高、特性复杂等原因,传统的设计和调试方法已经无法满足其日益增长的需求。
因此,综合、仿真和计算机辅助调试成为微波滤波器研究的热点,本文将对这一领域的研究进行综合分析和探讨。
一、微波滤波器综合设计微波滤波器的综合设计是指根据滤波器的需求和性能指标,利用电路设计软件进行整个滤波器的设计和优化,最终得到满足工作要求的电路结构。
在综合设计中,需要考虑滤波器的工作频率、带宽、衰减、插入损耗等因素,以及滤波器的形式、结构和材料等。
综合设计的主要工作包括参数选择、电路结构设计、元器件选取和电路优化,通过对这些方面的综合分析和调试,可以得到满足性能要求的滤波器。
二、微波滤波器的仿真和分析微波滤波器的仿真和分析是指利用电磁场仿真软件对滤波器的性能进行预测和分析,确定其滤波特性和频率响应等。
仿真分析可以通过建立滤波器的分析模型,计算和预测滤波器的频率响应、传输特性、回波损耗等参数,进而确定滤波器的工作状态和性能。
这种方法能够有效地评估滤波器的设计方案,提高滤波器的性能,节约调试时间和成本。
三、微波滤波器的计算机辅助调试微波滤波器的计算机辅助调试是指利用计算机软件对滤波器进行在线监测和调试,实时检测其工作状况和性能,并进行相应的调整和优化。
计算机辅助调试可以通过连接滤波器与计算机,获取滤波器的实时输入输出信号,并对信号进行分析和处理,根据分析结果对滤波器的参数进行调整和优化。
这样做可以大大提高滤波器的调试效率和调试精度,减少人工调试的复杂性和不确定性。
结论:微波滤波器的综合、仿真和计算机辅助调试是目前微波滤波器研究的热点领域。
通过综合设计、仿真分析和计算机辅助调试,可以提高滤波器的设计和调试效率,优化滤波器的性能和工作状态,进一步提升微波通信和雷达等系统的传输质量和性能。
滤波微波器件的研究与设计随着无线通信技术的快速发展,滤波微波器件在减少无线电信号噪声、提高通信质量方面发挥着越来越重要的作用。
本文将介绍滤波微波器件的基本理论、现有技术,以及我们的研究方案、实验结果和展望。
滤波微波器件是一种用于过滤无线电信号中的噪声、提高通信质量的装置。
在无线通信系统中,信号传输的稳定性和可靠性是至关重要的,而滤波微波器件能够有效地滤除无用或有害的信号,提升通信系统的性能。
目前,市场上的滤波微波器件主要采用传统电路设计方法,虽然在一定程度上能够满足通信系统的需求,但在系统设计和物理实现上存在一定的局限性。
例如,传统的滤波微波器件通常依赖于经验设计,缺乏精确的理论模型,因此在某些复杂环境中,其性能可能无法达到最优。
针对现有技术的不足,我们提出了一种新型的滤波微波器件研究方案。
该方案基于系统设计和物理实现的理念,通过仿真和实验验证设计方案的有效性。
具体实现过程如下:理论研究:建立精确的滤波微波器件理论模型,为设计提供有力的支持。
仿真分析:利用电磁仿真软件对设计进行仿真分析,优化器件的性能。
实验验证:制作实物样品,进行实际测试,验证设计的有效性。
通过实验验证,我们发现新型滤波微波器件在减小无线电信号噪声、提高信号质量方面有显著的优势。
与现有技术相比,我们的设计方案具有更高的滤波效率和更宽的通带,同时具有良好的频率选择性。
这些优点使得我们的滤波微波器件在复杂的无线通信环境中具有更高的应用价值。
本文主要研究了滤波微波器件的设计与应用,通过建立精确的理论模型、仿真分析和实验验证,提出了一种新型的滤波微波器件设计方案。
实验结果表明,该设计方案具有显著的优势,能够有效地减小无线电信号的噪声、提高信号质量。
展望未来,我们将进一步探索滤波微波器件的新理论、新方法和新技术,以满足无线通信系统的不断发展和需求。
我们还将研究滤波微波器件在其他领域的应用,例如雷达、电子战和卫星通信等,扩展其应用范围和领域。
滤波器毕业论文滤波器毕业论文引言:滤波器是一种常用的信号处理工具,广泛应用于通信、图像处理、音频处理等领域。
在本篇毕业论文中,我将探讨滤波器的原理、设计方法以及应用案例,旨在深入理解滤波器的工作原理,并为相关领域的研究提供参考。
一、滤波器的基本原理滤波器是一种能够改变信号频谱特性的电子设备。
它通过选择性地通过或抑制特定频率的信号来实现信号的处理。
滤波器主要分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器四种类型。
低通滤波器能够通过低频信号而抑制高频信号,高通滤波器则相反。
带通滤波器能够通过一定范围内的频率信号,而带阻滤波器则相反。
二、滤波器的设计方法滤波器的设计方法有很多种,其中常用的有频率域设计方法和时域设计方法。
频率域设计方法主要是基于信号的频谱特性进行设计,常用的有巴特沃斯滤波器、切比雪夫滤波器和椭圆滤波器等。
时域设计方法则是基于信号的时域特性进行设计,常用的有窗函数法、FIR滤波器和IIR滤波器等。
不同的设计方法适用于不同的应用场景,需要根据具体需求进行选择。
三、滤波器的应用案例滤波器在各个领域都有广泛的应用。
以通信领域为例,滤波器常用于信号调制和解调、信号去噪和信号恢复等方面。
在图像处理领域,滤波器可以用于图像去噪、边缘检测和图像增强等。
在音频处理领域,滤波器可以用于音频去噪、音频均衡和音频效果处理等。
滤波器的应用案例丰富多样,为相关领域的研究和应用提供了强有力的工具。
四、滤波器的性能评估指标对于滤波器的性能评估,常用的指标有频率响应、幅频特性、相频特性、群延迟、阻带衰减等。
频率响应是指滤波器对不同频率信号的响应情况,幅频特性和相频特性则是指滤波器对信号幅度和相位的影响。
群延迟是指信号在滤波器中的传播延迟,阻带衰减则是指滤波器在阻带频率范围内的抑制能力。
通过对这些指标的评估,可以判断滤波器的性能优劣,从而进行相应的优化和改进。
结论:滤波器作为一种重要的信号处理工具,在通信、图像处理、音频处理等领域具有广泛的应用。
目录摘要—————————————————————————————2前言—————————————————————————————2一、微波概论—————————————————————————31.微波————————————————————————————32.微波的特点和应用——————————————————————42.1 微波波长段易于实现定向辐射————————————————42.2 频率高、频带宽、信号容量大————————————————52.3 视距传播能穿透电离层———————————————————52.4 微波的热效应和微波能的应用————————————————6二、滤波器原理———————————————————————61.滤波器的基本概念——————————————————————62. 滤波器设计的两种出发点——————————————————103.滤波器原型————————————————————————11 3.1 最平坦低通原型滤波器———————————————————11 3.2 切比雪夫低通原型滤波器—————————————————123.3 椭圆函数低通原型————————————————————13三、微波传输线———————————————————————141.微波传输线—————————————————————————142.微带线———————————————————————————14 2.1微带传输线的构成——————————————————————142.2微带线的特性阻抗——————————————————————153.微带线的特点与应用—————————————————————18四、直接耦合短截线带通滤波器的设计与仿真———————————191.两种短截线滤波器——————————————————————192.设计步骤——————————————————————————213.仿真运行与优化———————————————————————24五、总结———————————————————————————28六、参考文献—————————————————————————29[摘要]本文对微波理论及微波滤波器作了详细的介绍。
其中有微波技术的发展以及滤波器的分类、特点和应用。
直接耦合短截线带通滤波器设计方法和参数计算,并对计算结果进行仿真验证。
经过仿真符合设计要求,表明此设计方案正确。
关键词:微波带通滤波器直接耦合短截线带通滤波器HFSS软件仿真Microwave tape the clear design of wave filter [Abstract]This paper for microwave theoretical and microwave wave filter have made detailed introduction. In which, there are the development of microwave technology as well as the classfication of wave filter , characteristic and application. Parallel couple line microwave tape the clear design method and parameter calculation of wave filter, and verify as calculating result to carry out emulation. Through emulating , accord with design requirement, it is correct to show this design scheme.Keyword : Microwave tape clear wave filter HFSSmulate前言当今信息社会的发展依赖于通信技术的发展,而基于多媒体的全球个人通信系统中的无线通信将得到更大的发展。
作为关键射频器件的滤波器的作用越来越重要,对性能的要求也越来越高。
滤波器是无线电技术中许多设计问题的中心,可利用它们来分开或组合不同的频率,如在变频器、倍频器以及多路通信中。
电磁波频谱是有限的,且须按应用加以分配;而滤波器既可用来限定大功率发射机在规定频带内辐射,反过来又可以用来防止接收机受到工作频带以外的干扰。
在阻抗匹配中也有象滤波器的网络,如在两个不同特性阻抗的传输线之间,或在有内阻的发生器于电抗负载(如参量放大器中的二极管)之间。
有时需要得到一定的相位(或时延)特性,如脉冲压缩或展宽,或补偿其他的滤波器或色散结构(如一般波导)所产生的相位失真等,也需要滤波器。
此论文从微波的基础知识入手,逐渐扩展到微波滤波器的一些设计方法。
其中主要介绍了微波的一些基础概念以及微波的应用,滤波器分类和设计原理,微带线理论、分类及应用以及微波带通滤波器参数的计算和软件设计及仿真。
最后对这次设计的一个总结。
由于学习能力有限,在设计过程中难免出现了一些错误,还请谅解,希望能给一些好的指导,十分感谢!一、微波概论1. 微波微波是电磁波谱中介于普通无线电波(长波,中波,短波,超短波)与红外线之间的波段。
它是属于无线电波中波长最短,即频率最高的波段。
微波和普通无线电波、可见的和不可见的光波、χ射线、γ射线一样,本质上都是随时间和空间变化呈波动状态的电磁场即电磁波。
尽管它们的表现各不相同,例如,可见光可以被人眼所感觉而其它波段则不能;χ射线和γ射线具有穿透导体的能力而其它波段则不具有这种能力;无线电波可以穿透浓厚的云雾而光波则不能等等,但他们都是电磁波。
之所以出现这么多不同表现归根结底是因为它们的频率不同波长不同。
微波波段区别于其它波段的主要特点是其波长可同常用电路或元件的尺寸相比拟,即为分米、厘米、毫米量级。
其它多波段都不具有这个特点。
普通无线电波的波长大于或远大于电路或元件的尺寸,电路或元件内部的波过程可忽略不计,因此可用路的方法进行研究。
光波、χ射线、γ射线的波长则远小于常用元件的尺寸,甚至可以同分子和原子的尺寸相比拟,因此根本不可能用电磁的方法或普通电子学的方法来产生和研究它们,它们是同分子、原子或核的行为相联系的。
由于微波的波长可以同元件或电路相比拟,因此电磁波在电路内甚至元件内的传播时间就不再是微不足道的,我们在普通无线电电子技术中的集总参数的概念和方法就不那么有效了。
在频率较低的电路中,我们往往可以区分出电路的某一部分是电容,另一部分是电感或电阻,而连接它们的导线则既没有电容、电感,也没有电阻,这就构成集总参数电路。
但是到了微波波段,元件中的电场与磁场已构成了一个整体——交变电磁场或电磁波,使用的元件成为传输线、波导、谐振腔等,因此,集总参数电路的方法就失效了。
在微波领域中以麦克斯韦方程为基础的宏观电磁理论得到了最充分最成功的运用。
当进一步过度到亚毫米波、红外线以至可见光或频率更高的电磁波谱时,由于波长逐渐同分子或原子的尺寸相比拟,宏观电磁理论又不是那么有效了,不那么完善,这时就必须运用量子理论的方法。
当然,以上的划分不是绝对的,例如,在研究普通无线电波的辐射和传播问题时必须舍弃路的方法而采用场的方法;在研究原子或分子精细能级结构的微波发射与吸收时必须舍弃宏观的方法而采用量子的方法。
但是,在研究光学的某些问题如反射、折射、衍射等时宏观的方法也是行之有效的。
总之,微波波段的范围是由所应用的独特的元件、技术和研究方法所决定的。
精确的划分出微波波段的范围是没有什么实际意义的。
只能说波长从几米的量级到十分之几毫米的量级属于微波波段,通常把波长一米到一毫米(即频率300M 至300GHz)之间的波段称为微波,波长从1毫米到0.01毫米的亚毫米波段是微波与红外的过度波段,有时把其中波长较长的部分归入微波领域。
2 .微波的特点和应用自20世纪初无线电技术发展以来,使用的波段不断扩展。
从最初使用的长波和中波一直扩展到超长波,另一方面尤为迅速地向短波方向扩展,经过短波、超短波,在20世纪40到50年代扩展到分米波和厘米波,在20世纪60到70年代又扩展到毫米波和亚毫米波。
现在无线电波和光波之间不已不存在空白。
微波波段研究的进展是由实际需要推动的,而微波的实际运用则是同微波的特点密切相关的。
微波具有如下四个重要特点:2.1 微波波长段易于实现定向辐射早在无线电发展初期,人们在实践中就认识到可以利用无线电波的反射测定目标物的位置,这就是雷达的原理。
为了精确的,则必须让无线电波定向发射,也就是聚成一个窄束,不这样就无法判断反射波究竟是从哪个方向反射回来的。
事实上在微波历史发展初期(20世纪40年代),微波技术几乎是与雷达一起发展起来的。
现在雷达的种类和用途已是多种多样,如远程或超远程警戒雷达、炮火控制和瞄准雷达,火箭或航天器的制导及轨道警戒雷达、导航雷达、气象雷达、汽车防撞雷达等等。
它们所使用的几乎无例外地是微波波段。
微波易于实现定向辐射的特点还有助于点对点通信及定向广播。
现代多路通信、卫星通信、卫星电视广播等都使用微波波段。
2.2 频率高、频带宽、信号容量大任何通信系统为了传递一定的信息必须占有一定的频带,纯粹的单频正弦波并不携带任何信息。
为传递某种信息必须的频带宽度叫信道。
例如,人耳所能听到的声音频带范围大约是在20至20000Hz,但为了能听懂对方的语言,大约只需传输300至3400Hz这一段频率的信号就够了,也就是说,一个语言信道至少要有3000Hz的频带,普通电话就是这样设计的。
因此电话可以听懂但不悦耳,也就是不够逼真。
为了相当逼真地传送语言和音乐,则需要占6至15KHz的频带,这就是广播所要求的频带。
为了传送电视图象,则需要更宽的频带,对于我国的电视制式,一路黑白的或彩色的电视加上伴音要占据8MHz的频带。
为了避免相互干扰,一个地区或一条线路上各个信道所占的频带必须错开,因此在一定频段内所能容纳的信道是有限的。
即使采用数字通信,线路的信息容量仍然取决于线路的频带宽度。
根据目前的技术水平,一条通信线路一般只有不超过百分之几的相对带宽。
所以,为了把许多路电视、电话或电报同时在一条线路上传送,就必须使信道容量,现代多路通信系统包括卫星通信系统几乎无例外地工作在微波波段。
2.3 视距传播能穿透电离层各波段的无线电波传播特性是不一样的,长波可以沿着地球的弯曲表面传播到很远,这种传播方式叫地波。
从中波过渡到短波,地波的衰减逐渐增大,传播距离逐渐减小。
但短波可以借助60至300km高空的电离层折射返回地面,这种方式叫天波。