21汽车发动机传感器的结构与工作原理
- 格式:pdf
- 大小:21.65 MB
- 文档页数:120
汽车传感器工作原理汽车传感器是一种用于检测和监测车辆及其环境参数的装置。
它们基于不同的原理,可以测量和转换物理量,将其转化为电信号,并传送给车辆的电控系统进行处理。
1. 温度传感器:温度传感器通常采用热电偶或热电阻原理来测量发动机和排气系统的温度。
它们将温度转化为电压信号,车辆的电子控制单元(ECU)可以根据这些信号来调整燃油供给和点火时机。
2. 湿度传感器:湿度传感器用于测量车内和车外的湿度。
它们使用电容测量或电阻测量原理,将湿度转换为电阻或电容值,并将其输入到车辆的控制系统中。
这可以帮助调整空调系统的工作状态,以提供舒适的环境。
3. 气压传感器:气压传感器用于测量大气压力,以及轮胎的胎压。
它们使用压阻、电容或微机机械系统(MEMS)原理进行测量,并将结果输入到车辆的ECU中。
车辆控制系统可以根据这些数据来调整燃油喷射量和排气控制。
4. 加速度传感器:加速度传感器常用于车辆动态性能监测和车辆稳定性控制。
它们使用压阻、电容或压电原理来测量车辆加速度的变化,并将结果输入到车辆的ECU中。
这可以帮助实现敏感的车辆动态响应和车身稳定性控制。
5. 摄像头传感器:摄像头传感器通常用于辅助驾驶功能和倒车辅助系统。
它们使用光传感器和图像处理器,可以感知和分析车辆周围的物体和交通状况。
这些数据可以用于自动刹车、车道保持和自适应巡航控制等功能。
6. 距离传感器:距离传感器主要用于倒车辅助系统和自动泊车系统。
它们利用超声波、激光或雷达原理来测量车辆与其他物体之间的距离。
这些数据可以帮助驾驶员避免碰撞和更精确地停车。
总之,汽车传感器利用各种物理原理来测量和转换车辆及其环境参数,以提供准确的数据给车辆的控制系统。
这些数据对于车辆性能、安全性和舒适性至关重要。
发动机传感器工作原理
发动机传感器是用来监测发动机工作状态和环境参数的设备,它们通过感知并转换发动机内部或外部的物理量,将其转化为电信号,传送给车辆的计算机系统进行处理。
常见的发动机传感器包括:
1. 氧传感器(O2传感器):监测发动机排气中氧气浓度,以
调整燃料供应量,确保燃烧效率和排放合格。
2. 温度传感器:测量发动机冷却剂的温度,以控制冷却系统的运行,防止发动机过热。
3. 压力传感器:监测发动机油压、燃油压力等,以确保润滑和供油系统的正常运行。
4. 节气门位置传感器:测量发动机节气门的开度,可调整燃油供应和空气进入,以控制发动机转速和动力输出。
5. 曲轴位置传感器(CKP传感器):检测发动机曲轴的转动
位置和速度,提供给点火系统进行协调点火操作。
6. 风扇温度传感器:监测发动机散热风扇的温度,以控制其启停,保持发动机温度适宜。
7. NOx传感器:用于排放控制,监测发动机排气中的氮氧化
物(NOx)浓度。
这些传感器的工作原理基本相似,一般都采用电子和物理原理相结合的方式。
例如,氧传感器使用氧敏感电极测量氧气浓度,温度传感器利用热敏电阻或热电偶测量温度变化,曲轴位置传感器通过磁场感应原理检测曲轴位置等等。
在传感器工作过程中,它们会根据所感测到的物理量的变化,产生相应的电信号
输出给车辆的计算机系统,从而实现对发动机工作状态的监测和控制。
汽车各类传感器的结构介绍与工作原理解析在现代社会,传感器的应用已经渗透到人类的生活中。
传感器是一种常见的装置,主要起到转换信息形式的作用,大多把其他形式的信号转换为更好检测和监控的电信号。
汽车传感器作为汽车电子控制系统的信息源,把汽车运行中各种工况信息转化成电讯号输送给中央控制单元,才能使发动机处于最佳工作状态。
发动机、底盘、车身的控制系统,另外还有导航系统都是汽车传感器可以发挥作用的位置;汽车传感器还可检测汽车运行的状态,提高驾驶的安全性、舒适性。
汽车中的传感器按测量对象可分为温度、压力、流量、气体浓度、速度、光亮度、距离等。
以应用区域来分,又可分为作用于发动机、底盘、车身、导航系统等。
按输出信号,有模拟式的也有数字式的。
按功能分,有控制汽车运行状态的,也有检测汽车性能及工作状态的。
下面我们就按功能分别具体介绍汽车控制用传感器以及汽车性能检测传感器。
一、汽车控制用传感器1、发动机控制系统用传感器流量传感器汽车中的流量传感器大多测发动机空气流量和燃料流量,它能将流量转换成电信号。
其中空气流量传感器应用更多,主要用于监测发动机的燃烧条件、起动、点火等,并为计算供油量提供依据。
按原理分为体积型、质量型流量计,按结构分为热膜式、热线式、翼片式、卡门旋涡式流量计。
翼片式流量计测量精度低且要温度补偿;热线式和热膜式测量精度高,无需温度补偿。
总的来说,热膜式流量计因为较小的体积,更受工业化生产的青睐。
2、压力传感器压力传感器主要以力学信号为媒介,把流量等参数与电信号联系起来,可测量发动机的进气压力、气缸压力、大气压、油压等,常用压力传感器可分为电容式、半导体压阻式、差动变压器式和表面弹性波式。
电容式多检测负压、液压、气压,可测 20~100kPa 的压力,动态响应快速敏捷,能抵御恶劣工作条件;压阻式需要另设温度补偿电路,它常用于工业生产;相对于差动变压器式不稳定的数字输出,表面弹性波式表现最优异,它小巧节能、灵敏可靠,受温度影响小。
第1、2章习题一、填空题1.传感器的功用是向ECU提供汽车运行状况和发动机工况。
2.凸轮轴位置传感器作为喷油时刻控制和_点火时刻_控制的主控制信号。
3.爆燃传感器是作为爆燃控制的修正信号。
4.电子控制单元主要是根据进气歧管压力确定基本的喷油量。
5.电控系统由传感器、ECU、执行器三大部分组成。
6.电控系统有汽车电子控制装置、车载汽车电子装置两种基本类型。
7.传感器是采集并向ECU输送信息的装置。
8.电子控制单元ECU是发动机控制系统核心。
9.汽车电控系统的执行元件主要有电磁式喷油器;点火控制器(点火模块);怠速控制阀、怠速电机;EGR阀元件。
10.发动机工作时,ECU根据节气门开度信号判断发动机负荷大小。
11.负温度系数的热敏电阻其阻值随温度的升高而降低。
二、简答题1、汽车电子技术发展的背景是什么?●环保、安全、节能及舒适推动了汽车技术的发展●电子信息技术推进了汽车技术向集成与智能迈进●汽车电子技术应用的优越性2、说明为什么很多汽车都采用CAN总线技术?一方面是由于电子产品本身的特点,如计算机芯片的功能不断提高而价格则在不断下降。
另一方面,也是由于一些新增的性能可在相当程度上借助于原有构件实现,如ESP(电子稳定系统)就利用了很多ABS原有元件。
再者,原有系统皆系单独控制,很复杂,现开始发展并推广的多路传输技术、CAN总线网络控制技术等,可将多个系统的传感器、控制器及执行机构集成到一起,各系统分享信息,这就大大简化了线路,节省材料、加工装配费用3、请分析汽车如果采用42V电源系统供电,有什么好处?电压提高3倍,电流就可减小2/3,因而可以大大减小电缆、电动机、线圈等尺寸及质量。
可使一些新技术,如电子控制电动气阀机构、飞轮内装起动机/发电机一体式结构以及电子控制电动制动器、转向系的应用成为可能;同时,可以减轻汽车质量并提高效率4、汽车电控系统的组成及各部分的作用是什么?➢信号输入装置——各种传感器,采集控制系统的信号,并转换成电信号输送给ECU;➢电子控制单元——ECU,给各传感器提供参考电压,接受传感器信号,进行存储、计算和分析处理后执行器发出指令;➢执行元件——由ECU控制,执行某项控制功能的装置。
汽车水温传感器工作原理汽车水温传感器是用于测量汽车发动机冷却液温度的一种传感器。
它的工作原理是基于电阻变化的。
第一步,了解传感器的结构汽车水温传感器的外壳通常是由环氧树脂制成,内部主要是由NTC热敏电阻、电线以及保护皮套构成。
其中,NTC热敏电阻是最核心的部件,它是一种电阻随温度变化的电阻体;电线的作用是将传感器与汽车的测量仪器相连,传达温度变化所产生的电信号;保护皮套的作用是避免传感器受到物理损伤。
第二步,了解NTC热敏电阻的原理NTC热敏电阻是一种温度敏感的电阻体,电阻的大小取决于其温度。
当温度升高时,电阻的值会逐渐下降,反之则会逐渐上升。
因此,NTC热敏电阻可以通过电阻测量电路测量温度的变化。
第三步,了解测量原理当发动机启动时,汽车水温传感器开始工作。
冷却液在流过传感器时,热量会被传感器吸收,导致NTC热敏电阻的温度升高,电阻的值随之下降。
然后,传感器会将这一变化转化为电信号,通过电线传递给车载计算机,再通过处理器的计算得出冷却液的温度。
这个温度数据将用于控制水温达到最佳运行温度。
第四步,了解风险如果水温传感器失灵,可能会导致许多问题。
如果温度过高,发动机会停车。
如果温度过低,引擎会烧坏。
因此,及时更换或修复失效的水温传感器非常重要。
综上所述,汽车水温传感器可通过NTC热敏电阻对温度变化进行测量。
当冷却液流过传感器时,热量会导致电阻的值发生变化,从而通过电信号传递到车载计算机中。
温度数据用于控制水温达到最佳运行温度,而损坏的传感器可能会导致很多问题,因此需要及时更换或修复。
发动机转速传感器原理
发动机转速传感器是一种用于测量发动机转速的设备。
其工作原理主要基于磁敏性材料的电阻变化。
具体而言,该传感器通常由一个绕组和一个磁敏核心组成。
绕组中通有一定的电流,当传感器靠近旋转的发动机部件时,磁敏材料在磁场的作用下发生变化。
磁敏材料的电阻随着其形状的变化而变化。
当发动机转速增加时,旋转部件的转动会导致传感器靠近和远离磁敏材料,从而使磁敏材料的电阻发生变化。
通过测量电阻的变化,可以计算出发动机的转速。
这种传感器通常使用模拟信号输出,输出的电信号幅值与发动机转速成正比。
通常情况下,传感器的输出信号会通过电气或电子设备进行进一步处理和转换,以便于被仪表板上的转速表或其他相关系统读取和显示。
总之,发动机转速传感器通过测量磁敏性材料电阻的变化来检测发动机转速,从而提供有关发动机运行状况的重要信息。
发动机是汽车的心脏,发动机的运行状态直接关系到车辆的性能和安全。
而发动机各传感器的作用与工作原理则是发动机运行过程中不可或缺的重要组成部分。
本文将深入探讨发动机各传感器的作用与工作原理,以便对整个发动机系统有一个更深入的理解。
1. 发动机位置传感器发动机位置传感器,又称曲轴位置传感器,是发动机控制系统中的关键部件之一。
其作用是监测曲轴的转速和位置,以便为点火和喷油系统提供准确的工作时机。
曲轴位置传感器的工作原理是基于霍尔效应或者光电效应,通过检测曲轴上的特定标记或者齿轮来确定曲轴的位置和转速,从而保证点火和喷油系统的正常工作。
2. 氧气传感器氧气传感器,也称为氧感应器或者氧化钢传感器,是用于监测发动机尾气中氧气含量的一种传感器。
其作用是通过监测排气中氧气的含量来调节点火和喷油系统,从而保证发动机工作在最佳燃烧状态下。
氧气传感器的工作原理是基于化学反应原理,通过测量排气中氧气的含量来确定燃料混合气的富燃和贫燃状态,并向发动机控制系统反馈信息。
3. 风压传感器风压传感器,也称为进气压力传感器,是用于监测发动机进气道中风压的一种传感器。
其作用是通过监测进气道中的风压来调节进气量和点火时机,从而保证发动机的正常运行。
风压传感器的工作原理是基于压电效应或者半导体敏感元件,通过测量进气道中的压力变化来确定发动机的运行状态,以便进行相应的调节。
4. 冷却液温度传感器冷却液温度传感器是用于监测发动机冷却系统中冷却液温度的一种传感器。
其作用是通过监测冷却液的温度来调节发动机的工作温度和冷却系统的工作状态,以防止发动机过热或者过冷。
冷却液温度传感器的工作原理是基于热敏电阻或者热电偶的原理,通过测量冷却液的温度变化来确定发动机的工作状态,从而保证发动机的正常运行。
5. 总结与回顾通过对发动机各传感器的作用与工作原理的深入探讨,我们更深入地了解了发动机控制系统中各个重要部件的功能和原理。
发动机各传感器的作用是为了保证发动机能够在最佳的工作状态下运行,其工作原理是基于不同的原理和技术,通过监测不同的参数来保证发动机的正常工作。
简述传感器的基本原理及组成
传感器是一种将物理量转换为电信号或其他可读取形式的装置,广泛应用于制造业、交通运输、环境保护、医疗卫生等领域。
其基本原理及组成如下:
1. 基本原理:传感器的基本原理是利用某种物理效应,将被测量的物理量转换成与之相关的电信号或其他可读取形式的信号。
常见的物理效应有压阻效应、电磁感应效应、霍尔效应、压电效应、光电效应等。
2. 组成:传感器由传感元件、信号处理电路和输出部分三大部分组成。
传感元件是将被测物理量转换成电信号的核心部分,信号处理电路用于对传感元件采集的信号进行放大、滤波、线性化等处理,使其符合特定的输入要求,输出部分则将处理后的信号输出到显示器或控制器等设备中。
3. 传感元件的分类:传感元件按照不同的物理效应可分为多种类型,如压阻传感器、磁敏传感器、电容传感器、光电传感器、超声波传感器、红外传感器等。
4. 信号处理电路的作用:信号处理电路的主要作用是将传感元件采集到的信号进行放大、滤波和线性化等处理,以获得符合特定输入要求的信号。
这样可以避免因传感元件输出信号过小或不稳定等问题导致的误差和干扰。
5. 输出部分的作用:输出部分主要将处理后的信号输出到显示器或控制器等设备中,以实现对被测物理量的监测、测量和控制。
总之,传感器的基本原理是利用物理效应将被测量的物理量转换成与之相关的电信号或其他可读取形式的信号,通常由传感元件、信号处理电路和输出部分三大部分组成。
通过对被测量的物理量进行转换和处理,传感器可以实现对物理量的监测、测量和控制。
汽车电控发动机传感器的原理与检测摘要:汽车电控发动机传感器将汽车发动机运行中各种工作状况信息(非电量)转化成电信号(电量),并将其产生的模拟信号或数字信号输入到电控单元(ECU)的输入电路中,使发动机处于最佳工作状态,使排放污染物为最小,提高发动机性能。
理解汽车发动机电控系统传感器的工作原理、传感器与电控单元(ECU)之间的内在关系,才能够正确进行故障分析和检测传感器,为科学修车奠定坚实的基础。
关键词:电控发动机传感器原理检测现代汽车电子技术发展使发动机传感器朝多功能化、模块化、智能化、微型化技术方向发展。
汽车电控发动机传感器是将汽车发动机运行中各种工作状况信息转化成电信号,并将其产生的模拟信号或数字信号输入到电控单元(ECU)的输入电路中,且随时间和工况变化而变化,维修人员随时可以了解电控发动机的工作状况,为电控发动机故障及时诊断提供了依据。
只有掌握传感器的工作原理、传感器与电控单元(ECU)之间的内在关系等,才能在诊断故障时分析出故障点所在。
1 汽车电控发动机传感器的工作原理现代汽车电控发动机采用了电子技术,在进一步提高汽车发动机性能的过程中,传感器起到致关重要的作用。
汽车电子技术应用成功与否的关键在于传感器。
要想使传感器在汽车电控发动机上大量地装用,传感器的测定范围、精度、分辨能力、响应性等基本因素应符合要求之外,还要考虑到参数的一致性、耐久性及经济性。
电控发动机各控制系统所用传感器按其检测项目分类,可分为:(1)温度传感器;(2)压力传感器;(3)空气流量传感器;(4)位置、角度传感器;(5)气体浓度传感器;(6)转速传感器;(7)爆燃传感器等。
1.1 传感器工作机理传感器不仅能够检测出单一的变量,而且也可测量出各被测量量随时间的变化情况,再进行计算与判断。
传感器以什么样的敏感度检测实际数据的信号,变换后的信号与原实际数据信号相比,失真情况如何?这些项目都是用来评价传感器的优劣。
也就是说,要从传感器处理信号的质与量上来评价传感器的性能。
发动机传感器工作原理发动机传感器是一种用于监测和测量发动机工作参数的设备。
它通过感知发动机内部各种物理量的变化,将这些信息转化为电信号,然后传输给发动机控制单元(ECU)进行分析和处理。
发动机传感器的工作原理主要基于不同的物理现象,例如电信号变化、电阻变化、热敏特性等。
常见的发动机传感器包括氧气传感器、温度传感器、压力传感器、转速传感器等。
以氧气传感器为例,它是用于测量发动机尾气中氧气含量的传感器。
氧气传感器的工作原理是通过氧离子的传导性质来实现的。
当发动机工作时,尾气中的氧气与传感器内部的陶瓷元件发生反应,产生一定数量的氧离子。
这些氧离子在传感器中移动时,会改变传感器内部的电阻值。
通过测量电阻值的变化,就可以准确地测量出尾气中的氧气含量。
另一个常见的发动机传感器是温度传感器,它主要用于测量发动机冷却液的温度。
温度传感器的工作原理是基于电阻随温度变化的特性。
温度传感器通常由一个电阻元件和电路组成,在冷却液温度变化时,电阻值也会发生相应的变化。
通过测量电阻值的变化,就可以得到冷却液的温度信息。
压力传感器是用于测量发动机内部气缸压力的传感器。
它的工作原理基于压力对电阻的影响。
压力传感器通常由一个电阻元件和膜片组成,当气缸内的压力变化时,会导致膜片的弯曲,从而改变电阻值。
通过测量电阻值的变化,就可以得到气缸压力的信息。
另外,转速传感器用于测量发动机曲轴的转速。
它的工作原理是基于磁感应现象。
转速传感器通常由一个磁铁和一个传感器组成,磁铁固定在发动机曲轴上,而传感器固定在曲轴盖上。
当曲轴旋转时,磁铁的磁场会在传感器内产生变化,从而产生相应的电信号。
通过测量电信号的变化,就可以得到发动机的转速信息。
综上所述,发动机传感器的工作原理主要是通过感知不同物理量的变化,将其转化为电信号,并传输给发动机控制单元进行分析和处理。
这些传感器在发动机的正常运行中起着重要的作用,可以帮助发动机控制单元及时监测和调整发动机的工作状态,以保证发动机的性能和可靠性。
电磁式曲轴位置传感器是一种常用于发动机控制系统中的传感器,它能够准确地检测发动机曲轴的位置和转速,从而帮助控制系统实现精准的点火和供油。
本文将从工作原理、结构组成和应用领域等方面对电磁式曲轴位置传感器进行详细介绍。
一、工作原理1. 电磁感应原理电磁式曲轴位置传感器利用电磁感应原理来实现对曲轴位置的检测。
当曲轴转动时,传感器内部的线圈会受到曲轴齿轮凸起的影响,导致磁场发生变化。
根据电磁感应定律,磁场的变化将上线圈中产生感应电动势,从而产生输出信号。
2. 信号处理传感器输出的感应电动势需要经过信号处理电路进行放大和滤波,以确保输出信号的稳定性和准确性。
经过信号处理后,传感器输出的信号将被送入发动机控制单元(ECU)进行进一步处理和运算。
3. 差动信号在部分设计中,电磁式曲轴位置传感器还会输出差动信号,这是因为在一些发动机设计中,需要对曲轴位置进行双重检测以提高系统的可靠性。
差动信号的产生方式是将两个传感器的输出信号进行比较,从而得到更为稳定和准确的曲轴位置信息。
二、结构组成1. 磁环电磁式曲轴位置传感器内部包含一个磁环,它通常由永磁材料制成,用来产生一定强度和稳定性的磁场。
2. 线圈磁环周围围绕着线圈,当曲轴齿轮凸起进入磁场时,会导致线圈中感应电动势的产生。
3. 信号处理电路传感器内部还包含有对输出信号进行放大、滤波和处理的电路,确保输出信号的稳定性和准确性。
4. 连接插头电磁式曲轴位置传感器的连接插头用于与发动机控制单元(ECU)进行连接,实现信号的传输和交换。
三、应用领域电磁式曲轴位置传感器主要应用于内燃机控制系统中,其主要功能是监测发动机的曲轴位置和转速,并将这些信息发送给发动机控制单元,从而控制点火时机和喷油时机。
这是现代发动机控制系统中一个至关重要的功能模块,它能够直接影响到发动机的燃烧效率、动力性能和排放水平。
电磁式曲轴位置传感器也逐渐应用于混合动力系统和电动汽车中,它能够准确地监测发动机的工作状态,从而实现更为精准的功率输出控制和能量回收。
发动机传感器原理发动机传感器是汽车发动机的重要组成部分,通过检测发动机内部的运行状态和环境参数,提供实时数据给发动机控制单元,以便调整燃油供应、气门工作等参数,实现发动机的高效、稳定运行。
发动机传感器的工作原理主要基于物理量的变化与电信号的关系。
常见的发动机传感器包括氧气传感器、温度传感器、压力传感器等。
以氧气传感器为例,它主要用于检测发动机排气中的氧气含量。
工作原理是通过氧化还原反应来测量氧气浓度。
氧气传感器内部含有两个电极,一个是参比电极,另一个是感测电极。
感测电极表面涂有氧离子导电层,当发动机运行时,感测电极暴露在排气中,排气中的氧气与氧离子导电层发生反应,产生一定数量的负载电流。
根据这个电流的大小,发动机控制单元可以推测出发动机燃烧的贫油或偏油情况,从而调整燃油喷射量和点火时机,以达到最佳燃烧效果。
温度传感器主要用于检测发动机冷却液或空气温度。
工作原理是利用温度引起电阻值变化的特性。
温度传感器通常由电阻器和导线组成,当温度变化时,电阻值也随之变化。
将温度传感器连接到发动机控制单元时,控制单元可以通过测量电阻值来推测出发动机的温度情况,并根据需要进行相应的控制。
压力传感器则用于检测发动机气体或液体的压力。
工作原理是基于压力与传感器内部薄膜的变形程度成正比的原理。
压力传感器内部装有压力敏感膜片,当发动机气体或液体的压力作用在薄膜上时,薄膜会随之发生变形,通过对薄膜变形程度的测量,发动机控制单元可以获取相应的压力数据,从而进行控制和调节。
总之,发动机传感器通过将物理量转换为电信号,实现对发动机运行状态和环境参数的检测和监控。
这些传感器在汽车动力系统中扮演着重要角色,确保发动机的正常运行并提高燃油经济性和排放性能。