25.1旋转(2)
- 格式:ppt
- 大小:1.65 MB
- 文档页数:16
数字的旋转掌握形的旋转变换和角度计算数字的旋转:掌握形的旋转变换和角度计算数字的旋转是在数学中常见的一种变换方式,通过旋转操作,可以改变数字的位置和方向。
本文将介绍数字的旋转变换和角度计算的相关概念和方法。
一、数字旋转的基本概念数字的旋转是指将一个数字按照一定的角度围绕某个旋转中心旋转,从而改变数字的位置和方向。
在数字旋转中,有以下几个基本概念需要了解:1. 旋转中心:旋转操作的中心点,数字围绕旋转中心进行旋转。
旋转中心可以是数字自身的某个点,也可以是平面上的其他点。
2. 角度:指旋转操作的角度大小,角度通常用度数或弧度表示。
在数字旋转中,角度决定了数字旋转的程度和方向。
3. 旋转方向:旋转操作可以顺时针或逆时针进行。
旋转方向会影响数字最终的位置和方向。
二、数字旋转的变换方式数字的旋转可以通过数学中的旋转变换来实现。
旋转变换是一种刚体变换,它通过保持点之间的距离和位置关系,来改变点的位置和方向。
在数字旋转中,常用的旋转变换方式有以下几种:1. 顺时针旋转:顺时针旋转是指数字按照顺时针方向围绕旋转中心旋转。
顺时针旋转可以通过坐标变换的方式来实现,可以将旋转中心作为坐标原点,然后根据旋转角度进行坐标变换,从而得到旋转后的坐标。
2. 逆时针旋转:逆时针旋转是指数字按照逆时针方向围绕旋转中心旋转。
逆时针旋转也可以通过坐标变换的方式来实现,通过相反的角度和坐标变换公式,实现数字的逆时针旋转。
3. 多点旋转:如果数字由多个点组成,则可以对每个点进行独立的旋转操作,从而实现数字的整体旋转。
三、角度计算的方法在数字的旋转中,角度计算是一个重要的环节。
角度计算可以帮助我们确定旋转的度数或弧度,从而准确地进行数字旋转。
下面介绍几种常用的角度计算方法:1. 角度的度数表示:角度可以用度数进行表示,一周共有360度。
通过度数可以确定旋转的程度,例如,90度表示右旋90度,180度表示翻转,270度表示左旋90度等。
2. 角度的弧度表示:角度也可以用弧度进行表示,一周共有2π弧度。
九年级(上册)数学教学目标一、教材内容分析:九年级(上册)数学共安排了五章内容:即二次根式、一元二次方程、旋转、圆、概率初步。
下面对教材分析如下:第二十一章二次根式:本章主要内容是二次根式的概念、性质、化简和有关的计算。
本章重点是理解二次根式的性质,及二次根式的化简和计算。
本章的难点是正确理解二次根式的性质和运算法则。
第二十二章一元二次方程:本章主要是掌握配方法、公式法和因式分解法解一元二次方程,并运用一元二次方程解决实际问题。
本章重点是解一元二次方程的思路及具体方法。
本章的难点是解一元二次方程。
第二十三章旋转:本章主要是探索和理解旋转的性质,能够按要求作出简单平面图形旋转后的图形。
本章的重点是中心对称的概念、性质与作图。
本章的难点是辨认中心对称图形,按要求作出简单平面图形旋转后的图形。
第二十四章圆:理解圆及有关概念,掌握弧、弦、圆心角的关系,探索点与圆、直线与圆、圆与圆之间的位置关系,探索圆周角与圆心角的关系,直径所对圆周角的特点,切线与过切点的半径之间的关系,正多边形与圆的关系……。
本章内容知识点多,而且都比较复杂,是整个初中几何中最难的一个教学内容。
第二十五章概率初步:理解概率的意义及其在生活中的广泛应用。
本章的重点是理解概率的意义和应用,掌握概率的计算方法。
本章的难点是会用列举法求随机事件的概率。
二、各章教学总目标:知识技能目标:21章、二次根式掌握本章概念、性质、化简和有关的计算;22章、一元二次方程掌握配方法、公式法和因式分解法解一元二次方程,并运用一元二次方程解决实际问题;23章、旋转是探索和理解旋转的性质,能够按要求作出简朴平面图形旋转后的图形;24章、圆是理解圆及有关概念,掌握弧、弦、圆心角的关系,探索点与圆、直线与圆、圆与圆之间的位置关系,探索圆周角与圆心角的关系,直径所对圆周角的特点,切线与过切点的半径之间的关系,正多边形与圆的关系……。
25章、概率理解概率的意义及其在生活中的广泛应用。
课题:旋转变换教材:北京市义务教育课程改革实验教材九年级下册第25章第2节教学目标:1.使学生通过具体实例认识旋转变换,理解旋转变换的概念和基本性质,并能按要求作出简单平面图形旋转后的图形.2.使学生经历对旋转图形的欣赏、分析、画图等过程,掌握有关画图的操作技能;通过多角度地认识旋转图形的形成过程,培养学生的发散思维能力.3.通过师生互动、合作交流以及多媒体教学软件的使用,使学生发现旋转变换所蕴含的美,激发学生学习数学的兴趣.教学重点:旋转变换的概念和基本性质,按要求作出简单平面图形旋转后的图形.教学难点:探索旋转变换的基本性质.教学方法:启发讲授,小组讨论,合作探究.教学手段:常规教学用具,计算机及课件.教学过程:教师向学生说明:在生活中,我们经常见到钟表的指针、电风扇的扇叶、车轮等,在它们的转动过程中,就包含着我们今天要学习的数学知识问题1:这些旋转现象有共同的特点吗?学生先独立思考,然后与同桌进行交流,教师适时安排课件的动画演示,引导学生观察生活中的旋转现象,抽象出数学图形的旋转变换的特点.学生回答问题后,教师引导其他学生修改、补充,总结出这些旋转现象的共同特点是“一个图形沿某个方向绕定点转动”.问题2:你能尝试叙述一下“旋转变换”的概念吗?引导学生类比“平移变换”的概念进行思考,在学生回答的基础上,修改、补充,达成共识后教师进行板书.(板书)在平面内,将一个图形绕一个定点沿顺时针或逆时针方向转动一个角度,得到一个新的图形,这样的图形运动称为旋转变换,简称旋转.问题3:你认为在旋转变换的概念中,哪些是关键的字词?学生独立思考后进行回答,在其他学生补充后,教师指出:旋转变换的概念中三个重要的关键词----定点、方向、角度是影响旋转的重要因素,并结合多媒体课件演示介绍和旋转变换有关的知识:定点O称为旋转中心,转动的角称为旋转角.如果图形上的点A经过旋转到点A′,那么这两个点叫做旋转的对应点.问题4:钟表的指针在转动过程中,其形状、大小是否发生改变?电风扇扇叶的转动呢?学生就问题自由发言,发表自己的看法,最后达成共识.教师结合学生的发言指出:“旋转不改变图形的形状和大小”是对概念的进一步理解和认识,并进行板书.2.探究旋转的性质教师先用多媒体课件演示一个图形的旋转过程, 请学生观察后进行思考.观 察如图1,△ABC 是等边三角形,D 是BC 边上一点,△ABD 经过旋转后到达△ACE 的位置. 图11,总结出旋转现象的特点.通过解决问题2,抽象出旋转变换的概念.通过解决问题3,抓住旋转变换概念中的关键词,认识旋转变换概念的本质.通过解决问题4,进一步理解和认识了旋转变换概念的内涵.思 考(1)旋转中心是哪一点?旋转了多少度?(2)如果M 是AB 的中点,那么经过上述旋转后,点M 旋转到了什么位置? (3)请写出图中所有的旋转的对应点. 请学生利用教师提供的教具----三角形纸板,在实物投影上一边演示操作一边回答问题,其他同学给予补充.学生明确了此图形中的“旋转中心、旋转角度和旋转的对应点”后,教师安排学生进行动手测量.测 量(1)每组对应点与旋转中心连线所成的角的度数. (2)每组对应点与旋转中心所连线段的长度. 你有什么发现吗?学生拿到下发的图形(图1),以小组为单位进行动手测量,并由各小组的代表进行汇报,师生共同总结得出:每组对应点与旋转中心的连线所成的角都是旋转角,每组对应点到旋转中心的距离相等.师生达成共识后,教师继续引导学生思考:是否可以将这个结论推广到一般情况呢?学生和教师一起借助课件的演示进行观察、分析和验证.推 广(几何画板课件的演示)如图,△ABC 绕某一点O 旋转一定角度后到达△A′B′C′的位置.①观察图中对应点与旋转中心所连线段的长度的关系,每组对应点与旋转中心连线所成的角度的关系,上述结论是否成立?② 改变点O 的位置,再对△ABC 作旋转变换,上述结论是否仍然成立?在学生回答问题的基础上,教师引导学生对以上结论进行归纳.归 纳旋转的性质:任意一对对应点与旋转中心的连线所成的角都是“探究旋转的性质”是本节课的难点,采用“观察—思考—测量—推广—归纳”的模式展开教学,引导学生深层次的参与知识的形成过程,加深对旋转性质的理解.学生通过观察、分析和验证,经历从特殊到一般的认识过程,在丰富的活动中培养学生的思维能力.旋转角,对应点到旋转中心的距离相等.A BCE DA三、应用知识,培养能力[例1] 如图2,△ACB 与△ADE 是两个全等的等腰直角三角形,∠ACB和∠ADE 都是直角,点C 在AE 上,△ACB 以某个点为旋转中心,逆时针旋转一定角度后与△ADE 重合.(1)请指出其旋转中心与旋转角度; (2)如果再将图2作为“基本图形”绕着A 点顺时针连续旋转组合得到图3,那么图3是图2通过几次旋转得到的?每次旋转了多少度? 图2学生在独立思考后发言、讨论,教师再通过激励性评价明确正误. 最后教师用动画把图3补充成一个漂亮的风车(图4),用这个实例说明旋转与现实生活联系紧密,许多美丽的图案可以由旋转设计而成. 答案:(1)旋转中心是点A ,旋转角度是45°;(2)图3是图2绕着A 点顺时针通过3次旋转组合得到的,旋转角度分别为90°、180°、270°.图3 图4[例2] 请按照题目要求完成作图.(1)如图5,画出△ABC 绕点C 逆时针旋转90°后的图形.分析:假设点B 、A 的对应点为B ′、A ′,则∠BCB ′、∠ACA ′都是旋转角,且∠ACA ′=∠BCB ′=90°,CB ′=CB ,CA ′=CA .图5 图6 答案:见图6.(2)如图7,△ABC 绕点C 顺时针旋转后,点B 的对应点为点B ′.试确定通过例1的讲解,使学生巩固旋转的概念,并体会旋转与现实生活的紧密联系.通过例2的教学,使学生在动手画图的过程中,理解旋转的性质,掌握有关画图的操作步骤,认识旋转图形的形成过程.第(1)小题的设计目的是使学生会按题目给出的旋转方向、旋转角度画出旋转后的三角形.点A的对应点的位置,并画出旋转后的三角形.分析:假设点A的对应点为A′,则∠BCB′、∠ACA′都是旋转角,且∠ACA′=∠BCB′=90°,CB′=CB,CA′=CA.图7 图8答案:见图8.(3)如右图,△ABC绕点C顺时针旋转后,B的对应点为点B′.试确定点A的对应点的位置,并画出旋转后的三角形.分析:假设点A的对应点为A′,则∠BCB′、∠ACA′都是旋转角,且∠ACA′=∠BCB′,CB′=CB,CA′=CA.解:①联结CB′;②以AC为一边作∠ACF,使∠ACF=∠BCB′;③在射线CF上截取CA′= CA;④联结B′A′.右下图中的△A′B′C就是△ABC绕点C按顺时针旋转后的图形.要求学生先独立画出图形再进行小组交流,并请学生利用实物投影叙述作图过程.然后请学生结合例2进行小结:如何按要求作出简单平面图形旋转后的图形?在学生交流的基础上,教师进行评价,师生达成共识:按题目要求找到旋转中心、旋转方向、旋转角度和对应点是作图的关键.[拓展练习] 如图9,点O是六个正三角形的公共顶点,这个图案可以看作是哪个“基本图形”以点O为旋转中心经过怎样旋转组合得到的?请同学们以小组为单位进行探究,看哪个小组得到的方案最多?第(2)小题是在第(1)小题的基础上,使学生能根据题目给出的一组对应点找到旋转中心、旋转方向和旋转角度,并画出旋转后的三角形.第(3)小题是在第(2)题的基础上,当旋转角不再是特殊角、同时没有网格背景时,使学生能根据题目给出的一组对应点找到旋转中心、旋转方向和旋转角度,并画出旋转后的三角形.“拓展练习”是一道开放性练习,通过这道题的分析和讲解,让学生多角度地认识旋转图形的形成过程,同图9在小组讨论的基础上,请学生展示各种方案:(1)图10和图11是分别以“等边三角形”、“折线”为基本图形,以点O 为旋转中心顺时针旋转5次组合得到的,旋转角度分别为 60°、120°、180°、240°、300°.图 10 图 11(2)图12和图13是分别以“一个内角为60°的菱形”、“一个底角为60°的等腰梯形”为基本图形,以点O 为旋转中心顺时针旋转4次组合得到的,旋转角度分别为60°、120°、180°、240°.图 12 图 13 (3)其它答案:时培养学生的观察能力和动手操作能力.四、课堂小结,回顾知识1.学生自己总结,并在班上交流本节课——我学会了……使我感触最深的……我感到最困难的是……2.结合学生所述,教师给予指导:①正确理解旋转变换的概念及其基本性质,并能按要求作出简单平面图形旋转后的图形.②生活中处处有数学的影子,只要留心观察身边的事物,开动脑筋,就能用数学知识解决许多生活中的实际问题.知识的小结以教师提问、学生自由讨论的形式进行.五、布置作业,巩固知识1.基础题:课后习题第48页第1、2、3题.2.实践题:小小设计师如下图是某设计师设计的方桌布图案的一部分,请你运用旋转变换的方法,在坐标纸上将该图形绕原点顺时针依次旋转90°、180°、270°,并画出它在各象限内的图形,你会得到一个美丽的“立体图形”!但是涂阴影...时要注意利用旋转变换的特点,不要涂错了位置,否则不会出现理想的效果,你来试一试吧!第1题是基础题,加深知识的巩固;第2题是实践题,供学有余力的学生完成,让学生在坐标系中尝试画出旋转后的图形,感受图形上点的坐标与图形旋转之间的关系,发展学生的形象思维能力和数形结合意识,为以后的教学埋下伏笔.教案设计说明(一)关于教学内容本节课是在平移变换的基础上学习旋转变换,它是数学课程标准中《空间和图形》的一个新内容.这节课充分体现了新课程所倡导的“从生活走进课程,从课程走进社会”的理念.在学习旋转变换的概念和探索它的基本性质的过程中,不仅可以使学生感受到旋转变换与实际生活的密切相关,而且使学生掌握有关画图的操作技能,增强对图形欣赏的意识,形成初步的审美能力.(二)关于教学方法为了充分调动学生学习的积极性,使学生主动愉快地学习,采用启发讲授、小组讨论、合作探究相结合的教学方式.在课堂教学过程中努力贯彻“教师为主导、学生为主体、探究为主线、思维为核心”的教学思想,通过引导学生观察、分析和动手操作,使学生充分地动手、动口、动脑,参与教学全过程.(三)关于教学手段在教学手段方面,选择多媒体课件辅助教学的方式,直观、形象地再现图形的旋转过程.生动、有趣的多媒体课件一方面为学生在课堂教学中进行自主探究和发现新知提供了技术支持,另一方面为教师进行教学演示提供了平台,二者有机结合,协调发挥作用,使信息技术与教学内容有机整合,真正为教学服务.(四)关于教学过程为了达到教学目标,强化重点内容并突破教学中的难点,在课堂教学过程中,根据教学目标和学生的具体情况,紧密联系生活实际中的旋转实例,精心设计问题情境,使所有学生既能参与,又有一定的拓展、探索的余地,全体学生在获得必要发展的前提下,不同的学生获得不同的体验.(五)关于学法指导围绕本节课所学知识,设置有现实意义的、具有挑战性的开放型问题,激发学生积极思考,引导学生自主探索与合作交流,既能在探索中获取知识,又能不断丰富数学活动的经验,学会探索,提高解决问题的能力,培养一定的创新意识和实践能力.通过课堂小结,增强学生学习过程中的反思意识,培养他们良好的学习习惯.。
25.1 旋转讲学稿执笔:焦道胜审核:李新丰金峰一、教学目标:1.进一步认识图形的旋转变换,探索它的特征和性质。
2.能在方格纸上将简单的图形旋转90。
3.初步学会运用旋转的方法在方格纸上设计图案,发展学生的空间观念。
4.欣赏图形的旋转变换所创造出的美,培养学生的审美能力;感受旋转在生活中的应用,体会数学的价值。
二、教材分析:教学重点:1.理解图形旋转变换的含义。
2.探索图形旋转的特征和性质。
教学难点:探索图形旋转的特征和性质。
三、教学过程:一、创设游戏情境,引入新课1.揭示课题(用FLASH课件制作一些漂亮的图案。
)刚才,我们在制作图案的过程中,大家看到了“旋转”。
这节课,我们就来研究“旋转”。
板书课题。
2.联系生活——生活中,你还见过哪些旋转现象?(出示动画:几种旋转现象)师:生活中像这样的旋转现象很多,我们就从与我们关系最密切地钟表开始研究吧!二、认识图形的旋转,探索图形旋转的特征与性质(一)认识线段的旋转,理解旋转的含义观察、描述旋转现象(二)认识图形的旋转,探究旋转的特征和性质1.观察风车的旋转过程:师:指针的旋转我们都见过,看看下面这个图形的旋转你见过吗?(出示动画:呈现由线段→三角形→风车图案的全过程)这是什么图案?——风车。
看!在风的吹动下,风车就要旋转起来了。
(出示动画:风车从图1绕点O逆时针旋转90。
到图2)2.小组活动从图1到图2,风车发生了怎样的变化呢?下面请同学们小组合作,共同来解决问题。
(1)从图1到图2,风车绕点O逆时针旋转了___度。
(2)你是怎样判断风车旋转的角度的?3.小结(教师边做小结边演示)通过观察,我们发现风车旋转后,不仅是每个三角形都绕点O 逆时针旋转了90。
(闪烁),而且,每条线段(闪烁),每个顶点(闪烁),都绕点O逆时针旋转了90。
4.揭示旋转的特征和性质从画面中,我们能清楚地看到:风车旋转后,每个三角形的位置都发生了变化,那么什么是没有变的呢?(三角形的形状、大小没有变。
课题:旋转变换教学目标:1.使学生通过具体实例认识旋转变换,理解旋转变换地概念和基本性质,并能按要求作出简单平面图形旋转后地图形.2.使学生经历对旋转图形地欣赏、分析、画图等过程,掌握有关画图地操作技能;通过多角度地认识旋转图形地形成过程,培养学生地发散思维能力.3.通过师生互动、合作交流以及多媒体教学软件地使用,使学生发现旋转变换所蕴含地美,激发学生学习数学地兴趣.教学重点:旋转变换地概念和基本性质,按要求作出简单平面图形旋转后地图形.教学难点:探索旋转变换地基本性质.教学方法:启发讲授,小组讨论,合作探究.教学手段:常规教学用具,计算机及课件.教学过程:师生活动设计意图一、创设情境,引入新课提问:你能举出生活中与旋转现象有关地例子吗?在学生回答地基础上,教师用计算机演示动画图片.通过举出与旋转现象有关地生活实例,加深学生对教师向学生说明:在生活中,我们经常见到钟表地指针、电风扇地扇叶、车轮等,在它们地转动过程中,就包含旋转地感性认识.着我们今天要学习地数学知识----旋转变换.二、合作探究,学习新知1.认识旋转变换问题1:这些旋转现象有共同地特点吗?学生先独立思考,然后与同桌进行交流,教师适时安排课件地动画演示,引导学生观察生活中地旋转现象,抽象出数学图形地旋转变换地特点.学生回答问题后,教师引导其他学生修改、补充,总结出这些旋转现象地通过解决问题1,总结出旋转现象地特点.共同特点是“一个图形沿某个方向绕定点转动”.问题2:你能尝试叙述一下“旋转变换”地概念吗?引导学生类比“平移变换”地概念进行思考,在学生回答地基础上,修改、补充,达成共识后教师进行板书.(板书)在平面内,将一个图形绕一个定点沿顺时针或逆时针方向转动一个角度,得到一个新地图形,这样地图形运动称为旋转变换,简称旋转.问题3:你认为在旋转变换地概念中,哪些是关键地字词?通过解决问题2,抽象出旋转变换地概念.通过解决问题3,抓住旋转变换概念学生独立思考后进行回答,在其他学生补充后,教师指出:旋转变换地概念中三个重要地关键词----定点、方向、角度是影响旋转地重要因素,并结合多媒体课件演示介绍和旋转变换有关地知识:定点O称为旋转中心,转动地角称为旋转角.如果图形上地点A经过旋转到点A′,那么这两个点叫做旋转地对应点.问题4:钟表地指针在转动过程中,其形状、大小是否发生改变?电风扇扇中地关键词,认识旋转变换概念地本质.通过解决问题4,进一步理解和认识叶地转动呢?学生就问题自由发言,发表自己地看法,最后达成共识.教师结合学生地发言指出:“旋转不改变图形地形状和大小”是对概念地进一步理解和认识,并进行板书.2.探究旋转地性质教师先用多媒体课件演示一个图形地旋转过程,请学生观察后进行思考.观察如图1,△ABC是等边三角形,D是了旋转变换概念地内涵.BC边上一点,△ABD经过旋转后到达△ACE地位置.图1思考(1)旋转中心是哪一点?旋转了多少度?(2)如果M是AB地中点,那么经过上述旋转后,点M旋转到了什么位置?(3)请写出图中所有地旋转地对应点.请学生利用教师提供地教具----三角形纸板,在实物投影上一边演示操作一边回答问题,其他同学给予补充.学生明确了此图形中地“旋转中心、旋转角度和旋转地对应点”后,教师安排学生进行动手测量.“探究旋转地性质”是本节课地难点,采用“观察—思考—测量—推广—归纳”地模式展开教学,引导学生深层测量(1)每组对应点与旋转中心连线所成地角地度数.(2)每组对应点与旋转中心所连线段地长度.你有什么发现吗?学生拿到下发地图形(图1),以小组为单位进行动手测量,并由各小组地代表进行汇报,师生共同总结得出:每组对应点与旋转中心地连线所成地角都是旋转角,每组对应点到旋转中心地距离相等.师生达成共识后,教师继续引导学次地参与知识地形成过程,加深对旋转性质地理解.生思考:是否可以将这个结论推广到一般情况呢?学生和教师一起借助课件地演示进行观察、分析和验证.推广(几何画板课件地演示)如图,△ABC绕某一点O旋转一定角度后到达△A′B′C′地位置.①观察图中对应点与旋转中心所连线段地长度地关系,每组对应点与旋转中心连线所成地角度地关系,上述结论是否成立?②改变点O地位置,再对△ABC作旋转变换,上述结论是否仍然成立?学生通过观察、分析和验证,经历从特殊到一般地认识过程,在丰在学生回答问题地基础上,教师引导学生对以上结论进行归纳.归纳旋转地性质:任意一对对应点与旋转中心地连线所成地角都是旋转角,对应点到旋转中心地距离相等.富地活动中培养学生地思维能力.ABCE D三、应用知识,培养能力[例1] 如图2,△ACB与△ADE 是两个全等地等腰直角三角形,∠ACB 和∠ADE 都是直角,点C 在AE 上,△ACB 以某个点为旋转中心,逆时针旋转一定角度后与△ADE 重合.(1)请指出其旋转中心与旋转角度;(2)如果再将图2作为“基本图形”绕着A 点顺时针连续旋转组合得到图3,那么图3是通过例1地讲解,使学生巩固旋转地概念,并体会旋转与现实生活地紧密联系.A图2通过几次旋转得到地?每次旋转了多少度?图2学生在独立思考后发言、讨论,教师再通过激励性评价明确正误.最后教师用动画把图3补充成一个漂亮地风车(图4),用这个实例说明旋转与现实生活联系紧密,许多美丽地图案可以由旋转设计而成.答案:(1)旋转中心是点A ,旋转角度是45°;(2)图3是图2绕着A 点顺时针通过3次旋转组合得到地,旋转角度分别为90°、180°、270°.图 3图4[例2] 请按照题目要求完成作图.(1)如图5,画出△ABC绕点C逆通过例2地教学,使学生在动手画图地过程中,理解旋转地性质,掌握有关画时针旋转90°后地图形.分析:假设点B 、A 地对应点为B ′、A ′,则∠BCB′、∠ACA ′都是旋转角,且∠ACA ′=∠BCB ′=90°,CB ′=CB ,CA ′=CA .图5 图6图地操作步骤,认识旋转图形地形成过程.第(1)小题地设计目地是使学生会按题目给出地旋转方向、旋转答案:见图6.(2)如图7,△ABC绕点C顺时针旋转后,点B地对应点为点B′.试确定点A地对应点地位置,并画出旋转后地三角形.分析:假设点A地对应点为A′,则∠BCB′、∠ACA′都是旋转角,且∠ACA′=∠BCB′=90°,CB′=CB,CA′=CA.角度画出旋转后地三角形.第(2)小题是在第(1)小题地基础上,使学生能根据题目给出地一组对图7 图8答案:见图8.(3)如右图,△ABC 绕点C 顺时针旋转后,B 地对应点为点B ′.试确定点A 地对应点地位置,并画出旋转后地三角形.分析:假设点A 地对应点为A ′,则应点找到旋转中心、旋转方向和旋转角度,并画出旋转后地三角形.第(3)小题∠BCB′、∠ACA′都是旋转角,且∠ACA′=∠BCB′,CB′=CB,CA′=CA.解:①联结CB′;②以AC为一边作∠ACF,使∠ACF =∠BCB′;③在射线CF上截取CA′= CA;④联结B′A′.右下图中地△A′B′C就是△ABC绕点C按顺时针旋转后地图形.要求学生先独立画出图形再进行小组是在第(2)题地基础上,当旋转角不再是特殊角、同时没有网格背景时,使学生能根据题目给出地一组对应点找到交流,并请学生利用实物投影叙述作图过程.然后请学生结合例2进行小结:如何按要求作出简单平面图形旋转后地图形?在学生交流地基础上,教师进行评价,师生达成共识:按题目要求找到旋转中心、旋转方向、旋转角度和对应点是作图地关键. 旋转中心、旋转方向和旋转角度,并画出旋转后地三角形.[拓展练习] 如图9,点O是六个正三角形地公共顶点,这个图案可以看作是哪个“基本图形”以点O为旋转中心经过怎样旋转组合得到地?请同学们以小组为单位进行探究,看哪个小组得到地方案最多?“拓展练习”是一道开放性练习,通过这道题地分析和讲解,让学生多角度地认识旋转图形地形成过图9在小组讨论地基础上,请学生展示各种方案:(1)图10和图11是分别以“等边三角形”、“折线”为基本图形,以点O 为旋转中心顺时针旋转5次组合得到地,旋转角度分别为60°、120°、180°、240°、300°.程,同时培养学生地观察能力和动手操作能力.图10 图 11(2)图12和图13是分别以“一个内角为60°地菱形”、“一个底角为60°地等腰梯形”为基本图形,以点O 为旋转中心顺时针旋转4次组合得到地,旋转角度分别为60°、120°、180°、240°.图12 图 13(3)其它答案:四、课堂小结,回顾知识1.学生自己总结,并在班上交流本节课——我学会了……使我感触最深地……我感到最困难地是……2.结合学生所述,教师给予指导:①正确理解旋转变换地概念及其基本性质,并能按要求作出简单平面图形旋转后地图形.②生活中处处有数学地影子,只要留心观察身边地事物,开动脑筋,就能知识地小结以教师提问、学生自由讨论地形式进行.用数学知识解决许多生活中地实际问题.五、布置作业,巩固知识1.基础题:课后习题第48页第1、2、3题.2.实践题:小小设计师如下图是某设计师设计地方桌布图案地一部分,请你运用旋转变换地方法,在坐标纸上将该图形绕原点顺时针依次旋转90°、180°、270°,并画出它在各象限内地图形,你会得到一个美丽地“立体图形”!但是涂阴影...时要注意利用第1题是基础题,加深知识地巩固;第2题是实践题,供学有余力地学生完成,让学旋转变换地特点,不要涂错了位置,否则不会出现理想地效果,你来试一试吧!生在坐标系中尝试画出旋转后地图形,感受图形上点地坐标与图形旋转之间地关系,发展学生地形象思维能力和数形结合意识,为以后地教学埋下伏笔.教案设计说明(一)关于教学内容本节课是在平移变换地基础上学习旋转变换,它是数学课程标准中《空间和图形》地一个新内容.这节课充分体现了新课程所倡导地“从生活走进课程,从课程走进社会”地理念.在学习旋转变换地概念和探索它地基本性质地过程中,不仅可以使学生感受到旋转变换与实际生活地密切相关,而且使学生掌握有关画图地操作技能,增强对图形欣赏地意识,形成初步地审美能力.(二)关于教学方法为了充分调动学生学习地积极性,使学生主动愉快地学习,采用启发讲授、小组讨论、合作探究相结合地教学方式.在课堂教学过程中努力贯彻“教师为主导、学生为主体、探究为主线、思维为核心”地教学思想,通过引导学生观察、分析和动手操作,使学生充分地动手、动口、动脑,参与教学全过程.(三)关于教学手段在教学手段方面,选择多媒体课件辅助教学地方式,直观、形象地再现图形地旋转过程.生动、有趣地多媒体课件一方面为学生在课堂教学中进行自主探究和发现新知提供了技术支持,另一方面为教师进行教学演示提供了平台,二者有机结合,协调发挥作用,使信息技术与教学内容有机整合,真正为教学服务.(四)关于教学过程为了达到教学目标,强化重点内容并突破教学中地难点,在课堂教学过程中,根据教学目标和学生地具体情况,紧密联系生活实际中地旋转实例,精心设计问题情境,使所有学生既能参与,又有一定地拓展、探索地余地,全体学生在获得必要发展地前提下,不同地学生获得不同地体验.(五)关于学法指导围绕本节课所学知识,设置有现实意义地、具有挑战性地开放型问题,激发学生积极思考,引导学生自主探索与合作交流,既能在探索中获取知识,又能不断丰富数学活动地经验,学会探索,提高解决问题地能力,培养一定地创新意识和实践能力.通过课堂小结,增强学生学习过程中地反思意识,培养他们良好地学习习惯.。
26.1旋转
教学目标:
1、通过生活事例,使学生初步了解图形的旋转变换。
并能正确判断图形的这两种变换。
2、结合学生的生活实际,初步感知旋转现象。
3、初步渗透变换的数学思想方法。
教学具准备:投影仪、课件、学具
教学过程:
一、引入:
同学们,上个周末我和聪聪、明明一起去了一个地方。
想跟我一起去看看吗?
(课件出现游乐场情景:摩天轮、穿梭机、旋转木马;滑滑梯、推车、小火车、速滑)游乐园里各种游乐项目的运动变化相同吗?(不同)你能根据他们不同的运动变化分分类吗?(学生说分类方法)在游乐园里,像(点击出摩天轮、穿梭机、旋转木马现定格画面)摩天轮、穿梭机、旋转木马,这些物体都绕着一个点或一个轴移动这样的现象,我们把他叫做旋转(板书:旋转)。
二、新课:
1、生活中的旋转
你们真是聪明的学生,不仅认识了平移的现象还学会了平移的方法。
刚才我们还见到了另一种现象,是什么呀?(旋转)
旋转就是物体绕着某一个点或轴运动(明明还想问问你们:“你见过哪些旋转现象?”)(先说给同桌听听,然后汇报。
)
像钟面的指针,指南针它们都绕着一个点移动,这些都是旋转现象。
小朋友们的思维真开阔,下面我们一起来体验一下旋转的现象吧!起立,一起来左转2圈,右转2圈。
旋转可真有意思,你能用你周围的物体体验一下旋转吗?(师在生中看说。
)(课件欣赏)
三、小结:
你能用你自己的话说说什么又是旋转吗?。
九年级数学下册24.1旋转教案2沪科版(合集五篇)第一篇:九年级数学下册 24.1 旋转教案2 沪科版第24章圆24.1 旋转(2)【教学内容】图形的旋转的基本性质及其应用。
【教学目标】知识与技能理解对应点到旋转中心的距离相等;理解对应点与旋转中心所连线段的夹角等于旋转角;理解旋转前、后的图形全等.掌握以上三个图形的旋转的基本性质的运用.过程与方法通过师生互动、合作交流以及动手操作过程,获取新知。
情感、态度与价值观通过师生互动、合作交流以及动手操作过程,发现旋转变换所蕴含的美,激发学习数学的兴趣。
【教学重难点】重点:图形的旋转的基本性质及其应用。
难点:运用操作实验几何得出图形的旋转的三条基本性质.【导学过程】【知识回顾】1.什么叫旋转?什么叫旋转中心?什么叫旋转角?2.什么叫旋转的对应点? 3.请独立完成下面的题目.如图,O是六个正三角形的公共顶点,正六边形ABCDEF能否看做是某条线段绕O点旋转若干次所形成的图形?(老师点评)分析:能.看做是一条边(如线段AB)绕O点,按照同一方法连续旋转60°、120°、180°、240°、300°形成的.【情景导入】上面的解题过程中,能否得出什么结论,请回答下面的问题:1.A、B、C、D、E、F到O点的距离是否相等?2.对应点与旋转中心所连线段的夹角∠BOC、∠COD、∠DOE、∠EOF、∠FOA是否相等?3.旋转前、后的图形这里指三角形△OAB、△OBC、△OCD、△ODE、△OEF、△OFA全等吗?【新知探究】探究一、老师点评:(1)距离相等,(2)夹角相等,(3)前后图形全等,那么这个是否有一般性?下面请看这个实验.请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,•再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,•在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板.(分组讨论)根据图回答下面问题(一组推荐一人上台说明)1.线段OA与OA′,OB与OB′,OC与OC′有什么关系? 2.∠AOA′,∠BOB′,∠COC′有什么关系?3.△ABC与△A′B′C′形状和大小有什么关系?【随堂练习】1.如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B•对应点的位置,以及旋转后的三角形.2.如图,四边形ABCD是边长为1的正方形,且DE=1,△ABF是△4ADE的旋转图形.(1)旋转中心是哪一点?(2)旋转了多少度?(3)AF的长度是多少?(4)如果连结EF,那么△AEF是怎样的三角形?3.如图,已知正方形ABCD的对角线交于O点,若点E在AC的延长线上,•AG•⊥EB,交EB的延长线于点G,AG的延长线交DB的延长线于点F,则△OAF与△O BE重合吗?如果重合给予证明,如果不重合请说明理由?第二篇:九年级数学下册 24.1 旋转教案1 沪科版第24章圆24.1 旋转(1)【教学内容】了解旋转及其有关概念,应用它们解决一些实际问题.【教学目标】知识与技能了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.过程与方法• 通过不同的情景设计归纳出图形旋转的有关概念,并用这些概念来解决一些问题情感、态度与价值观让学生感受生活中的几何,•通过不同的情景设计归纳出图形旋转的有关概念,并用这些概念来解决一些问题【教学重难点】重点:旋转及对应点的有关概念及其应用难点:旋转及对应点的有关概念及其应用【导学过程】【知识回顾】1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.2.如图,已知△ABC和直线L,请你画出△ABC关于L的对称图形△A′B′C′.【情景导入】圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?(1)平移的有关概念及性质.(2)如何画一个图形关于一条直线(对称轴)•的对称图形并口述它既有的一些性质.(3)什么叫轴对称图形?【新知探究】探究一、1、你能举出生活中与旋转现象有关的例子吗?2、它们是怎样旋转的,你能类比平移的定义概况出旋转的定义吗?探究二、1.如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A、B 分别移动到什么位置? 2.(学生活动)如图,四边形ABCD、四边形EFGH都是边长为1的正方形.(1)这个图案可以看做是哪个“基本图案”通过旋转得到的?(2)请画出旋转中心和旋转角.(3)指出,经过旋转,点A、B、C、D分别移到什么位置?【知识梳理】旋转的定义旋转的性质旋转对称图形【随堂练习】1、在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动称为________,这个定点称为________,转动的角为________.2、△ABC是等边三角形,D是BC边上一点,△ABD经过旋转后到达△ACE的位置.(1)旋转中心是哪一点?旋转了多少度?(2)如果M是AB的中点,那么经过上述旋转后,点M旋转到了什么位置? 第三篇:九年级数学旋转教案226.1旋转教学目标:1.通过实例观察,使学生发现一个简单基本图形在旋转过程中的变化规律,并能自己动手将简单的基本图形围绕一点按一定的方向旋转一定的角度,培养学生的观察能力及审美意识。
第24章圆24.1 旋转第2课时中心对称教学目标1.认识中心对称和中心对称图形.2.通过观察、探索等过程,使学生更深刻地理解中心对称的性质,并体会图形之间的变换关系.3.运用讨论、交流等方式,发展学生的图形分析能力、化归意识和综合运用变换解决有关问题的能力.教学重难点重点:理解中心对称的概念,会识别中心对称图形.难点:会运用中心对称及中心对称图形的性质解决实际问题.教学过程复习巩固1.在这之前你学过哪些有关对称的知识?与大家交流一下.2.什么叫轴对称?3.旋转的性质:在一个图形和它经过旋转所得到的图形中,对应点到旋转中心的距离相等;两组对应点分别与旋转中心的连线所成的角相等,都等于旋转角;旋转中心是唯一不动的点.导入新课我们学习了旋转的定义与性质,知道把一个图形绕一个定点按某个方向转动一定的角度,这样的图形运动称为旋转,如果把一个图形绕某一个定点旋转180°,这样的图形运动是本节课学习的内容.探究新知1.中心对称师生活动:小组讨论(师生互学).问题情境:(学生交流)观察下面两副图,每副图中的图(1)经过怎样的运动变化就可以与图(2)重合?你还能举出一些类似的例子吗?与同伴交流.学生回答:两副图中,图(1)以一定点旋转180°就可以与图(2)重合.【归纳总结】中心对称:把一个图形绕着某一个定点旋转180°,旋转前后的两个图形关于这个点对称叫做中心对称,这个点就叫做它们的对称中心. 教学反思(1)(2)(1)(2)【提示】1.只有一个对称中心;2.旋转角必须是180度;3.是两个图形,且旋转后能够重合. 师生活动:轴对称与中心对称的对比.师生活动:小组讨论(师生互学).问题情境:下图中△A ′B′C′与△ABC 关于点O 成中心对称,你能从图中找到哪些等量关系?(1)OA =OA′,OB =OB′,OC =OC′;(2)△ABC ≌△A′B′C′. 【归纳总结】 中心对称的性质:成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分. 师生活动:探究应用 (教师引导,学生互学)例1 如图,已知△ABC 和△A ′B ′C ′成中心对称,画出它们的对称中心.【探索分析】(引发学生思考)△ABC 和△A ′B ′C ′成中心对称,即从整体上看,此图是一幅中心对称图案,所以本题有两种解法.【解】(方法一)根据观察,B ,B ′及C ,C ′应是两组对应点,连接BB ′,CC ′,BB ′与CC ′相交于点O ,则O(方法二)B ,B ′是一对对应点,连接BB ′,找出BB ′的中点O ,则点O 即为对称中心.如图.【总结】(学生总结,老师点评)利用中心对称的特征,找准对应点.当两个图显,可采用测量的方法找对应点.3.中心对称作图例2 如图,点O 是线段AE 的中点,以点O 为对称中教学反思心,画出与五边形ABCDE 成中心对称的图形.【探索分析】要画出五边形ABCDE 关于点O 成中心对称的图形,只要画出A ,B ,C ,D ,E 五点关于点O 的对称点,再顺次连接各对应点即可.【解】如图,连接BO 并延长到B',使得OB'=OB ; 连接CO 并延长到点C',使得OC'=OC ; 连接DO 并延长到点D',使得OD'=OD ; 顺次连接AD',D'C',C'B',B'E .图形EB'C'D'A 就是以点O 为对称中心、与五边形ABCDE 成中心对称的图形.4.中心对称图形 问题情境:将下面的图形绕O 点旋转180°,你有什么发现?平行四边形 【解】旋转后与原图形完全重合.【思考】(学生交流)上面的课堂练习中,得到的图形,又具有什么特征? 【归纳总结】中心对称图形:把一个图形绕某一个定点旋转180°,如果旋转后的图形能和原来的图形重合,那么这个图形叫做中心对称图形,这个定点就是对称中心.【注意】中心对称图形是指一个图形.判断下列图形是不是中心对称图形?如果是,那么对称中心在哪?师生活动:拓展延伸(学生自学).例3 如图,长方形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AD 和BC 于点E ,F ,AB =2,BC =3,试教学反思求图中阴影部分的面积.【探索分析】由于矩形是中心对称图形,所以依题意可知△BOF 与△DOE 关于点O 成中心对称,则图中阴影部分的三个三角形可以转化到Rt △ADC 中,于是阴影部分的面积即可求得.【解】因为矩形ABCD 是中心对称图形, 所以△BOF 与△DOE 关于点O 成中心对称,所以图中阴影部分的三个三角形就可以转化到Rt △ADC 中. 又因为AB =2,BC =3,所以S Rt △ADC =12×3×2=3,即图中阴影部分的面积为3. 【总结】(学生总结,老师点评)利用中心对称的性质将阴影部分转化到一个直角三角形中来解决,使问题更简单.课堂练习1.观察下列四个平面图形,其中中心对称图形有( )① ② ③ ④第1题图A.2个B.1个C.4个D.3个2.如图所示,已知长方形的长为10 cm ,宽为4 cm ,则图中阴影部分的面积为( )A.20 cm 2B.15 cm 2C.10 cm 2D.25 cm 2第2题图 第3题图3 .在方格纸中选择标有序号的一个小正方形涂上颜色,与图中阴影部分构成中心对称图形,应选 .4.请你用无刻度的直尺画一条直线把下面的图形分成面积相等的两部分,你怎样画?第4题图 第5题图5.如图所示,线段AC ,BD 相交于点O ,且AB ∥CD ,AB =CD ,此图形是中心对称图形吗?试说明你的理由.6.世界上因为有了圆,万物才显得富有生机,以下来自现实生活的图形中都有圆,它们看上去是那么的美丽与和谐,这正是因为圆具有轴对称性和中心对称性.请问以下三个图形中是轴对称图形的有 ,是中心对称图形的有 .教学反思② ③第6题图参考答案1. D 解析:题图①②③是中心对称图形.2. A 解析:根据题意可知,长方形的面积=10×4=40(cm 2),再根据中心对称的性质知,图中阴影部分的面积即是长方形面积的一半,则图中阴影部分的面积=12×40=20(cm 2). 故选A.3. ④4. 解:(答案不唯一)如图所示.① ② ③第4题答图点拨:对于这种由两个中心对称图形组成的复合图形平分面积时,可以把这个图形进行割补,然后找到它们的对称中心,再过对称中心作直线.5. 解:此图形是中心对称图形.理由如下:由AB ∥CD ,AB =CD ,可证得△AOB ≌△COD ,所以此图形是中心对称图形.6. 解:轴对称图形为①②③,中心对称图形为①③.布置作业教材第6页练习板书设计24.1 旋 转 第2课时 中心对称1.中心对称2.中心对称的性质 3中心对称图形4.中心对称图形的性质5.中心对称与中心对称图形的联系与区别 教学反思。