断裂机理-不同类型化合物谱图-2016年
- 格式:pptx
- 大小:8.24 MB
- 文档页数:241
C-F裂分碳谱是一种化学分析技术,用于确定有机化合物中碳原子和氟原子之间的键合情况。
该技术基于核磁共振(NMR)原理,通过测量样品在特定磁场下的核磁共振信号来获得有关化学键的信息。
在C-F裂分碳谱中,碳原子与氟原子之间的化学键会导致碳原子的核磁共振信号发生裂分。
裂分的程度和模式可以提供有关碳-氟键的性质和数量的信息。
通过分析裂分碳谱,可以确定有机化合物中碳原子和氟原子之间的连接方式和相对位置。
C-F裂分碳谱在有机合成、药物化学、材料科学等领域中具有重要的应用价值。
它可以帮助化学家了解有机化合物的结构和性质,指导合成路线的设计和优化,以及研究材料的物理和化学性质。
质谱裂解机理中的特征裂解方式有机质谱中的裂解是极其复杂的,但是通过对其质谱裂解方式和机理的探讨研究,我们可以发现有一些特征结构裂解方式在有机质谱的裂解中是普遍存在的,是世界上的大量质谱学家通过对大量的有机质谱裂解方式进行观察、研究后的概括性总结。
所以其具有很重要的参考价值和应用价值,所以在有机质谱解析过程中,必须予以遵循,如此方能得到合理的质谱裂解方式和解析结果。
通过概括总结我们发现有机质谱中大部分化合物具有以下几种特征裂解方式:α裂解、苄基裂解、烯丙基裂解、麦氏重排裂解、DRA 裂解(逆狄尔斯阿尔德反应),几种特征裂解方式的强弱顺序如下:苄基裂解>α裂解、i 裂解>麦氏重排裂解、DRA 裂解>烯丙基裂解当然这种顺序不是一成不变的,随着化合物的结构发生改变,这些特征裂解方式的顺序有可能会发生改变,有机化合物质谱裂解大致可以分为两类α裂解(均裂)、β裂解,我们上面所讲的苄基裂解、烯丙基裂解、麦氏重排裂解、DRA 裂解都属于β裂解。
下面我们对几种特征裂解方式做以说明。
1、特征裂解方式一、α裂解α裂解是指凡具有C-X 单键基团和C=X 双键基团(其中X=C 、O 、S 、Cl 等)的有机分子,与该基团原子相连接的单键、称之为α键,在电子轰击条件下,该键很容易断裂因而称之为α断裂。
断键时成键的两个原子各自收回一个电子,这是由游离基中心引发的反应,原动力来自游离基的电子强烈配对倾向,所以α断裂属于均裂。
其裂解的机理及通式如下: I 饱和中心R 2C YR +H 2CCH2+ II 不饱和杂原子R RCY +几类化合物的α裂解 (1)H 3CCH 2OH 3H 2COH + (2)H 3CH 2C H 2CCH 3H 2COH 2CCH 3+3(3)CH 3OαO+H 2C CH 3(4)H NOCH 3O αH NO+OCH 3引发α断裂的倾向是由游离基中心给电子的能力决定的,一般来讲N>S 、O 、π、烷基>Cl 、Br>H ,同时α断裂遵循最大烷基游离基丢失的原则。
质谱裂解机理中的特征裂解方式有机质谱中的裂解是极其复杂的,但是通过对其质谱裂解方式和机理的探讨研究,我们可以发现有一些特征结构裂解方式在有机质谱的裂解中是普遍存在的,是世界上的大量质谱学家通过对大量的有机质谱裂解方式进行观察、研究后的概括性总结。
所以其具有很重要的参考价值和应用价值,所以在有机质谱解析过程中,必须予以遵循,如此方能得到合理的质谱裂解方式和解析结果。
通过概括总结我们发现有机质谱中大部分化合物具有以下几种特征裂解方式:α裂解、苄基裂解、烯丙基裂解、麦氏重排裂解、DRA 裂解(逆狄尔斯阿尔德反应),几种特征裂解方式的强弱顺序如下:苄基裂解>α裂解、i 裂解>麦氏重排裂解、DRA 裂解>烯丙基裂解当然这种顺序不是一成不变的,随着化合物的结构发生改变,这些特征裂解方式的顺序有可能会发生改变,有机化合物质谱裂解大致可以分为两类α裂解(均裂)、β裂解,我们上面所讲的苄基裂解、烯丙基裂解、麦氏重排裂解、DRA 裂解都属于β裂解。
下面我们对几种特征裂解方式做以说明。
1、特征裂解方式一、α裂解α裂解是指凡具有C-X 单键基团和C=X 双键基团(其中X=C 、O 、S 、Cl 等)的有机分子,与该基团原子相连接的单键、称之为α键,在电子轰击条件下,该键很容易断裂因而称之为α断裂。
断键时成键的两个原子各自收回一个电子,这是由游离基中心引发的反应,原动力来自游离基的电子强烈配对倾向,所以α断裂属于均裂。
其裂解的机理及通式如下: I 饱和中心R 2C YR +H 2CCH2+ II 不饱和杂原子R RCY +几类化合物的α裂解 (1)H 3CCH 2OH 3H 2COH + (2)H 3CH 2C H 2CCH 3H 2COH 2CCH 3+CH 3(3)CH 3OO+H 2C CH 3(4)H NOCH 3O αH NO+OCH 3引发α断裂的倾向是由游离基中心给电子的能力决定的,一般来讲N>S 、O 、π、烷基>Cl 、Br>H ,同时α断裂遵循最大烷基游离基丢失的原则。
一、烷烃在直链烷烃的质谱中,一般都能找到分子离子峰,但分子离子峰的相对丰度随碳链的增长而下降。
直链烷烃质谱的特点是碎片离子峰成群,各峰群之间的质量差是14(CH 2)。
支链烷烃的分子离子峰很弱,高度分支的烷烃,在质谱中不出现分子离子峰。
支链烷烃的质谱与直链烷烃的大致相似。
二、烯烃烯烃的分子离子峰通常是很明显的。
基峰也常是由烯丙键断裂而生成的碎片离子。
CH 2CH-CH 2-CH 2CH 3CH 2CH-CH 2CH 3CH 2++.三、芳香烃芳烃类化合物由于分子结构中的苯环能使分子离子稳定,故通常芳烃的分子离子峰很强,芳烃类化合物的裂解方式主要有:++.CH 2YY CH 2+++CH CH+CHCH+++++CH CHCH 2++.CH 2+CH CH+CHCH++CHCHCH 2CH 2CH C 2H 5m/Z 91m/z 65++m/Z 39C 3H 7+m/Z 120m/Z 77m/Z 51++CH 2+HH CH 2m/z 92.++.四、醇类化合物伯醇和仲醇的分子离子峰很小,叔醇的分子离子峰一般测不出来。
能看到M-18的峰。
CH 2CH 2CH 2ROH热脱水H 2ORCH++.五、酚酚类化合物的分子离子峰较强,开裂时常脱CO 。
+OH OHHCO+.+.六、醚醚类化合物的分子离子峰很小,但芳香醚的分子离子峰较大。
CH2+CH 2++CH 3CH 2CH 2CH 2OCH 2CH +.CH CH 2CH 2CH 2O=CH 2CH 3CHCH 2CH 3HOCH 2CHCH 3+CH 2+O CH 3七、酮脂肪酮的分子离子峰清晰可见,环酮和芳香酮的分子离子峰较大。
RR CO R +R CO .RCO++八、醛醛的分子离子峰清晰可见,芳醛的分子离子峰较大。
醛类化合物能发生与酮类化合物类似的裂解,其特征离子峰是通过脱去氢游离基后生成(M-1)峰。
CHOH .+C O +CO++CH CH++九、酸直链一元酸的分子离子峰较小,芳香酸的分子离子峰较大。
断裂分类(韧窝)
2 微孔聚合断裂机制
2.1相关概念
定义:微孔聚合型断裂过程是在外力作用下,在夹杂物、第二相粒子与基体的界面处,或在晶界、孪晶带、相界、大量位错塞积处形成微裂纹,因相邻微裂纹的聚合产生可见微孔洞,以后孔洞长大、增殖,最后连接形成断裂。
微孔萌生的时间:若材料中第二相与基体结合强度低,在颈缩之前;反之,在颈缩之后。
微孔萌生成为控制马氏体时效钢断裂过程的主要环节
微孔聚合型断裂形成的韧窝有三种:
1)拉伸型等轴状韧窝;
2)剪切型伸长韧窝;
3)拉伸撕裂型伸长韧窝。
正应力作用下,韧窝是等轴型的,而在剪切应力和弯曲应力的作用下,韧窝
沿一定的方向伸长变形形成剪切韧窝和撕开韧窝。
韧窝的大小和深浅取决于第二相的数量分布以及基体的塑性变形能力,如第二相较少、分布均匀且基体塑性变形能力又强,那么韧窝大而深;若基体的加工硬化能力很强,韧窝大而浅。
质谱裂解机理中的特征裂解方式有机质谱中的裂解是极其复杂的, 但是通过对其质谱裂解方式和机理的探讨研究, 我们可以发现有一些特征结构裂解方式在有机质谱的裂解中是普遍存在的, 是世界上的大量质谱学家通过对大量的有机质谱裂解方式进行观察、研究后的概括性总结。
所以其具有很重要的参考价值和应用价值,所以在有机质谱解析过程中,必须予以遵循,如此方能得到合理的质 谱裂解方式和解析结果。
通过概括总结我们发现有机质谱中大部分化合物具有以下几种特征裂解方式: a 裂解、苄基裂解、烯丙基裂解、麦氏重排裂解、 DRA 裂解(逆狄尔斯阿尔德反应),几种特征裂解 方式的强弱顺序如下:苄基裂解 > a 裂解、i 裂解 > 麦氏重排裂解、DRA 裂解 >烯丙基裂解当然这种顺序不是一成不变的,随着化合物的结构发生改变,这些特征裂解方式的顺 序有可能会发生改变,有机化合物质谱裂解大致可以分为两类 a 裂解(均裂)、3裂解,我们上面所讲的苄基裂解、烯丙基裂解、麦氏重排裂解、 DRA 裂解都属于3裂解。
下面我们对几种特征裂解方式做以说明。
1特征裂解方式一、a 裂解a 裂解是指凡具有 C-X 单键基团和 C=X 双键基团(其中 X=C 、O S Cl 等)的有机 分子,与该基团原子相连接的单键、 称之为a 键,在电子轰击条件下, 该键很容易断裂因而 称之为a 断裂。
断键时成键的两个原子各自收回一个电子,这是由游离基中心引发的反应, 原动力来自游离基的电子强烈配对倾向,所以 a 断裂属于均裂。
其裂解的机理及通式如下:I 饱和中心a+R —CR 2 YR----- R ・ + R 2C =YR + RYCH 2 CH 2a • +———YR + H 2C = CH 2II 不饱和杂原子几类化合物的a 裂解⑴H 3C — CH 2_OH-・CH 3 + H 2C ------------------------- OH⑵H? *+ H ? :工H2H 3C — C O —C CH 3 ~~H 2C = O — C —CH 3 + *CH 30(------ A R ++RC 三丫H 2C —CH 3三、烯丙基裂解烯丙基裂解方式是有机化合物裂解方式中一种重要的裂解方式,烯丙基中n 电子电离能比较低,被电离后形成游离基中心, 诱导B 键断裂,生成偶电子烯丙基离子,烯丙基离子具 有共振稳定性,所以形成的离子比较稳定, 因此具有较高的竞争力, 在质谱图中表现出很高 的丰度。
质谱裂解机理中的特征裂解方式有机质谱中的裂解是极其复杂的,但是通过对其质谱裂解方式和机理的探讨研究,我们可以发现有一些特征结构裂解方式在有机质谱的裂解中是普遍存在的,是世界上的大量质谱学家通过对大量的有机质谱裂解方式进行观察、研究后的概括性总结。
所以其具有很重要的参考价值和应用价值,所以在有机质谱解析过程中,必须予以遵循,如此方能得到合理的质谱裂解方式和解析结果。
通过概括总结我们发现有机质谱中大部分化合物具有以下几种特征裂解方式:α裂解、苄基裂解、烯丙基裂解、麦氏重排裂解、DRA裂解(逆狄尔斯阿尔德反应),几种特征裂解方式的强弱顺序如下:苄基裂解>α裂解、i裂解>麦氏重排裂解、DRA裂解>烯丙基裂解当然这种顺序不是一成不变的,随着化合物的结构发生改变,这些特征裂解方式的顺序有可能会发生改变,有机化合物质谱裂解大致可以分为两类α裂解(均裂)、β裂解,我们上面所讲的苄基裂解、烯丙基裂解、麦氏重排裂解、DRA裂解都属于β裂解。
下面我们对几种特征裂解方式做以说明。
1、特征裂解方式1、α裂解α裂解是指凡具有C-X单键基团和C=X双键基团(其中X=C、O、S、Cl等)的有机分子,与该基团原子相连接的单键、称之为α键,在电子轰击条件下,该键很容易断裂因而称之为α断裂。
断键时成键的两个原子各自收回一个电子,这是由游离基中心引发的反应,原动力来自游离基的电子强烈配对倾向,所以α断裂属于均裂。
其裂解的机理及通式如下:I饱和中心II不饱和杂原子几类化合物的α裂解(1)(2)(3)(4)引发α断裂的倾向是由游离基中心给电子的能力决定的,一般来讲N>S、O、π、烷基>Cl、Br>H,同时α断裂遵循最大烷基游离基丢失的原则。
2、苄基裂解通常烷基苯、烷基吲哚、烷基萘、烷基喹啉等化合物具有苄基断裂的特征裂解方式,苄基裂解也属于α裂解。
以丙基苯为例对其裂解机理做以说明在电子的轰击下,苯环上的一对π电子被电离,游离基中心定域到苯环上,诱导α键发生断裂,形成α键的一对电子中的单电子与被电离后的π键的孤电子形成新键,失去烷基自由基,生成偶电子离子。