山东省济南市历城区七年级数学上学期期末试卷(含解析)北师大版
- 格式:docx
- 大小:328.55 KB
- 文档页数:29
济南市历城区2019~2020七年级上学期期末考试数学试题一、遗规了(本大量共12小题,每小题4分,共很分。
每小题只活1.-2020的地对值是A.-2020B.2020 C.-12020D.120202.一个几何体由4个大小相同的小立方体搭建而成,从上面看这个几好体看到的形状如图所示,其中小正方形中的数字表示在该位置的小立方体的个数,则从它的正面看到的形状为A.B.C.D.3.某种细胞的平均直径只有0.0007米,用科学记数法表示此数是A.7×104B.7×10-5C.0.7×106D.0.7×10-44.下面调查统计中,适合采用普查方式的是()A.华为手机的市场占有率B.乘坐飞机的旅客是否携带了违禁物品C.“国家宝藏”专栏电视节目的收视率D.“现代“汽车每百公里的耗油量5.下列计算正确的是()A.a·a2=a2B.a2+a4=a8C.(ab)3=ab3D.a3÷a=a26.如果式子5x-8的值与3x互为相反数,则x的值是(A.1B.-1C.4D.-47.如图所示是正方体的展开图,原正方体“4”的相邻面上的数字之和是A.2B.12C.14D.158.下列现象:(1)用两个钉子就可以把木条固定在墙上;(2)从A地到B地架设电线,总是尽可能沿着线段AB架设;(3)植树时,只要确定两棵树的位置,就能确定同一行树所在的直线;(4)把弯曲的公路改直,就能缩短路程。
其中能用“两点确定一条直线”来解释的现象有A.(1)(3)B.(1)(2)C.(2)(4)D.(3)(4)9.将一副三角尺按如图所示的方式摆放(两条直角边在同一条直线上,且两税角顶点重合),连接另外两锐角顶点,并测得∠1=47°,则∠2的度数为(A.60°B.45°C.58°D.43°10若x =4是关于x 的一元一次方程ax +6=2b 的解,则a -3b +2的值是 A.-1 B.-7 C.7 D.1l11.如图,有一种电子游戏,电子屏幕上有一条直线,在直线上有A 、B 、C 、D 四点,点P 沿直线l 从右问左移动,当出现点P 与A 、B 、C 、D 四点中的至少两个点距离相等时,就会发出警报,则直线l 上会发出警报的点P 最多有( A.4个 B.5个 C.6个 D.7个12.如图是一组按照某种规律摆放的图形,第1个图中有3条线段,第二个图中有8条线段,第三个图中有15条线,则第6个图中线段的条数是(A.35B.48C.63D.65二、填空题(本大题共6小题,每小题4分,共24分) 13.单项式:5x 3yz26的系数是____次数是____14.如果单项式-3y 2b -1与5y 3b +4是同类项,则b =____15.如图所示,C 、D 是线段AB 上两点,若AC =3,C 为线段AD 中点且AB =10,则线段DB 长是____16.若a 4·a 2m -1=a 11,则m =____17.将一张长方形纸片按如图所示的方式折叠,BD 、BE 为折痕。
2019-2020学年山东省济南市历城区七年级(上)期末数学试卷一、选择题(每小题4分,共48分)1.(4分)﹣2020的绝对值是()A.﹣2020B.2020C.﹣D.2.(4分)一个几何体由大小相同的小立方块搭成,从上面看到的几何体形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看这个几何体得到的形状图是()A.B.C.D.3.(4分)某种细胞的平均直径只有0.00007米,用科学记数法表示此数应该是()A.7.0×104B.7.0×10﹣5C.0.7×106D.0.7×10﹣44.(4分)下面调查统计中,适合采用普查方式的是()A.华为手机的市场占有率B.乘坐飞机的旅客是否携带了违禁物品C.国家宝藏”专栏电视节目的收视率D.“现代”汽车每百公里的耗油量5.(4分)下列计算正确的是()A.a•a2=a2B.a2+a4=a8C.(ab)3=ab3D.a3÷a=a26.(4分)如果式子5x﹣8的值与3x互为相反数,则x的值是()A.1B.﹣1C.4D.﹣47.(4分)如图所示是正方体的展开图,原正方体“4”的相邻面上的数字之和是()A.2B.12C.14D.158.(4分)下列现象:(1)用两个钉子就可以把木条固定在墙上.(2)从A地到B地架设电线,总是尽可能沿着线段AB架设.(3)植树时,只要确定两棵树的位置,就能确定同一行树所在的直线.(4)把弯曲的公路改直,就能缩短路程.其中能用“两点确定一条直线”来解释的现象有()A.(1)(2)B.(1)(3)C.(2)(4)D.(3)(4)9.(4分)将一副三角尺按如图所示的方式摆放(两条直角边在同一条直线上,且两锐角顶点重合),连接另外两条锐角顶点,并测得∠1=47°,则∠2的度数为()A.60°B.58°C.45°D.43°10.(4分)若x=4是关于x的一元一次方程ax+6=2b的解,则6a﹣3b+2的值是()A.﹣1B.﹣7C.7D.1111.(4分)如图,有一种电子游戏,电子屏幕上有一条直线,在直线上有A,B,C,D四点.点P沿直线l 从右向左移动,当出现点P与A,B,C,D四点中的至少两个点距离相等时,就会发出警报,则直线l上会发出警报的点P最多有()A.4个B.5个C.6个D.7个12.(4分)如图是一组按照某种规律摆放而成的图形,第1个图中有3条线段,第二个图中有8条线段,第三个图中有15条线,则第6个图中线段的条数是()A.35B.48C.63D.65二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)单项式:的系数是,次数是.14.(4分)如果单项式﹣3y2b﹣1与5y b+4是同类项,则b=.15.(4分)如图所示,C、D是线段AB上两点,若AC=3,C为线段AD中点且AB=10,则线段DB长是.16.(4分)若a4•a2m﹣1=a11,则m=.17.(4分)将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕.则∠EBD=度.18.(4分)如图所示的钟表,当时钟指向上午7:50时,时针与分针的夹角等于度.三、解答题(本大题共9个小题,共78分、解答应写出文字说明、证明过程或演算步骤)19.(16分)计算:(1)﹣14﹣8+(﹣2)3×(﹣3)(2)(+﹣)×(﹣18)(3)﹣3(2a2b﹣ab2)+2(a2+3a2b)(4)x5•x3﹣(2x4)2+x10÷x220.(5分)化简求值:4x+3(2y2﹣3x)﹣2(4x﹣3y2),其中|x﹣3|+(y+2)2=0.21.(5分)如图,已知C、D为线段AB上顺次两点,点M、N分别为AC与BD的中点,AB=15,CD=7.(1)则线段AC与DB的长度和.(2)求线段MN的长.22.(10分)解方程:(1)4x﹣3=2x+5(2)=﹣123.(8分)某校随机抽取部分学生,就“学习习惯”进行调查,将“对自己做错的题目进行整理、分析、改正”(选项为:很少、有时、常常、总是)的调查数据进行了整理,绘制成部分统计图如下:请根据图中信息,解答下列问题(1)该调查的样本容量为,a=%,b=%,“常常”对应扇形的圆心角为°(2)请你补全条形统计图;(3)若该校共有3200名学生,请你估计其中“总是”对错题进行整理、分析、改正的学生有多少名?24.(8分)学校要购入两种记录本,其中A种记录本每本3元,B种记录本每本2元,且购买A种记录本的数量比B种记录本的2倍还多20本,总花费为460元.(1)求购买B种记录本的数量;(2)某商店搞促销活动,A种记录本按8折销售,B种记录本按9折销售,则学校此次可以节省多少钱?25.(6分)如图,将三个边长都为a的正方形一个顶点重合放置.(1)若∠l=50°,∠2=15°,则∠3=度;(2)判断:∠1+∠2+∠3=度,并说明理由.26.(9分)小明练习跳绳.以1分钟跳165个为目标,并把20次1分钟跳绳的数量记录如表(超过165个的部分记为“+”,少于165个的部分记为“﹣”)与目标数量的差依(单位:个)﹣11﹣6﹣2+4+10次数45362(1)小明在这20次跳绳练习中,1分钟最多跳多少个?(2)小明在这20次跳绳练习中,1分钟跳绳个数最多的一次比最少的一次多几个?(3)小明在这20次跳绳练习中,累计跳绳多少个?27.(11分)已知直线AB和CD交于O,∠AOC的度数为x,∠BOE=90°,OF平分∠AOD.(1)当x=20°时,则∠EOC=度;∠FOD=度.(2)当x=60°时,射线OE′从OE开始以10°/秒的速度绕点O逆时针转动,同时射线OF′从OF开始以8°/秒的速度绕点O顺时针转动,当射线OE′转动一周时射线OF′也停止转动,求至少经过多少秒射线OE′与射线OF′重合?(3)在(2)的条件下,射线OE′在转动一周的过程中,当∠E′OF′=90°时,请直接写出射线OE′转动的时间.参考答案与试题解析一、遗规了(本大量共12小题,每小题4分,共很分.每小题只活1.【解答】解:根据绝对值的概念可知:|﹣2020|=2020,故选:B.2.【解答】解:从正面看所得到的图形为:B故选:B.3.【解答】解:0.00007米,用科学记数法表示此数应该是7.0×10﹣5.故选:B.4.【解答】解:A、对华为手机的市场占有率的调查范围广,适合抽样调查,故此选项不符合题意;B、对乘坐飞机的旅客是否携带了违禁物品的调查情况适合普查,故此选项符合题意;C、对国家宝藏”专栏电视节目的收视率的调查范围广,适合抽样调查,故此选项不符合题意;D、对“现代”汽车每百公里的耗油量的调查范围广适合抽样调查,故此选项不符合题意;故选:B.5.【解答】解:a•a2=a3,故选项A不合题意;a2与a4不是同类项,所以不能合并,故选项B不合题意;(ab)3=a3b3,故选项C不合题意;a3÷a=a2,正确,故选项D符合题意.故选:D.6.【解答】解:根据题意得:5x﹣8+3x=0,移项合并得:8x=8,解得:x=1,故选:A.7.【解答】解:∵正方体的展开图,原正方体“4”的相对面上的数字为2,∴原正方体“4”的相邻面上的数字分别为1,3,5,6,∴原正方体“4”的相邻面上的数字之和是15,故选:D.8.【解答】解:(1)用两个钉子就可以把木条固定在墙上,根据是两点确定一条直线;(2)从A地到B地架设电线,总是尽可能沿着线段AB架设,根据是两点之间线段最短;(3)植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,根据是两点确定一条直线;(4)把弯曲的公路改直,就能缩短路程,根据是两点之间线段最短.故选:B.9.【解答】解:如图所示,∠3=180°﹣60°﹣45°=75°,则∠2=180°﹣∠1﹣∠3=180°﹣47°﹣75°=58°.故选:B.10.【解答】解:将x=4代入方程得:4a+6=2b,整理得:2a﹣b=﹣3,等式两边同时乘以3,得:6a﹣3b=﹣9,则6a﹣3b+2=﹣9+2=﹣7,故选:B.11.【解答】解:由题意知,当P点经过任意一条线段中点的时候会发出警报∵图中共有线段DC、DB、DA、CB、CA、BA∴发出警报的可能最多有5个故选:B.12.【解答】解:由图可得,第1个图形中有:3条线段,第2个图形中有:3+3+2=3×2+2×1=8条线段,第3个图形中有:3+3+3+2+2+2=3×3+2×3=15条线段,第4个图形中有:3+3+3+3+2+2+2+2+2+2=3×4+2×6=24条线段,…,则第n个图形中有:[(n+1)2﹣1]条线段,∴当n=6时,[(n+1)2﹣1]=[(6+1)2﹣1]=48,故选:B.二、填空题(本大题共6小题,每小题4分,共24分)13.【解答】解:单项式:的系数是:,次数是:6.故答案为:,6.14.【解答】解:由同类项的定义可知2b﹣1=b+4,解得b=5,故答案为:5.15.【解答】解:∵AC=3,C为线段AD中点,∴CD=3,∴AD=6,∵AB=10,∴BD=4;故答案为4.16.【解答】解:∵a4•a2m﹣1=a11,∴4+(2m﹣1)=11,解得m=4.故答案为:4.17.【解答】解:根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∴∠EBD=∠A′BE+∠DBC′=180°×=90°.故答案为:90.18.【解答】解:当时钟指向上午7:50时,时针与分针相距2+=(份),当时钟指向上午7:50时,时针与分针的夹角30°×=65°,故答案为:65.三、解答题(本大题共9个小题,共78分、解答应写出文字说明、证明过程或演算步骤)19.【解答】解:(1)﹣14﹣8+(﹣2)3×(﹣3)=﹣1﹣8+(﹣8)×(﹣3)=﹣9+24=15(2)(+﹣)×(﹣18)=×(﹣18)+×(﹣18)﹣×(﹣18)=﹣9﹣6+3=﹣12(3)﹣3(2a2b﹣ab2)+2(a2+3a2b)=﹣6a2b+3ab2+2a2+6a2b=3ab2+2a(4)x5•x3﹣(2x4)2+x10÷x2=x8﹣4x8+x8=﹣2x8.20.【解答】解:原式=4x+6y2﹣9x﹣8x+6y2=12y2﹣13x,因为|x﹣3|+(y+2)2=0,所以x=3,y=﹣2,则原式=12×4﹣39=48﹣39=9.21.【解答】解:(1)AC+BD=AB﹣CD=15=7=8,故答案为8;(2)MN=CM+CD+DN=AC+BD+CD=(AC+BD)+CD=(AB﹣CD)+CD=AB+CD=11.22.【解答】解:(1)移项合并得:2x=8,解得:x=4;(2)去分母得:20﹣5x=3x﹣9﹣15,移项合并得:﹣8x=﹣44,解得:x=5.5.23.【解答】解:(1)∵44÷22%=200(名)∴该调查的样本容量为200;a=24÷200=12%,b=72÷200=36%,“常常”对应扇形的圆心角为:360°×30%=108°.(2)200×30%=60(名).(3)∵3200×36%=1152(名)∴“总是”对错题进行整理、分析、改正的学生有1152名.故答案为:200、12、36、108.24.【解答】解:(1)设购买B种记录本x本,则购买A种记录表(2x+20)本,依题意,得:3(2x+20)+2x=460,解得:x=50,∴2x+20=120.答:购买A种记录本120本,B种记录本50本.(2)460﹣3×120×0.8﹣2×50×0.9=82(元).答:学校此次可以节省82元钱.25.【解答】解:(1)如图:∵∠1+∠4+∠2=90°,∵∠l=50°,∠2=15°,∴∠4=25°,根据同角的余角相等得:∠3=∠4=65°;(2)根据同角的余角相等得:∠3=∠4,∵∠1+∠4+∠2=90°,∴∠1+∠2+∠3=90°,故答案为:65,90.26.【解答】解:(1)跳绳最多的一次为:165+10=175(个)答:小明在这20次跳绳练习中,1分钟最多跳175个.(2)(+10)﹣(﹣11)=10+11=21(个)答:小明在这20次跳绳练习中,1分钟跳绳个数最多的一次比最少的一次多21个.(3)165×20﹣11×4﹣6×5﹣2×3+4×6+10×2=3264(个)答:小明在这20次跳绳练习中,累计跳绳3264个.27.【解答】解:(1)∵∠BOE=90°,∴∠AOE=90°,∵∠AOC=x=20°,∴∠EOC=90°﹣20°=70°,∠AOD=180°﹣20°=160°,∵OF平分∠AOD,∴∠FOD =∠AOD ==80°;故答案为:70,80;(2)当x=60°,∠EOF=90°+60°=150°设当射线OE'与射线OF'重合时至少需要t秒,10t+8t=150,t =,答:当射线OE'与射线OF'重合时至少需要秒;(3)设射线OE'转动的时间为t秒,由题意得:10t+90+8t=150或10t+8t=150+90或360﹣10t=8t﹣150+90或360﹣10t+360﹣8t+90=360﹣150,t =或或或.答:射线OE'转动的时间为秒或秒或秒或秒.第11页(共11页)。
•山东省济南市历城区 2014~2015 学年度七年级上学期期 末数学试卷一、选择题(本大题共 15 题,每题 3 分,共 45 分.) 1.3 的相反数是( ) A .3B .﹣3C .D .﹣2.土星表面的夜间平均气温为﹣150℃,白天比夜间高 27℃,那么白天的平均气温是( )A .﹣123℃B .123℃C .﹣177℃D .177℃ 3.下面那个图形不能折成一个正方体()A .B .C .D .4.用科学记数法表示 0.000 022 6 为( )A .2.26×10﹣6B .0.226×10﹣6C .22.6×10﹣4D .2.26×10﹣55.过某个多边形一个顶点的所有对角线,把这个多边形分成 5 个三角形,这个多边形是( )A .5B .6C .7D .86.调查下列问题时,适合普查的是( ) A .了解一批圆珠笔芯的使用寿命 B .了解我国 2015~2016 学年度八年级学生的视力情况 C .了解一批西瓜是否甜D .了解一沓钞票中有没有假钞7.点 A 在数轴上距离原点 3 个单位长度,且位于原点左侧.若一个点从点 A 处向右移动 4 个单位 长度,再向左移动 1 个单位长度,此时中点所表示的数是( ) A .0 B .6 C .﹣2 D .﹣88.下列计算正确的是( )A .b 4 b 4=2b 4B .(x 3)3=x 6C .70×8﹣2=D .(﹣bc )4÷(﹣bc )2=﹣b 2c29.一个小立方块的六个面分别标有数字 1,2,3,4,5,6,从三个不同方向看到的情形如图所 示,则如图放置时三个底面上的数字之和等于(+ + +…+的值为( A . B .1﹣A .6B .7C .8D .910.已知 x=5 是方程 ax ﹣8=20+a 的解,则 a 的值是( )A .2B .3C .7D .811.下列说法正确的是( ) A .所有的有理数都能用数轴上的点表示 B .符号不同的两个数互为相反数 C .有理数分为正数和负数 D .两数相加,和一定大于任何一个数12.某商店出售两件衣服,每件 60 元,其中一件赚 25%,另一件赔 25%,那么这两家商店( )A .赔了 18 元B .赚了 8 元C .不赔不赚D .赔了 8 元13.从 1﹣9 这九个数字中任选三个数字,由这三个数字中的任意两个数字组成两位数,可以组成 六个两位数,先把这六个两位数相加,然后用所得的和除以所选三个数字之和,结果是( ) A .21 B .20 C .22 D .不能确定14.如图,将一个边长为 1 的正方形纸片分割成 7 个部分,部分①是边长为 1 的正方形纸片面积的 一半,部分 ②是部分①面积的一半,部分 ③是部分②面积的一半,依此类推,)C .D .不能确定15.如图,点 C 为线段 AB 上一点,CB=a ,D 、E 两点分别为 AC 、AB 的中点,则线段 DE 的长为 ( )(用含 a 的代数式表示)A . aB . aC . aD .a二、填空题(每小题3 分,共15 分)16.木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两点弹出一条墨线,这是根据数学原理.17.一副三角尺拼成如图所示的图案,则∠CED 的度数是度.18.若a m+1b3 与﹣3a4b n+7 的和是单项式,则m+n 的值为.19.当时钟指向上午10:10 时,时针与分针的夹角度.20.若a m=32,a n=8,则a m﹣n= .三、解答题21.计算、化简(1)0.5+(﹣)﹣(﹣2.75)+ 16÷(﹣2)3﹣(﹣0.125)×(﹣4)(3)(x3y)2÷x2(4)22.解方程(1)4x﹣3=﹣4﹣=1.23.如图(甲),∠AOC 和∠BOD 都是直角.(1)如果∠DOC=30°,∠AOB 的度数是度;找出图(甲)中和∠AOD 相等的角,并说明相等的理由.(3)在图(乙)中利用能够画直角的工具再画一个与∠BOC 相等的角.(请写出图中所画的直角,并写出与∠BOC 相等的角).24.化简求值(1)2(a2b+ab2)﹣2(a2b﹣1)﹣2a2b﹣2,其中a=﹣2,b=2[(a﹣2b)2﹣2(a﹣b)(a﹣2b)÷,其中a=4,b=1.25.某商店规定:超过15000 元的物品可以采用分期付款方式付款,顾客可以先付3000 元,以后每月付1500 元.王叔叔想用分期付款的形式购买价值21000 元的物品,他需要用多长时间才能付清全部货款?26.为了解本校2016 届九年级学生期末数学考试情况,小亮在2016 届九年级随机抽取了一部分学生的期末数学成绩为样本,分为A(100~90)、B(89~80 分)、C(79~60 分)、D(59~0 分)四个等级进行统计,并将统计结果绘制成如下统计图,请你根据统计图解答以下问题:(1)这次随机抽取的学生共有多少人?请补全条形统计图;(3)这个学校2016 届九年级共有学生1200 人,若分数为80 分以上为优秀,请估计这次2016 届九年级学生期末数学考试成绩为优秀的学生人数大约有多少?27.填写三阶幻方.请把2,4,6,8,10,12,14,16,18 这九个数填入下列3×3 的方格中,使得每行、每列、每条对角线上的三个数之和相等.(1)方格正中间位置的数是;将下列两个幻方补充完整.28.已知:线段AB=20cm.(1)如图1,点P 沿线段AB 自A 点向B 点以2 厘米/秒运动,点P 出发2 秒后,点Q 沿线段BA 自B 点向A 点以3 厘米/秒运动,问再经过几秒后P、Q 相距5cm?如图2:AO=4cm,PO=2cm,∠POB=60°,点P 绕着点O 以60 度/秒的速度逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向A 点运动,假若点P、Q 两点能相遇,求点Q 运动的速度.山东省济南市历城区2014~2015学年度七年级上学期期末数学试卷参考答案与试题解析一、选择题(本大题共15 题,每题3 分,共45 分.)1.3 的相反数是()A.3 B.﹣3 C. D.﹣【考点】相反数.【专题】常规题型.【分析】根据相反数的意义,3 的相反数即是在3 的前面加负号.【解答】解:根据相反数的概念及意义可知:3 的相反数是﹣3.故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0 的相反数是0.2.土星表面的夜间平均气温为﹣150℃,白天比夜间高27℃,那么白天的平均气温是()A.﹣123℃B.123℃C.﹣177℃D.177℃【考点】有理数的加法.【专题】应用题.【分析】根据土星表面的夜间平均气温为﹣150℃,白天比夜间高27℃,可以求得白天的平均气温.【解答】解:∵土星表面的夜间平均气温为﹣150℃,白天比夜间高27℃,∴(﹣150)+27=﹣123℃,故选A.【点评】本题考查有理数的加法,解题的关键是明确有理数加法的法则.3.下面那个图形不能折成一个正方体()A.B.C.D.【考点】展开图折叠成几何体.【分析】根据正方体展开图的11 种特征,C 图不属于正方体展开图,不能折成正方体;A、B、D 图属于正方体展开图的“1﹣4﹣1”型,能折成正方体.据此解答.【解答】解:根据正方体展开图的特征,C 图不能折成正方体;A、B、D 图能折成正方体;故选C.【点评】此题考查了展开图折叠成几何体,正方体展开图有11 种特征,分四种类型,即:第一种:“1﹣4﹣1”结构,即第一行放1 个,第二行放4 个,第三行放1 个;第二种:“2﹣2﹣2”结构,即每一行放2 个正方形,此种结构只有一种展开图;第三种:“3﹣3”结构,即每一行放3 个正方形,只有一种展开图;第四种:“1﹣3﹣2”结构,即第一行放1 个正方形,第二行放3 个正方形,第三行放2 个正方形.4.用科学记数法表示0.000 022 6 为()A.2.26×10﹣6 B.0.226×10﹣6 C.22.6×10﹣4 D.2.26×10﹣5【考点】科学记数法—表示较小的数.【分析】绝对值小于1 的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0 的个数所决定.【解答】解:0.000 022 6=2.26×10﹣5.故选:D.【点评】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0 的个数所决定.5.过某个多边形一个顶点的所有对角线,把这个多边形分成5 个三角形,这个多边形是()A.5 B.6 C.7 D.8【考点】多边形的对角线.【分析】根据过某个多边形一个顶点画对角线,把多边形分成n﹣2 个三角形,再结合题意可得n﹣2=5,再解即可.【解答】解:设多边形边数为n,∵过某个多边形一个顶点的所有对角线,把这个多边形分成5 个三角形,∴n﹣2=5,解得:n=7.故选:C.【点评】此题主要考查了多边形的对角线,关键是掌握过某个多边形一个顶点画对角线,把多边形分成n﹣2 个三角形.6.调查下列问题时,适合普查的是()A.了解一批圆珠笔芯的使用寿命B.了解我国2015~2016 学年度八年级学生的视力情况C.了解一批西瓜是否甜D.了解一沓钞票中有没有假钞【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解一批圆珠笔芯的使用寿命,具有破坏性,应采用抽样调查,故此选项错误;B、了解我国2015~2016 学年度八年级学生的视力情况,人数众多,应采用抽样调查,故此选项错误;C、了解一批西瓜是否甜,具有破坏性,应采用抽样调查,故此选项错误;D、了解一沓钞票中有没有假钞,必须采用普查,故此选项正确;故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.• • 7.点 A 在数轴上距离原点 3 个单位长度,且位于原点左侧.若一个点从点 A 处向右移动 4 个单位 长度,再向左移动 1 个单位长度,此时中点所表示的数是( ) A .0 B .6 C .﹣2 D .﹣8 【考点】数轴. 【专题】探究型. 【分析】根据点 A 在数轴上距离原点 3 个单位长度,且位于原点左侧.若一个点从点 A 处向右移动 4 个单位长度,再向左移动 1 个单位长度,可以得到最后点 A 所在的位置,从而可得点 A 在数轴上 的位置,从而可以解答本题.【解答】解:∵点 A 在数轴上距离原点 3 个单位长度,且位于原点左侧.若一个点从点 A 处向右移 动 4 个单位长度,再向左移动 1 个单位长度, ∴点 A 表示的数是﹣3,﹣3+4﹣1=0, 即点 A 最终的位置在数轴上对应的数是 0, 故选 A .【点评】本题考查数轴,解题的关键是能看懂题意,根据题意可以得到点 A 的运动路线.8.下列计算正确的是( ) A .b 4 b 4=2b 4B .(x 3)3=x 6C .70×8﹣2=D .(﹣bc )4÷(﹣bc )2=﹣b 2c2【考点】整式的除法;同底数幂的乘法;幂的乘方与积的乘方;零指数幂;负整数指数幂.【分析】分别利用同底数幂的乘法运算法则以及幂的乘方运算和同底数幂的除法运算法则分别分析 得出答案.【解答】解:A 、b 4 b 4=b 8,故此选项错误;B 、(x 3)3=x 9,故此选项错误; C 、70×8﹣2=,正确; D 、(﹣bc )4÷(﹣bc )2=b 2c 2,故此选项错误; 故选:C .【点评】此题主要考查了同底数幂的乘法运算以及幂的乘方运算和同底数幂的除法运算等知识,正 确掌握运算法则是解题关键.9.一个小立方块的六个面分别标有数字 1,2,3,4,5,6,从三个不同方向看到的情形如图所 示,则如图放置时三个底面上的数字之和等于(A .6B .7C .8D .9【考点】专题:正方体相对两个面上的文字. 【分析】根据与 1 相邻的面上的数是 2、4、5、6 判断出 1 的相对面是 3,与 2 相邻的面上的数是 1、 3、5、6 判断出 2 的相对面是 4,然后判断出 5、6 是相对面. 【解答】解:∵由图可知,与 1 相邻的面上的数是 2、4、5、6,∴1 的相对面是3,∵与2 相邻的面上的数是1、3、5、6,∴2 的相对面是4,∴5 与6 是相对面.则如图放置时三个底面上的数字是2,1,4,∴2+1+4=7.故选:B.【点评】本题考查了正方体相对两个面上的文字,根据相邻的面确定出对面上的数字是解题的关键.10.已知x=5 是方程ax﹣8=20+a 的解,则a 的值是()A.2 B.3 C.7 D.8【考点】方程的解.【分析】根据方程的解是使方程成立的未知数的值,把方程的解代入方程,可得答案.【解答】解:把x=5 代入方程ax﹣8=20+a,得:5a﹣8=20+a,解得:a=7,故选:C.【点评】本题考查了方程的解,把方程的解代入方程,得关于a 的一元一次方程,解一元一次方程,得答案.11.下列说法正确的是()A.所有的有理数都能用数轴上的点表示B.符号不同的两个数互为相反数C.有理数分为正数和负数D.两数相加,和一定大于任何一个数【考点】数轴;有理数;相反数;有理数的加法.【专题】探究型.【分析】将错误的选项举出反例即可解答本题.【解答】解:所有的有理数都能用数轴上的点表示,故选项A 正确;﹣2 和3 两个数的符号不同,但是它们不是相反数,故选项B 错误;有理数分为正数、0 和负数,故选项C 错误;0+1=1,而1=1,故选项D 错误;故选A.【点评】本题考查数轴、有理数、相反数、有理数的加法,解题的关键明确它们各自的含义.12.某商店出售两件衣服,每件60 元,其中一件赚25%,另一件赔25%,那么这两家商店()A.赔了18 元B.赚了8 元C.不赔不赚D.赔了8 元【考点】一元一次方程的应用.【分析】设赚的那件衣服进价是x 元,赔的那件衣服进价是y 元,根据每件60 元,其中一件赚25%,另一件赔25%,可列出方程求解.【解答】解:设赚的那件衣服进价是x 元,则x+25%x=60,x=48.+ + +…+的值为( A . B .1﹣设赔的那件衣服进价是 y 元,则 y ﹣25%y=60, y=80.∵60+60﹣48﹣80=﹣8, ∴赔了 8元. 故选 D .【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件, 找出合适的等量关系列出方程,再求解.13.从 1﹣9 这九个数字中任选三个数字,由这三个数字中的任意两个数字组成两位数,可以组成 六个两位数,先把这六个两位数相加,然后用所得的和除以所选三个数字之和,结果是( ) A .21 B .20 C .22 D .不能确定 【考点】列代数式. 【专题】探究型.【分析】根据题意可以在 1﹣9 中任意选取三个数字,然后根据题目中的信息进行计算即可解答本 题.【解答】解:由题意可得,在 1﹣9 这九个数字中选取 1,2,3,则由这三个数字中的任意两个数字 组成两位数是:12,13,23,32,31,21; 则(12+13+23+32+31+21)÷(1+2+3) =132÷6 =22.由题意可得,在 1﹣9 这九个数字中选取 1,5,6,则由这三个数字中的任意两个数字组成两位数 是:15,16,56,65,61,51;则(15+16+56+65+61+51)÷(1+5+6) =264÷12 =22. 故选 C .【点评】本题考查列代数式,解题的关键是任意选取三个数,根据题目中的信息进行计算即可.14.如图,将一个边长为 1 的正方形纸片分割成 7 个部分,部分①是边长为 1 的正方形纸片面积的 一半,部分 ②是部分①面积的一半,部分 ③是部分②面积的一半,依此类推,)C .D .不能确定【考点】规律型:图形的变化类;规律型:数字的变化类.【专题】计算题.【分析】结合图形,可以发现,正方形面积为1,①是边长为1 的正方形纸片面积的一半,②的面积等于,③的面积等于,则+ + +…+ 的计算,可以由图形求得.因此+ + +…+ 的值为整个正方形面积减去,可以得出结果.【解答】解:∵正方形边长为1,∴正方形面积为1.∵①是边长为1 的正方形纸片面积的一半,∴①的面积为,依此论推②的面积为,③的面积为,…因此.求+ + +…+ 的值,即为求将图形分割下去空白部分的面积,此时剩余阴影部分面积为:,∴+ + +…+ =1﹣,故选:B.【点评】题目考查了图形与数字变化结合的知识,通过图形的变化与数字结合起来,找出二者的关系,进而求出题目答案.另外本题也是等比数列求和问题,根据等比数列求和公式S n= 也可以求出本题答案.15.如图,点C 为线段AB 上一点,CB=a,D、E 两点分别为AC、AB 的中点,则线段DE 的长为()(用含a 的代数式表示)A. a B. a C. a D. a【考点】两点间的距离.【分析】根据线段中点的性质,可得AE,AD 的长,根据线段的和差,可得答案.【解答】解:由D、E 两点分别为AC、AB 的中点,得AE= AB,AD= AC= (AB﹣BC)= AB﹣AC.由线段的和差,得DE=AE﹣AD= AB﹣(AB﹣BC)= BC= a.故选:C.【点评】本题考查了两点间的距离,利用线段中点的性质得出AE,AD 的长是解题关键.二、填空题(每小题3 分,共15 分)16.木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两点弹出一条墨线,这是根据数学原理两点确定一条直线.【考点】直线的性质:两点确定一条直线.【分析】根据直线公理:经过两点有且只有一条直线,解题.【解答】解:两点确定一条直线.【点评】此题比较简单,但从中可以看出,数学来源于生活,又用于生活.17.一副三角尺拼成如图所示的图案,则∠CED 的度数是105 度.【考点】三角形内角和定理;三角形的外角性质.【分析】根据三角形内角和定理求出∠ACB 和∠CAD,根据三角形外角性质求出即可.【解答】解:∵∠ACD=90°,∠D=30°,∴∠CAE=180°﹣90°﹣30°=60°,∵∠CAB=90°,∠B=45°,∴∠ACB=180°﹣90°﹣45°=45°,∴∠CED=∠CAE+∠ACB=60°+45°=105°,故答案为:105.【点评】本题考查了三角形外角性质和三角形内角和定理的应用,能求出∠ACB 和∠CAD 的度数是解此题的关键.18.若a m+1b3 与﹣3a4b n+7 的和是单项式,则m+n 的值为﹣1 .【考点】同类项.【分析】根据单项式的和是单项式,可得同类项,根据同类项是字母相同且相同字母的指数也相同,可得m、n 的值,根据有理数的加法,可得答案.【解答】解:由a m+1b3 与﹣3a4b n+7 的和是单项式,得m+1=4,n+7=3,解得m=3,n=﹣4.m+n=3+(﹣4)=﹣1,故答案为:﹣1.【点评】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了2016 届中考的常考点.19.当时钟指向上午10:10 时,时针与分针的夹角115 度.【考点】钟面角.【分析】根据钟面平均分成12 份,可得每份的度数,根据时针与分针相距的份数乘以每份的度数,可得答案.【解答】解:当时钟指向上午10:10 时,时针与分针相距8+ = 份,÷当时钟指向上午 10:10 时,时针与分针的夹角 30°×=245°,即当时钟指向上午 10:10 时,时针与分针的夹角 115°, 故答案为:115°.【点评】本题考查了钟面角,利用时针与分针相距的份数乘以每份的度数是解题关键.20.若 a m=32,a n=8,则 a m ﹣n= 4 . 【考点】同底数幂的除法.【分析】根据同底数幂的除法底数不变指数相减,可得答案.【解答】解:a m ﹣n =m a n=32÷8=4, 故答案为:4.【点评】本题考查了同底数幂的除法,利用底数不变指数相减是解题关键.三、解答题 21.计算、化简(1)0.5+(﹣ )﹣(﹣2.75)+ 16÷(﹣2)3﹣(﹣0.125)×(﹣4)(3)(x 3y )2÷x 2(4)【考点】整式的混合运算;有理数的混合运算.【分析】(1)根据有理数的加减进行计算即可; 根据有理数的乘方、乘除以及加减进行计算即可; (3)根据积的乘方,幂的乘方,单项式的乘法进行计算即可; (4)根据平方差公式完全平方进行计算即可. 【解答】解:(1)原式=0.5﹣0.25+2.75+0.5 =3.5;原式=16÷(﹣8)﹣0.5 =﹣2﹣0.5 =﹣2.5; (3)原式=x 6y 2÷x 2=x 4y 2; (4)原式=2﹣1=4x 2+4xy+y 2﹣1.【点评】本题考查了整式的混合运算以及有理数的混合运算,以及完全平方公式的运用,熟记公式 是解题的关键.22.解方程 (1)4x ﹣3=﹣4﹣=1.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用. 【分析】(1)方程去括号,移项合并,把 x 系数化为 1,即可求出解;方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【解答】解:(1)去括号得:4x﹣60+3x=﹣4,移项合并得:7x=56,解得:x=8;去分母得:4x+2﹣5x+1=6,移项合并得:﹣x=3,解得:x=﹣3.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.23.如图(甲),∠AOC 和∠BOD 都是直角.(1)如果∠DOC=30°,∠AOB 的度数是150 度;找出图(甲)中和∠AOD 相等的角,并说明相等的理由.(3)在图(乙)中利用能够画直角的工具再画一个与∠BOC 相等的角.(请写出图中所画的直角,并写出与∠BOC 相等的角).【考点】余角和补角.【分析】(1)根据∠AOC=90°,∠DOC=30°,求出∠AOD 的度数,然后即可求出∠AOB 的度数;根据余角的性质可得图(甲)中和∠AOD 相等的角;(3)首先以OB 为边,在∠BOC 外画∠BOD=90°,再以OC 为边在∠COD 外画∠AOC=90°,即可得到∠AOD=∠BOC.【解答】解:(1)∵∠AOC=∠DOB=90°,∠DOC=30°,∴∠AOD=90°﹣30°=60°,∴∠AOB=90°+60°=150°.图(甲)中和∠AOD 相等的角是∠BOC,同角的余角相等(或见下面解释)∵∠AOC=∠DOB=90°,∴∠AOD+∠DOC=∠BOC+∠DOC,∴∠AOD=∠BOC;(3)如图所示:∠AOD=∠BOC.故答案为:150.【点评】本题考查了余角和补角,以及角的计算,解决本题的关键是熟记余角和补角的定义.24.化简求值×(1)2(a 2b+ab 2)﹣2(a 2b ﹣1)﹣2a 2b ﹣2,其中 a=﹣2,b=2 [(a ﹣2b )2﹣2(a ﹣b )(a ﹣2b ) ÷,其中 a=4,b=1.【考点】整式的混合运算—化简求值.【分析】(1)先算乘法,再合并同类项,最后代入求出即可; 先算乘法,再合并同类项,算除法,最后代入求出即可.【解答】解:(1)2(a 2b+ab 2)﹣2(a 2b ﹣1)﹣2a 2b ﹣2 =2a 2b+2ab 2﹣2a 2b+2﹣2a 2b ﹣2 =2ab 2﹣2a 2b ,当 a=﹣2,b=2 时,原式=2×(﹣2)×22﹣2×(﹣2)2 2=﹣32;[(a ﹣2b )2﹣2(a ﹣b )(a ﹣2b ) ÷=[a 2﹣4ab+4b 2﹣2a 2+4ab+2ab ﹣4b 2÷=(﹣a 2+2ab )÷ =﹣ a+b ,当 a=4,b=1 时,原式=﹣×4+1=﹣1.【点评】本题考查了整式的混合运算和求值的应用,能正确运用整式的运算法则进行计算和化简是 解此题的关键.25.某商店规定:超过 15000 元的物品可以采用分期付款方式付款,顾客可以先付 3000 元,以后每 月付 1500 元.王叔叔想用分期付款的形式购买价值 21000 元的物品,他需要用多长时间才能付清全 部货款?【考点】一元一次方程的应用. 【分析】设王叔叔需用 x 月的时间才能付清全部货款,根据先付 3000 元,以后每月付 1500 元,共 21000 元列出方程,再求解即可. 【解答】解:设王叔叔需用 x 月的时间才能付清全部货款,根据题意得: 3000+1500x=21000, 解得 x=12. 答:需用 12 个月的时间才能付清全部货款.【点评】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件, 找出合适的等量关系列出方程,再求解.26.为了解本校2016 届九年级学生期末数学考试情况,小亮在2016 届九年级随机抽取了一部分学生的期末数学成绩为样本,分为A(100~90)、B(89~80 分)、C(79~60 分)、D(59~0 分)四个等级进行统计,并将统计结果绘制成如下统计图,请你根据统计图解答以下问题:(1)这次随机抽取的学生共有多少人?请补全条形统计图;(3)这个学校2016 届九年级共有学生1200 人,若分数为80 分以上为优秀,请估计这次2016 届九年级学生期末数学考试成绩为优秀的学生人数大约有多少?【考点】条形统计图;用样本估计总体;扇形统计图.【专题】图表型.【分析】(1)抽查人数可由C 等所占的比例为50%,根据总数=某等人数÷比例来计算;可由总数减去A、C、D 的人数求得B 等的人数,再补全条形统计图;(3)用样本估计总体.用总人数1200 乘以样本中测试成绩等级在80 分以上的学生所占百分比即可.【解答】解:(1)20÷50%=40(人),答:这次随机抽取的学生共有40 人;B 等级人数:40﹣6﹣20﹣4=10(人)条形统计图如下:(3)1200× =480(人),这次2016 届九年级学生期末数学考试成绩为优秀的学生人数大约有480 人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.27.填写三阶幻方.请把2,4,6,8,10,12,14,16,18 这九个数填入下列3×3 的方格中,使得每行、每列、每条对角线上的三个数之和相等.(1)方格正中间位置的数是10 ;将下列两个幻方补充完整.【分析】(1)在所有幻方中,所有数字按照大小排序,中间的数字填写在方格正中间;补充幻方可以参考换房填写技巧.【解答】解:(1)在所有幻方中,所有数字按照大小排序,中间的数字填写在方格正中间,故答案为:10.将两个幻方补充完整如下:【点评】题目考查了幻方的填写,填写幻方一般步骤如下:把最小的数放在第一行正中;按以下规律排列剩下的数:(1)、每一个数放在前一个数的右上一格;、如果这个数所要放的格已经超出了顶行那么就把它放在底行,仍然要放在右一列;(3)、如果这个数所要放的格已经超出了最右列那么就把它放在最左列,仍然要放在上一行;(4)、如果这个数所要放的格已经超出了顶行且超出了最右列,那么就把它放在前一个数的下一行同一列的格内;(5)、如果这个数所要放的格已经有数填入,处理方法同(4).28.已知:线段AB=20cm.(1)如图1,点P 沿线段AB 自A 点向B 点以2 厘米/秒运动,点P 出发2 秒后,点Q 沿线段BA 自B 点向A 点以3 厘米/秒运动,问再经过几秒后P、Q 相距5cm?如图2:AO=4cm,PO=2cm,∠POB=60°,点P 绕着点O 以60 度/秒的速度逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向A 点运动,假若点P、Q 两点能相遇,求点Q 运动的速度.【考点】一元一次方程的应用;两点间的距离.【分析】(1)设经过xs,P、Q 两点相距5cm,分相遇前和相遇后两种情况建立方程求出其解即可;由于点P,Q 只能在直线AB 上相遇,而点P 旋转到直线AB 上的时间分两种情况,所以根据题意列出方程分别求解.【解答】解:(1)设再经过ts 后,点P、Q 相距5cm,①P、Q 未相遇前相距5cm,依题意可列2(t+2)+3t=20﹣5,解得,t= ,②P、Q 相遇后相距5cm,依题意可列2(t+2)+3t=20+5,解得,t= ,答:经过s 或s 后,点P、Q 相距5cm.点P,Q 只能在直线AB 上相遇,则点P 旋转到直线AB 上的时间为=2s或设点Q 的速度为ym/s,当2 秒时相遇,依题意得,2y=20﹣2=18,解得y=9当5 秒时相遇,依题意得,5y=20﹣6=14,解得y=2.8答:点Q 的速度为9cm/s 或2.8cm/s.【点评】此题考查的知识点是一元一次方程的应用,关键是熟练掌握速度、路程、时间的关系.。
北师大版(七年级)初一上册数学期末测试题及答案一、选择题1.若0a >,0b <,0a b +>,则a ,b ,a -,b -按照从小到大的顺序用“<”连接起来,正确的是( ) A .a b b a -<<-< B .a b b a >->>- C .b a b a <-<-<D .a b b a -<-<<2.在料幻电影《银河护卫队》中,星球之间的穿梭往往靠宇宙飞船沿固定路径“空间跳跃”完成.如图所示:两个星球之间的路径只有1条,三个星球之间的路径有3条,四个星球之间的路径有6条,…,按此规律,则10个星球之间“空间跳跃”的路径有( ).A .45条B .21条C .42条D .38条 3.已知232-m a b 和45n a b 是同类项,则m n -的值是( )A .-2B .1C .0D .-14.观察下列算式:122=,224=,328=,4216=,5232=,6264=,72128=,82256=,…….根据上述算式中的规律,你认为20192的个位数字是( ) A .2 B .4 C .6 D .85.如果-2a m b 2与12a 5b n+1的和仍然是单项式,那么m +n 的值为( ). A .5 B .6 C .7 D .8 6.一组数据的最小值为6,最大值为29,若取组距为5,则分成的组数应为( ) A .4B .5C .6D .77.下列解方程的步骤正确的是( ) A .由2x +4=3x +1,得2x +3x =1+4 B .由3(x ﹣2)=2(x +3),得3x ﹣6=2x +6 C .由0.5x ﹣0.7x =5﹣1.3x ,得5x ﹣7=5﹣13xD .由1226x x -+-=2,得3x ﹣3﹣x +2=12 8.有理数,a b 在数轴上的位置如图所示,则下列结论正确的是( )A .0a b +>B .0a b -<C .b a >D .0ab <9.下列方程为一元一次方程的是( ) A .x+2y =3B .y+3=0C .x 2﹣2x =0D .1y+y =010.将正整数1至2018按一定规律排列如表,平移表中带阴影的方框,则方框中的三个数的和可以是( )A .2019B .2018C .2016D .201311.已知整数1a 、2a 、3a 、4a 、…满足下列条件:11a =-,212a a =-+,323a a =-+,434a a =-+,…,11n n a a n +=-++(n 为正整数)依此类推,则2020a 的值为()A .-1009B .-2019C .-1010D .-202012.“幻方”在中国古代称为“河图”、“洛书”,又叫“纵横图”.其主要性质是在一个由若干个排列整齐的数组成的正方形中,图中任意一横行,一纵行及对角线的几个数之和都相等.图(l )所示是一个33⨯幻方.有人建议向火星发射如图(2)所示的幻方图案,如果火星上有智能生物,那么他们可以从这种“数学语言”了解到地球上也有智能生物(人).图(3)是一个未完成的33⨯幻方,请你类比图(l )推算图(3)中P 处所对应的数字是( )A .1B .2C .3D .4二、填空题13.有30个数据,其中最大值为40,最小值为19,若取组距为4,则应该分成____组. 14.计算(0.04)2018×[(﹣5)]2018的结果是_____.15.数学小组对收集到的160个数据进行整理,并绘制出扇形图发现有一组数据所对应扇形的圆心角是72°,则该组的频数为______________________16.关于x 的方程23x kx -=的解是整数,则整数k 可以取的值是_____________. 17.如图,填在下面各正方形中的四个数字之间有一定的规律,据此规律可得a b c ++=_____________.18.已知:﹣a =2,|b |=6,且a >b ,则a +b =_____.19.当x =1时,ax +b +1=﹣3,则(a +b ﹣1)(1﹣a ﹣b )的值为_____.20.如图,由等圆组成的一组图中,第1个图由1个圆组成,第2个图由5个圆组成,第3个图由11个圆组成,…按照这样的规律排列下去,则第20个图形由_____个圆组成.21.已知关于x 的一元一次方程520202020xx m +=+的解为2019x =,那么关于y 的一元一次方程552020(5)2020yy m --=--的解为________. 22.如图,用大小相等的小正方形拼成有规律的图形,第1个图中有1个正方形,第2个图中含有5个正方形,第3个图中含有14个正方形…,按此规律拼下去,第6个图中含正方形的个数是___________个.三、解答题23.(1)计算:()13564734-++- (2)计算:()320201342-⨯+÷- (3)x 22x 1146+--= 24.新冠肺炎疫情爆发后,口罩成为了最紧缺的防护物资之一,比亚迪,长安,格力等企业响应国家号召,纷纷开设口罩生产线.2月1日,重庆东升公司复工,利用原有的A 生产线开始生产口罩,8天后,采用最新技术的B 生产线建成投产.同时,为加大口罩产能,公司耗时2天对A 生产线进行技术升级,升级期间A 生产线暂停生产,升级后,产能提高20%.下图反映了每条..A ,B 生产线的口罩总产量y (万个)与时间x (天)之间的关系,根据图象,解答下列问题:(1)技术升级后,每条..A 生产线每天生产口罩_______万个; (2)每条..B 生产线每天生产口罩A 万个;(3)技术升级后,东升公司的口罩日总产量为136万个,已知公司有15条A 生产线,则B 生产线有________条;(4)在(3)的条件下,东升公司进一步扩大产能,两生产线在原每日工作时长8小时的基础上,增加m 小时(m 为正整数),同时新增k 条B 生产线,此时公司口罩日总产量达到260万个,求正整数k 的值.25.有理数a 、b 在数轴上的位置如图所示:求:(1)a-b 0(填“>,<,=”) (2)|b-a|=26.如图:在数轴上A 点表示数,a B 点示数,b C 点表示数,c b 是最大的负整数,A 在B 左边两个单位长度处,C 在B 右边5个单位处()1a = ;b = _;c = _;()2若将数轴折叠,使得A 点与C 点重合,则点B 与数_ __表示的点重合; ()3点、、A B C 开始在数轴上运动,若点A 以每秒2个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和5个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为,AB 点A 与点C 之间的距离表示为,AC 点B 与点C 之间的距离表示为BC ,则AB =_ _,AC =_ _,BC =__ _;(用含t 的代数式表示)()4请问:52BC AB -的值是否随着时间t 的变化而改变﹖若变化,请说明理由;若不变,请求其值.27.(理解新知)如图①,已知AOB ∠,在AOB ∠内部画射线OC ,得到三个角,分别为AOC ∠,BOC ∠,AOB ∠,若这三个角中有一个角是另外一个角的两倍,则称射线OC 为AOB ∠的“二倍角线”.(1)一个角的角平分线______这个角的“二倍角线”(填“是”或“不是”) (2)若60AOB ∠=︒,射线OC 为AOB ∠的“二倍角线”,则AOC ∠的大小是______;(解决问题)如图②,己知60AOB ∠=︒,射线OP 从OA 出发,以20︒/秒的速度绕O 点逆时针旋转;射线OQ 从OB 出发,以10︒/秒的速度绕O 点顺时针旋转,射线OP ,OQ同时出发,当其中一条射线回到出发位置的时候,整个运动随之停止,设运动的时间为t 秒.(3)当射线OP ,OQ 旋转到同一条直线上时,求t 的值;(4)若OA ,OP ,OQ 三条射线中,一条射线恰好是以另外两条射线为边组成的角的“二倍角线”,直接写出t 所有可能的值______.28.(1)如图,已知点C 在线段AB 上,且6AC cm =,4BC cm =,点M 、N 分别是AC 、BC 的中点,求线段MN 的长度;(2)若点C 是线段AB 上任意一点,且AC a =,BC b =,点M 、N 分别是AC 、BC 的中点,请直接写出线段MN 的长度;(结果用含a 、b 的代数式表示)(3)在(2)中,把点C 是线段AB 上任意一点改为:点C 是直线AB 上任意一点,其他条件不变,则线段MN 的长度会变化吗?若有变化,求出结果.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】由题意可知||||a b >,再根据有理数的大小比较法则比较即可. 【详解】 解:0a >,0b <,0a b +>,||||a b ∴>,如图,,a b b a ∴-<<-<.故选:A . 【点睛】本题考查了有理数的大小比较,有理数的加法和数轴等知识点,能熟记有理数的大小比较法则的内容是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.2.A解析:A 【解析】 【分析】观察图形可知,两个星球之间,它们的路径只有1条;三个星球之间的路径有2+1=3条,四个星球之间路径有3+2+1=6条,…,按此规律,可得10个星球之间“空间跳跃”的路径的条数. 【详解】 解:由图形可知,两个星球之间,它们的路径只有1条; 三个星球之间的路径有2+1=3条, 四个星球之间路径有3+2+1=6条, ……,按此规律,10个星球之间“空间跳跃”的路径有9+8+7+6+5+4+3+2+1=45条. 故选:A . 【点睛】本题是图形类规律探求问题,探寻规律时要认真观察、仔细思考,善用联想来解决这类问题.3.D解析:D 【解析】 【分析】根据同类项的字母相同且相同字母的指数也相同,可得关于m 、n 的方程,根据方程的解可得答案. 【详解】∵232-m a b 和45n a b 是同类项 ∴2m=4,n=3 ∴m=2,n=3 ∴=231m n --=- 故选D . 【点睛】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点.4.D解析:D 【解析】 【分析】根据上述等式,得到结果的末位以四个数(2,4,8,6)依次循环,而2019除以4商504余3,故得到所求式子的末位数字为8.【详解】解:根据上述等式,得到结果的末位以四个数(2,4,8,6)依次循环, ∵2019÷4=504…3, ∴22019的末位数字是8. 故选:D 【点睛】本题考查有理数的乘方运算,属于规律型试题,弄清本题的规律是解题关键.5.B解析:B 【解析】 【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项. 【详解】 解:∵-2a m b 2与12a 5b n+1是同类项, ∴m=5,n+1=2, 解得:m=1, ∴m+n=6. 故选B . 【点睛】本题主要考查的是同类项的定义,熟练掌握同类项的定义是解题的关键.6.B解析:B 【解析】 【分析】用极差除以组距,如果商是整数,组数=这个整数加1,如果商不是整数,用进一法,确定组数; 【详解】∵296234.655-==, ∴分成的组数是5组. 故答案选B . 【点睛】本题主要考查了频数分布直方图,准确计算是解题的关键.7.B解析:B 【解析】 【分析】根据一元一次方程的解题步骤,去分母、去括号、移项、合并同类项、化系数为1一一判断即可,其中C选项利用等式的性质进行化简.【详解】解:A、2x+4=3x+1,移项得:2x-3x=1-4,故本选项错误;B、3(x-2)=2(x+3),去括号得:3x-6=2x+6,故本选项正确;C、0.5x-0.7x=5-1.3x,利用等式基本性质等式两边都乘以10得:5x-7x=50-13x,故本选项错误;D、1226x x-+-=2,去分母得:3x-3-x-2=12,故本选项错误;故选:B.【点睛】本题考查了一元一次方程的解法,能正确根据等式的性质进行变形是解此题的关键.解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化成1.8.B解析:B【解析】【分析】先根据点在数轴上的位置,判断出a、b的正负,然后再比较出a、b的大小,最后结合选项进行判断即可.【详解】解:由点在数轴上的位置可知:a<0,b<0,|a|>|b|,A、∵a<0,b<0,∴a+b<0,故A错误;B、∵a<b,∴a-b<0,故B正确;C、|a|>|b|,故C错误;D、ab>0,故D错误.故选:B.【点睛】本题主要考查的是绝对值、数轴、有理数的加法、减法、乘法运算,掌握运算法则是解题的关键.9.B解析:B【解析】【分析】根据一元一次方程的定义即可求出答案.【详解】解:只含有一个未知数,且未知数的高次数是1,等号两面都是整式,这样的方程叫做一元一次方程,A. x+2y=3,两个未知数;B. y+3=0,符合;C. x2﹣2x=0,指数是2;D.1y+y =0,不是整式方程. 故选:B . 【点睛】考核知识点:一元一次方程.理解定义是关键.10.D解析:D 【解析】 【分析】设中间数为x ,则另外两个数分别为11x x -+、,进而可得出三个数之和为3x ,令其分别等于四个选项中数,解之即可得出x 的值,由x 为整数、x 不能为第一列及第八列数,即可确定x 值,此题得解. 【详解】解:设中间数为x ,则另外两个数分别为11x x -+、, ∴三个数之和为()()113x x x x -+++=. 当32019x =时, 解得:673x =, ∵673=84×8+1,∴2019不合题意,故A 不合题意; 当32018x =时, 解得:26723x =,故B 不合题意; 当32016x =时, 解得:672x =, ∵672=84×8,∴2016不合题意,故C 不合题意; 当32013x =时, 解得:671x =, ∵671=83×8+7,∴三个数之和为2013,故D 符合题意. 故选:D . 【点睛】本题考查了一元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出一元一次方程是解题的关键.11.C解析:C 【解析】 【分析】依次计算1a 、2a 、3a 、4a 、…,得到规律性答案,即可得到2020a 的值. 【详解】11a =-,212a a =-+=-1, 323a a =-+=-2, 434a a =-+=-2, 5453a a =-+=-, 6563a a =-+=-,,由此可得:每两个数的答案是相同的,结果为-2n(n 为偶数), ∴202010102=, ∴2020a 的值为-1010, 故选:C. 【点睛】此题考查代数式规律探究,计算此类题的关键是依次计算得出答案的规律并总结出答案与序数间的关系式,由此来解答问题.12.B解析:B 【解析】 【分析】设第1列第3行的数字为x,P 处对应的数字为p,根据每一横行、每一竖列以及斜对角线上的点数的和相等,可得x+1+(-2)=x +(-3)+p ,可得P 处数字. 【详解】解:设第1列第3行的数字为x,P 处对应的数字为p,根据题意得, x+(-2)+1=x+(-3)+p ,解得p=2, 故选:B . 【点睛】本题通过九方格考查了有理数的加法.九方格题目趣味性较强,本题的关键是找准每一横行、每一竖列以及两条斜对角线上的数字的和相等,据此列方程求解.二、填空题 13.6 【解析】40-19=21,21÷4=5.25,故应分成6组.解析:6【解析】40-19=21,21÷4=5.25,故应分成6组.14..【解析】【分析】先将原式变形为[0.04×(﹣5)]2018,再根据乘方的定义计算可得.【详解】原式=[0.04×(﹣5)]2018=(﹣0.2)2018.故答案为.【点睛】本题考 解析:201815. 【解析】【分析】先将原式变形为[0.04×(﹣5)]2018,再根据乘方的定义计算可得.【详解】 原式=[0.04×(﹣5)]2018=(﹣0.2)2018201815. 故答案为201815.【点睛】 本题考查了有理数的乘方,解题的关键是掌握有理数的乘方的定义和运算法则. 15.32【解析】【分析】该组的频数除以数据总数再乘以360度即可得到该组的圆心角度数,设该组频数为x ,根据圆心角度数的计算公式求解.【详解】设该组频数为x ,,x=32,故答案为:32.解析:32【解析】【分析】该组的频数除以数据总数再乘以360度即可得到该组的圆心角度数,设该组频数为x ,根据圆心角度数的计算公式求解.【详解】设该组频数为x ,36072160x ⨯=, x=32,故答案为:32.【点睛】此题考查圆心角度数的计算公式,正确掌握计算公式是解题的关键.16.【解析】【分析】先求出含有参数k 的方程的解,并列举出它是整数的所有可能性,再求出k 的整数值.【详解】解:先解方程,,,,要使方程的解是整数,则必须是整数,∴可以取的整数有:、,则整数解析:1,3,5±【解析】【分析】先求出含有参数k 的方程的解,并列举出它是整数的所有可能性,再求出k 的整数值.【详解】解:先解方程,23x kx -=,()23k x -=,32x k =-, 要使方程的解是整数,则32k-必须是整数, ∴2k -可以取的整数有:±1、3±,则整数k 可以取的值有:±1、3、5.故答案是:±1、3、5.【点睛】本题考查方程的整数解,解题的关键是理解方程解的定义.17.420【解析】【分析】观察并思考前面几个正方形内的四个数之间的联系,找到规律再求解.【详解】解:通过观察前面几个正方形四个格子内的数,发现规律如下:左上角的数2=右上角的数,右上角的数解析:420【解析】【分析】观察并思考前面几个正方形内的四个数之间的联系,找到规律再求解.【详解】解:通过观察前面几个正方形四个格子内的数,发现规律如下:左上角的数⨯2=右上角的数,右上角的数-1=左下角的数,右下角的数=右上角的数⨯左下角的数+左上角的数,∴当左下角的数=19时,19120b =+=,20210a =÷=,201910390c =⨯+=,∴1020390420a b c ++=++=.故答案是:420.【点睛】本题考查找规律,解题的关键是观察并总结规律.18.-8.【解析】【分析】根据相反数的定义,绝对值的性质,可得a 、b 的值,根据有理数的加法,可得答案.【详解】∵﹣a =2,|b|=6,且a >b ,∴a=﹣2,b =-6,∴a+b=﹣2+(-6解析:-8.【解析】【分析】根据相反数的定义,绝对值的性质,可得a 、b 的值,根据有理数的加法,可得答案.【详解】∵﹣a =2,|b |=6,且a >b ,∴a =﹣2,b =-6,∴a +b =﹣2+(-6)=-8,故答案为:-8.【点睛】本题考查了相反数的定义,绝对值的性质,有理数的加法运算法则,注意一个正数的绝对值有2个数.19.-25.【解析】【分析】由x=1时,代数式ax+b+1的值是﹣3,求出a+b的值,将所得的值整体代入所求的代数式中进行计算即可得解.【详解】解:∵当x=1时,ax+b+1的值为﹣3,∴a解析:-25.【解析】【分析】由x=1时,代数式ax+b+1的值是﹣3,求出a+b的值,将所得的值整体代入所求的代数式中进行计算即可得解.【详解】解:∵当x=1时,ax+b+1的值为﹣3,∴a+b+1=﹣3,∴a+b=﹣4,∴(a+b﹣1)(1﹣a﹣b)=(a+b﹣1)[1﹣(a+b)]=(﹣4﹣1)×(1+4)=﹣25.故答案为:﹣25.【点睛】此题考查整式的化简求值,运用整体代入法是解决问题的关键.20.【解析】【分析】首先分析题意,找到规律,并进行推导得出答案.【详解】解:根据图形的变化,发现第n个图形的最上边的一排是1个圆,第二排是2个圆,第三排是3个圆,…,第n排是n个圆;则第n个解析:【解析】【分析】首先分析题意,找到规律,并进行推导得出答案.【详解】解:根据图形的变化,发现第n个图形的最上边的一排是1个圆,第二排是2个圆,第三排是3个圆,…,第n排是n个圆;则第n个图形的圆的个数是:2(1+2+…n ﹣1)+(2n ﹣1)=n 2+n ﹣1.当n =20时,202+20﹣1=419,故答案为:419.【点睛】本题考查图形的变化类问题,重点考查了学生通过观察、归纳、抽象出数列的规律的能力,难度不大.21.2024【解析】【分析】根据关于x 的一元一次方程的解,可以得到m 的值,把m 的值代入关于y 的方程式中,可以得到y 的解.【详解】∵的解为,∴,解得:,∴方程可化为,∴,∴,∴,解析:2024【解析】【分析】根据关于x 的一元一次方程的解,可以得到m 的值,把m 的值代入关于y 的方程式中,可以得到y 的解.【详解】 ∵520202020x x m +=+的解为2019x =, ∴52020120201920290m +=⨯+, 解得:52020201920202019m =+-⨯, ∴方程552020(5)2020y y m --=--可化为25052020(5)5202020192020202019y y --=---+⨯, ∴52020(5)20192020201920202020y y ---=-+⨯, ∴(2020)(5)2019(2020)2020202011y --=-⨯-, ∴52019y -=-, ∴2024y =,故答案为:2024.【点睛】本题考查了已知一元一次方程的解求参数,整体代换解一元一次方程,掌握整体代换的思想是解题的关键.22.91【解析】【分析】根据题意分析可得出规律即是后一个图在前一个图的基础上添加这个图的序号的平方即可得出.【详解】解:第1个图中有1个正方形;第2个图中共有2×2+1=5个正方形;第3个解析:91【解析】【分析】根据题意分析可得出规律即是后一个图在前一个图的基础上添加这个图的序号的平方即可得出.【详解】解:第1个图中有1个正方形;第2个图中共有2×2+1=5个正方形;第3个图中共有3×3+5=14个正方形;第4个图形共有4×4+14=30个正方形;按照这种规律下去的第5个图形共有5×5+30=55个正方形.∴第6个图形共有6×6+55=91个正方形.故第6个图形共有91个正方形.故答案为:91.【点睛】此题主要考查了图形的变化类,此题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.三、解答题23.(1)-30;(2)-3.5;(3)-4【解析】【分析】(1)根据加法结合律和交换律即可得到结果;(2)根据含乘方的有理数的混合运算即可得到结果;(3)根据解一元一次方程的步骤即可得到结果.【详解】解:(1)原式=13+47-(56+34)=60-90=-30;(2)原式=-1×3+4÷(-8)=-3-0.5=-3.5;(3)x22x11 46+--=()()3222112x x+--=364212x x+-+=4x-=4x=-【点睛】本题主要考查的是含乘方的有理数的混合运算以及解一元一次方程,掌握以上知识点是解题的关键.24.(1)4.8;(2)8;(3)8;(4)9【解析】【分析】(1)根据图象,先求得升级前A生产线的日产量,结合升级后,日产能提高了20%,即可求得升级后的A生产线的日产能;(2)根据(1)结论,结合图像,可知A生产线升级后,生产了5天,B生产线从第8天开始生产到第15天的产能为56万个,从而求得B生产线的日产能;(3)设B生产线有x条,依据题意列一元一次方程即可求解;(4)先求出A,B生产线的每小时产能,根据“两生产线在原每日工作时长8小时的基础上,增加m小时(m为正整数),同时新增k条B生产线,此时公司口罩日总产量达到260万个,”列出关于m,k的二元不定方程,根据m,k为正整数,8+m为大于8的正整数,17+k为大于17的正整数,将260分解为10×26,即可求解;【详解】解:(1)由图可知,A生产线技术升级前的日生产口罩量为32÷8=4(万个),依题意,升级后,产能提高20%,故升级后的日生产口罩量为4×(1+20%)=4.8(万个);故答案为:4.8(2)A生产线升级后,A的产量由32万到56万,所用的时间为(56-32)÷4.8=5(天),故B生产线从第8天到第15天的产量为56,其每天生产的口罩量为56÷(15-8)=8(万个);故答案为:8(3)设公司有B 生产线x 条,依题意有:15×4.8+8x=136解得:x=8,故答案为:8(4)A 生产线升级后每小时的产量为4.8÷8=0.6万个/小时,B 生产线每小时的产量为8÷8=1万个/小时,依题意:0.6×(8+m )×15+(8+m )(8+k )=260整理得:(8+m )(17+k )=260∵m ,k 为正整数,∴8+m 为大于8的正整数,17+k 为大于17的正整数,∴(8+m )(17+k )=260=10×26,∴8+m=10,17+k=26,∴m=2,k=9,故每日工作时长增加2小时,B 生产线增加9条即可使公司口罩日总产量达到260万个, 故正整数k 的值为9.【点睛】本题主要考查了一元一次方程,二元不定方程的实际应用,解答本题的关键是理解题意,数形结合,从图像中提取关键信息.25.(1)>;(2)a -b【解析】【分析】(1)从数轴上可得:a >0,b <0且|a |<|b |,(2)先判断b-a 的正负,再根据绝对值的性质进行化简即可【详解】解:(1)根据数轴可得:a>0,b<0且|a|<|b|,则a >b ,a -b >0,故答案为:>;(2)从数轴上可得:a >0,b <0且|a |<|b |,则b -a <0,根据绝对值的法则可得:|b -a |= a -b ,故答案为:a -b .【点睛】本题考查用数轴表示有理数和绝对值化简,根据点在数轴上的位置判断出0a b >>是解题的关键.26.(1)﹣3,﹣1,4;(2)2;(3)2+5t ,7+7t ,2t+5;(4)5BC ﹣2AB 的值不会随着时间t 的变化而改变,该值是21.【解析】【分析】(1)根据b 为最大的负整数可得出b 的值,再根据A 在B 左边两个单位长度处,C 在B右边5个单位处即可得出a 、c 的值;(2)根据折叠的性质结合a 、b 、c 的值,即可找出与点B 重合的数;(3)根据运动的方向和速度结合a 、b 、c 的值,即可找出t 秒后点A 、B 、C 分别表示的数,利用数轴上两点间的距离即可求出AB 、AC 、BC 的值;(4))将(3)的结论代入52BC AB -中,可得出52BC AB -的值不会随着时间的变化而变化,即为定值,此题得解.【详解】(1)b 是最大的负整数,∴1b =-A 在B 左边两个单位长度处,C 在B 右边5个单位处∴3a =-,c 4=(2)将数轴折叠,使得A 点与C 点重合∴()3412a c b +-=-+--=(3)点A 以每秒2个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和5个单位长度的速度向右运动∴t 秒钟过后,根据s vt =得:s 2A t =,s 3B t =,s 5C t = 又3a =-,1b =-,c 4=∴点A 表示的数为23t --,点B 表示的数为31t -,点C 表示的数为54t +, ∴25AB t =+,77AC t =+,2+5BC t =;(4)由(3)可知:25AB t =+,2+5BC t =∴()()52=525225102541021BC AB t t t t -⨯+-+=+--=∴52BC AB -的值为定值21.故答案为:(1)﹣3,﹣1,4;(2)2;(3)2+5t ,7+7t ,2t+5;(4)5BC ﹣2AB 的值不会随着时间t 的变化而改变,该值是21.【点睛】本题考查了数轴及两点间的距离,根据点运动的方向和速度找出点A 、B 、C 运动后代表的数是解题的关键.27.(1)是;(2)30︒或40︒或20︒;(3)4t =或10t =或16t =;(4)2t =或12t =.【解析】【分析】(1)若OC 为AOB ∠的角平分线,由角平分线的定义可得2AOB AOC ∠=∠,由二倍角线的定义可知结论;(2)根据二倍角线的定义分2,2,2AOB AOC AOC BOC BOC AOC ∠=∠∠=∠∠=∠三种情况求出AOC ∠的大小即可.(3)当射线OP ,OQ 旋转到同一条直线上时,180POQ ︒∠=,即180POA AOB BOQ ︒∠+∠+∠=或180BOQ BOP ︒∠+∠=,或OP 和OQ 重合时,即360POA AOB BOQ ︒∠+∠+∠=,用含t 的式子表示出OP 、OQ 旋转的角度代入以上三种情况求解即可;(4)结合“二倍角线”的定义,根据t 的取值范围分04t <<,410t ≤<,1012t <≤,1218t <≤4种情况讨论即可.【详解】解:(1)若OC 为AOB ∠的角平分线,由角平分线的定义可得2AOB AOC ∠=∠,由二倍角线的定义可知一个角的角平分线是这个角的“二倍角线”;(2)当射线OC 为AOB ∠的“二倍角线”时,有3种情况,①2AOB AOC ∠=∠,60,30AOB AOC ︒︒∠=∴∠=; ②2AOC BOC ∠=∠,360AOB AOC BOC BOC ︒∠=∠+∠=∠=,20BOC ︒∴∠=,40AOC ︒∴∠=; ③2BOC AOC ∠=∠,360AOB AOC BOC AOC ︒∠=∠+∠=∠=,20AOC ︒∴∠=,综合上述,AOC ∠的大小为30︒或40︒或20︒;(3)当射线OP ,OQ 旋转到同一条直线上时,有以下3种情况,①如图此时180POA AOB BOQ ︒∠+∠+∠=,即206010180t t ︒︒︒︒++=,解得4t =; ②如图此时点P 和点Q 重合,可得360POA AOB BOQ ︒∠+∠+∠=,即206010360t t ︒︒︒︒++=,解得10t =;③如图此时180BOQ BOP ︒∠+∠=,即1060(36020)180t t ︒︒︒︒︒⎡⎤+--=⎣⎦,解得16t =, 综合上述,4t =或10t =或16t =;(4)由题意运动停止时3602018t ︒︒=÷=,所以018t <≤,①当04t <<时,如图,此时OA 为POQ ∠的“二倍角线”,2AOQ POA ∠=∠,即6010220t t ︒︒︒+=⨯,解得2t =;②当410t ≤<时,如图,此时,180,180AOQ AOP ︒︒∠>∠>,所以不存在;③当1012t <≤时,如图此时OP 为AOQ ∠的“二倍角线”,2AOP POQ ∠=∠,即360202(201060360)t t t ︒︒︒︒︒︒-=⨯++-解得 12t =;④当1218t <≤时,如图,此时180,180AOQ AOP ︒︒∠>∠>,所以不存在;综上所述,当2t =或12t =时,OA ,OP ,OQ 三条射线中,一条射线恰好是以另外两条射线为边组成的角的“二倍角线”.【点睛】本题考查了一元一次方程的应用,正确理解“二倍角线”的定义,找准题中角之间等量关系是解题的关键.28.(1)5cm ;(2)2a b +;(3)线段MN 的长度变化,2a b MN +=,2a b -,2b a -. 【解析】【分析】(1)根据点M 、N 分别是AC 、BC 的中点,先求出CM 、CN 的长度,则MN CM CN =+;(2)根据点M 、N 分别是AC 、BC 的中点,12CM AC =,12CN BC =,所以()122a b MN AC BC +=+=; (3)长度会发生变化,分点C 在线段AB 上,点B 在A 、C 之间和点A 在B 、C 之间三种情况讨论.【详解】(1)6AC cm =,M 是AC 的中点, ∴132CM AC ==(cm ), 4BC cm =,N 是CB 的中点,∴122CN CB ==(cm ), ∴325MN CM CN =+=+=(cm );(2)由AC a =,M 是AC 的中点,得1122CM AC a ==, 由BC b =,N 是CB 的中点,得1122CN CB b ==, 由线段的和差,得222a b a b MN CM CN +=+=+=; (3)线段MN 的长度会变化.当点C 在线段AB 上时,由(2)知2a b MN +=, 当点C 在线段AB 的延长线时,如图:则AC a BC b =>=,AC a =,点M 是AC 的中点,∴1122CM AC a ==, BC b =,点N 是CB 的中点,∴1122CN BC b ==, ∴222a b a b MN CM CN -=-=-= 当点C 在线段BA 的延长线时,如图:则AC a BC b =<= ,同理可得:1122CM AC a ==, 1122CN BC b ==, ∴222b a b a MN CN CM -=-=-=, ∴综上所述,线段MN 的长度变化,2a b MN +=,2a b -,2b a -. 【点睛】本题主要是线段中点的运用,分情况讨论是解题的难点,难度较大.。
2021-2022学年济南市历城区七年级上学期期末数学训练卷一、选择题(本大题共12小题,共48.0分)1.已知,a,b是不为0的有理数,且|a|=−a,|b|=b,|a|>|b|,那么用数轴上的点来表示a,b时,正确的是()A. B. C. D.2.将图(1)的正方体用阴影部分所在的平面切割后,剩下如图(2)所示的几何体,则该几何体的俯视图为()A.B.C.D.3.世界上最大的动物是蓝鲸,它平均长30米,重达160000千克,其中160000千克用科学记数法表示为()A. 1.6×106千克B. 1.6×105千克C. 16×105千克D. 0.16×107千克4.下列调查中,最适合用普查方式的是()A. 调查一批计算机的使用寿命情况B. 调查某中学九(1)班学生的视力情况C. 调查某市初中学生锻炼所用的时间情况D. 调查某市初中学生利用网路媒体自主学习的情况5.下列运算正确的是()A. a+2a2=3a2B. a8÷a2=a4C. a3⋅a2=a6D. (a3)2=a66.已知代数式a2−2a−1的值为−2,那么2a2−4a−3的值为()A. −9B. −5C. 7D. 237.如图为一个正方体纸盒的展开图,若在其中的三个正方形A,B、C内分别填入适当的数,使得它们折成正方体.若相对的面上的两个数互为相反数,则填入正方形A,B,C内的三个数依次为()A. −1,2,0B. 0,−2,1C. −2,0,1D. 2,1,08.下列叙述,其中不正确的是()A. 过一点有且只有一条直线与已知直线平行B. 同角(或等角)的余角相等C. 两点确定一条直线D. 两点之间的所有连线中,线段最短9.如图,直线l1//l2,点A,C,D分别是l1,l2上的点,且CA⊥AD于点A,若∠ACD=30°,则∠1度数为()A. 30°B. 50°C. 60°D. 70°10.下列方程中,解是x=0的方程为()A. 4x−2=2B. 8x=−2(x+4)C. 2−3(x+1)=1−2(1+0.5x)D. x−25=2x+61511.下列说法中,正确的有()①经过两点有且只有一条直线;②两点之间,直线最短;③连接两点间的线段叫做这两点的距离;④若AB=BC,则点B是线段AC的中点.A. 1个B. 2个C. 3个D. 4个12.观察并找出图形变化的规律,则第2019个图形中黑色正方形的数量是()A. 3204B. 3020C. 3029D. 2018二、填空题(本大题共6小题,共24.0分)13. 下面是一列单项式x ,−2x 2,4x 3,−8x 4,…则第8个单项式是______ .14. 若代数式−2x a y b+2与3x 5y 2−b 是同类项,则代数式3a −b = ___________.15. 如图,点C 在线段AB 上,AB =7cm ,CB =3cm ,D 是AC 的中点,则线段AD 的长为______cm .16. (m +n)3(m +n)6=(______ )(m +n)8,42×(______ )6=45.17. 将一副三角板如图摆放,若∠BAE =140°,则∠CAD 的度数是______.18. 北京时间20点30分,此时钟表的时针和分针构成的角度是______°.三、计算题(本大题共1小题,共16.0分)19. 求代数式的值:3x +3y −2x +y ,其中x =−1,y =2.四、解答题(本大题共8小题,共62.0分)20. 若多项式(2mx 2−x 2+3x +1)−(5x 2−4y 2+3x)与x 无关,求:2m 3−[3m 2+(4m −5)+m]的值.21. 如图,C 是线段BD 的中点,AD =3,AC =7,求线段AB 的长.22. 解方程(组)(1)1−2x−16=2x+13;(2){2x −y =57x −3y =20.23.今年四月份,某校在孝感市争创“全国文明城市”活动中,组织全体学生参加了“弘扬孝德文化,争做文明学生”的知识竞赛,赛后随机抽取了部分参赛学生的成绩,按得分划分成A,B,C,D,E,F六个等级,并绘制成如下两幅不完整的统计图表.等级得分x(分)频数(人)A95≤x≤1004B90≤x<95mC85≤x<90nD80≤x<8524E75≤x<808F70≤x<754请根据图表提供的信息,解答下列问题:(1)本次抽样调查样本容量为______,表中:m=______,n=______;扇形统计图中,E等级对应扇形的圆心角α等于______度;(2)该校决定从本次抽取的A等级学生(记为甲、乙、丙、丁)中,随机选择2名成为学校文明宣讲志愿者,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.24. “今有善行者行一百步,不善行者行六十步”(出自《九章算术》)意思是:同样的时间段里,走路快的人能走100步,走路慢的人只能走60步,假定两者步长相等,若不善行者先行200步,善行者追之,不善行者再行600步,请问谁在前面,两人相隔多少步?25. 已知平面上点A,B,C,D.按下列要求画出图形:(1)作直线AB,射线CB;(2)取线段AB的中点E,连接DE并延长与射线CB交于点O;(3)量出∠AED和∠BEO的度数,并写出它们的数量关系.26. 股民小张星期五买某公司股票1000股,每股14.8元。
2021-2022学年山东省济南市历城区七年级(上)期末数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)﹣2022的绝对值是()A.B.﹣2022C.2022D.﹣2.(4分)如图,是一个由5个相同的正方体组成的立体图形,从左面看这个立体图形的形状图是()A.B.C.D.3.(4分)2021年12月9日,某区县初中学生约22600人一起观看了“天宫课堂”第一课,将数字22600用科学记数法表示为()A.0.226×104B.2.26×104C.2.26×103D.22.6×104 4.(4分)要调查下列问题,适合采用抽样调查的是()A.疫情期间,了解全校师生入校时体温情况B.检测我国研制的C919大飞机的零件的质量C.了解一批灯泡的使用寿命D.了解小明某周每天参加体育运动的时间5.(4分)高速公路的建设带动我国经济的快速发展.在高速公路的建设中,通常要从大山中开挖隧道穿过,把道路取直,以缩短路程.这样做包含的数学道理是()A.两点确定一条直线B.两点之间,线段最短C.两条直线相交,只有一个交点D.直线是向两个方向无限延伸的6.(4分)下列计算正确的是()A.a3+a3=2a6B.a3•a5=a15C.a6÷a3=a2D.(﹣3a3)2=9a67.(4分)若代数式﹣2a m+2b2与a﹣3m﹣2b2是同类项,则m的值是()A.﹣1B.0C.1D.﹣28.(4分)过六边形的某一个顶点能画的对角线条数是()A.6B.5C.4D.39.(4分)若方程3x+6=12的解也是方程6x+3a=24的解,则a的值为()A.B.4C.12D.210.(4分)如图,将一副三角尺的两个直角顶点O按如图方式叠放在一起,若∠AOC=135°,则∠BOD=()A.45°B.50°C.55°D.60°11.(4分)如图,点C是线段AB的中点,CD=AC,若AD=2cm,则AB=()A.3cm B.2.5cm C.4cm D.6cm12.(4分)将正整数按如图所示的规律排列,若用有序数对(a,b)表示第a行,从左至右第b个数,例如(4,3)表示的数是9,则(15,10)表示的数是()A.115B.114C.113D.112二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)计算2﹣1的结果是.14.(4分)鱼台冬季某日的最高气温是3℃,最低气温为﹣1℃,那么当天的温差是.15.(4分)一个正方体的平面展开图如图所示,将它折成正方体后“时”字对面的字是.16.(4分)如图,已知点C在点O的东北方向,点D在点O的北偏西20°方向,那么∠COD为度.17.(4分)如图,点E,F分别在长方形ABCD的边AD,CD上,连接BE.将长方形ABCD 沿BE对折,点A落在A′处;将∠DEA′对折,点D落在EA′的延长线上的D′处,得到折痕EF,若∠BEA′=70°,∠FED′=.18.(4分)如图,已知正方形的边长为4,甲、乙两动点分别从正方形ABCD的顶点A、C 同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的3倍,则它们第2022次相遇在边上.三、解答题:(本大题共8个小题,共78分.解答应写出文字说明、诬劈过程或演算步骤.)19.(16分)计算:(1)(﹣)×(﹣8)+(﹣6)0;(2)(﹣+﹣)×(﹣36);(3)2a2•a4+(﹣2a3)2;(4)(x﹣2)(x﹣5).20.(8分)先化简,再求值:已知(a﹣1)2+|b+2|=0,求代数式的值.21.(10分)解方程:(1)9x﹣7=2(3x+4);(2)=.22.(8分)某学校计划在八年级开设“折扇”“刺绣”“剪纸”“陶艺”四门校本课程,要求每人必须参加,并且只能选择其中一门课程,为了解学生对这四门课程的选择情况,学校从八年级全体学生中随机抽取部分学生进行问卷调查,并根据调查结果绘制成如图所示的条形统计图和扇形统计图.(部分信息未给出)请你根据以上信息解决下列问题:(1)参加问卷调查的学生人数为名,补全条形统计图(画图并标注相应数据);(2)“陶艺”课程所对应的扇形圆心角的度数是多少?(3)若该校八年级一共有1000名学生,试估计选择“刺绣”课程的学生有多少名?23.(6分)如图,已知长方形ABCD的宽AB=4,以B为圆心、AB长为半径画弧与边BC 交于点E,连接DE,若CE=x.(计算结果保留π)(1)BC=(用含x的代数式表示);(2)用含x的代数式表示图中阴影部分的面积;(3)当x=4时,求图中阴影部分的面积.24.(8分)某水果销售店用1000元购进甲、乙两种水果共140千克,这两种水果的进价、售价如下表所示:进价(元/千克)售价(元/千克)甲种水果58乙种水果913(1)这两种水果各购进多少千克?(2)若该水果店把这两种水果全部按九折售完,则可获利多少元?25.(10分)如图,C为线段AD上一点,点B为CD的中点,且AD=9cm,BD=2cm.(1)图中共有条线段.(2)求AC的长.(3)若点E在直线AD上,且EA=3cm,求BE的长.26.(12分)如图1,已知∠AOB=60°,OM平分∠AOB.(1)∠BOM=;(2)若在图1中画射线OC,使得∠BOC=20°,ON平分∠BOC,求∠MON的大小;(3)如图2,若线段OA与OB分别为同一钟表上某一时刻的时针与分针,∠AOB=60°,在时针与分针转动过程中,OM始终平分∠AOB,则经过多少分钟后,∠BOM的度数第一次等于50°.2021-2022学年山东省济南市历城区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.【分析】直接利用绝对值的性质分析得出答案.【解答】解:﹣2022的绝对值是2022.故选:C.【点评】此题主要考查了绝对值,正确掌握绝对值的性质是解题关键.2.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看,共有两列,左边一列有3个小正方形,右边一列有一个小正方形,故选:A.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看不到而且是存在的线是虚线.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:22600=2.26×104.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:A.疫情期间,了解全校师生入校时体温情况,适合全面调查,故本选项不合题意;B.检测我国研制的C919大飞机的零件的质量,适合采用全面调查,故本选项不合题意;C.了解一批灯泡的使用寿命,适合采用抽样调查,故本选项符合题意;D.了解小明某周每天参加体育运动的时间,适合采用全面调查,故本选项不合题意;故选:C.【点评】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.【分析】此题为数学知识的应用,由题意将弯曲的道路改直以缩短路程,就用到两点间线段最短定理.【解答】解:从大山中开挖隧道穿过,把道路取直,使两点处于同一条线段上.这样做包含的数学道理是:两点之间,线段最短.故选:B.【点评】此题主要考查了两点之间线段最短的性质,正确将数学定理应用于实际生活是解题关键.6.【分析】根据合并同类项法则判断A;根据同底数幂的乘法法则判断B;根据同底数幂的除法法则判断C;根据积的乘方判断D.【解答】解:A选项,原式=2a3,故该选项不符合题意;B选项,原式=a8,故该选项不符合题意;C选项,原式=a3,故该选项不符合题意;D选项,原式=9a6,故该选项符合题意;故选:D.【点评】本题考查了合并同类项,同底数幂的乘法,除法,积的乘方,解题的关键是掌握(ab)n=a n b n.7.【分析】根据同类项的定义中相同字母的指数也相同列出方程,再进行求解,即可得出答案.【解答】解:∵﹣2a m+2b2与a﹣3m﹣2b2是同类项,∴m+2=﹣3m﹣2,∴m=﹣1,故选:A.【点评】本题考查了同类项.同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易错点,因此成了中考的常考点.8.【分析】根据由n边形的一个顶点可以引(n﹣3)条对角线解答即可.【解答】解:由n边形的一个顶点可以引(n﹣3)条对角线,故过六边形的一个顶点可以画对角线的条数是3,故选:D.【点评】本题考查了多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.掌握n边形从一个顶点出发可引出(n﹣3)条对角线是解题的关键.9.【分析】求出第一个方程的解得到x的值,代入第二个方程即可求出a的值.【解答】解:3x+6=12,移项合并得:3x=6,解得:x=2,将x=2代入6x+3a=24中得:12+3a=24,解得:a=4.故选:B.【点评】此题考查了同解方程,同解方程即为解相等的方程.10.【分析】由于是两直角三角形板重叠,根据∠AOC=∠AOB+∠COD﹣∠BOD可分别计算出∠AOC、∠BOD的度数即可.【解答】解:∠AOC=135°,则∠BOD=∠AOB+∠COD﹣∠AOC=90°+90°﹣135°=45°,故选:A.【点评】本题题主要考查了互补、互余的定义,解决本题的关键是找到∠BOD=∠AOB+∠COD﹣∠AOC.11.【分析】根据CD=AC,得AD与AC的关系,代入已知线段求得AC,最后根据中点定义求得AB.【解答】解:∵CD=AC,AD+CD=AC,∴AD+=AC,∴AD=AC,∵AD=2cm,∴AC=3cm,∵点C是线段AB的中点,∴AB=2AC=6cm,故选:D.【点评】本题考查了两点的距离,根据题意画出图形,利用数形结合求解是解答此题的关键.12.【分析】通过观察发现,第n行n个数,求出前14行共有105个数,再求第15行第10个数即可.【解答】解:∵第一行1个数,第二行2个数,第三行3个数,……,第n行n个数,∴前14行共有1+2+3+……+14=105个数,∴第15行的第一个数是106,∴(15,10)表示的数是115,故选:A.【点评】本题考查数字的变化规律,通过观察所给的数阵,探索出每行数的规律是解题的关键.二、填空题(本大题共6小题,每小题4分,共24分)13.【分析】直接利用负指数幂的性质计算得出答案.【解答】解:2﹣1=.故答案为:.【点评】此题主要考查了负整数指数幂的性质,正确把握定义是解题关键.14.【分析】根据有理数的减法计算最高温度﹣最低温度即可得出答案.【解答】解:3﹣(﹣1)=3+1=4(℃),故答案为:4℃.【点评】本题考查了有理数的减法,掌握减去一个数等于加上这个数的相反数是解题的关键.15.【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.【解答】解:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上与“时”字相对的面上的字是“分”.故答案为:分.【点评】本题考查了正方体的展开图形,解题关键是从相对面入手进行分析及解答问题.16.【分析】利用方向角的定义求解即可.【解答】解:∵D在点O的北偏西20°方向,点C在点O的东北方向,∴∠COD=20°+45°=65°,故答案为:65.【点评】本题主要考查了方向角,解题的关键是理解方向角的定义.17.【分析】先由翻折的性质得到∠BEA=∠BEA′,∠DEF=∠D′EF,从而可知∠BEF =×180°=90°,然后根据余角的性质即可得到结论.【解答】解:由翻折的性质可知:∠BEA=∠BEA′=70°,∠DEF=∠FED′,∠BEF=∠BEA′+∠FED′=∠AEA′+∠DED′=×180°=90°.∴∠FED′=90°﹣∠BEA′=90°﹣70°=20°.故答案为:20°.【点评】本题主要考查的是翻折的性质、余角的定义,掌握翻折的性质是解题的关键.18.【分析】此题利用行程问题中的相遇问题,根据乙的速度是甲的速度的3倍,求得每一次相遇的地点,找出规律即可解答.【解答】解:正方形的边长为4,因为乙的速度是甲的速度的3倍,时间相同,甲乙所行的路程比为1:3,把正方形的每一条边平均分成2份,由题意知:①第一次相遇甲乙行的路程和为8,甲行的路程为8×=2,乙行的路程为8﹣2=6,在AD边相遇;②第二次相遇甲乙行的路程和为16,甲行的路程为16×=4,乙行的路程为16﹣4=12,在DC边相遇;③第三次相遇甲乙行的路程和为16,甲行的路程为16×=4,乙行的路程为16﹣4=12,在CB边相遇;④第四次相遇甲乙行的路程和为16,甲行的路程为16×=4,乙行的路程为16﹣4=12,在AB边相遇;…∵2022=505×4+2,∴它们第2022次相遇在边DC.故答案为:DC.【点评】本题主要考查一元一次方程的应用,是行程问题中的相遇问题及按比例分配的运用,难度较大,注意先通过计算发现规律然后再解决问题.三、解答题:(本大题共8个小题,共78分.解答应写出文字说明、诬劈过程或演算步骤.)19.【分析】(1)先算乘法与零指数幂,再算加法即可;(2)利用乘法的分配律进行运算较简便;(3)先算单项式乘单项式,积的乘方,再合并同类项即可;(4)利用多项式乘多项式的法则进行运算即可.【解答】解:(1)(﹣)×(﹣8)+(﹣6)0=4+1=5;(2)(﹣+﹣)×(﹣36)=×36﹣×36+×36=16﹣30+27=13;(3)2a2•a4+(﹣2a3)2=2a6+4a6=6a6;(4)(x﹣2)(x﹣5)=x2﹣5x﹣2x+10=x2﹣7x+10.【点评】本题主要考查多项式乘多项式,积的乘方,单项式乘单项式,解答的关键是对相应的运算法则的掌握.20.【分析】根据非负性求出a,b的值,然后去括号,合并同类项进行化简,代入求值即可.【解答】解:根据题意得:a﹣1=0,b+2=0,∴a=1,b=﹣2.原式=6a2﹣3ab﹣6a2﹣4ab+b2=b2﹣7ab,当a=1,b=﹣2时,原式=×(﹣2)2﹣7×1×(﹣2)=1﹣(﹣14)=15.【点评】本题主要考查了整式的化简求值,根据非负性求出a,b的值是解题的关键.21.【分析】(1)去括号,移项,合并同类项,系数化成1即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)9x﹣7=2(3x+4),9x﹣7=6x+8,9x﹣6x=8+7,3x=15,x=5;(2)=,3(3x﹣1)=2(5x﹣7),9x﹣3=10x﹣14,9x﹣10x=﹣14+3,﹣x=﹣11,x=11.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.22.【分析】(1)根据折扇的人数和所占的百分比,求出调查的学生总人数,再用总人数减去其它课程的人数,求出剪纸的人数,从而补全统计图;(2)用选择“陶艺”课程的学生数除以总人数,再乘以360°即可得出答案;(3)用八年级的总人数乘以选择“刺绣”课程的学生所占的百分比即可.【解答】解:(1)参加问卷调查的学生人数为:15÷30%=50(名),剪纸的人数有:50﹣15﹣10﹣5=20(名),补全统计图如下:故答案为:50;(2)“陶艺”课程所对应的扇形圆心角的度数是×360°=36°.(3)根据题意得:1000×=200(名),答:估计选择“刺绣”课程的学生有200名.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.23.【分析】(1)由BC=BE+CE,求解即可.﹣S⊙B﹣S△CDE,分别求出矩形ABCD面积,圆B的面积,△CDE的(2)S=S矩形ABCD面积,再求解即可;(3)将x=4代入(2)中所求的式子求值即可.【解答】解:(1)∵AB=BE,CE=x,∴BC=BE+CE=x+4,故答案为:x+4;﹣S⊙B﹣S△CDE(2)S=S矩形ABCD=4(x+4)﹣π×16﹣4×x=4x+16﹣4π﹣2x=2x+16﹣4π;(3)当x=4时,S=2×4+16﹣4π=24﹣4π.【点评】本题考查列代数式,根据题意列出代数式,掌握代数式求值的方法是解题的关键.24.【分析】(1)设购进甲种水果x千克,则购进乙种水果(140﹣x)千克,根据表格中的数据和意义列出方程并解答;(2)总利润=甲的利润+乙的利润.【解答】解:(1)设购进甲种水果x千克,则购进乙种水果(140﹣x)千克,根据题意得:5x+9(140﹣x)=1000,解得:x=65,则140﹣x=75.答:购进甲种水果65千克,乙种水果75千克;(2)(8×0.9﹣5)×65+(13×0.9﹣9)×75=2.2×65+2.7×75=143+202.5=345.5(元).答:利润为345.5元.【点评】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.25.【分析】(1)固定A为端点,数线段,依次类推,最后求和即可;(2)根据AC=AD﹣CD=AC﹣2BC,计算即可;(3)分点E在点A左边和右边两种情形求解.【解答】解:(1)以A为端点的线段为:AC,AB,AD;以C为端点的线段为:CB,CD;以B为端点的线段为:BD;共有3+2+1=6(条);故答案为:6.(2)∵点B为CD的中点,BD=2cm.∴CD=2BD=2×2=4(cm),∴AC=AD﹣CD=9﹣4=5(cm),答:AC的长是5cm.(3)AB=AC+BC=7cm,EA=3cm,当点E在线段AD上时,BE=AB﹣AE=7﹣3=4(cm),当点E在线段DA的延长线上时,BE=AB+AE=7+3=10(cm),答:BE的长是4或10cm.【点评】本题考查了数线段,线段的中点,线段的和(差),熟练掌握线段的中点,灵活运用线段的和,差是解题的关键.26.【分析】(1)根据角平分线的定义求解即可;(2)分两种情况讨论:当OC在∠BOM内时;当OC在∠BOM外时;分别求解即可;(3)设经过t分钟,∠BOM的度数第一次等于50°,由题意可知在OA、OB不动的前提下∠AOB=100°,由于时针与分钟的运动关系可得方程60+6t﹣0.5t=100,求出t即可求解.【解答】解:(1)∵∠AOB=60°,OM平分∠AOB,∴∠BOM=∠AOB=30°,故答案为:30°;(2)当OC在∠BOM内时,∵∠BOC=20°,ON平分∠BOC,∴∠BON=∠CON=10°,∴∠MON=∠BOM﹣∠BON=30°﹣10°=20°;当OC在∠BOM外时,∵∠BOC=20°,ON平分∠BOC,∴∠BON=∠CON=10°,∴∠MON=∠BOM+∠BON=30°+10°=40°;综上所述:∠MON为20°或40°;(3)设经过t分钟,∠BOM的度数第一次等于50°,∵∠BOM=50°,OM平分∠AOB,∴∠AOB=100°,∴60+6t﹣0.5t=100,解得t=,∴经过分钟,∠BOM的度数第一次等于50°.【点评】本题考查角的计算,熟练掌握角平分线的定义,角的和差运算,时针与分钟旋转角度的关系是解题的关键.。
19-20学年山东省济南市历城区七年级上学期期末数学试卷一、选择题(本大题共12小题,共48.0分)1.−2的绝对值是A. −2B. 2C. ±2D. −122.某几何体由大小相同的小立方块搭成,从上面看这个几何体的形状如图所示(小正方形中的数字表示该位置的小立方块的个数).从左面看该几何体的形状图是()A. B. C. D.3.某种细胞的直径是0.0000095米,将0.0000095米用科学记数法表示为()A. 9.5×10−6B. 9.5×10−7C. 0.95×10−6D. 95×10−74.下面调查中,适合采用普查的是()A. 调查全国中学生心理健康现状B. 调查你所在的班级同学的身高情况C. 调查我市食品合格情况D. 调查南京市电视台《今日生活》收视率5.下列计算正确的是()A. a3+a2=a5B. a3⋅a2=a6C. (a2)3=a5D. a6÷a2=a46.若代数式3x−12的值与−3互为相反数,则x的值为()A. −3B. −5C. 5D. 37.如图是正方体的展开图,则原正方体相对两个面上的数字之和的最大值()A. 6B. 7C. 8D. 98.下列生活、生产现象:①用两个钉子就可以把木条固定在墙上;②从A地到B地架设电线,总是尽可能沿着线段架设;③植树时,只要定出两颗树的位置,就能确定同一行树所在的直线;④把弯曲的公路改直,就能缩短路程.其中可用“两点之间,线段最短”来解释的现象有()A. ①②B. ①③C. ②④D. ③④9.已知△ABC中,∠A=80°,∠B=40°,那么∠C=()A. 60°B. 50°C. 40°D. 30°10.若x=−2是方程ax−b=1的解,则代数式4a+2b+7的值为()A. −5B. −1C. 1D. 511.下列说法中,正确的有()个①过两点有且只有一条直线②连接两点的线段叫做两点间的距离③两点之间,线段最短④若AB=BC,则点B是线段AC的中点⑤射线AB和射线BA是同一条射线⑥直线有无数个端点.A. 2个B. 3个C. 4个D. 5个12.如图,下列图形是按一定的规律排列的,依照此规律,第10个图形有()条线段.A. 125B. 140C. 155D. 160二、填空题(本大题共6小题,共24.0分)13.22.单项式−3a3b2c的系数是_____,次数是______.214.若单项式3x2a−b y与单项式2x3y4a+3b是同类项,则a+b=_________15.如图,C,D是线段AB上的两点,且D是线段AC的中点,若AB=10cm,BC=4cm,求AD的长.16.若x n−1·x n+5=x10,则n=__________17.将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,若∠ABE=34°,则∠DBC为_____度.18.钟面显示的时间是上午9:10,钟表的时针与分针的夹角是______ 度.三、计算题(本大题共1小题,共16.0分)19.计算:(−3a4)2−a·a3·a4−a10÷a2四、解答题(本大题共8小题,共62.0分)20.已知|a−4|+(b+1)2=0,求5ab2−[2a2b−(4ab2−2a2b)]+4a2b的值.21.如图,已知C、D为线段AB上顺次两点,点M、N分别为AC与BD的中点,若MN=9,CD=5.求线段AB的长.22.解方程:(1)5(x+8)=6(2x−7)+5;(2)2x−13=2x+16−1.23.某校随机抽取部分学生,就“学习习惯”进行调查,将“对自己做错的题目进行整理、分析、改正”(选项为“很少”“有时”“常常”“总是”)的调查数据进行了整理、绘制成部分统计图如图.请根据图中信息,解答下列问题:(1)该调查的样本容量为,a=%,b=%,“常常”对应的扇形圆心角的度数为;(2)请你补全条形统计图;(3)若该校有3200名学生,请你估计其中“总是”对错题进行整理、分析、改正的学生有多少名⋅24.文具店销售某种笔袋,每个18元,小华去购买这种笔袋,结账时店员说:“如果你再多买一个就可以打9折,价钱比现在便宜36元.”小华说:“那就多买一个吧,谢谢.”根据两人的对话,问小华结账时实际付款多少元⋅25.如图1所示,将两把直角三角尺的直角顶点C叠放在一起.(1)试判断∠ACE与∠BCD的大小关系,并说明理由.(2)若∠DCE=30°,求∠ACB的度数.(3)猜想∠ACB与∠DCE的数量关系,并说明理由.(4)若改变其中一把三角尺的位置,如图2所示,则(3)中的结论还成立吗?(无需说明理由)26.对七(1)班男生进行单杠引体向上的测试,以能做7个标准,超过的次数记为正数,不足的个数记为负数,第一小组8名男生的成绩如下:+2,−1,0,+3,−2,1,0,−3.(1)该组同学最多做了几个?最少做了几个?(2)该组同学的平均成绩是多少个?27.如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=70°,求∠BOD的度数;(2)若∠DOE=2∠AOC,判断射线OE,OD的位置关系并说明理由.(3)若∠EOC:∠DOE=2:3,求∠BOD度数.-------- 答案与解析 --------1.答案:B解析:本题考查了绝对值的概念.一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.解:|−2|=2.故选B.2.答案:A解析:解:由题意可得:左视图有2列,每列小正方形数目分别为3,2,故选:A.左视图有2列,每列小正方形数目分别为3,2.据此解答即可.本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.3.答案:A解析:此题考查科学记数法的表示方法有关知识,科学记数法的表示形式为a×10n的形式,其中1≤|a|< 10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10 时,n是正数;当原数的绝对值<1时,n是负数.解:将0.0000095米用科学记数法表示为9.5×10−6.故选A.4.答案:B解析:解:A、人数众多,应用抽样调查,故此选项错误;B、人数不多,应用全面调查,故此选项正确;C、数量众多,使用抽样调查,破坏性较强,故此选项错误;D、范围太大,应用抽样调查,故此选项错误;故选:B.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.答案:D解析:解:A、a3与a2不是同类项,故不能合并,故选项A不合题意;B、a3⋅a2=a5故选项B不合题意;C、(a2)3=a6,故选项C不合题意;D、a6÷a2=a4,故选项D符合题意.故选:D.分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方法则以及同底数幂除法法则解答即可.本题主要考查了幂的运算性质以及合并同类项的法则,熟练掌握运算法则是解答本题的关键.6.答案:C解析:解:根据题意得:3x−12−3=0,解得:x=5,故选:C.利用相反数的性质列出方程,求出方程的解即可得到x的值.此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.7.答案:C解析:解:易得2和6是相对的两个面;3和4是相对两个面;1和5是相对的2个面,因为2+6=8,3+4=7,1+5=6,所以原正方体相对两个面上的数字和最大的是8.故选:C.根据相对的面相隔一个面得到相对的2个数,相加后比较即可.本题考查了正方体相对两个面上的文字,解决本题的关键是根据相对的面的特点得到相对的两个面上的数字.8.答案:C解析:本题主要考查直线的性质:两点确定一条直线,以及两点之间线段最短.直接利用直线的性质以及两点确定一条直线的性质分析得出答案.解:①用两个钉子就可以把木条固定在墙上,根据是两点确定一条直线;②从A地到B地架设电线,总是尽可能沿着线段AB架设,根据是两点之间线段最短;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,根据是两点确定一条直线;④把弯曲的公路改直,就能缩短路程,根据是两点之间线段最短.故选:C.9.答案:A解析:本题考查三角形内角和定理,掌握三角形内角和等于180°是解本题的关键.由∠A+∠B+∠C=180°,得∠C=180°−∠A−∠B,即可求解.解:∵∠A=80°,∠B=40°,∴∠C=180°−∠A−∠B=180°−80°−40°=60°,故选A.10.答案:D解析:解:把x=−2代入ax−b=1得:−2a−b=1,等式两边同时乘以−2得:4a+2b=−2,等式两边同时加7得:4a+2b+7=−2+7=5,故选:D.把x=−2代入ax−b=1得到关于a和b的等式,利用等式的性质,得到整式4a+2b+7的值,即可得到答案.本题考查了一元一次方程的解和代数式求值,正确掌握整体代入法和等式的性质是解题的关键.11.答案:A解析:解:①过两点有且只有一条直线,正确,②连接两点的线段叫做两点间的距离,不正确,应为连接两点的线段的长度叫做两点间的距离,③两点之间,线段最短,正确,④若AB=BC,则点B是线段AC的中点,不正确,只有点B在AC上时才成立,⑤射线AB和射线BA是同一条射线,不正确,端点不同,⑥直线有无数个端点.不正确,直线无端点.共2个正确,故选:A.利用直线,射线及线段的定义求解即可.本题主要考查了直线,射线及线段,解题的关键是熟记直线,射线及线段的联系与区别.12.答案:B解析:解:观察图形发现第一个图形有5条线段;第二个图形有5+15=20条线段;第三个图形有5+15×2=35条线段;…第10个图形有5+15×9=140条线段,故选B.仔细观察图形的变化发现每增加一个五边形增加15条线段,据此规律求解即可.本题考查了图形的变化类问题,仔细观察,发现规律是解答本题的关键,难度不大.13.答案:−3; 6.2解析:直接利用单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,进而得出答案.【详解】解:单项式−3a 3b 2c 2的系数是:−32,次数是:6.故答案为:−32,6.此题主要考查了单项式的次数和系数,正确把握单项式的相关概念是解题关键.14.答案:0解析:此题考查了同类项的知识,掌握同类项中的两个相同,①所含字母相同,②相同字母的指数相同.首先根据同类项的定义,即同类项中相同字母的指数也相同,得到关于a ,b 的方程组,然后求得a 、b 的值,代入原式即可.解:由同类项的定义,得{2a −b =34a +3b =1, 解得:{a =1b =−1, a +b =1+(−1)=0,故答案为0.15.答案:解:∵AB =10cm ,BC =4cm ,∴AC =AB −BC =6cm ,又∵点D 是AC 的中点,∴AD=1AC=3cm.2解析:本题考查了两点间的距离,利用线段和差及中点性质是解题的关键.由AB=10cm,BC=4cm,可求出AC=AB−BC=6cm,再由点D是AC的中点,则可求得AD 的长.16.答案:3解析:本题主要考查的是同底数幂的乘法,一元一次方程的应用的有关知识,由题意利用同底数幂相乘,底数不变,指数相加可以得到关于n的方程,求解即可.解:∵x n−1·x n+5=x10,∴x n−1+n+5=x10,∴x2n+4=x10,∴2n+4=10,解得:n=3.故答案为3.17.答案:56解析:此题考查了角的计算,根据翻折变换的性质,得出三角形折叠以后的图形和原图形全等,对应的角相等,得出∠ABE=∠A′BE,∠DBC=∠DBC′是解题的关键.根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,再根据平角的度数是180°,∠ABE=34°,继而可求出答案.解:根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,又∵∠ABE +∠A′BE +∠DBC +∠DBC′=180°,∴∠ABE +∠DBC =90°,又∵∠ABE =34°,∴∠DBC =56°.故答案为:5618.答案:145解析:解:30°×(5−1060)=30°×296=145°,故答案为:145.根据钟面的特点,平均分成12份,每份30°,根据时针与分针相距的份数,可得答案.本题考查了钟面角,用每份的度数乘以时针与分针相距的份数是解题关键. 19.答案:解:原式=9a 8−a 8−a 8 =7a 8.解析:先计算幂的乘方与积的乘方、同底数幂的乘法、同底数幂的除法,再合并即可得.本题主要考查幂的运算,解题的关键是掌握幂的乘方与积的乘方、同底数幂的乘法、同底数幂的除法的运算法则.20.答案:解:∵|a −4|+(b +1)2=0,∴a −4=0,b +1=0,∴a =4,b =−1,=5ab 2−(2a 2b −4ab 2+2a 2b)+4a 2b=5ab 2−4a 2b +4ab 2+4a 2b=9ab2,当a=4,b=−1时,原式=9×4×(−1)2=36.解析:此题考查了整式的加减−化简求值,熟练掌握运算法则是解本题的关键.原式去括号合并得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.21.答案:解:∵M、N分别是线段AC,BD的中点,∴MC=12AC,DN=12BD,∵MC+CD+DN=MN,∴12AC+5+12BD=9,∴AC+BD=8,∴AB=AC+CD+BD=AC+BD+CD=8+5=13.故线段AB的长为13.解析:本题考查了两点间的距离:连接两点间的线段的长度叫两点间的距离.距离是一个量,有大小,区别于线段,线段是图形.线段的长度才是两点的距离.可以说画线段,但不能说画距离.先利用线段中点的定义得到MC=12AC,DN=12BD,再利用MC+CD+DN=MN可得AC+BD=8,然后根据AB=AC+CD+BD进行计算即可.22.答案:解:(1)5x+40=12x−42+5,5x−12x=−42+5−40,−7x=−77,x=11;(2)2(2x−1)=2x+1−6,4x−2=2x+1−6,4x−2x=1−6+2,2x=−3,x=−1.5.解析:(1)方程去括号,移项合并,把x的系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x的系数化为1,即可求出解.此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数的数化为1,求出解.23.答案:解:(1)200;12;36;108°.(2)由题意,得选“常常”的学生数有200×30%=60(人),补全条形统计图如图所示.(3)由题意,得3200×0.36=1152(名).则估计其中“总是”对错题进行整理、分析、改正的学生有1152名.解析:此题主要考查了条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.(1)首先用“有时”对错题进行整理、分析、改正的学生的人数除以22%,求出该调查的样本容量为多少;然后分别用很少、总是“对自己做错的题目进行整理、分析、改正”的人数除以样本容量,求出a、b的值各是多少;最后根据“常常”对应的人数的百分比是30%,求出“常常”对应扇形的圆心角为多少即可;(2)求出常常“对自己做错的题目进行整理、分析、改正”的人数,补全条形统计图即可;(3)用该校学生的人数乘“总是”对错题进行整理、分析、改正的学生占的百分率即可.解:(1)由题意,得该调查的样本容量为44÷22%=200.则选“很少”的学生数占样本容量的百分比为24÷200=12%,选“总是”的学生数占样本容量的百分比为72÷200=36%,所以a=12%,b=36%.因为选“常常”的学生数占样本容量的30%,所以选“常常”对应的扇形圆心角的度数为360∘×30%=108∘.故答案为200;12;36;108°;(2)见答案;(3)见答案.24.答案:解:设小华实际购买了x个笔袋,根据题意,得18(x−1)−18×0.9x=36,解得x=30,此时18×0.9x=486.答:小华结账时实际付款486元.解析:本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.设小华购买了x个笔袋,根据原单价×购买数量(x−1)−打九折后的单价×购买数量(x)=节省的钱数,即可得出关于x的一元一次方程,解之即可求出小华购买的数量,再根据总价=单价×0.9×购买数量,即可求出结论.25.答案:解:(1)∠ACE和∠BCD相等,理由如下:∵∠ACD=∠BCE=90°,∠ACE+∠ECD=∠BCD+∠ECD=90°,∴∠ACE=∠BCD;(2)若∠DCE=30°,∠ACD=90°,∴∠ACE=∠ACD−∠DCE=90°−30°=60°,∵∠BCE=90°且∠ACB=∠ACE+∠BCE,∠ACB=90°+60°=150°;(3)∠ACB+∠DCE=180°.理由如下:∵∠ACB=∠ACD+∠BCE−∠DCE∴∠ACB+∠DCE=∠ACD+∠BCE=180°;(4)成立.理由如下:∠ACB+∠DCE+∠ACD+∠BCE=360°,而∠ACD=∠BCE=90°,∴∠ACB+∠DCE=180°.解析:本题考查了余角和补角,利用了余角的性质,补角的性质,角的和差,四个角的和差关系列出关系式即可求答.(1)根据余角的性质,同角的余角相等,可得答案;(2)根据余角的定义,可得∠ACE,根据角的和差,可得答案;(3)根据角的和差,可得答案;(4)根据角的和差,可得答案.26.答案:解:(1)∵7个是标准∴该组同学最多做了:7+3=10(个),该组同学最少做了:7−3=4(个).(2)∵7个是标准∴该组同学的平均成绩是:7+(2−1+3−2+1−3)÷7=7(个),答:该组同学的平均成绩是是7个.解析:此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.超过的次数用正数表示,不足的个数用负数表示,所以本组做的最多的同学做了:7+3=10(个),做的最少的同学做了:7−3=4(个).平均成绩就把他们相加看结果.27.答案:解:(1)∵OA平分∠EOC,∴∠AOC=12∠EOC=12×70°=35°,∵∠BOD=∠AOC,∴∠BOD=35°;(2)OE⊥OD.理由如下:∵∠DOE=2∠AOC,OA平分∠EOC,∴∠DOE=∠EOC,又∠DOE+∠EOC=180°,∴∠DOE=∠EOC=90°,∴OE⊥OD(垂直的定义);(3)设∠EOC=2x°,∠EOD=3x°,根据题意得2x+3x=180,解得x=36,∴∠EOC=2x°=72°,∴∠AOC=12∠EOC=12×72°=36°,∴∠BOD=∠AOC=36°.解析:本题考查了对顶角、邻补角,角平分线的定义,一元一次方程的应用.熟记邻补角的概念以及对顶角相等的性质并准确识图是解题的关键.∠EOC=35°,然后根据对顶角相等得∠BOD=∠AOC=35°;(1)根据角平分线定义得到∠AOC=12(2)根据题意可得∠DOE=∠EOC,再根据∠DOE+∠EOC=180°可得∠DOE的度数,进而可得OE⊥OD.(3)先设∠EOC=2x°,∠EOD=3x°,根据平角的定义得2x+3x=180,解得x=36,则∠EOC=2x°= 72°,然后进一步求解即可.。
北师大版(七年级)初一上册数学期末测试题及答案一、选择题1.已知如图,数轴上的A 、B 两点分别表示数a 、b ,则下列说法正确的是( ).A .a b >-B .22a b <C .0ab >D .a b b a -=-2.已知关于x 的方程432x m -=的解是x m =-,则m 的值是( ) A .2B .-2C .-27D .273.使用科学计算器进行计算,其按键顺序如图所示,输出结果应为( )A .14-B . 3.94-C . 1.06-D . 3.7-4.根据等式性质,下列结论正确的是( ) A .如果22a b -=,那么=-a b B .如果22a b -=-,那么=-a b C .如果22a b =-,那么a b =D .如果122a b =,那么a b = 5.将1,2,3,...,30,这30个整数,任意分为15组,每组2个数.现将每组数中的一个数记为x ,另一个数记为y ,计算代数式()1||||2x y x y -++的值,15组数代入后可得到15个值,则这15个值之和的最小值为( )A .2252B .120C .225D .2406.小牧用60根长短相同的小木棍按照下图所示的方式,先连续摆出若干正方形,再摆出一些六边形,摆出的正方形和六边形一共有1个,要求所有的图形都摆在一行上,且相邻的图形只有一条公共边,同时没有木棍剩余.则t 可以取( )个不同的值.A .2B .3C .4D .57.如图,在数轴上,若A 、B 、C 三点表示的数为a 、b 、c ,则下列结论正确的是( )A .c >a >bB .1b >1cC .|a |<|b |D .abc >08. 已知:如图,C 是线段AB 的中点,D 是线段BC 的中点,AB =20 cm ,那么线段AD等于( )A .15 cmB .16 cmC .10 cmD .5 cm9.如图,点O 在直线AB 上且OC ⊥OD ,若∠COA=36°则∠DOB 的大小为( )A .36°B .54°C .64°D .72°10.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,则在该正方体中,和“我”相对面上所写的汉字是( )A .美B .丽C .琼D .海11.如图表示的是用火柴棒搭成的一个个图形,第1个图形用了5根火柴,第2个图形用了8根火柴,…,照此规律,用295根火柴搭成的图形是( )A .第80个图形B .第82个图形C .第84个图形D .第86个图形12.已知a ,b ,c 为有理数,且0a b c ++=,0abc <,则a b ca b c++的值为( ) A .1B .1-或3-C .1或3-D .1-或3二、填空题13.若()221x y -++=0,则x+y=_____.14.如图,若D 是AB 的中点,E 是BC 的中点,若AC =8,BC =5,则AD =______.15.已知方程2x ﹣a =8的解是x =2,则a =_____.16.对于有理数,m n ,定义一种新运算""⊗,规定m n m n m n ⊗=---.请计算23-⊗的值是__________.17.观察下列等式:①9011⨯+=;②91211⨯+=;③92321⨯+=;④93431⨯+=;⑤94541⨯+=;……作出猜想,它的第n 个等式可表示为__________(n 为正整数).18.中国南北朝时期的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”问题,原文如下:有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.同物几何? 即:一个整数除以3余2,除以5余3,除以7余2,则这个整数为__________________.(写出符合题意且不超过300的3个正整数)19.如图,一个正五边形的五个顶点依次编号为1,2,3,4,5,从某个顶点开始,若顶点编号是奇数,则一次逆时针走2个边长;若顶点编号是偶数,则一次顺时针走1个边长.若从编号2开始走,则第2020次后,所处顶点编号是_____________.20.观察下列式子:13111414a ==-⨯;23114747a ==-⨯;3311710710a ==-⨯;431110131013a ==-⨯,按此规律,则n a =_____________=______________(用含n的代数式表示,其中n 为正整数),并计算123100a a a a +++⋯+=________________. 21.如图,已知∠AOB =40°,自O 点引射线OC ,若∠AOC :∠COB =2:3,OC 与∠AOB 的平分线所成的角的度数为_____.22.如图所示,一动点从半径为2的O 上的0A 点出发,沿着射线0A O 方向运动到O上的点1A 处,再向左沿着与射线1A O 夹角为60°的方向运动到O 上的点2A 处;接着又从2A 点出发,沿着射线2A O 方向运动到O 上的点3A 处,再向左沿着与射线3A O 夹角为60°的方向运动到O 上的点4A 处.……按此规律运动到点2020A 处,则点2020A 与点0A 间的距离是___________.三、解答题23.如图,点,A B 在数轴上,它们对应的数分别是-2,34x -,且点,A B 到原点的距离相等,求x 的值.24.如图,已知∠AOB=120°,射线OP从OA位置出发,以每秒2°的速度顺时针向射线OB 旋转;与此同时,射线OQ以每秒6°的速度,从OB位置出发逆时针向射线OA旋转,到达射线OA后又以同样的速度顺时针返回,当射线OQ返回并与射线OP重合时,两条射线同时停止运动. 设旋转时间为t秒.(1)当t=2时,求∠POQ的度数;(2)当∠POQ=40°时,求t的值;(3)在旋转过程中,是否存在t的值,使得∠POQ=12∠AOQ?若存在,求出t的值;若不存在,请说明理由.25.如图,数轴上点A,B表示的有理数分别为6,3,点P是射线AB上的一个动点(不与点A,B重合),M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.(1)若点P表示的有理数是0,那么MN的长为________;若点P表示的有理数是6,那么MN的长为________;(2)点P在射线AB上运动(不与点A,B重合)的过程中,MN的长是否发生改变?若不改变,请写出求MN的长的过程;若改变,请说明理由.26.如图,直线l有上三点M,O,N,MO=3,ON=1;点P为直线l上任意一点,如图画数轴.(1)当以点O为数轴的原点时,点P表示的数为x,且点P到点M、点N的距离相等,那么x的值是________;(2)当以点M为数轴的原点时,点P表示的数为y,当y= 时,使点P到点M、点N 的距离之和是5;(3)若以点O为数轴的原点,点P以每秒2个单位长度的速度从点O向左运动时,点E 从点M以每秒1个单位长度速度向左运动,点F从点N每秒3个单位长度的向左运动,且三点同时出发,求运动几秒时点P、点E、点F表示的数之和为-20.27.幻方的历史很悠久,传说中最早出现在夏禹时代的“洛书”,用今天的数学符号翻译出来,就是一个三阶幻方,即将若干个数组成一个正方形数阵,任意一行、一列及对角线上的数字之和都相等.观察下图:(1)若图1为“和m 幻方”,则a = ,b = ,m = ;(2)若图2为“和m 幻方”,请通过观察上图的 三个幻方,试着用含p 、q 的代数式表示r ,并说明理由.(3)若图3为“和m 幻方”,且x 为整数,试求出所有满足条件的整数n 的值.28.(理解新知)如图①,已知AOB ∠,在AOB ∠内部画射线OC ,得到三个角,分别为AOC ∠,BOC ∠,AOB ∠,若这三个角中有一个角是另外一个角的两倍,则称射线OC 为AOB ∠的“二倍角线”.(1)一个角的角平分线______这个角的“二倍角线”(填“是”或“不是”) (2)若60AOB ∠=︒,射线OC 为AOB ∠的“二倍角线”,则AOC ∠的大小是______;(解决问题)如图②,己知60AOB ∠=︒,射线OP 从OA 出发,以20︒/秒的速度绕O 点逆时针旋转;射线OQ 从OB 出发,以10︒/秒的速度绕O 点顺时针旋转,射线OP ,OQ 同时出发,当其中一条射线回到出发位置的时候,整个运动随之停止,设运动的时间为t 秒.(3)当射线OP ,OQ 旋转到同一条直线上时,求t 的值;(4)若OA ,OP ,OQ 三条射线中,一条射线恰好是以另外两条射线为边组成的角的“二倍角线”,直接写出t 所有可能的值______.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据有理数a 、b 在数轴上的位置可得0,0,a b a b <>>,进一步即可根据绝对值的意义、乘方的意义对各选项进行判断. 【详解】解:由题意得:0,0,a b a b <>>,所以a b <-,22a b >,0ab <,a b b a -=-;所以选项A 、B 、C 的说法是错误的,选项D 的说法是正确的; 故选:D . 【点睛】本题考查了数轴、绝对值以及有理数的乘方等知识,属于基础题型,熟练掌握基本知识是解题的关键.2.C解析:C 【解析】 【分析】将x =-m 代入方程,解出m 的值即可. 【详解】将x =-m 代入方程可得:-4m -3m =2, 解得:m =-27.故选:C.【点睛】本题主要考查一元一次方程的解的意义以及求解方法,将解代入方程求解是解题关键.3.B解析:B【解析】【分析】根据如图所示的按键顺序,列出算式3×(-56)-1.22,再计算可得.【详解】根据如图所示的按键顺序,输出结果应为3×(-56)-1.22=-2.5-1.44=-3.94,故选:B.【点睛】本题主要考查计算器-基础知识,解题的关键是掌握分数的按键和平方的按键,并依据其功能列出算式.4.A解析:A【解析】【分析】根据等式的性质,可得答案.【详解】A.两边都除以-2,故A正确;B.左边加2,右边加-2,故B错误;C.左边除以2,右边加2,故C错误;D.左边除以2,右边乘以2,故D错误;故选A.【点睛】本题考查了等式的性质,熟记等式的性质是解题的关键.5.D解析:D【解析】【分析】先分别讨论x和y的大小关系,分别得出代数式的值,进而得出规律,然后以此规律可得出符合题意的组合,求解即可.【详解】①若x>y,则代数式中绝对值符号可直接去掉,∴代数式等于x,②若y>x则绝对值内符号相反,∴代数式等于y,由此可知,原式等于一组中较大的那个数,当相邻2个数为一组时,这样求出的和最小= 2+4+6+…+30=240.故选:D.【点睛】本题考查了绝对值、有理数的加减混合运算,通过假设,把所给代数式化简,然后把满足条件的字母的值代入计算.6.C解析:C【解析】【分析】由题意可知:摆a个正方形需要4+3(a-1)=3a+1根小木棍;摆b个六边形需要6+5(b-1)=5b+1根小木棍;由此得到方程3a+1+5b+1-1=60,再确定正整数解的个数即可求得答案.【详解】设摆出的正方形有a个,摆出的六边形有b个,依题意有3a+1+5b+1-1=60,3a+5b=59,当a=3时,b=10,t=13;当a=8时,b=7,t=15;当a=13时,b=4,t=17;当a=18时,b=1,t=19.故t可以取4个不同的值.故选:C.【点睛】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,利用规律解决问题.7.B解析:B【解析】【分析】先确定出a、b、c的取值范围,然后根据有理数的运算法则解答即可.【详解】解:观察数轴,可知:﹣2<a<﹣1,0<b<1,1<c<2,∴c>b>a,1b >1c,|a|>|b|,abc<0.故选:B.【点睛】本题考查了利用数轴比较有理数的大小,以及有理数的运算法则,熟练掌握有理数的运算法则是解答本题的关键. 8.A解析:A【解析】【分析】根据C点为线段AB的中点,D点为BC的中点,可知AC=CB=12AB,CD=12CB,AD=AC+CD,又AB=4cm,继而即可求出答案.【详解】∵点C是线段AB的中点,AB=20cm,∴BC=12AB=12×20cm=10cm,∵点D是线段BC的中点,∴BD=12BC=12×10cm=5cm,∴AD=AB-BD=20cm-5cm=15cm.故选A.【点睛】本题考查了两点间的距离的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.9.B解析:B【解析】∵OC⊥OD,∴∠COD=90°,又∵∠AOC+∠COD+∠DOB=180°,∴∠DOB=180°-36°-90°=54°.故选B.10.B解析:B【解析】【分析】利用正方体及其表面展开图的特点解题即可.【详解】解:这是一个正方体的平面展开图,共有六个面,其中面“爱”与面“琼”相对,面“海”与面“美”相对,面“我”与面“丽”相对;故选:B.【点睛】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手、分析及解答问题.11.C解析:C【解析】 【分析】根据图形可以看出第1个图形有5根火柴棒,第2个图形有8根火柴棒,第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12,由此可解决问题. 【详解】解:根据图形可以看出第1个图形有5根火柴棒, 第2个图形有8根火柴棒, 第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12, 若5+7(n-1)×12=295,没有整数解, 若8+7(n-2)×12=295,解得n=84, 即用295根火柴搭成的图形是第84个图形, 故选:C . 【点睛】本题考查了根据图象探索规律问题,从简单的情形考虑,发现规律解决问题.12.A解析:A 【解析】 【分析】先根据有理数的乘法法则推出:要使三个数的乘积为负,a ,b ,c 中应有奇数个负数,进而可将a ,b ,c 的符号分两种情况:1负2正或3负;再根据加法法则:要使三个数的和为0,a ,b ,c 的符号只能为1负2正,然后化简即得. 【详解】 ∵0abc <∴a ,b ,c 中应有奇数个负数∴a ,b ,c 的符号可以为:1负2正或3负 ∵0a b c ++=∴a ,b ,c 的符号为1负2正 令0a <,0b >,0c > ∴a a =-,b b =,c c =∴a b ca b c++1111=-++=故选:A.【点睛】本题考查了绝对值的性质、乘法法则及加法法则,利用加法法则和乘法法则确定数的符号是解题关键.二、填空题13.1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】解:根据题意得,x-2=0,y+1=0,解得x=2,y=-1,所以,x+y=2+(-1)=解析:1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】解:根据题意得,x-2=0,y+1=0,解得x=2,y=-1,所以,x+y=2+(-1)=2-1=1.故答案为1.【点睛】本题考查算术平方根非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.14.5【解析】【分析】根据AC=8,BC=5得出BC的长,再由D是AB的中点,即可求出AD的长.【详解】∵AC=8,BC=5,∴AB= AC-BC=3,又∵D是AB的中点,∴AD=1.5,故答解析:5【解析】【分析】根据AC=8,BC=5得出BC的长,再由D是AB的中点,即可求出AD的长.【详解】∵AC=8,BC=5,∴AB= AC-BC=3,又∵D是AB的中点,∴AD=1.5,故答案为1.5.【点睛】此题主要考查了两点之间的距离以及线段中点的性质,根据已知得出AB,的长是解题关键.15.-4【解析】【分析】把x=2代入方程计算即可求出a的值.【详解】解:把x=2代入方程得:4﹣a=8,解得:a=﹣4.故答案为:﹣4.【点睛】本题考查了一元一次方程的解,方程的解即为解析:-4【解析】【分析】把x=2代入方程计算即可求出a的值.【详解】解:把x=2代入方程得:4﹣a=8,解得:a=﹣4.故答案为:﹣4.【点睛】本题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.16.-6【解析】【分析】根据新定义规定的运算公式列式计算即可求得答案.【详解】.故答案为:.【点睛】本题主要考查了有理数的混合运算,解题的关键是熟练掌握新定义规定的运算公式和有理数的解析:-6【解析】【分析】根据新定义规定的运算公式列式计算即可求得答案.【详解】232323-⊗=-----235=--6=-.故答案为:6-.【点睛】本题主要考查了有理数的混合运算,解题的关键是熟练掌握新定义规定的运算公式和有理数的混合运算顺序及运算法则.17.【解析】【分析】根据所给几个等式可以看出:这几个等式中左边:第几个式子是9乘以(几减1),再加上几;右边:第几个式子即十位是几减1,个位是1.【详解】解:根据分析知:第n 个式子是9(n-1解析:()()911011n n n -+=-+【解析】【分析】根据所给几个等式可以看出:这几个等式中左边:第几个式子是9乘以(几减1),再加上几;右边:第几个式子即十位是几减1,个位是1.【详解】解:根据分析知:第n 个式子是9(n-1)+n=10(n-1)+1=10n-9,即9(n-1)+n=10n-9.故答案为:9(n-1)+n=10n-9.【点睛】找等式的规律时,要分别观察左边和右边的规律,还要注意两边之间的关系. 18.23,128,233.【解析】【分析】根据“一个整数除以3余2,除以5余3,除以7余2”找到三个数,第一个数能同时被3、5整除,第二个数能同时被3、7整除,第三个数能同时被5、7整除等,然后再解析:23,128,233.【解析】【分析】根据“一个整数除以3余2,除以5余3,除以7余2”找到三个数,第一个数能同时被3、5整除,第二个数能同时被3、7整除,第三个数能同时被5、7整除等,然后再将这三个数乘以被7、5、3除的余数再相加,据此进一步求解即可.【详解】根据题意,我们首先求出三个数:第一个数能同时被3、5整除,即15,第二个数能同时被3、7整除,即21,第三个数能同时被5、7整除,但除以3余1,即70,然后将这三个数分别乘以被7、5、3除的余数再相加,即:152213702233⨯+⨯+⨯=,最后再进一步减去3、5、7的最小公倍数的若干倍即可:233105223-⨯=, 综上所述,该数可用10523k +表示,当0k =时,1052323k +=,当1k =时,10523128k +=,当2k =时,10523233k +=,故答案为:23,128,233.【点睛】本题主要考查了有理数与代数式的综合运用,准确找出相应规律是解题关键.19.5【解析】【分析】根据“移位”的特点确定出前几次的移位情况,从而找出规律,然后解答即可.【详解】解:根据题意,从编号为2的顶点开始,第1次移位到点3,第2次移位到达点1,第3次移位到解析:5【解析】【分析】根据“移位”的特点确定出前几次的移位情况,从而找出规律,然后解答即可.【详解】解:根据题意,从编号为2的顶点开始,第1次移位到点3,第2次移位到达点1,第3次移位到达点4,第4次移位到达点5,第5次移位到达点3,第6次移位到达点1,第7次移位到达点4,第8次移位到达点5,…依此类推,可以发现结果按四次移位为一次循环,即按照3,1,4,5循环,∵2020÷4=505,∴第2020次移位为第505个循环的第4次移位,到达点5.故答案为:5.【点睛】本题对图形变化规律的考查,根据“移位”的定义,找出每4次移位为一个循环组进行循环是解题的关键.20..【解析】【分析】根据已知的式子中的数的特点得到分母是相差3的两个整数相乘,分子为3,结果等于分母中的两个数的倒数相减,由此得到答案.【详解】由,,,可知每个式子等 解析:3(32)(31)n n -+ 113231n n --+ 300301. 【解析】【分析】根据已知的式子中的数的特点得到分母是相差3的两个整数相乘,分子为3,结果等于分母中的两个数的倒数相减,由此得到答案.【详解】 由13111414a ==-⨯,23114747a ==-⨯,3311710710a ==-⨯,可知每个式子等于相差3的两个整数的乘积且第二个整数比序数的3倍大1,此时分子为3,等于相差3的两个整数的倒数的差, ∴311(32)(31)3231n a n n n n ==--+-+, ∴123100a a a a +++⋯+, =11111111114477101013298301-+-+-+-++-, =11301-,=300 301,故答案为:3(32)(31)n n-+,113231n n--+,300301.【点睛】此题考查数字的规律探究,根据所给的代数式观察得到规律,并能表示出该规律是解题的关键,由此进行其他的应用计算.21.4°或100°.【解析】【分析】由题意∠AOC:∠COB=2:3,∠AOB=40°,可以求得∠AOC的度数,OD是角平分线,可以求得∠AOD的度数,∠COD=∠AOD-∠AOC.【详解】解解析:4°或100°.【解析】【分析】由题意∠AOC:∠COB=2:3,∠AOB=40°,可以求得∠AOC的度数,OD是角平分线,可以求得∠AOD的度数,∠COD=∠AOD-∠AOC.【详解】解:若OC在∠AOB内部,∵∠AOC:∠COB=2:3,∴设∠AOC=2x,∠COB=3x,∵∠AOB=40°,∴2x+3x=40°,得x=8°,∴∠AOC=2x=2×8°=16°,∠COB=3x=3×8°=24°,∵OD平分∠AOB,∴∠AOD=20°,∴∠COD=∠AOD﹣∠AOC=20°﹣16°=4°.若OC在∠AOB外部,∵∠AOC :∠COB =2:3,∴设∠AOC =2x ,∠COB =3x ,∵∠AOB =40°,∴3x ﹣2x =40°,得x =40°,∴∠AOC =2x =2×40°=80°,∠COB =3x =3×40°=120°,∵OD 平分∠AOB ,∴∠AOD =20°,∴∠COD =∠AOC+∠AOD =80°+20°=100°.∴OC 与∠AOB 的平分线所成的角的度数为4°或100°.【点睛】本题考查角的计算,结合角平分线的性质分析,当涉及到角的倍分关系时,一般通过设未知数,建立方程进行解决.22.【解析】【分析】连接A4A5、A0A5,,,分别求出,,,,,,,根据图形的运动得到按此规律6次一循环,即可求出点与点间的距离.【详解】如图,连接A4A5、A0A5,,,∵的半径为2, 解析:3【解析】【分析】连接A 4A 5、A 0A 5,04A A ,02A A ,分别求出014A A =,0223A A =032A A =,0423A A =052A A =,060A A =,,根据图形的运动得到按此规律6次一循环,即可求出点2020A 与点0A 间的距离.【详解】如图,连接A 4A 5、A 0A 5,04A A ,02A A ,∵O 的半径为2,∴014A A =,0223A A =,032A A =,0423A A =,052A A =,060A A =,按此规律6次一循环,∵202063364÷=,∴0202023A A =.故答案为:23.【点睛】此题考查图形类规律的探究,根据图形的变化得到运动的规律是解题的关键.三、解答题23.x =2【解析】【分析】根据点A 、B 到原点的距离相等即点A ,B 表示两数的绝对值相等,列出方程,求出方程的解即可得到x 的值.【详解】由题意可得:3x -4=2解得 x =2故答案为x =2.【点睛】此题考查了解一元一次方程,以及数轴,熟练掌握运算法则是解本题的关键. 24.(1)∠POQ =104°;(2)当∠POQ =40°时,t 的值为10或20;(3)存在,t =12或18011或1807,使得∠POQ =12∠AOQ . 【解析】【分析】当OQ ,OP 第一次相遇时,t =15;当OQ 刚到达OA 时,t =20;当OQ ,OP 第二次相遇时,t =30;(1)当t =2时,得到∠AOP =2t =4°,∠BOQ =6t =12°,利用∠POQ =∠AOB -∠AOP-∠BOQ 求出结果即可;(2)分三种情况:当0≤t ≤15时,当15<t ≤20时,当20<t ≤30时,分别列出等量关系式求解即可;(3)分三种情况:当0≤t≤15时,当15<t≤20时,当20<t≤30时,分别列出等量关系式求解即可.【详解】解:当OQ,OP第一次相遇时,2t+6t=120,t=15;当OQ刚到达OA时,6t=120,t=20;当OQ,OP第二次相遇时,2t6t=120+2t,t=30;(1)当t=2时,∠AOP=2t=4°,∠BOQ=6t=12°,∴∠POQ =∠AOB-∠AOP-∠BOQ=120°-4°-12°=104°.(2)当0≤t≤15时,2t +40+6t=120, t=10;当15<t≤20时,2t +6t=120+40, t=20;当20<t≤30时,2t=6t-120+40, t=20(舍去);答:当∠POQ=40°时,t的值为10或20.(3)当0≤t≤15时,120-8t=12(120-6t),120-8t=60-3t,t=12;当15<t≤20时,2t–(120-6t)=12(120 -6t),t=18011.当20<t≤30时,2t–(6t -120)=12(6t -120),t=1807.答:存在t=12或18011或1807,使得∠POQ=12∠AOQ.【分析】本题考查了角的和差关系及列方程解实际问题,解决本题的关键是分好类,列出关于时间的方程.25.(1)6;6;(2)不发生改变,MN为定值6,过程见解析【解析】【分析】(1)由点P表示的有理数可得出AP、BP的长度,根据三等分点的定义可得出MP、NP的长度,再由MN=MP+NP(或MN=MP-NP),即可求出MN的长度;(2)分-6<a<3及a>3两种情况考虑,由点P表示的有理数可得出AP、BP的长度(用含字母a的代数式表示),根据三等分点的定义可得出MP、NP的长度(用含字母a的代数式表示),再由MN=MP+NP(或MN=MP-NP),即可求出MN=6为固定值.【详解】解:(1)若点P表示的有理数是0(如图1),则AP=6,BP=3.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=4,NP=23BP=2,∴MN=MP+NP=6;若点P 表示的有理数是6(如图2),则AP=12,BP=3.∵M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.∴MP=23AP=8,NP=23BP=2, ∴MN=MP-NP=6.故答案为:6;6. (2)MN 的长不会发生改变,理由如下:设点P 表示的有理数是a (a >-6且a≠3).当-6<a <3时(如图1),AP=a+6,BP=3-a .∵M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.∴MP=23AP=23(a+6),NP=23BP=23(3-a ), ∴MN=MP+NP=6;当a >3时(如图2),AP=a+6,BP=a-3. ∵M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.∴MP=23AP=23(a+6),NP=23BP=23(a-3), ∴MN=MP-NP=6. 综上所述:点P 在射线AB 上运动(不与点A ,B 重合)的过程中,MN 的长为定值6.【点睛】本题考查了两点间的距离,解题的关键是:(1)根据三点分点的定义找出MP 、NP 的长度;(2)分-6<a <3及a >3两种情况找出MP 、NP 的长度(用含字母a 的代数式表示).26.(1)-1;(2)-0.5或4.5;(3)t =3【解析】【分析】(1)根据已知条件先确定点M 表示的数为3-,点N 代表的数为1,进而利用数轴上两点之间的距离公式、以及点P 到点M 、点N 的距离相等列出关于x 的方程,解含绝对值的方程即可得解.(2)根据已知条件先确定点N 表示的数为3-,进而利用数轴上两点之间的距离公式、以及点P 到点M 、点N 的距离之和等于5列出关于y 的方程,解含绝对值的方程即可得解.(3)设运动时间为t 秒,根据已知条件找到等量关系式,列出含t 方程即可求解.【详解】(1)∵点O 为数轴的原点,3OM =,1ON =∴ 点M 表示的数为3-,点N 代表的数为1∵点P 表示的数为x ,且点P 到点M 、点N 的距离相等∴()31x x --=-∴1x =-故答案是:1-(2)∵点M 为数轴的原点,3OM =,1ON =∴ 点N 代表的数为4∵点P 表示的数为y∴PM y =,4PN y =-∵点P 到点M 、点N 的距离之和是5∴45y y +-=∴0.5y =-或 4.5y =故答案是:0.5-或4.5(3)设运动时间为t 秒P 点表示的数为2t -,E 点表示的数为3t --,F 点表示的数为13t -()()231320t t t -+--+-=-618t -=-3t =答:求运动3秒时点P 、点E 、点F 表示的数之和为20-.【点睛】本题考查了数轴上的两点之间的距离、绝对值方程以及动点问题,难度稍大,需认真审题、准确计算方可正确求解.27.(1)-5,9,3;(2)2p q r =+ ;(3)-3,-2,0,1.【解析】【分析】(1)根据题意先求出a 和b 的值,再假设中间的数为x 根据题干定义进行分析计算; (2)由题意假设中间数为x ,同时根据题意表示某些数值进而分析计算得出结论; (3)由题意根据(2)的关系式得出(1)3n x n +=+,进而进行分析即可.【详解】解:(1)由图分析可得:57777a a b +=-+⎧⎨+=-⎩,解得59a b =-⎧⎨=⎩, 假设中间的数为x ,如下图:根据图可得:22277x x x x +++-=++-解得1x =,所以2772123m x x =++-=+=+=.故答案为:-5,9,3.(2)2p q r =+,理由如下:假设中间数为x ,如图:由图可知:()()p m x q r m p x +--=+--,化简后得2p q r =+.(3)根据(2)中关系式可知:232n x nx -⋅=- 3n x nx -=-(1)3n x n +=+当10n +≠时,31n x n +=+, ∵x 为整数, ∴31n n ++为整数, 又∵32111n n n +=+++, ∴11,2n +=±±,∴3201n =--,,,, 又∵n 为整数,∴3201n =--,,,均满足条件, ∴所有满足条件的整数n 的值为:-3,-2,0,1.【点睛】本题考查代数式的新定义运算,根据题干新定义进行分析求解是解答此题的关键.28.(1)是;(2)30︒或40︒或20︒;(3)4t =或10t =或16t =;(4)2t =或12t =.【解析】【分析】(1)若OC 为AOB ∠的角平分线,由角平分线的定义可得2AOB AOC ∠=∠,由二倍角线的定义可知结论;(2)根据二倍角线的定义分2,2,2AOB AOC AOC BOC BOC AOC ∠=∠∠=∠∠=∠三种情况求出AOC ∠的大小即可.(3)当射线OP ,OQ 旋转到同一条直线上时,180POQ ︒∠=,即180POA AOB BOQ ︒∠+∠+∠=或180BOQ BOP ︒∠+∠=,或OP 和OQ 重合时,即360POA AOB BOQ ︒∠+∠+∠=,用含t 的式子表示出OP 、OQ 旋转的角度代入以上三种情况求解即可;(4)结合“二倍角线”的定义,根据t 的取值范围分04t <<,410t ≤<,1012t <≤,1218t <≤4种情况讨论即可.【详解】解:(1)若OC 为AOB ∠的角平分线,由角平分线的定义可得2AOB AOC ∠=∠,由二倍角线的定义可知一个角的角平分线是这个角的“二倍角线”;(2)当射线OC 为AOB ∠的“二倍角线”时,有3种情况,①2AOB AOC ∠=∠,60,30AOB AOC ︒︒∠=∴∠=; ②2AOC BOC ∠=∠,360AOB AOC BOC BOC ︒∠=∠+∠=∠=,20BOC ︒∴∠=,40AOC ︒∴∠=; ③2BOC AOC ∠=∠,360AOB AOC BOC AOC ︒∠=∠+∠=∠=,20AOC ︒∴∠=,综合上述,AOC ∠的大小为30︒或40︒或20︒;(3)当射线OP ,OQ 旋转到同一条直线上时,有以下3种情况,①如图此时180POA AOB BOQ ︒∠+∠+∠=,即206010180t t ︒︒︒︒++=,解得4t =; ②如图此时点P 和点Q 重合,可得360POA AOB BOQ ︒∠+∠+∠=,即206010360t t ︒︒︒︒++=,解得10t =;③如图此时180BOQ BOP ︒∠+∠=,即1060(36020)180t t ︒︒︒︒︒⎡⎤+--=⎣⎦,解得16t =, 综合上述,4t =或10t =或16t =;(4)由题意运动停止时3602018t ︒︒=÷=,所以018t <≤,①当04t <<时,如图,此时OA 为POQ ∠的“二倍角线”,2AOQ POA ∠=∠,即6010220t t ︒︒︒+=⨯,解得2t =;②当410t ≤<时,如图,此时,180,180AOQ AOP ︒︒∠>∠>,所以不存在;③当1012t <≤时,如图此时OP 为AOQ ∠的“二倍角线”,2AOP POQ ∠=∠,即360202(201060360)t t t ︒︒︒︒︒︒-=⨯++-解得 12t =;④当1218t <≤时,如图,此时180,180AOQ AOP ︒︒∠>∠>,所以不存在;综上所述,当2t =或12t =时,OA ,OP ,OQ 三条射线中,一条射线恰好是以另外两条射线为边组成的角的“二倍角线”.【点睛】本题考查了一元一次方程的应用,正确理解“二倍角线”的定义,找准题中角之间等量关系是解题的关键.。
2020-2021学年济南市历城区七年级上学期期末数学试卷一、选择题(本大题共12小题,共48.0分)1.3的绝对值是()A. −3B. −13C. 13D. 32.如图是一个水平放置的全封闭物体,则它的俯视图是()A.B.C.D.3.人类生存的环境越来越受到人们的关注,某研究机构对空气进行了测量研究,发现在0摄氏度及一个标准大气压下1cm3空气的质量是0.001293克.数据0.001293可用科学记数法表示为()A. 0.1293×10−2B. 1.293×10−3C. 12.93×10−4D. 0.1293×10−34.下列调查中,适合采用全面调查(普查)方式的是()A. 对漓江水质情况的调查B. 对端午节期间市场上粽子质量情况的调查.C. 对某班55名同学体重情况的调查D. 对某类烟花爆竹燃放安全情况的调查5.若−3x2m y3与2x4y n是同类项,则m−n=()A. −1B. 0C. 1D. −26.下列方程中,解为x=4的方程是()A. x+2=2B. 4x=1C. 2(x −1)=1D. 4x −1=3x +37.下列说法正确的是( )A. −a 一定小于0B. |a|一定大于0C. 若a +b =0,则|a|=|b|D. 若|a|=|b|,则a =b8.下列运算中,正确的是( )A. x 2⋅x 3=x 6B. x 2+x 3=2x 5C. (−xy 2)2=x 2y 4D. (−x 2y)⋅(xy)=x 3y 29.在平面直角坐标系中,点B ,C 的坐标分别为B(−√6,−√6),C(√6,√6).任意一点A 都满足|AB −AC|=2√3.作∠BAC 的内角平分线AE ,过点B 作AE 的垂线交AE 于点F ,已知当点A 在平面内运动时,点F 与坐标原点O 的距离为( )A. √6B. √3C. √2D. 110. 车队向灾区运送一批救灾物资,去时每小时行60km ,6.5小时到达灾区,回来时每小时行78km ,则需要( )小时能够返回出发地点.A. 5B. 5.5C. 6D. 6.511. 平方等于其本身的有理数只有1. 绝对值等于其本身的有理数只有0; 相反数等于其本身的有理数只有零; 倒数等于其本身的有理数只有±1; 其中正确的有( )A. 1个B. 2个C. 3个D. 4个12. 在直线上顺次取A 、B 、C 三点,使得AB =6,BC =3,如果O 是线段AC 的中点,那么线段OB 的长度是( )A. 0.5B. 1C. 1.5D. 2二、填空题(本大题共6小题,共24.0分)13. 计算:(−2018)0−2−2−(12)−3−(−3)2得:______.14. 线段AB =10cm ,BC =3cm ,A 、B 、C 三点在同一条直线上,点M 是AC 的中点,则BM = ______ . 15. 计算:(−37)−(−47)=______;0100=______;−6ab +ab +8ba =______. 16. 如图,矩形ABCD 中,点E 为AD 的中点,连结BE ,将△ABE 沿BE 翻折,点A 恰好落在AC 上的点A 处,若AB =2,则AC 的长度为______.17. 若(x 2+px +q)(x −2)展开后不含x 的二次项,则p 的值是______.18. 如图是一个9×9的方格图,由粗线隔为9个横竖各有3个格的“小九宫”格,其中,有一些方格填有1至9的数字,小鸣在第九行的空格中各填入了一个不大于9的正整数,使每行、每列和每个“小九宫”格内的数字都不重复,然后小鸣将第九行的数字从左向右写成一个9位数.请写出这个9位数是______.三、解答题(本大题共8小题,共78.0分)19. 化简求值:当a =2019,b =1949时,求代数式a 2+b(a −1)−a(a +b −1)的值.20. 将4个数a ,b ,c ,d 排成2行、2列,两边各加一条竖直线记成∣∣ac bd ∣∣,定义∣∣a c b d ∣∣=ad −bc ,上述记号就叫做2阶行列式.若∣∣∣3−21−x x +1∣∣∣=6,求x 的值.21. 先化简,再求值:(−3ab)2(a 2+ab +b 2)−3ab(3a 3b +3a 2b 2−ab 3),其中a =−34,b =23.22. 随着我国网络信息技术的不断发展,在课堂中恰当使用技术辅助教学是时代提出的新要求,武候区为了解初中数学老师对“网络画板”信息技术的掌握情况,对部分初中数学老师进行了调查,并根据调查结果绘制成如下不完整的统计图表.掌握情况 非常熟练 比较熟练 不太熟练 基本不会 人数20a16b请根据图表信息,解答下列问题:(1)求表中a的值;(2)求图中表示“比较熟练”的扇形部分的圆心角的度数;(3)武候区共有初中数学教师350人,若将“非常熟练”和“比较熟练”作为“良好”标准,试估计武候区初中数学教师对“网络画板”信息技术掌握情况为“良好”的教师有多少人?23. 某商场购进了A,B两种空调,已知每台A空调比每台B空调贵200元,单独购买5台A空调比单独购买6台B空调少1000元.(1)每台A,B空调的单价是多少元?(2)某商场共购进了A,B两种空调共30台,且费用不得超过62000元,则最多能购进几台A空调?24. 如图,长为50cm,宽为cm的大长方形被分割为8小块,除阴影A、B外,其余6块是形状、大小完全相同的小长方形,其较短一边长为cm。
七年级(上)期末数学试卷一、选择题(共15小题,每小题3分,满分45分)1. |﹣2|等于()A.﹣2 B.﹣ C.2 D.2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚3.下列方程为一元一次方程的是()A.y+3=0 B.x+2y=3 C.x2=2x D. +y=24.下列各组数中,互为相反数的是()A.﹣(﹣1)与1 B.(﹣1)2与1 C.|﹣1|与1 D.﹣12与15.如图,下列图形全部属于柱体的是()A.B.C. D.6.若关于x的方程mx m﹣2﹣m+3=0是一元一次方程,则这个方程的解是()A.x=0 B.x=3 C.x=﹣3 D.x=27.已知同一平面内A、B、C三点,线段AB=6cm,BC=2cm,则A、C两点间的距离是()A.8cm B.84m C.8cm或4cm D.无法确定8.一元一次方程﹣=1,去分母后得()A.2(2x+1)﹣x﹣3=1 B.2(2x+1)﹣x﹣3=6 C.2(2x+1)﹣(x﹣3)=1 D.2(2x+1)﹣(x﹣3)=69.为了解我区七年级6000名学生期中数学考试情况,从中抽取了500名学生的数学成绩进行统计.下列判断:①这种调查方式是抽样调查;②6000名学生是总体;③每名学生的数学成绩是个体;④500名学生是总体的一个样本.其中正确的判断有()A.1个B.2个C.3个D.4个10.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC等于()A.30° B.45° C.50° D.60°11.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB 的大小为()A.69° B.111°C.141°D.159°12.如图,M是线段AB的中点,点N在AB上,若AB=10,NB=2,那么线段MN的长为()A.5 B.4 C.3 D.213.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.240元B.250元C.280元D.300元14.下列四种说法:①因为AM=MB,所以M是AB中点;②在线段AM的延长线上取一点B,如果AB=2AM,那么M是AB的中点;③因为M是AB的中点,所以AM=MB=AB;④因为A、M、B在同一条直线上,且AM=BM,所以M是AB中点.其中正确的是()A.①③④B.④C.②③④D.③④15.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是()A.B.C.D.二、填空题(共8小题,每小题3分,满分24分)16.单项式﹣xy2的系数是.17.若x=2是方程8﹣2x=ax的解,则a= .18.计算:15°37′+42°51′=.19.在半径为6cm的圆中,60°的圆心角所对的扇形面积等于cm2(结果保留π).20.如图,在线段AB上有两点C、D,AB=24 cm,AC=6 cm,点D是BC的中点,则线段AD=cm.21.如图,O是直线AB上一点,OD平分∠BOC,∠COE=90°,若∠AOC=40°,则∠DOE为度.22.如图,把一张长方形的纸按图那样折叠后,B、D两点落在B′、D′点处,若得∠AOB′=70°,则∠B′OG的度数为.23.观察下面的一列单项式:2x;﹣4x2;8x3;﹣16x4,…根据你发现的规律,第n个单项式为.三、解答题(共7小题,满分51分)24.计算:(1)﹣14﹣5×[2﹣(﹣3)2](2)先化简再求值(5a2+2a﹣1)﹣4(3﹣8a+2a2),其中a=﹣1.25.解方程:(1)2(3﹣y)=﹣4(y+5);(2)=;(3)﹣=1;(4)x﹣=1﹣.26.列方程解应用题:根据图中提供的信息,求出一个杯子的价格是多少元?27.列方程解应用题:已知A、B两地相距48千米,甲骑自行车每小时走18千米,乙步行每小时走6千米,甲乙两人分别A、B两地同时出发.(1)同向而行,开始时乙在前,经过多少小时甲追上乙?(2)相向而行,经过多少小时两人相距40千米?28.为增强学生的身体素质,教育行政部门规定学生每天户外活动的平均时间少于1小时,为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制成如图所示中两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中共调查了多少名学生?(2)求户外活动时间为0.5小时的人数,并补充频数分布直方图;(3)求表示户外活动时间为2小时的扇形圆心角的度数.29.已知,如图,∠AOB=150°,OC平分∠AOB,AO⊥DO,求∠COD的度数.30.已知关于x的方程的解是x=2,其中a≠0且b≠0,求代数式的值.四、选做题(共3小题,不计入总分)31.某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,其中一台盈利20%,另一台亏本20%,则本次出售中商场是(请写出盈利或亏损)元.32.|x+2|+|x﹣2|+|x﹣1|的最小值是.33.一个盖着瓶盖的瓶子里面装着一些水(如下图所示),请你根据图中标明的数据,计算瓶子的容积.参考答案与试题解析一、选择题(共15小题,每小题3分,满分45分)1.|﹣2|等于()A.﹣2 B.﹣ C.2 D.【考点】绝对值.【专题】探究型.【分析】根据绝对值的定义,可以得到|﹣2|等于多少,本题得以解决.【解答】解:由于|﹣2|=2,故选C.【点评】本题考查绝对值,解题的关键是明确绝对值的定义.2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚【考点】直线的性质:两点确定一条直线.【分析】根据直线的性质,两点确定一条直线解答.【解答】解:∵两点确定一条直线,∴至少需要2枚钉子.故选B.【点评】本题考查了直线的性质,熟记两点确定一条直线是解题的关键.3.下列方程为一元一次方程的是()A.y+3=0 B.x+2y=3 C.x2=2x D. +y=2【考点】一元一次方程的定义.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:A、正确;B、含有2个未知数,不是一元一次方程,选项错误;C、最高次数是2次,不是一元一次方程,选项错误;D、不是整式方程,不是一元一次方程,选项错误.故选A.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.4.下列各组数中,互为相反数的是()A.﹣(﹣1)与1 B.(﹣1)2与1 C.|﹣1|与1 D.﹣12与1【考点】相反数;绝对值;有理数的乘方.【专题】计算题.【分析】根据相反数得到﹣(﹣1),根据乘方得意义得到(﹣1)2=1,﹣12=﹣1,根据绝对值得到|﹣1|=1,然后根据相反数的定义分别进行判断.【解答】解:A、﹣(﹣1)=1,所以A选项错误;B、(﹣1)2=1,所以B选项错误;C、|﹣1|=1,所以C选项错误;D、﹣12=﹣1,﹣1与1互为相反数,所以D选项正确.故选D.【点评】本题考查了相反数:a的相反数为﹣a.也考查了绝对值与有理数的乘方.5.如图,下列图形全部属于柱体的是()A.B.C. D.【考点】认识立体图形.【专题】常规题型.【分析】根据柱体的定义,结合图形即可作出判断.【解答】解:A、左边的图形属于锥体,故本选项错误;B、上面的图形是圆锥,属于锥体,故本选项错误;C、三个图形都属于柱体,故本选项正确;D、上面的图形不属于柱体,故本选项错误.故选C.【点评】此题考查了认识立体图形的知识,属于基础题,解答本题的关键是掌握柱体和锥体的定义和特点,难度一般.6.若关于x的方程mx m﹣2﹣m+3=0是一元一次方程,则这个方程的解是()A.x=0 B.x=3 C.x=﹣3 D.x=2【考点】一元一次方程的定义.【专题】计算题.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0),高于一次的项系数是0.【解答】解:由一元一次方程的特点得m﹣2=1,即m=3,则这个方程是3x=0,解得:x=0.故选:A.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.7.已知同一平面内A、B、C三点,线段AB=6cm,BC=2cm,则A、C两点间的距离是()A.8cm B.84m C.8cm或4cm D.无法确定【考点】两点间的距离.【分析】根据点B在线段AC上和在线段AC外两种情况进行解答即可.【解答】解:如图1,当点B在线段AC上时,∵AB=6cm,BC=2cm,∴AC=6+2=8cm;如图2,当点CB在线段AC外时,∵AB=6cm,BC=2cm,∴AC=6﹣2=4cm.故选:C.【点评】本题考查的是两点间的距离,正确理解题意、灵活运用分情况讨论思想是解题的关键.8.一元一次方程﹣=1,去分母后得()A.2(2x+1)﹣x﹣3=1 B.2(2x+1)﹣x﹣3=6 C.2(2x+1)﹣(x﹣3)=1 D.2(2x+1)﹣(x﹣3)=6【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】方程两边乘以6去分母得到结果,即可作出判断.【解答】解:去分母得:2(2x+1)﹣(x﹣3)=6,故选D【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把x系数化为1,求出解.9.为了解我区七年级6000名学生期中数学考试情况,从中抽取了500名学生的数学成绩进行统计.下列判断:①这种调查方式是抽样调查;②6000名学生是总体;③每名学生的数学成绩是个体;④500名学生是总体的一个样本.其中正确的判断有()A.1个B.2个C.3个D.4个【考点】总体、个体、样本、样本容量;全面调查与抽样调查.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:①这种调查方式是抽样调查故①正确;②6000名学生的数学成绩是总体,故②错误;③每名学生的数学成绩是个体,故③正确;④500名学生是总体的一个样本,故④正确;故选:C.【点评】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.10.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC等于()A.30° B.45° C.50° D.60°【考点】角的计算.【专题】计算题.【分析】从如图可以看出,∠BOC的度数正好是两直角相加减去∠AOD的度数,从而问题可解.【解答】解:∵∠AOB=∠COD=90°,∠AOD=150°∴∠BOC=∠AOB+∠COD﹣∠AOD=90°+90°﹣150°=30°.故选A.【点评】此题主要考查学生对角的计算的理解和掌握,解答此题的关键是让学生通过观察图示,发现几个角之间的关系.11.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB 的大小为()A.69° B.111°C.141°D.159°【考点】方向角.【分析】首先计算出∠3的度数,再计算∠AOB的度数即可.【解答】解:由题意得:∠1=54°,∠2=15°,∠3=90°﹣54°=36°,∠AOB=36°+90°+15°=141°,故选:C.【点评】此题主要考查了方向角,关键是根据题意找出图中角的度数.12.如图,M是线段AB的中点,点N在AB上,若AB=10,NB=2,那么线段MN的长为()A.5 B.4 C.3 D.2【考点】两点间的距离.【分析】根据M是AB中点,先求出BM的长度,则MN=BM﹣BN.【解答】解:∵AB=10,M是AB中点,∴BM=AB=5,又∵NB=2,∴MN=BM﹣BN=5﹣2=3.故选C.【点评】考查了两点间的距离,根据点M是AB中点先求出BM的长度是解本题的关键.13.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.240元B.250元C.280元D.300元【考点】一元一次方程的应用.【专题】应用题.【分析】设这种商品每件的进价为x元,则根据按标价的八折销售时,仍可获利l0%,可得出方程,解出即可.【解答】解:设这种商品每件的进价为x元,由题意得:330×0.8﹣x=10%x,解得:x=240,即这种商品每件的进价为240元.故选:A.【点评】此题考查了一元一次方程的应用,属于基础题,解答本题的关键是根据题意列出方程,难度一般.14.下列四种说法:①因为AM=MB,所以M是AB中点;②在线段AM的延长线上取一点B,如果AB=2AM,那么M是AB的中点;③因为M是AB的中点,所以AM=MB=AB;④因为A、M、B在同一条直线上,且AM=BM,所以M是AB中点.其中正确的是()A.①③④B.④C.②③④D.③④【考点】比较线段的长短.【专题】应用题.【分析】根据线段中点的定义:线段上一点,到线段两端点距离相等的点,可进行判断解答.【解答】解:①如图,AM=BM,但M不是线段AB的中点;故本选项错误;②如图,由AB=2AM,得AM=MB;故本选项正确;③根据线段中点的定义判断,故本选项正确;④根据线段中点的定义判断,故本选项正确;故选C.【点评】本题考查了线段中点的判断,符合线段中点的条件:①在已知线段上②把已知线段分成两条相等线段的点.15.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是()A.B.C.D.【考点】由实际问题抽象出一元一次方程.【分析】轮船沿江从A港顺流行驶到B港,则由B港返回A港就是逆水行驶,由于船速为26千米/时,水速为2千米/时,则其顺流行驶的速度为26+2=28千米/时,逆流行驶的速度为:26﹣2=24千米/时.根据“轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时”,得出等量关系:轮船从A港顺流行驶到B港所用的时间=它从B港返回A港的时间﹣3小时,据此列出方程即可.【解答】解:设A港和B港相距x千米,可得方程:=﹣3.故选A.【点评】本题考查了由实际问题抽象出一元一次方程,抓住关键描述语,找到等量关系是解决问题的关键.顺水速度=水流速度+静水速度,逆水速度=静水速度﹣水流速度.二、填空题(共8小题,每小题3分,满分24分)16.单项式﹣xy2的系数是﹣.【考点】单项式.【分析】根据单项式系数的定义来求解.单项式中数字因数叫做单项式的系数.【解答】解:单项式﹣xy2的系数是﹣,故答案为:﹣.【点评】本题考查了单项式系数的定义,确定单项式的系数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数的关键.注意π是数字,应作为系数.17.若x=2是方程8﹣2x=ax的解,则a= 2 .【考点】一元一次方程的解.【分析】把x=2,代入方程得到一个关于a的方程,即可求解.【解答】解:把x=2代入方程,得:8﹣4=2a,解得:a=2.故答案是:2.【点评】本题考查了方程的解的定义,理解定义是关键.18.计算:15°37′+42°51′=58°28′.【考点】度分秒的换算.【分析】把分相加,超过60的部分进为1度即可得解.【解答】解:∵37+51=88,∴15°37′+42°51′=58°28′.故答案为:58°28′.【点评】本题考查了度分秒的换算,比较简单,要注意度分秒是60进制.19.在半径为6cm的圆中,60°的圆心角所对的扇形面积等于6πcm2(结果保留π).【考点】扇形面积的计算.【分析】直接利用扇形面积公式计算即可.【解答】解: =6π(cm2).故答案为6π.【点评】此题主要考查了扇形的面积公式:设圆心角是n°,圆的半径为R的扇形面积为S,则S扇=.熟记公式是解题的关键.形20.如图,在线段AB上有两点C、D,AB=24 cm,AC=6 cm,点D是BC的中点,则线段AD= 15cm.【考点】比较线段的长短.【专题】计算题.【分析】已知AB和AC的长度,即可求出BC的长度,点D是BC的中点,则可求出CD的长度,AD的长度等于AC的长度加上CD的长度.【解答】解:因为AB=24cm,AC=6cm,所以BC=18cm,点D是BC中点,所以CD的长度为:9cm,AD=AC+CD=15cm.【点评】本题关键是根据题干中的图形得出各线段之间的关系,然后根据这些关系并结合已知条件即可求出AD的长度.21.如图,O是直线AB上一点,OD平分∠BOC,∠COE=90°,若∠AOC=40°,则∠DOE为20 度.【考点】角平分线的定义.【分析】先求出∠BOC=140°,再由OD平分∠BOC,求出∠COD=∠BOC=70°,即可求出∠DOE=20°.【解答】解:∵∠AOC=40°,∴∠BOC=180°﹣∠AOC=140°,∵OD平分∠BOC,∴∠COD=∠BOC=70°,∵∠COE=90°,∴∠DOE=90°﹣70°=20°;故答案为:20.【点评】本题考查了角平分线的定义;弄清各个角之间的数量关系是解决问题的关键.22.如图,把一张长方形的纸按图那样折叠后,B、D两点落在B′、D′点处,若得∠AOB′=70°,则∠B′OG的度数为55 .【考点】轴对称的性质.【分析】根据轴对称的性质可得∠B′OG=∠BOG,再根据∠AOB′=70°,可得出∠B′OG的度数.【解答】解:根据轴对称的性质得:∠B′OG=∠BOG又∠AOB′=70°,可得∠B′OG+∠BOG=110°∴∠B′OG=×110°=55°.【点评】本题考查轴对称的性质,在解答此类问题时要注意数形结合的应用.23.观察下面的一列单项式:2x;﹣4x2;8x3;﹣16x4,…根据你发现的规律,第n个单项式为(﹣1)n+1•2n•x n.【考点】单项式.【专题】规律型.【分析】先根据所给单项式的次数及系数的关系找出规律,再确定所求的单项式即可.【解答】解:∵2x=(﹣1)1+1•21•x1;﹣4x2=(﹣1)2+1•22•x2;8x3=(﹣1)3+1•23•x3;﹣16x4=(﹣1)4+1•24•x4;第n个单项式为(﹣1)n+1•2n•x n,故答案为:(﹣1)n+1•2n•x n.【点评】本题考查了单项式的应用,解此题的关键是找出规律直接解答.三、解答题(共7小题,满分51分)24.计算:(1)﹣14﹣5×[2﹣(﹣3)2](2)先化简再求值(5a2+2a﹣1)﹣4(3﹣8a+2a2),其中a=﹣1.【考点】整式的加减—化简求值;有理数的减法;有理数的乘方.【专题】计算题;整式.【分析】(1)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(2)原式去括号合并得到最简结果,把a的值代入计算即可求出值.【解答】解:(1)原式=﹣1﹣5×(2﹣9)=﹣1+35=34;(2)原式=5a2+2a﹣1﹣12+32a﹣8a2=﹣3a2+34a﹣13,当a=﹣1时,原式=﹣3﹣34﹣13=﹣50.【点评】此题考查了整式的加减﹣化简求值,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.25.解方程:(1)2(3﹣y)=﹣4(y+5);(2)=;(3)﹣=1;(4)x﹣=1﹣.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程去括号,移项合并,把y系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(4)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:6﹣2y=﹣4y﹣20,移项合并得:2y=﹣26,解得:x=﹣13;(2)去分母得:6x﹣4=3,移项合并得:6x=7,解得:x=;(3)去分母得:6(3x+4)﹣(7﹣2x)=12,去括号得:18x+24﹣7+2x=12,移项合并得:20x=﹣5,解得:x=﹣0.25;(4)去分母得:6x﹣3(3﹣2x)=6﹣(x+2),去括号得:6x﹣9+6x=6﹣x﹣2,移项合并得:13x=13,解得:x=1.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.26.列方程解应用题:根据图中提供的信息,求出一个杯子的价格是多少元?【考点】一元一次方程的应用.【分析】设一个杯子的价格是x元,则一把暖瓶为(43﹣x)元,根据题意列出关于x的方程,求出方程的解即可得到结果.【解答】解:设一个杯子的价格是x元,则一把暖瓶为(43﹣x)元,依题意得:3x+2(43﹣x)=94,解得x=8.答:一个杯子的价格为8元.【点评】本题考查了一元一次方程的应用.关键是根据图,得出保温瓶与杯子的价钱之间的数量关系,再根据数量关系的特点,选择合适的方法进行计算.27.列方程解应用题:已知A、B两地相距48千米,甲骑自行车每小时走18千米,乙步行每小时走6千米,甲乙两人分别A、B两地同时出发.(1)同向而行,开始时乙在前,经过多少小时甲追上乙?(2)相向而行,经过多少小时两人相距40千米?【考点】一元一次方程的应用.【分析】(1)根据题意可以列出相应的方程,本题得以解决;(2)根据题意,分两种情况,一种是相遇前相距40千米,一种是相遇后相距40千米,从而可以分别写出两种情况下的方程,本题得以解决.【解答】解:(1)设同向而行,开始时乙在前,经过x小时甲追上乙,18x﹣6x=48解得,x=4即同向而行,开始时乙在前,经过4小时甲追上乙;(2)设相向而行,经过x小时两人相距40千米,18x+6x=48﹣40或18x+6x=48+40,解得x=或x=即相向而行,经过小时或小时两人相距40千米.【点评】本题考查一元一次方程的应用,解题的关键是明确题意,列出相应的方程,注意第(2)问有两种情况.28.为增强学生的身体素质,教育行政部门规定学生每天户外活动的平均时间少于1小时,为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制成如图所示中两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中共调查了多少名学生?(2)求户外活动时间为0.5小时的人数,并补充频数分布直方图;(3)求表示户外活动时间为2小时的扇形圆心角的度数.【考点】频数(率)分布直方图;扇形统计图.【分析】(1)根据时间是1小时的有32人,占40%,据此即可求得总人数;(2)利用总人数乘以百分比即可求得时间是0.5小时的一组的人数,即可作出直方图;(3)利用360°乘以活动时间是2小时的一组所占的百分比即可求得圆心角的度数.【解答】解:(1)调查人数=32÷40%=80(人);(2)户外活动时间为0.5小时的人数=80×20%=16(人);补全频数分布直方图见下图:(3)表示户外活动时间2小时的扇形圆心角的度数=×360°=48°.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.29.已知,如图,∠AOB=150°,OC平分∠AOB,AO⊥DO,求∠COD的度数.【考点】角平分线的定义.【分析】先根据角平分线的性质求出∠AOC的度数,再由AO⊥DO求出∠AOD的度数,根据∠COD=∠AOD﹣∠AOC即可得出结论.【解答】解:∵∠AOB=150°,OC平分∠AOB,∴∠AOC=∠AOB=75°.∵AO⊥DO,∴∠AOD=90°,∴∠COD=∠AOD﹣∠AOC=90°﹣75°=15°.【点评】本题考查的是角平分线的定义,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键.30.已知关于x的方程的解是x=2,其中a≠0且b≠0,求代数式的值.【考点】一元一次方程的解;代数式求值.【专题】计算题.【分析】此题把x的值代入,得出与的值,即可得出此题答案.【解答】解:把x=2代入方程得:,∴3(a﹣2)=2(2b﹣3),∴3a﹣6=4b﹣6,∴3a=4b,∴,,∴.【点评】此题考查的是一元一次方程的解,关键在于解出关于a,b的比值.四、选做题(共3小题,不计入总分)31.某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,其中一台盈利20%,另一台亏本20%,则本次出售中商场是亏损(请写出盈利或亏损)80 元.【考点】一元一次方程的应用.【分析】设盈利20%的电子琴的成本为x元,设亏本20%的电子琴的成本为y元,再根据(1+利润率)×成本=售价列出方程,解方程计算出x、y的值,进而可得答案.【解答】解:设盈利20%的电子琴的成本为x元,x(1+20%)=960,解得x=800;设亏本20%的电子琴的成本为y元,y(1﹣20%)=960,解得y=1200;∴960×2﹣(800+1200)=﹣80,∴亏损80元,故答案为:亏损;80.【点评】此题主要考查了一元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.32.|x+2|+|x﹣2|+|x﹣1|的最小值是 4 .【考点】绝对值.【分析】根据|x﹣a|表示数轴上x与a之间的距离,因而原式表示:数轴上一点到﹣2,2和1距离的和,当x在﹣2和2之间的1时距离的和最小.【解答】解:|x+2|+|x﹣2|+|x﹣1|表示:数轴上一点到﹣2,2和1距离的和,当x在﹣2和2之间的1时距离的和最小,是4.故答案为:4.【点评】本题主要考查了绝对值的意义,正确理解|x﹣a|表示数轴上x与a之间的距离,是解决本题的关键.33.一个盖着瓶盖的瓶子里面装着一些水(如下图所示),请你根据图中标明的数据,计算瓶子的容积.【考点】圆柱的计算.【专题】计算题.【分析】结合图形,知水的体积不变,从而根据第二个图空着的部分的高度是2cm,可以求得水与空着的部分的体积比为4:2=2:1.结合第一个图中水的体积,即可求得总容积.【解答】解:由已知条件知,第二个图上部空白部分的高为7﹣5=2cm,从而水与空着的部分的体积比为4:2=2:1.由第一个图知水的体积为10×4=40,所以总的容积为40÷2×(2+1)=60立方厘米.【点评】此题的关键是解决不同底的问题,能够有机地把两个图形结合起来,求得水与空着的部分的体积比.。
北师大版(七年级)初一上册数学期末测试题及答案一、选择题1.求1+2+22+23+…+22019的值,可令S =1+2+22+23+…+22019,则2S =2+22+23+…+22019+22020因此2S -S =22020-1.仿照以上推理,计算出1+5+52+53+…+52019的值为( ) A .52019-1 B .52020-1C .2020514-D .2019514-2.a ,b 在数轴上位置如图所示,则a ,b ,a -,b -的大小顺序是( )A .a b a b -<<<-B .b a b a <-<-<C .a b b a -<-<<D .b a a b <-<<-3.下列说法中正确的是( ) A .0不是单项式 B .316X π的系数为16C .27ah的次数为2 D .365x y +-不是多项式4.如图表示的是用火柴棒搭成的一个个图形,第1个图形用了5根火柴,第2个图形用了8根火柴,…,照此规律,用295根火柴搭成的图形是( )A .第80个图形B .第82个图形C .第84个图形D .第86个图形5.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,则在该正方体中,和“我”相对面上所写的汉字是( )A .美B .丽C .琼D .海6.如图,点O 在直线AB 上且OC ⊥OD ,若∠COA=36°则∠DOB 的大小为( )A .36°B .54°C .64°D .72°7. 已知:如图,C 是线段AB 的中点,D 是线段BC 的中点,AB =20 cm ,那么线段AD 等于( )A .15 cmB .16 cmC .10 cmD .5 cm8.一组按规律排列的多项式: 233547,,,,x y x y x y x y +-+-,其中第10个式子是( ) A .1019x y -B .1019x y +C .1021x y -D .1017x y - 9.已知一个角的补角比它的余角的3倍小20度,则这个角的度数是( ) A .30B .35︒C .40D .4510.下列解方程的步骤正确的是( ) A .由2x +4=3x +1,得2x +3x =1+4 B .由3(x ﹣2)=2(x +3),得3x ﹣6=2x +6 C .由0.5x ﹣0.7x =5﹣1.3x ,得5x ﹣7=5﹣13x D .由1226x x -+-=2,得3x ﹣3﹣x +2=12 11.如图,已知矩形的长宽分别为m ,n ,顺次将各边加倍延长,然后顺次连接得到一个新的四边形,则该四边形的面积为( )A .3mnB .5mnC .7mnD .9mn12.如图,一副三角尺按不同的位置摆放,摆放位置中αβ∠=∠的图形的个数是( )A .1B .2C .3D .413.下列运算正确的是( ) A .()a b c a b c -+=-+ B .2(1)21x y x y --=-+ C .22223m n nm m n -=-D .532x x -=14.如图,每个图案都由若干个“●”组成,其中第①个图案中有7个“●”,第②个图案中有13个“●”,…,则第⑨个图案中“●”的个数为( )A.87 B.91 C.103 D.11115.若数a,b在数轴上的位置如图示,则()A.a+b>0 B.ab>0 C.a﹣b>0 D.﹣a﹣b>016.以下问题,不适合抽样调查的是()A.了解全市中小学生的每天的零花钱B.旅客上高铁列车前的安检C.调查某批次汽车的抗撞击能力D.调查某池塘中草鱼的数量17.已知a,b是有理数,若表示它们的点在数轴上的位置如图所示,则|a|–|b|的值为()A.零B.非负数C.正数D.负数18.若x=1是关于x的方程3x﹣m=5的解,则m的值为()A.2 B.﹣2 C.8 D.﹣819.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣2 B.a>﹣b C.a>b D.|a|>|b|、两地同时骑自行车相向而行,2小时后在途中相遇,相遇后,20.甲、乙两人分别从A B甲、乙骑自行车的速度都提高了1千米/小时,当甲到达地后立刻以原路和提高后的速度向地返行,乙到达A地后也立刻以原路和提高后的速度向B地返行.甲、乙两人在开始出、两地的距离是()发后的5小时36分钟又再次相遇,则A BA.24千米B.30千米C.32千米D.36千米21.如图是一根起点为1的数轴,现有同学将它弯折,弯折后虚线上第一行的数是1,第二行的数是13,第三行的数是43,…,依此规律,第五行的数是()A.183 B.157 C.133 D.9122.七年级数学拓展课上:同学们玩一种类似于古代印度的“梵塔游戏”,有3个柱子甲、乙、丙,在甲柱上现有4个盘子,最上面的两个盘子大小相同,从第二个盘子往下大小不等,大的在下,小的在上(如图),把这4个盘子从甲柱全部移到乙柱游戏即结束,在移动过程中每次只能移动一个盘子,甲、乙、丙柱都可以利用,且3个柱子上的盘子始终保持小的盘子不能放在大的盘子之下,设游戏结束需要移动的最少次数为n,则n ( )A.9 B.11 C.13 D.1523.在求两位数的平方时,可以用“列竖式”的方法进行速算,求解过程如图1所示.仿照图1,用“列竖式”的方法计算一个两位数的平方,部分过程如图2所示,若这个两位数的个位数字为a,则这个两位数为()A.a﹣50 B.a+50 C.a﹣20 D.a+2024.2018年电影《我不是药神》反映了进口药用药贵的事实,从而引起了社会的广泛关注.国家针对部分药品进行改革,看病贵将成为历史.某药厂对售价为m元的药品进行了降价,现在有三种方案.方案一:第一次降价10%,第二次降价30%;方案二:第一次降价20%,第二次降价15%;方案三:第一、二次降价均为20%.三种方案哪种降价最多()A.方案一B.方案二C.方案三D.不能确定25.已知有理数a,b在数轴上表示的点如图所示,则下列式子中正确的是()A.a﹣b>0 B.a+b>0 C.ba>0 D.ab>026.如图所示是一个自行设计的计算程序,若输入x的值为1,那么执行此程序后,输出的数y是()A .﹣2B .2C .3D .4 27.“比a 的3倍大5的数”用代数式表示为( )A .35a +B .3(5)a +C .35a -D .3(5)a -28.如图,王老师将某班近三个月跳跃类项目的训练情况做了统计,并绘制了折线统计图,则根据图中信息以下判断错误的是( )A .男女生5月份的平均成绩一样B .4月到6月,女生平均成绩一直在进步C .4月到5月,女生平均成绩的增长率约为8.5%D .5月到6月女生平均成绩比4月到5月的平均成绩增长快 29.方程114xx --=-去分母正确的是( ). A .x-1-x=-1 B .4x-1-x=-4 C .4x-1+x=-4 D .4x-1+x=-1 30.已知232-m a b 和45n a b 是同类项,则m n -的值是( )A .-2B .1C .0D .-1【参考答案】***试卷处理标记,请不要删除一、选择题 1.C【解析】【分析】根据题目信息,设S=1+5+52+53+…+52019,表示出5S=5+52+53+…+52020,然后相减求出S即可.【详解】根据题意,设S=1+5+52+53+…52019,则5S=5+52+53+…52020,5S-S=(5+52+53+…52020)-(1+5+52+53+…52019),4S=52020-1,所以,1+5+52+53+…+52019 =2020 514故选C.【点睛】本题考查了有理数的乘方,读懂题目信息,理解等比数列的求和方法是解题的关键.2.D解析:D【解析】【分析】从数轴上a b的位置得出b<0<a,|b|>|a|,推出-a<0,-a>b,-b>0,-b>a,根据以上结论即可得出答案.【详解】从数轴上可以看出b<0<a,|b|>|a |,∴-a<0,-a>b,-b>0,-b>a,即b<-a<a<-b,故选D.【点睛】本题考查了数轴和有理数的大小比较,关键是能根据a、b的值得出结论-a<0,-a>b,-b >0,-b>a,题目比较好,是一道比较容易出错的题目.3.C解析:C【解析】【分析】根据单项式与多项式的概念即可求出答案.【详解】解:(A)0是单项式,故A错误;(B)πx3的系数为,故B错误;(D)3x+6y-5是多项式,故D错误;【点睛】本题考查单项式与多项式,解题的关键是熟练运用单项式与多项式的概念,本题属于基础题型.4.C解析:C【解析】【分析】根据图形可以看出第1个图形有5根火柴棒,第2个图形有8根火柴棒,第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12,由此可解决问题.【详解】解:根据图形可以看出第1个图形有5根火柴棒,第2个图形有8根火柴棒,第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12,若5+7(n-1)×12=295,没有整数解,若8+7(n-2)×12=295,解得n=84,即用295根火柴搭成的图形是第84个图形,故选:C.【点睛】本题考查了根据图象探索规律问题,从简单的情形考虑,发现规律解决问题.5.B解析:B【解析】【分析】利用正方体及其表面展开图的特点解题即可.【详解】解:这是一个正方体的平面展开图,共有六个面,其中面“爱”与面“琼”相对,面“海”与面“美”相对,面“我”与面“丽”相对;故选:B.【点睛】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手、分析及解答问题.解析:B【解析】∵OC⊥OD,∴∠COD=90°,又∵∠AOC+∠COD+∠DOB=180°,∴∠DOB=180°-36°-90°=54°.故选B.7.A解析:A【解析】【分析】根据C点为线段AB的中点,D点为BC的中点,可知AC=CB=12AB,CD=12CB,AD=AC+CD,又AB=4cm,继而即可求出答案.【详解】∵点C是线段AB的中点,AB=20cm,∴BC=12AB=12×20cm=10cm,∵点D是线段BC的中点,∴BD=12BC=12×10cm=5cm,∴AD=AB-BD=20cm-5cm=15cm.故选A.【点睛】本题考查了两点间的距离的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.8.A解析:A【解析】【分析】把已知的多项式看成由两个单项式组成,分别找出两个单项式的规律,也就知道了多项式的规律.【详解】多项式的第一项依次是x,x2,x3,x4,…,x n,第二项依次是y,-y3,y5,-y7,…,(-1)n+1y2n-1,所以第10个式子即当n=10时,代入到得到x n+(-1)n+1y2n-1=x10-y19.故选:A.【点睛】本题主要考查了多项式,本题属于找规律的题目,把多项式分成几个单项式的和,分别找出各单项式的规律是解决这类问题的关键.解析:B【解析】【分析】列方程解决问题,本题等量关系是3×余角-补角=20°,设这个角的度数为x°,则补角的度数为(180-x)°,余角的度数为(90-x)°,代入等量关系即可求解.【详解】设:这个角的度数是x,则补角的度数为180-x,余角的度数为90-x,由题意得:()()39018020x x---=解得35x=故选B.【点睛】本题考察了列方程解应用题,解题过程中要注意解应用题的步骤,正确找到等量关系是本题的关键.10.B解析:B【解析】【分析】根据一元一次方程的解题步骤,去分母、去括号、移项、合并同类项、化系数为1一一判断即可,其中C选项利用等式的性质进行化简.【详解】解:A、2x+4=3x+1,移项得:2x-3x=1-4,故本选项错误;B、3(x-2)=2(x+3),去括号得:3x-6=2x+6,故本选项正确;C、0.5x-0.7x=5-1.3x,利用等式基本性质等式两边都乘以10得:5x-7x=50-13x,故本选项错误;D、1226x x-+-=2,去分母得:3x-3-x-2=12,故本选项错误;故选:B.【点睛】本题考查了一元一次方程的解法,能正确根据等式的性质进行变形是解此题的关键.解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化成1.11.B解析:B【解析】【分析】如图,可分别求出各个直角三角形的面积,再加上中间的矩形面积即可得到答案.【详解】如图,根据题意可得:1()2FDE HBG S S n n m mn ∆∆==+=, 1()2ECH GAF S S m m n mn ∆∆==+=, 又矩形ABCD 的面积为mn ,所以,四边形EFGH 的面积为:++++5FDE HBG ECH GAF ABCD S S S S S mn mn mn mn mn mn ∆∆∆∆=++++=矩形,故选:B . 【点睛】此题主要考查了根据图形的面积列代数式,熟练掌握直角三角形面积公式易用佌题的关键.12.C解析:C 【解析】 【分析】根据直角三角板可得第一个图形∠β=45°,进而可得∠α=45°;根据余角和补角的性质可得第二个图形、第四个图形中∠α=∠β,第三个图形∠α和∠β互补. 【详解】根据角的和差关系可得第一个图形∠α=∠β=45°, 根据等角的补角相等可得第二个图形∠α=∠β, 第三个图形∠α+∠β=180°,不相等,根据同角的余角相等可得第四个图形∠α=∠β, 因此∠α=∠β的图形个数共有3个, 故选:C . 【点睛】此题主要考查了余角和补角,关键是掌握余角和补角的性质:等角的补角相等.等角的余角相等.13.C解析:C 【解析】 【分析】分别判断各选项是否正确.【详解】A 中,a b +c a b c -=--(),错误;B 中,2(1)22x y x y --=-+,错误;C 中,22223m n nm m n -=-,正确;D 中,532x x x -=,错误故选:C .【点睛】本题考查整式的加减法,需要注意合并同类项时,仅是系数的加减.14.D解析:D【解析】【分析】根据第①个图案中“●”有:1+3×(0+2)个,第②个图案中“●”有:1+4×(1+2)个,第③个图案中“●”有:1+5×(2+2)个,第④个图案中“●”有:1+6×(3+2)个,据此可得第⑨个图案中“●”的个数.【详解】解:∵第①个图案中“●”有:1+3×(0+2)=7个,第②个图案中“●”有:1+4×(1+2)=13个,第③个图案中“●”有:1+5×(2+2)=21个,第④个图案中“●”有:1+6×(3+2)=31个,…∴第9个图案中“●”有:1+11×(8+2)=111个,故选:D .【点睛】本题考查规律型:图形的变化,解题的关键是将原图形中的点进行无重叠的划分来计数.15.D解析:D【解析】【分析】首先根据有理数a ,b 在数轴上的位置判断出a 、b 两数的符号,从而确定答案.【详解】由数轴可知:a <0<b ,a<-1,0<b<1,所以,A.a+b<0,故原选项错误;B. ab <0,故原选项错误;C.a-b<0,故原选项错误;D. 0a b -->,正确.故选D .【点睛】本题考查了数轴及有理数的乘法,数轴上的数:右边的数总是大于左边的数,从而确定a ,b 的大小关系.16.B解析:B【解析】A 、了解全市中小学生的每天的零花钱,人数较多,应采用抽样调查,故此选项错误;B 、旅客上高铁列车前的安检,意义重大,不能采用抽样调查,故此选项正确;C 、调查某批次汽车的抗撞击能力,具有破坏性,应采用抽样调查,故此选项错误;D 、调查某池塘中草鱼的数量众多,应采用抽样调查,故此选项错误;故选B .17.D解析:D【解析】【分析】本题根据a 、b 在数轴上的位置判定其绝对值大小,继而作差可直接得出答案.【详解】由已知得:a 离数轴原点的距离相对于b 更近,可知a <b , 故:0a b -<,即其差值为负数;故选:D .【点睛】本题考查根据数轴上点的位置判别式子正负,解题关键在于对数轴相关概念与性质的理解,比较大小注意细心即可.18.B解析:B【解析】【分析】把x =1代入方程3x ﹣m =5得出3﹣m =5,求出方程的解即可.【详解】把x =1代入方程3x ﹣m =5得:3﹣m =5,解得:m =﹣2,故选:B .【点睛】本题考查了解一元一次方程和一元一次方程的解,能得出关于m 的一元一次方程是解此题的关键.19.D解析:D【解析】分析:根据数轴上a 、b 的位置,判断出a 、b 的范围,然后根据有理数的大小比较和绝对值的性质进行比较即可.详解:根据数轴上点的位置得:﹣3<a<﹣2,1<b<2,∴|a|>|b|,a<﹣b,b>a,a<﹣2,故选D.点睛:本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大是解题关键.20.D解析:D【解析】【分析】第一次相遇时,甲、乙的速度和为xkm/h,由第一次到第二次相遇的过程中,甲,乙的路程和是第一次相遇时甲,乙路程和的两倍.可列方程,即可求解.【详解】解:设第一次相遇时,甲、乙的速度和为xkm/h,5小时36分钟=535(小时)由题意可得:2×2x=(535-2)(x+2),解得:x=18,∴A、B两地的距离=2×18=36(km),故选:D.【点睛】本题考查了一元一次方程的应用,理解题意,找到正确的等量关系是本题的关键.21.B解析:B【解析】【分析】观察根据排列的规律得到:所有的数字都是奇数,发生弯折的数与上一个弯折的数的差依次是2,4,6,8…,每一行的数比上次增加连续的三个偶数.依次计算即可得到结论.【详解】所有的数字都是奇数,发生弯折的数与上一个弯折的数的差依次是2,4,6,8…,每一行的数每次增加连续的三个偶数.第一行数字为1第二行数字为1+(2+4+6)=1+2(1+2+3)=1+3×4=13第三行数字为1+(2+4+6)+(8+10+12)=1+2(1+2+3+4+5+6)=1+6×7=43第四行数字为1+(2+4+6)+(8+10+12)+(14+16+18)=1+2(1+2+3+4+5+6+7+8+9)=1+9×10=91第五行数字为1+(2+4+6)+(8+10+12)+(14+16+18)+(20+22+24)=1+2(1+2+3+4+5+6+7+8+9+10+11+12)=1+12×13=157.【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.22.B解析:B【解析】【分析】首先不考虑题目中最上面两个盘子大小相同的情况,分别求出盘子数量n=1,n=2和n=3时所需要移动的最少次数,而当有四个盘子,且最上面两个盘子大小相同时,相当于操作三个盘子的时候,最上面的那个盘子动了几次,就会增加几次,然后计算即可.【详解】解:首先不考虑题目中最上面两个盘子大小相同的情况,当盘子数量n=1时,游戏结束需要移动的最少次数为1;当盘子数量n=2时,小盘→丙柱,大盘→乙柱,小盘再从丙柱→乙柱,游戏结束需要移动的最少次数为3;盘子数量n=3时,小盘→乙柱,中盘→丙柱,小盘从乙柱→丙柱,也就是用n=2的方法把中盘和小盘移到丙柱,大盘移到乙柱,再用n=2的方法把中盘和小盘从丙柱移到乙柱,至此完成,游戏结束时需要移动的最少次数为3+1+3=7;当有四个盘子,且最上面两个盘子大小相同时,相当于操作三个盘子的时候,最上面的那个盘子动了几次,就会增加几次,故游戏结束需要移动的最少次数为7+4=11,故选B.【点睛】本题考查了图形变化的规律问题,理解题意,正确分析出完成移动的过程是解题的关键.23.B解析:B【解析】【分析】根据表格可得,第一行从右向左分别为个位数和十位数字的平方,每个数的平方占两个空,平方是一位数的前面的空用0填补,第二行从左边第2个空开始向右是这个两位数的两个数字的乘积的2倍,然后相加即为这个两位数的平方,根据此规律求解设这个两位数的十位数字为b,根据图3,利用十位数字与个位数字的乘积的2倍的关系列出方程用a表示出b,然后写出即可.【详解】解:设这个两位数的十位数字为b,由题意得,2ab=10a,解得b=5,所以,这个两位数是10×5+a=a+50.故答案为B.本题考查了数字变化规律的,仔细观察图形、观察出前两行的数与两位数的十位和个位上的数字的关系是解答本题的关键.24.A解析:A【解析】【分析】先用代数式分别表示出三种方案降价前后的价格,然后进行比较即可.【详解】解:由题意可得:方案一降价0.1m+m(1-10%)30%=0.37m;方案二降价0.2m+m(1-20%)15%=0.32m;方案三降价0.2m+m(1-20%)20%=0.36m;故答案为A.【点睛】本题考查列代数式,解答本题的关键是明确题意、列出相应的代数式并进行比较..25.A解析:A【解析】【分析】根据数轴判断出a、b的正负情况以及绝对值的大小,再根据有理数的加减法法则以及乘除法法则对各选项分析判断后利用排除法求解.【详解】由图可知,b<0,a>0,且|b|>|a|,A、a-b>0,故本选项符合题意;B、a+b<0,故本选项不合题意;C、ba<0,故本选项不合题意;D、ab<0,故本选项不合题意.故选:A.【点睛】本题考查了数轴,熟练掌握数轴的特点并判断出a、b的正负情况以及绝对值的大小是解题的关键.26.D解析:D【解析】【分析】按照程序的流程,写出前几次循环的结果,并同时判断各个结果是否满足判断框中的条件,直到满足条件,执行输出y.解:由已知计算程序可得到代数式:2x2﹣4,当x=1时,2x2﹣4=2×12﹣4=﹣2<0,所以继续输入,即x=﹣2,则:2x2﹣4=2×(﹣2)2﹣4=4>0,即y=4,故选D.【点睛】本题考查解决程序框图中的循环结构时常采用写出前几次循环的结果,找规律.27.A解析:A【解析】【分析】根据题意可以用代数式表示比a的3倍大5的数,本题得以解决.【详解】解:比a的3倍大5的数”用代数式表示为:3a+5,故选A.【点睛】本题考查列代数式,解题的关键是明确题意,列出相应的代数式.28.C解析:C【解析】【分析】男女生5月份的平均成绩均为8.9,据此判断A选项;4月到6月,女生平均成绩依次为8.8、8.9、9.2,据此可判断B选项;根据增长率的概念,结合折线图的数据计算,从而判断C选项;根据女生平均成绩两端折线的上升趋势可判断D选项.【详解】解:A.男女生5月份的平均成绩一样,都是8.9,此选项正确,不符合题意;B.4月到6月,女生平均成绩依次为8.8、8.9、9.2,其平均成绩一直在进步,此选项正确,不符合题意;C.4月到5月,女生平均成绩的增长率为8.98.8100% 1.14%8.8-⨯≈,此选项错误,符合题意;D.5月到6月女生平均成绩比4月到5月的平均成绩增长快,此选项正确,不符合题意;故选:C.【点睛】本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,解题的关键是根据折线图得出解题所需的数据及增长率的概念.解析:C【解析】1144(1)4414x x x x x x --=---=--+=- 方程左右两边各项都要乘以4,故选C30.D解析:D【解析】【分析】根据同类项的字母相同且相同字母的指数也相同,可得关于m 、n 的方程,根据方程的解可得答案.【详解】∵232-m a b 和45n a b 是同类项∴2m=4,n=3∴m=2,n=3∴=231m n --=-故选D .【点睛】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点.。
七年级(上)期末数学试卷题号一二三四总分得分一、选择题(本大题共12 小题,共 48.0 分)1. 2019 的相反数是()A. 12019B. - 2019C. - 12019D. 20192. 人体内一种细胞的直径约为0.00000156m 0.00000156用科学记数法表示为,数据()A. 1.56×10-5B. 1.56×10-6C. 15.6×10-7D. - 1.56×1063.如图,是由 4 个大小同样的正方体搭成的几何体,从上边看到的几何体的形状是()A. B. C.D.4.以下四个生产生活现象,能够用基本领实“两点之间,线段最短”来解说的是()A.用两个钉子就能够把木条固定在墙上B.植树时,只需定出两棵树的地点,就能确立同一行树所在的直线C.打靶的时候,眼睛要与枪上的准星、靶心在同一条直线上D. 从A地到B地架设电线,老是尽可能沿着线段AB 来架设5. 以下检查中,最合适采纳普查方式的是()A. 对某批电视机的使用寿命的检查B. 对济南市初中学生每日阅读时间的检查C. 对某中学七年级一班学生视力状况的检查D. 对市场上大米质量状况的检查6. 如图,是一个几何体的表面睁开图,则该几何体是()A.三棱柱B.四棱锥C.长方体D.正方体7. 以下运算正确的选项是()A. x2+x2=x4B. ?a2?a3=a5??C. (3x)2?=6x2D. (mn)5÷(mn)=mn48. 对于 y 的方程 3y+5=0 与 3y+3k=1 的解完好同样,则 k 的值为()A.-2B. 34C. 2D.- 43A. 88°B. 134°C. 135°D. 144°10. 某商场把一双钉鞋按标价的八折销售,仍可赢利 20% .若钉鞋的进价为 100 元,则标价为()A. 145元B. 165元C. 180元D. 150元11.已知线段 AB=2cm,延伸 BA 到 C,使 AC=6cm,假如点 O 为 AC 的中点,则线段OB 的长为()A. 1cmB. 5cmC. 1cm或5cmD. 1cm或4cm12.我们知道,四边形有 2 条对角线,五边形有 5 条对角线,那么十二边形的对角线总条数是()A. 9B. 54C. 60D. 108二、填空题(本大题共 6 小题,共 24.0 分)13. A B、C三点相对于海平面分别是-13米、-7米、-20米,那么最高的地方比最低、的地方高 ______米.14.m n+3 是同类项,则n已知 -25a2 b 和 2a6b m =______ .15.某校初一年级在上午 10: 00 睁开“阳光体育”活动.上午 10: 00 这一时刻,钟表上分针与时针所夹的角等于 ______度.16.已知长方形的面积为( 6a2b-4a2+2a),宽为 2a,则长方形的周长为 ______.17.一个小立方块的六个面分别标有数字1, -2, 3, -4, 5, -6,从三个不一样方向看到的情况以下图,则如图搁置时的底面上的数字之和等于______.18. 如图,数轴上,点 A 表示的数为 1,现点 A 做以下挪动:第 1 次点 A 向左挪动 3 个单位长度至点 A1,第 2 次从点 A1向右挪动 6 个单位长度至点 A2,第 3 次从点 A2向左挪动 9 个单位长度至点A3,,依据这类挪动方式进行下去,点A2019表示的数是 ______.三、计算题(本大题共 5 小题,共56.0 分)19.计算(1) |5-8|+24 ÷( -2)×12(2)( 54-76 )×( -87 )2- 2( 3)( 2x -3xy- 12x )(5x +xy+x)( 4)( -2a2)3+a8÷a2+3 a?a5( 5)( 2x-5)( 2x+5 ) -2x ( 2x-3)( 6)( 3x+y)2-( 3x-y)220.解方程(1) 4x-3( 5-x) =6(2) x-13-5x-26=121.在“元旦“时期,几名学生伴同家长一同到某公园游乐,下边是购置门票时,小明与他爸爸的对话(如图),试依据图中的信息,解答以下问题:(1)小明他们一共去了几名成人,几名学生?(2)请你帮助小明算一算,用哪一种方式购票更省钱?并说明原因.22.如图,已知数轴上点 A 表示的数为8, B 是数轴上位于点 A 左边一点,且AB=20 ,动点 P 从点 A 出发,以 3 个单位 /秒的速度沿着数轴负方向匀速运动,设运动时间为t 秒( t> 0).(1)写出数轴上点 B 表示的数 ______;动点 P 对应的数是 ______(用含 t 的代数式表示);( 2)动点 Q 从点 B 出发,以 1 个单位 /秒的速度匀速运动,且点P, Q 同时出发①若动点 Q 沿着数轴正方向匀速运动,多少秒时点P 与点 Q 相遇?②若动点 Q 沿着数轴负方向匀速运动,多少秒时点P 与点 Q 相距 4 个单位?23.请将“2,4,6,7,9,11,12,14,16”共9个数,填入到下边3×3 的方格中,使得每行、每列、每条对角线上的三个数之和相等,组成一个三阶幻方.(起码三种不一样的填法)四、解答题(本大题共 3 小题,共 22.0 分)24. 先化简,再求值:7a2b-2( 2a2 b-3ab2)-( 4a2b-ab2),此中 |a+2|+( b-12 )2=0.25.如图,点 O 为直线 CA 上一点,∠BOC=46 °,OD 均分∠AOB,∠EOB =90 °,求∠AOE 和∠DOE 的度数.26.为了认识市民“获得新闻的最主要门路”某市记者睁开了一次抽样检查,依据检查结果绘制了以下尚不完好的统计图.依据以上信息解答以下问题:(1)此次接受检查的市民总人数是 ______;请补全条形统计图;(2)扇形统计图中,“电视”所对应的圆心角的度数是 ______ ;(3)若该市约有 90 万人,请你预计此中将“电脑和手机上网”作为“获得新闻的最主要门路”的总人数.答案和分析1.【答案】 B【分析】解:2019 的相反数是 -2019.应选:B .直接利用相反数的定 义剖析得出答案.本题主要考察了相反数,正确掌握定 义是解题重点.2.【答案】 B【分析】解:0.00000156用科学记数法表示 为 1.56 ×10-6,应选:B .绝对值小于 1 的正数也能够利用科学 记数法表示,一般形式 为 a ×10-n,与较大数的科学 记数法不一样的是其所使用的是 负指数幂,指数由原数左边起第一个不为零的数字前面的 0 的个数所决定.本题考察用科学记数法表示 较小的数,一般形式为 a ×10-n,此中1≤|a|<10,n为由原数左 边起第一个不 为零的数字前面的 0 的个数所决定.3.【答案】 A【分析】解:从上边看到的几何体的形状 图是,应选:A .从几何体的上边看有 3 列,从左到右分别是 1,1,1 个正方形.本题考察了简单组合体的三 视图,主要培育学生的思虑能力和 对几何体三种视图的空间想象能力.4.【答案】 D【分析】解:A 、依据两点确立一条直 线,故本选项错误 ;B 、依据两点确立一条直 线,故本选项错误 ;D、依据两点之间,线段最短,故本选项正确.应选:D.依据线段的性质对各选项进行逐个剖析即可.本题考察了两点之间线段最短,熟知“两点之间,线段最短”是解答此题的关键.5.【答案】C【分析】解:A 、对某批电视机的使用寿命的检查,检查范围广合适抽样检查,故A 不切合题意;B、对济南市初中学生每日阅读时间的检查,检查范围广合适抽样检查,故B 不切合题意;C、对某中学七年级一班学生视力状况的检查,合适普查,故C 切合题意;D、对市场上大米质量状况的检查,检查范围广合适抽样检查,故 D 不切合题意;应选:C.由普查获得的检查结果比较正确,但所费人力、物力和时间许多,而抽样调查获得的检查结果比较近似.本题考察了抽样检查和全面检查的差别,选择普查仍是抽样检查要依据所要考察的对象的特色灵巧采纳,一般来说,对于拥有损坏性的检查、没法进行普查、普查的意义或价值不大,应选择抽样检查,对于精准度要求高的检查,事关重要的检查常常采纳普查.6.【答案】A【分析】解:由图得,这个几何体为三棱柱.应选:A.由睁开图得这个几何体 为棱柱,底面为三边形,则为三棱柱.考察了几何体的睁开 图,有两个底面的为柱体,有一个底面的 为锥体.7.【答案】 B【分析】解:A 、x 2+x 2=2x 2,错误;B 、a 2?a 3=a 5,正确;C 3x 2 =9x 2,错误;、( )54错误;D 、(mn )÷(mn )=(mn ), 应选:B .依据归并同 类项、同底数幂的乘法、除法和幂的乘方计算判断即可.本题考察同底数幂的乘法、除法,重点是依据归并同 类项、同底数幂的乘法、除法和幂的乘方法 则解答.8.【答案】 C【分析】解:解第一个方程得:y=-解第二个方程得: y=∴- =∴k=2应选:C .能够分别解出双方程的解,两解相等,就获得对于m 的方程,从而能够求出 m的值.本题的重点是正确解一元一次方程.理解方程的解的定 义,就是能够使方程左右两边相等的未知数的 值.9.【答案】 B【分析】解:∵∠ACB= ∠DCF=90°,∠BCD=46°∴∠ACF=∠ACB+ ∠FCD- ∠BCD=90°+90 °-46 °=134 °.从图能够看出,∠ACF 的度数正好是两直角相加减去∠BCD 的度数,从而问题可解.本题主要考察了互余两角的定义,正确掌握互余两角的定义是解题重点.10.【答案】D【分析】解:设每件的标价为 x 元,由题意得:80%x=100×(1+20%),解得:x=150.即每件的标价为 150 元.应选:D.设每件的标价为 x 元,依据八折销售可赢利 20%,可得出方程:80%x=100×(1+20%),解出即可.本题考察了一元一次方程的应用,属于基础题,重点是认真审题,得出等量关系,利用方程思想解答,难度一般.11.【答案】A【分析】解:∵AB=2cm ,AC=6cm ,∵O 是 AC 的中点,∴AO= AC=×6=3cm,∴BO=AO-AB=3-2=1cm .应选:A.依据 O 是 AC 的中点求出 AO 的长,依据 BO=AO-AB 即可得出结论.本题考察的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的重点.12.【答案】B【分析】解:十二边形的对角线总条数 ==54(条).故十二边形的对角线总条数是 54.应选:B.角线,依据以上关系直接计算即可.本题考察了多边形对角线的定义及计算公式,熟记多边形的边数与对角线的关系式是解决此类问题的重点.13.【答案】13【分析】解:由题意知:最高的地方是 -7 米,最低的地方是 -20 米,∴最高的地方比最低的地方高-7-(-20)=13 米.故答案为:13 米.依据题意先确立最高的地方是 -7 米,最低的地方是 -20 米,而后再利用有理数的减法计算即可.本题考察了有理数的减法,解决此题的关确立键是确立三点中的最高点和最低点,而后再利用有理数的减法法则:减去一个数等于加上这个数的相反数解题.14.【答案】19【分析】解:由题意可知:2m=6,n+3=1,∴m=3,n=-2,-2∴原式=3 =,故答案为:.依据同类项的定义即可求出答案.本题考察同类项,解题的重点是娴熟运用同类项的定义,本题属于基础题型.15.【答案】60【分析】解:上午10 点整,时针指向 10,分钟指向 12,钟表 12 个数字,每相邻两个数字之间的夹角为 30°,∴上午 10:00 这一时刻钟面上分针与时针所夹的角为 30°×2=60 °.依据钟表 12 个数字,每相邻两个数字之 间的夹角为 30°计算.本题考察钟面角的知 识,掌握钟表 12 个数字,每相邻两个数字之 间的夹角为30°是解 题的重点.16.【答案】 6ab+2【分析】解:依据题意得:(6a 2b-4a 2+2a )÷2a=3ab-2a+1,则长方形的周 长为 2(2a+3ab-2a+1)=2(3ab+1)=6ab+2,故答案为:6ab+2利用整式的除法法 则求出长,从而求出周 长即可.本题考察了整式的除法,娴熟掌握运算法 则是解本题的重点.17.【答案】 -9【分析】解:∵由图可知,与 1 相邻的面上的数是 3、-4、5、-6,∴1 的相对面是 -2,∵与-6 相邻的面上的数是 1、3、5、-2,∴-6 的相对面是 -4,∴5 与 3 是相对面.则如图搁置时三个底面上的数字是 -6,1,-4,∴-6+1-4=-9.故答案为:-9.依据与 1 相邻的面上的数是 3、-4、5、-6 判断出 1 的相对面是 -2,与-6 相邻的面上的数是 1、3、5、-2,判断出-6 的相对面是 -4,而后判断出 5、3 是相对面.本题考察了正方体相 对两个面上的文字,依据相 邻的面确立出 对面上的数字是解题的重点.18.【答案】 -3031【分析】解:第n 次挪动 3n 个单位,第2019 次左移 2019×3 个单位,每左移右移各一次后,点 A 右移 3 个单位,因此 A 2019表示的数是 3×(2018÷2)-2019 ×3+1=-3031.故答案为:-3031.奇数次移动是左移,偶数次挪动是右移,第 n次挪动 3n 个单位.每左移右移各一次后,点 A 右移 3 个单位,故第 2018 次右移后,点 A 向右挪动 3×(2018÷2)个单位,第 2019 次左移 2019×3 个单位,故点 A 2019表示的数是 3×(2018÷2)-2019 ×3+1.本题考察数轴上点的移动规律,确立每次挪动方向和距离的规律,以及相邻两次挪动的后的实质距离和方向是解答次题的重点.19.【答案】解:(1)原式=3-6=-3;(2)原式 =-54 ×87+76 ×87 =-107 +43=-221 ;(3)原式 =2x2-3xy-12 x-5x2-xy-x=-3 x2-4xy-32 x;(4)原式 =-8a6+a6+3a6=-4a6;(5)原式 =4x2-25-4x2+6x=6x-25;2 2 2 2( 6)原式 =9x +6xy+y -9x +6xy-y =12xy.【分析】(1)原式先计算绝对值及乘除运算,再计算加减运算即可求出值;(2)原式利用乘法分派律计算即可求出值;(3)原式去括号归并即可获得结果;(4)原式利用幂的乘方与积的乘方,同底数幂的乘除法则计算,归并即可获得结果;(5)原式利用平方差公式,以及单项式乘以多项式法例计算,去括号归并即可获得结果;(6)原式利用完好平方公式化简,去括号归并即可获得结果.本题考察了整式的混淆运算,以及整式的加减,熟练掌握运算法则是解本题的重点.20.【答案】解:(1)去括号得:4x-15+3x=6,移项归并得:7x=21,解得: x=3;(2)去分母得: 2x-2-5x+2=6 ,移项归并得: -3x=6,解得: x=-2 .【分析】(1)方程去括号,移项归并,把 x 系数化为 1,即可求出解;(2)方程去分母,去括号,移项归并,把 x 系数化为 1,即可求出解.本题考察认识一元一次方程,熟练掌握运算法则是解本题的重点.21.【答案】解:(1)设小明他们一共去了x 个成人,则去了(12-x)个学生,依据题意得: 40x+40×0.5 ( 12-x)=400,解得: x=8,∴12-x=4.答:小明他们一共去了 8 个成人, 4 个学生.( 2) 40×0.6 ×16=384 (元),384 元< 400 元.答:购置16 张集体票省钱.【分析】(1)设小明他们一共去了 x 个成人,则去了(12-x)个学生,依据总价=单价×数量联合成人票及学生票的价钱,即可得出对于x 的一元一次方程,解之即可得出结论;(2)先求出购置 16 张集体票的价钱,与 400 比较后即可得出结论.本题考察了一元一次方程的应用,解题的重点是:(1)依据总价=单价×数目结合成人票及学生票的价钱,列出对于 x 的一元一次方程;(2)求出购置 16 张集体票的价钱.22.【答案】-128-3t【分析】解:(1)∵点 A 表示的数是 8,且 AB=20 ,点B 在点 A 的左侧,∴点 B 表示的数为 8-20=-12,动点 P 表示的数是 8-3t,(2)① 由题意得:t+3t=20,解得:t=5,答:5 秒时点 P 与点 Q 相遇;②第一种状况:点 P 追上点 Q 前,t+20=3t+4,解得:t=8;第二种状况:点 P 追上点 Q 后,t+20+4=3t,解得:t=12,答:经过 8 秒或 12 秒时点 P 与点 Q 相距 4 个单位.(1)依据两点间的距离公式求解可得;(2)① 依据点 P 运动行程 +点 Q 运动行程 =AB 的长度列方程求解可得;②分点 P 追上点 Q 前和点 P 追上点 Q 后两种状况,分别列出对于 t 的方程求解可得.本题主要考察一元一次方程和数轴,解题的重点是娴熟掌握数轴上两点间的距离公式和追及问题中包含的相等关系.23.【答案】解:以下图.【分析】由题意得出横或列的和为 27,据此求解可得.本题主要考察有理数的加法,解题的重点是依据幻方的特色及有理数的加法得出横或列的和为 27.24.【答案】解:由题意得,a+2=0,b-12 =0,解得, a=-2 ,b=12 ,2222 2原式 =7a b-4a b+6ab -4a b+ab当 a=-2 , b=12 时,2 2原式 =-( -2)×12+7×( -2)×( 12 ) =-112 .依据非负数的性质分别求出 a、b,依据整式的加减混淆运算法则把原式化简,代入计算即可.本题考察的是整式的化简求值,掌握非负数的性质、整式的加减混淆运算法则是解题的重点.25.【答案】解:∵点O为直线CA上一点,∠BOC=46°∴∠AOB=180 °-46 °=134 °,∵∠EOB=90 °,∴∠AOE=134 °-90 °=44 °,∵OD 均分∠AOB,∴∠AOD=12∠AOB=67 °,∴∠DOE=∠AOD -∠AOE=67 °-44 °=23 °.【分析】依据平角的定义获得∠AOB=180° -∠BOC=134°,则∠AOE= ∠AOB- ∠BOE=134°-90 °=44 °,再依据角均分线的定义获得∠AOD= ∠AOB=67°,而后利用∠DOE=∠AOD- ∠AOE 进行计算即可.本题考察的是角均分线定义:从一个角的极点出发,把这个角分红相等的两个角的射线叫做这个角的均分线.同时考察了余角和补角,角的和差.26.【答案】100054°【分析】解:(1)此次接受检查的市民总人数是 260÷26%=1000(人),则“报纸”的人数为 1000×10%=100(人),补全图形以下:(2)扇形统计图中,“电视”所对应的圆心角的度数是360°×15%=54°,故答案为:54°.3 计“电脑” 为“获取新闻” 总人数为()估此中将和手机上网作的最主要门路的90×=59.4(万人),电脑和手机上网”作为获闻的最主要门路”的总人数为59.4万人.答:将““ 取新电脑上网的人数除以电脑上网所占的百分比,可得样本容量,用总人数(1)用乘以“报纸”对应的百分比求得其人数,据此补全图形;(2)依据电视所占的百分比乘以圆周角,可得答案;样本估计总体,可得答案.(3)依据本题考查的是条形统计图和扇形统计图的综读统计图,从不一样的合运用,懂统计图中获得必需的信息是解决问题的关键统计图能清楚地表示出每.条形个项统计图直接反应部分占总体的百分比大小.也考查了用目的数据;扇形样本预计整体.。
2020-2021学年山东省济南市历城区七年级(上)期末数学试卷一、选择题(本大题共12小题,共48.0分)1.有理数a,b在数轴上的对应点的位置如图所示,则下列各式成立的是()A. a>bB. ab>0C. |a|<|b|D. −a>b2.如图,下面几何体的俯视图是A.B.C.D.3.肥皂泡的厚度为0.00000007m时,用科学记数法表示它的厚为()A. 0.7×10−7mB. 0.7×10−8mC. 7×10−8mD. 7×10−7m4.下列调查方式合适的是()A. 为了了解市民对电影《战狼》的感受,小华在某校随机采访了8名初三学生B. 为了了解我国中学生对国家“一带一路”的战略的知晓率,小民在网上向3位中学生好友做了调查C. 为了了解“嫦娥一号”卫星零部件的状况,检测人员采用了普查的方式D. 为了了解电视栏目《朗读者》的收视率,统计人员采用了普查的方式5.已知4x4m y n−3m与5x n y是同类项,则m与n的值分别是()A. 4、1B. 1、4C. 0、8D. 8、06.规定=,若=3,则x的值为()A. 0B. −1C. 1D. 27. 如图是一个正方体的表面展开图,将它折成正方体后,“新“字在上面,那么( )一定在下面.A. 安B. 西C. 中D. 学8. 计算(−23)8÷(23)2的结果是( )A. (23)6B. −(23)6C. (23)4D. −(23)49. 如图,O 为直线AB 上一点,∠DOC 为直角,OE 平分∠AOC ,OG 平分∠BOC ,OF 平分∠BOD ,下列结论错误的是( )A. ∠DOG 与∠BOE 互补B. ∠AOE −∠DOF =45°C. ∠EOD 与∠COG 互补D. ∠AOE 与∠DOF 互余10. 如图,把一个长为m 、宽为n 的长方形( m >n )沿虚线剪开,拼接成图,成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( )图1 图2A.m−n 2B. m −nC. m2D. n211. 下列各组数中,不相等的是( )A. +(−3)与−(+3)B. −|−3|与−3C. (−3)2与−32D. (−3)3与−3312. 如图,点D 是线段AB 的中点,点C 是线段AD 的中点.若AB =16cm ,则线段BC =( )A. 4cmB. 10cmC. 12cmD. 14cm二、填空题(本大题共6小题,共24.0分)13. 计算:(12)−2+√12×√6√8=______.14. 如图,AD =4.8厘米,点C 是线段AB 的中点,点D 是线段CB 的中点,则AB = ______厘米.15. 定义一种新运算:x ÷ y =,如2 ÷ 1==2,则(4 ÷ 2) ÷(−1)= ★ .16. 如图,在矩形纸片ABCD 中,AD =√3,将矩形纸片折叠,边AD 、边BC 与对角线BD 重合,点A 与点C 恰好落在同一点处,则矩形纸片ABCD 的周长是______.17. 若(x +2)(x −5)=x 2+ax +b ,则a 的值为______. 18. 已知a 的相反数是2,b 的绝对值是5,则a +b 的值为______. 三、解答题(本大题共8小题,共78.0分) 19. 计算:(1)3x(2x −3) (2)(a +b)(3a −2b) (3)(4a 2−6ab +2a)÷2a(4)20192−2017×2021(用乘法公式) 20. 解方程(1)6x −7=4x −5(2)x−34=1−2−5x321.先化简,后求值:(2x+y)(2x−y)+(x+y)2−5x2,其中x=3,y=5.22.某校鼓励师生利用课余时间广泛阅读,为了解学生课外阅读情况,抽样调查了部分学生每周用于课外阅读的时间.过程如下:数据收集:从全校随机抽取20名学生.进行了每周用于课外阅读时间的调查,数据如下分段整理样本数据:统计量:得出结论:(1)填写表中数据;(2)如果该校现有学生400人,估计等级为B的学生有多少?(3)假设平均阅读一本课外书的时间为160分钟,请你选择样本中的一种统计量,估计该校学生每人一年(按52周计算)平均阅读多少本课外书?23.A,B两点在数轴上的位置如图,点A对应的数值为−5,点B对应的数值为11.(1)现有两动点M和N,点M从A点出发以2个单位长度秒的速度向左运动,点N从点B出发以6个单位长度/秒的速度同时向右运动,问:运动多长时间满足MN= 56?(2)现有两动点C和D,点C从A点出发以1个单位长度/秒的速度向右运动,点D从点B出发以5个单位长度/秒的速度同时向左运动,问:运动多长时间满足AC+ BD=3CD?x2−3x−1,求A−2B的值.24.已知A=x2−3,B=1225.如图,已知∠AOB,以O为端点作射线OC,且OE平分∠AOC,OF平分∠BOC.(1)如图①,若OC在∠AOB的内部,且∠EOF=50°,则∠AOB=度;(2)如图①,若OC在∠AOB的内部,则一般地,∠AOB与∠EOF的数量关系?(3)如图②,若OC在∠AOB的外部,则题(2)中的数量关系是否仍成立?并请说明理由.26.操作探究:已知在纸面上有一数轴(如图所示).左右折叠纸面,折痕所在的直线与数轴的交点为“对折中心点”操作一:(1)左右折叠纸面,使1表示的点与−1表示的点重合,则−3表示的点与______表示的点重合;操作二:(2)左右折叠纸面,使−1表示的点与3表示的点重合,回答以下问题:①对折中心点所表示的数为______.对折后5表示的点与数______表示的点重合;②若数轴上A、B两点之间距离为11(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少?答案和解析1.【答案】D【解析】解:由图可知a<−1<0<b<1,则ab<0,|a|>|b|,−a>b.故选:D.根据各点在数轴上的位置得出a、b两点到原点距离的大小,进而可得出结论.本题考查的是数轴,解答本题的关键在于结合有理数a、b在数轴上的对应点的位置进行判断求解.2.【答案】D【解析】【分析】本题主要考查几何体的俯视图,根据俯视图是从物体的上面看得到的视图即可选出正确的答案.【解答】解:从上面看可得三个左右相邻的正方形,故选D.3.【答案】C【解析】解:0.00000007m时,用科学记数法表示它的厚为7×10−8m,故选:C.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.【答案】C【解析】解:A、为了了解市民对电影《战狼》的感受,小华在某校随机采访了8名初三学生,调查不具广泛性,故A不符合题意;B、为了了解我国中学生对国家“一带一路”的战略的知晓率,小民在网上向3位中学生好友做了调查,调查不具广泛性,故B不符合题意;C、为了了解“嫦娥一号”卫星零部件的状况,检测人员采用了普查的方式,精确度要求高,事关重大,故C符合题意;D、为了了解电视栏目《朗读者》的收视率,统计人员采用了普查的方式,所费人力、物力和时间较多,故D不符合题意;故选:C.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似逐项判定即可.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.【答案】B【解析】【分析】此题考查了同类项的概念及解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.利用同类项定义列出关于m与n的方程组,求出方程组的解即可得到m与n的值.【解答】解:∵4x4m y n−3m与5x n y是同类项,∴{4m=n①n−3m=1②,①代入②得:4m−3m=1,即m=1,将m=1代入①得:n=4,故选B.6.【答案】B【解析】根据题目规定的计算方法,列出方程,即−2(x+1)−3x=3,解之即可.解:根据题意得:−2(x +1)−3x =3 解得x =−1. 故选B .7.【答案】B【解析】解:正方体的表面展开图,相对的面之间一定相隔一个正方形, ∴与“新”字相对的面上的汉字是“西”, ∴“新“字在上面,那么西一定在下面. 故选:B .正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答. 本题主要考查了正方体相对两个面上的文字,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.8.【答案】A【解析】解:(−23)8÷(23)2, =(23)8÷(23)2, =(23)8−2, =(23)6.根据互为相反数的偶数次方相等转化为同底数幂的除法,再根据同底数幂相除,底数不变指数相减进行计算即可得解.本题考查了同底数幂的除法,熟记运算性质是解题的关键.9.【答案】D【解析】解:∵OE 平分∠AOC ,OG 平分∠BOC , ∴可设∠AOE =∠COE =α,∠BOG =∠COG =β, ∵O 为直线AB 上一点, ∴∠AOB =180°,∴2α+2β=180°,∴α+β=90°,∠EOG=90°.∵∠DOC=90°,∴∠DOG=∠COE=90°−∠COG=α,∴∠BOD=∠DOG−∠BOG=α−β.∵OF平分∠BOD,∴∠BOF=∠DOF=12(α−β).A、∵∠DOG=α=∠AOE,∠AOE+∠BOE=180°,∴∠DOG+∠BOE=180°,故本选项结论正确,不符合题意;B、∵∠AOE=α,∠DOF=12(α−β),∴∠AOE−∠DOF=α−12(α−β)=12(α+β)=45°,故本选项结论正确,不符合题意;C、∵∠EOD=∠EOG+∠GOD=90°+α,∠COG=β,∴∠EOD+∠COG=90°+α+β=180°,故本选项结论正确,不符合题意;D、∵∠AOE+∠DOF=α+12(α−β)=32α−12β=32α−12(90°−α)=2α−45°,∴当α=67.5°时,∠AOE+∠DOF=90°,但是题目没有α=67.5°的条件,故本选项结论错误,符合题意;故选:D.根据角平分线的定义可设∠AOE=∠COE=α,∠BOG=∠COG=β,利用平角等于得出α+β=90°,∠EOG=90°.根据同角的余角相等得出∠DOG=∠COE=90°−∠COG=α,则∠BOD=∠DOG−∠BOG=α−β.∠BOF=∠DOF=12(α−β).然后根据互余、互补的定义分别判断即可.本题考查了余角和补角的定义及性质,角平分线定义,角的和差计算,准确识图是解题的关键.10.【答案】A【解析】解:设去掉的小正方形的边长为x,则:(n+x)2=mn+x2,解得:x=m−n2.故选A.11.【答案】C【解析】解:A.+(−3)=−(+3)=−3,此选项不符合题意;B.−|−3|=−3,此选项不符合题意;C.(−3)2=9,−32=−9,此选项符合题意;D.(−3)3=−33=−27,此选项不符合题意;故选:C.分别计算各选项中两式的结果,比较即可.此题考查了有理数的乘方,以及绝对值和相反数,熟练掌握运算法则是解本题的关键.12.【答案】C【解析】解:∵点D是线段AB的中点,∴AD=BD=12AB=12×16=8(cm),∵C是线段AD的中点,∴CD=12AD=12×8=4(cm).∴BC=CD+BD=4+8=12(cm).故选:C.根据线段中点的性质,可得答案.本题主要考查了两点间的距离、线段中点的定义等知识;熟练掌握线段中点的定义是解决问题的关键.13.【答案】7【解析】解:原式=4+√728=4+√9=7.故答案为:7.直接利用负指数幂的性质以及二次根式的乘除运算法则化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.14.【答案】6.4【解析】解:由点D是线段CB的中点,得BC=2BD,CD=BD.由点C是线段AB的中点,得AC=BC=2BD.由线段的和差,得AC+CD=AD.即2BD+BD=4.8.解得BD=1.6cm.由线段的和差,得AB=AD+BD=4.8+1.6=6.4cm,故答案为:6.4.根据线段中点的性质,可得AC与BC的关系,CD与BD的关系,根据线段的和差,可得关于BD的方程,根据解方程,可得BD的长,再根据线段的和差,可得答案.本题考查了两点间的距离,利用线段中点的性质、线段的和差得出BD的长是解题关键.15.【答案】0【解析】本题主要考查有理数混合运算,先根据题中的新定义x÷y=,先算出4÷2,然后再利用新定义可得出最后结果.∵4÷2=∴(4÷2)÷(−1)=2÷(−1)故答案为:0.16.【答案】6+2√3【解析】解:∵四边形ABCD是矩形,∴∠A=90°,AD=BC=√3,AB=CD,由翻折的性质可知,BD=2AD=2√3,∴AB=CD=√BD2−AD2=√(2√3)2−(√3)2=3,∴四边形ABCD的周长为6+2√3,故答案为6+2√3.由题意BD=2AD=2√3,利用勾股定理求出AB即可解决问题.本题考查矩形的性质翻折变换,勾股定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.17.【答案】−3【解析】解:(x+2)(x−5)=x2−5x+2x−10=x2−3x−10,∵(x+2)(x−5)=x2+ax+b,∴a=−3,故答案为:−3.根据多项式乘以多项式法则展开,即可得出答案.本题考查了多项式乘以多项式,能根据多项式乘以多项式法则展开是解此题的关键.18.【答案】3或−7【解析】解:由题意得a=−2,b=5或−5,当a=−2,b=5时,a+b=−2+5=3;当a=−2,b=−5时,a+b=−7.所以a+b,的值为3或−7.根据题意可求出a与b的值从而可求出答案.本题考查有理数的运算,解题的关键是求出a与b的值,本题属于基础题型.19.【答案】解:(1)原式=6x2−9x;(2)原式=3a2+3ab−2ab−2b2=3a2+ab−2b2;(3)原式=2a−3b+1;(4)原式=20192−2017×2021=20192−(2019−2)(2019+2)=20192−(20192−22)=20192−20192+22=4.【解析】本题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.(1)直接利用单项式乘以多项式运算法则计算得出答案;(2)直接利用多项式乘以多项式计算得出答案;(3)直接利用整式的除法运算法则计算得出答案;(4)直接利用乘法公式将原式变形得出答案.20.【答案】解:(1)移项合并得:2x=2,解得:x=1;(2)去分母得:3x−9=12−8+20x,移项合并得:−17x=13,.解得:x=−1317【解析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.【答案】解:原式=4x2−y2+x2+2xy+y2−5x2=2xy,当x=3,y=5时,原式=30.【解析】原式利用平方差公式,以及完全平方公式化简,去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.此题考查了整式的混合运算−化简求值,熟练掌握运算法则是解本题的关键. 22.【答案】81 5 4 81 81【解析】解:(1)80×20−30−60−81−50−40−110−130−146−90−100−60−81−120−140−70−81−10−20−100=81,分段统计各组的频数可得,C 等级的5人,A 等级的有4人,从小到大排列处在中间的两个数都是81,因此中位数是81,出现次数最多的数是81,共出现4次,因此众数是81,故答案为:8,5,4,81,81;(2)400×820=160(人),答:该校400名学生中等级为B 的大约有160人;(3)选择“平均数”,80×52÷160=26(本),答:该校学生每人一年(按52周计算)平均阅读26本课外书.(1)根据平均数是80,求出总数,进而确定最后一个数;分段统计频数可得表2中结果;根据中位数、众数的计算方法求出结果即可;(2)样本中“B 等级”的占820,因此估计总体400人的820是“B 等级”人数;(3)选择“平均数”进行计算即可.本题考查平均数、中位数、众数的意义和计算方法,掌握计算方法是正确解答的关键. 23.【答案】解:(1)设运动时间为x 秒时,MN =56.依题意,得:(6x +11)−(−2x −5)=56,解得:x =5.答:运动时间为5秒时,MN =56.(2)当运动时间为t 秒时,点C 对应的数为t −5,点D 对应的数为−5t +11, ∴AC =t ,BD =5t ,CD =|t −5−(−5t +11)|=|6t −16|.∵AC +BD =3CD ,∴t +5t =3|6t −16|,即t +5t =3(6t −16)或t +5t =3(16−6t),解得:t =4或t =2.答:运动时间为2秒或4秒时,AC +BD =3CD .【解析】(1)设运动时间为x秒时,MN=56,由数轴上两点间的距离公式结合MN=56,即可得出关于x的一元一次方程,解之即可得出结论;(2)当运动时间为t秒时,点C对应的数为t−5,点D对应的数为−5t+11,由数轴上两点间的距离公式结合AC+BD=3CD,即可得出关于t的一元一次方程,解之即可得出结论.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.x2−3x−1)24.【答案】解:A−2B=x2−3−2(12=6x−1.【解析】直接利用整式的加减运算法则计算得出答案.此题主要考查了整式的加减运算,正确合并同类项是解题关键.25.【答案】(1)∠AOB=2∠EOF=100°;(2)∠AOB=2∠EOF;(3)数量关系依然成立.设∠FOC=∠BOF=a,∠AOE=∠COE=b,则∠EOF=∠FOC−∠COE=a−b,∠AOB=∠BOC−∠AOC=2(a−b),故可得∠AOB=2∠EOF.【解析】试题分析:(1)根据角平分线的性质,可得出∠AOB=2∠EOF;(2)根据角平分线的性质,可得出∠AOB=2∠EOF;(3)设∠FOC=∠BOF=a,∠AOE=∠COE=b,分别表示出∠AOB及∠EOF,即可作出判断.26.【答案】3 1 −3【解析】解:(1)∵1与−1重合,∴折痕点为原点,∴−3表示的点与3表示的点重合.故答案为:3.(2)①∵由表示−1的点与表示3的点重合,∴可确定折痕点是表示1的点,∴5表示的点与数−3表示的点重合.故答案为:1,−3.②由题意可得,A、B两点距离对称点的距离为11÷2=5.5.因为对折中心点所表示的数为1的点,1+5.5=6.5,1−5.5=−4.5.所以A、B两点表示的数分别是−4.5,6.5.(1)1与−1重合,可以发现1与−1互为相反数,因此−3表示的点与3表示的点重合;(2)①−1表示的点与3表示的点重合,则折痕点为1,因此5表示的点与数−3表示的点重合;②由①知折痕点为1,且A、B两点之间距离为11,则B点表示1+5.5=6.5,A表示1−5.5=−4.5.考查了数轴上点的对称,通过点的对称,发现对称点的规律,题目设计新颖,难易程度适中,适合课后训练.。
北师大版(完整版)七年级数学上册期末试卷及答案一、选择题1.有两个正数a ,b ,且a b <,把大于等于a 且小于等于b 所有数记作[a ,b ],例如大于等于1且小于等于4的所有数记作[1,4] .如果m 在[5,15]内,n 在[20,30]内,那么n m的一切值中属于整数的有( ) A .1,2,3,4,5B .2,3,4,5,6C .2,3,4D .4,5,62.用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺满地面:第(1)个图形有黑色瓷砖6块,第(2)个图形有黑色瓷砖11块,第(3)个图形有黑色瓷砖16块,…,则第(9)个图形黑色瓷砖的块数为( ).A .36块B .41块C .46块D .51块3.如图是一根起点为1的数轴,现有同学将它弯折,弯折后虚线上第一行的数是1,第二行的数是13,第三行的数是43,…,依此规律,第五行的数是( )A .183B .157C .133D .91 4.已知232-m a b 和45n a b 是同类项,则m n -的值是( )A .-2B .1C .0D .-15.如图,一副三角尺按不同的位置摆放,摆放位置中αβ∠=∠的图形的个数是( )A .1B .2C .3D .46.如图,已知矩形的长宽分别为m ,n ,顺次将各边加倍延长,然后顺次连接得到一个新的四边形,则该四边形的面积为( )A.3mn B.5mn C.7mn D.9mn7.一组数据的最小值为6,最大值为29,若取组距为5,则分成的组数应为()A.4B.5C.6D.78.已知一个角的补角比它的余角的3倍小20度,则这个角的度数是()A.30B.35 C.40D.459.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,则在该正方体中,和“我”相对面上所写的汉字是()A.美B.丽C.琼D.海10.如图表示的是用火柴棒搭成的一个个图形,第1个图形用了5根火柴,第2个图形用了8根火柴,…,照此规律,用295根火柴搭成的图形是()A.第80个图形B.第82个图形C.第84个图形D.第86个图形11.在方程3x﹣y=2,x+1=0,12x=12,x2﹣2x﹣3=0中一元一次方程的个数为()A.1个B.2个C.3个D.4个12.如图,每个图案都由若干个“●”组成,其中第①个图案中有7个“●”,第②个图案中有13个“●”,…,则第⑨个图案中“●”的个数为( )A.87 B.91 C.103 D.111二、填空题13.一个农场的工人们要把两片草地的草锄掉,大的一片草地的锄草量是小的一片的两倍.上午半天工人们都在大的一片上锄草,中午后工人们对半分开,一半人留在大的草地上,刚好下午半天就把草锄完了;另一半人到小的草地上去锄草,下午半天锄草后还剩一小块,第二天由一个工人去锄,恰好用了一天时间将草锄完成.如果每一个工人每天锄草量相同,那么这个农场有_______个工人.14.一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是-16、9,现以点C 为折点,将数轴向右对折,若点A 对应的点A ’落在点B 的右边,并且A ’B =3,则C 点表示的数是_______.15.如图,“汉诺塔”是源于印度一个古老传说的益智玩具,这个玩具由A ,B ,C 三根柱子和若干个大小不等的圆盘组成.其游戏规则是:①每次只能移动一个圆盘(称为移动1次);②被移动的圆盘只能放入A ,B ,C 三根柱子之一;③移动过程中,较大的圆盘始终..不能..叠在较小的圆盘上面;④将A 柱上的所有圆盘全部移到C 柱上.完成上述操作就获得成功.请解答以下问题:(1)当A 柱上有2个圆盘时,最少需要移动_____次获得成功; (2)当A 柱上有8个圆盘时,最少需要移动_____次获得成功.16.若|21(3)0x x y ++-=,则22x y +=_______.17.如图所示,O 是直线AB 与CD 的交点,∠BOM :∠DOM =1:2,∠CON =90°,∠NOM =68°,则∠BOD =_____°.18.如图,将ABC 沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的A 1处,称为第1次操作,折痕DE 到BC 的距离记为h 1,还原纸片后,再将ADE 沿着过AD 中点D 1的直线折叠,使点A 落在DE 边上的A 2处,称为第2次操作,折痕D 1E 1到BC 的距离记为h 2,按上述方法不断操作下去…经过第2020次操作后得到的折痕D 2020E 2020到BC 的距离记为h 2020,若h 1=1,则h 2020的值为_____.19.作一个正方形,设每边长为4a ,将每边四等分,作一凸一凹的两个边长为a 的小正方形,得到图形如图(2)所示,再对图(2)的每个边做相同的变化,得到图形如图(3),如此连续作几次,便可得到一个绚丽多彩的雪花图案.如不断发展下去到第n 个图形时,图形的面积_____(填写“会”或者“不会”)变化,图形的周长为________.20.计算811111248162++++⋅⋅⋅+=________. 21.已知 10a =,211a a =-+,322a a =-+,…,依此类推,则 2019a =_______. 22.阅读理解题:我们知道,根据乘方的意义:23235358,,,a a a a a a a a a a a a a ====通过以上计算你能否发现规律,得到m na a 的结果呢?请根据规律计算:23499100······a a a a a a =__________.三、解答题23.某学校组织七年级学生参加了“热爱宪法,捍卫宪法”的知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计,绘制统计图如下.请根据所给信息,回答下列问题:某校七年级部分学生成绩频数分布直方图某校七年级部分学生成绩扇形统计图(1)求出A 组、B 组人数分别占总人数的百分比; (2)求本次共抽查了多少名学生的成绩;(3)扇形统计图中,D 组对应的圆心角为a ︒,求a 的值;(4)该区共有1000名七年级学生参加了此次竞赛,若主办方想把一等奖的人数控制在150人,那么请你通过计算估计:一等奖的分值应定在多少分及以上?24.已知:A= x 2﹣2,B=2 x 2﹣x+3 (1)化简:4A ﹣2B ;(2)若 2A ﹣kB 中不含x 2 项,求 k 的值.25.已知x =﹣3是关于x 的方程(k +3)x +2=3x ﹣2k 的解. (1)求k 的值;(2)在(1)的条件下,已知线段AB =6cm ,点C 是线段AB 上一点,且BC =kAC ,若点D 是AC 的中点,求线段CD 的长.(3)在(2)的条件下,已知点A 所表示的数为﹣2,有一动点P 从点A 开始以2个单位长度每秒的速度沿数轴向左匀速运动,同时另一动点Q 从点B 开始以4个单位长度每秒的速度沿数轴向左匀速运动,当时间为多少秒时,有PD =2QD ?26.如图,已知点A 在数轴上对应的数为a ,点B 对应的数为b ,且a ,b 满足()220400a b ++-=.(1)求点A 与点B 在数轴上对应的数a 和b ;(2)现动点P 从点A 出发,沿数轴向右以每秒4个单位长度的速度运动;同时,动点Q 从点B 出发,沿数轴向左以每秒2个单位长度的速度运动,设点P 的运动时间为t 秒. ① 若点P 和点Q 相遇于点C , 求点C 在数轴上表示的数; ② 当点P 和点Q 相距15个单位长度时,直接写出t 的值.27.已知,点A 和点1A 是线段1AA 的两个端点,线段1AA a =,点2A 是点A 和点1A 的对称中心,点3A 是点1A 和点2A 的对称中心,以此类推,(图中未画出)点n A 是点1n A -和点2-n A 的对称中心.(n 为正整数)(1)填空:线段4AA =____________ ;线段5AA =_____________ (用含a 的最简代数式表示)(2)试写出线段n AA 的长度(用含a 和n 的代数式表示,无需说明理由)28.如图,在三角形ABC 中,8AB =,16BC =,12AC =.点P 从点A 出发以2个单位长度/秒的速度沿A B C A →→→的方向运动,点Q 从点B 沿B C A →→的方向与点P 同时出发;当点P 第一次回到A 点时,点P ,Q 同时停止运动;用t (秒)表示运动时间.(1)当t 为多少时,P 是AB 的中点;(2)若点Q 的运动速度是23个单位长度/秒,是否存在t 的值,使得2BP BQ =; (3)若点Q 的运动速度是a 个单位长度/秒,当点P ,Q 是AC 边上的三等分点时,求a的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据m在[5,15]内,n在[20,30]内,可得nm的一切值中属于整数的有2010,248,205,25 5,305,依此即可求解.【详解】∵m在[5,15]内,n在[20,30]内,∴5≤m≤15,20≤n≤30,∴nm的一切值中属于整数的有20210=,2438=,2045=,2555=,3065=,综上,那么nm的一切值中属于整数的有2,3,4,5,6.故选:B.【点睛】本题考查了有理数、整数,关键是得到5≤m≤15,20≤n≤30.2.C解析:C【解析】【分析】根据题意观察图像找出数量上每次增加黑色瓷砖的变化规律,进而分析推出一般性的结论求解.【详解】解:∵第1个图形有黑色瓷砖5116⨯+=块.第2个图形有黑色瓷砖52111⨯+=块.第3个图形有黑色瓷砖53116⨯+=块. …∴第9个图形中有黑色瓷砖59146⨯+=块. 故选:C . 【点睛】本题主要考查图形的变化规律,解题的关键是通过归纳与总结,得到其中的一般规律.3.B解析:B 【解析】 【分析】观察根据排列的规律得到:所有的数字都是奇数,发生弯折的数与上一个弯折的数的差依次是2,4,6,8…,每一行的数比上次增加连续的三个偶数.依次计算即可得到结论. 【详解】所有的数字都是奇数,发生弯折的数与上一个弯折的数的差依次是2,4,6,8…,每一行的数每次增加连续的三个偶数. 第一行数字为1第二行数字为1+(2+4+6)=1+2(1+2+3)=1+3×4=13第三行数字为1+(2+4+6)+(8+10+12)=1+2(1+2+3+4+5+6)=1+6×7=43 第四行数字为1+(2+4+6)+(8+10+12)+(14+16+18)=1+2(1+2+3+4+5+6+7+8+9)= 1+9×10=91第五行数字为1+(2+4+6)+(8+10+12)+(14+16+18)+(20+22+24) =1+2(1+2+3+4+5+6+7+8+9+10+11+12)=1+12×13=157. 故选B . 【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.4.D解析:D 【解析】 【分析】根据同类项的字母相同且相同字母的指数也相同,可得关于m 、n 的方程,根据方程的解可得答案. 【详解】∵232-m a b 和45n a b 是同类项 ∴2m=4,n=3 ∴m=2,n=3 ∴=231m n --=- 故选D . 【点睛】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点.5.C解析:C 【解析】 【分析】根据直角三角板可得第一个图形∠β=45°,进而可得∠α=45°;根据余角和补角的性质可得第二个图形、第四个图形中∠α=∠β,第三个图形∠α和∠β互补. 【详解】根据角的和差关系可得第一个图形∠α=∠β=45°, 根据等角的补角相等可得第二个图形∠α=∠β, 第三个图形∠α+∠β=180°,不相等,根据同角的余角相等可得第四个图形∠α=∠β, 因此∠α=∠β的图形个数共有3个, 故选:C . 【点睛】此题主要考查了余角和补角,关键是掌握余角和补角的性质:等角的补角相等.等角的余角相等.6.B解析:B 【解析】 【分析】如图,可分别求出各个直角三角形的面积,再加上中间的矩形面积即可得到答案. 【详解】如图,根据题意可得:1()2FDE HBG S S n n m mn ∆∆==+=, 1()2ECH GAF S S m m n mn ∆∆==+=, 又矩形ABCD 的面积为mn ,所以,四边形EFGH 的面积为:++++5FDE HBG ECH GAF ABCD S S S S S mn mn mn mn mn mn ∆∆∆∆=++++=矩形,故选:B .此题主要考查了根据图形的面积列代数式,熟练掌握直角三角形面积公式易用佌题的关键.7.B解析:B 【解析】 【分析】用极差除以组距,如果商是整数,组数=这个整数加1,如果商不是整数,用进一法,确定组数; 【详解】∵296234.655-==, ∴分成的组数是5组. 故答案选B . 【点睛】本题主要考查了频数分布直方图,准确计算是解题的关键.8.B解析:B 【解析】 【分析】列方程解决问题,本题等量关系是3×余角-补角=20°,设这个角的度数为x°,则补角的度数为(180-x )°,余角的度数为(90-x )°,代入等量关系即可求解. 【详解】设:这个角的度数是x ,则补角的度数为180-x ,余角的度数为90-x ,由题意得:()()39018020x x ---=解得35x = 故选B . 【点睛】本题考察了列方程解应用题,解题过程中要注意解应用题的步骤,正确找到等量关系是本题的关键.9.B解析:B 【解析】 【分析】利用正方体及其表面展开图的特点解题即可. 【详解】解:这是一个正方体的平面展开图,共有六个面,其中面“爱”与面“琼”相对,面“海”与面“美”相对,面“我”与面“丽”相对;【点睛】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手、分析及解答问题.10.C解析:C【解析】【分析】根据图形可以看出第1个图形有5根火柴棒,第2个图形有8根火柴棒,第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12,由此可解决问题.【详解】解:根据图形可以看出第1个图形有5根火柴棒,第2个图形有8根火柴棒,第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12,若5+7(n-1)×12=295,没有整数解,若8+7(n-2)×12=295,解得n=84,即用295根火柴搭成的图形是第84个图形,故选:C.【点睛】本题考查了根据图象探索规律问题,从简单的情形考虑,发现规律解决问题.11.B解析:B【解析】【分析】根据一元一次方程的定义逐个判断即可.【详解】一元一次方程有x+1=0,12x=12,共2个,故选:B.【点睛】本题考查了一元一次方程的定义,能熟记一元一次方程的定义的内容是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的最高次数是1次的整式方程,叫一元一次12.D解析:D【解析】【分析】根据第①个图案中“●”有:1+3×(0+2)个,第②个图案中“●”有:1+4×(1+2)个,第③个图案中“●”有:1+5×(2+2)个,第④个图案中“●”有:1+6×(3+2)个,据此可得第⑨个图案中“●”的个数.【详解】解:∵第①个图案中“●”有:1+3×(0+2)=7个,第②个图案中“●”有:1+4×(1+2)=13个,第③个图案中“●”有:1+5×(2+2)=21个,第④个图案中“●”有:1+6×(3+2)=31个,…∴第9个图案中“●”有:1+11×(8+2)=111个,故选:D.【点睛】本题考查规律型:图形的变化,解题的关键是将原图形中的点进行无重叠的划分来计数.二、填空题13.8【解析】【分析】设这个农场有个工人,每个工人一天的锄草量为1,根据大的一片草地的锄草量是小的一片的两倍,即可得出关于的一元一次方程,解之即可得出结论.【详解】解:设这个农场有个工人,每个解析:8【解析】【分析】设这个农场有x个工人,每个工人一天的锄草量为1,根据大的一片草地的锄草量是小的一片的两倍,即可得出关于x的一元一次方程,解之即可得出结论.【详解】解:设这个农场有x个工人,每个工人一天的锄草量为1,依题意,得:111112(1) 22222x x x+⨯=⨯+,解得:8x=.故答案为:8.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.14.-2【解析】【分析】将数轴向右对折后,则AC=A´B+BC,设点C表示的数为x,根据等量关系列方程解答即可.【详解】设点C表示的数为x,根据题意可得,,解得x=-2.【点睛】本题考查解析:-2【解析】【分析】将数轴向右对折后,则AC=A´B+BC,设点C表示的数为x,根据等量关系列方程解答即可.【详解】设点C表示的数为x,根据题意可得,--=+-,解得x=-2.x x(16)39【点睛】本题考查一元一次方程的应用,解题的关键是根据数轴表示的距离得到AC=A´B+BC. 15.28-1【解析】【分析】(1)先将小圆盘放在B柱上,大圆盘放在C柱上,再将B柱上的小圆盘放在C柱上即可得出结果;(2)根据题目已知条件分别得出当A柱上有2个圆盘时最少需要移动的次数,解析:28-1【解析】【分析】(1)先将小圆盘放在B柱上,大圆盘放在C柱上,再将B柱上的小圆盘放在C柱上即可得出结果;(2)根据题目已知条件分别得出当A柱上有2个圆盘时最少需要移动的次数,当A柱上有3个圆盘时最少移动的次数,从而推出当A柱上有8个圆盘时需要移动的次数.【详解】解:(1) 先将小圆盘放在B柱上,大圆盘放在C柱上,再将B柱上的小圆盘放在C柱上,最少需要:22-1=3次,(2) 当A 柱上有2个圆盘时,最少需要22-1=3次,当A 柱上有3个圆盘时,最少需要23-1=7次,以此类推当A 柱上有8个圆盘时,最少需要28-1次.故答案为:(1)3;(2) 28-1.【点睛】本题主要考查的是归纳推理,根据题目给出的已知信息,得出一般规律是解题的关键.16.【解析】【分析】根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解.【详解】∵,∴,,∴,,∴.故答案为:.【点睛】本题考查了非负数的性质以及代数式的求值.解题解析:5-【解析】【分析】根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解.【详解】 ∵21(3)0x x y ++-=,∴10x +=,30x y -=,∴1x =-,3y =-,∴222(1)2(3)165x y +=-+⨯-=-=-.故答案为:5-.【点睛】本题考查了非负数的性质以及代数式的求值.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0. 17.【解析】【分析】根据角的和差关系可得∠DOM=∠DON﹣∠N OM =22°,再根据∠BOM:∠DOM=1:2可得∠BOM=∠DOM=11°,据此即可得出∠BOD 的度数.【详解】∵∠CON=9解析:【解析】【分析】根据角的和差关系可得∠DOM=∠DON﹣∠NOM=22°,再根据∠BOM:∠DOM=1:2可得∠BOM=12∠DOM=11°,据此即可得出∠BOD的度数.【详解】∵∠CON=90°,∴∠DON=∠CON=90°,∴∠DOM=∠DON﹣∠NOM=90°﹣68°=22°,∵∠BOM:∠DOM=1:2,∴∠BOM=12∠DOM=11°,∴∠BOD=3∠BOM=33°.故答案为:33.【点睛】本题考查了余角的定义,角的和差的关系,掌握角的和差的关系是解题的关键.18.2﹣()2019【解析】【分析】根据题意和图形,可以写出前几次操作后h对应的值,从而可以发现变化特点,从而可以写出h2020的值.【详解】解:由题意可知,h1=2﹣1=1,h2=2﹣=解析:2﹣(12)2019【解析】【分析】根据题意和图形,可以写出前几次操作后h对应的值,从而可以发现变化特点,从而可以写出h2020的值.【详解】解:由题意可知,h1=2﹣1=1,h2=2﹣12=32,h3=2﹣(12)2,…,则h 2020=2﹣(12)2019, 故答案为:2﹣(12)2019. 【点睛】此题主要考查图形的规律探索,解题的关键是根据题意先求出前几次变换的距离,再发现规律进行求解.19.不会【解析】【分析】观察图形,发现对正方形每进行1次分形,周长增加1倍;每增加一个小正方形同时又减少一个相同的小正方形,即面积不变.【详解】解:周长依次为16a ,32a ,6解析:不会 32n a +【解析】【分析】观察图形,发现对正方形每进行1次分形,周长增加1倍;每增加一个小正方形同时又减少一个相同的小正方形,即面积不变.【详解】解:周长依次为16a ,32a ,64a ,128a ,…,32n a +,即无限增加,所以不断发展下去到第n 次变化时,图形的周长为32n a +;图形进行分形时,每增加一个小正方形同时又减少一个相同的小正方形,即面积不变,是一个定值16a 2.故答案为:不会、32n a +.【点睛】此题考查了图形的变化类,主要培养学生的观察能力和概括能力,观察出后一个图形的周长比它的前一个增加1倍是解题的关键.20.【解析】【分析】设原式=S=,则,两式相减即可求出答案.【详解】解:设=①,则②,②-①,得.故答案为:.【点睛】本题考查了有理数的运算,明确方法、灵活应用整体思想是解题的关键. 解析:255256【解析】【分析】设原式=S =23481111122222++++⋅⋅⋅+,则2371111212222S =++++⋅⋅⋅+,两式相减即可求出答案.【详解】 解:设811111248162++++⋅⋅⋅+=23481111122222S =++++⋅⋅⋅+①, 则2371111212222S =++++⋅⋅⋅+②, ②-①,得237234881111111111255112222222222256S ⎛⎫⎛⎫=++++⋅⋅⋅+-++++⋅⋅⋅+=-= ⎪ ⎪⎝⎭⎝⎭. 故答案为:255256. 【点睛】 本题考查了有理数的运算,明确方法、灵活应用整体思想是解题的关键.21.【解析】【分析】根据题意,可以得出这一组数的规律,分为n 为奇数和偶数二种情况讨论即可.【详解】因为,所以==-1,==-1,==-2,,所以n 为奇数时,,n 为偶数时,,所以-=解析:1009-【解析】【分析】根据题意,可以得出这一组数的规律,分为n 为奇数和偶数二种情况讨论即可.【详解】因为10a =, 所以211a a =-+=01-+=-1,322a a =-+=-12-+=-1,433a a =-+=-13-+=-2,544=--2+4=-2a a =-+,所以n 为奇数时,1-2n n a -=,n 为偶数时,-2n n a =, 所以2019a =-2019-12=-1009, 故答案为:-1009.【点睛】本题考查了有理数运算的规律,含有绝对值的计算,掌握有理数运算的规律是解题的关键.22.【解析】【分析】先通过已知的计算得出乘方运算的规律,再根据乘法的结合律和交换律即可得.【详解】归纳类推得:则故答案为:.【点睛】本题考查了有理数的乘方、乘法的结合解析:5050a【解析】【分析】先通过已知的计算得出乘方运算的规律,再根据乘法的结合律和交换律即可得.【详解】112a a a a +⋅==2213a a a a a a a +⋅⋅=⋅==23235a a a a +⋅==35358a a a a +⋅==归纳类推得:m nm n a a a +⋅=则23499100a a a a a a ⋅⋅⋅⋅⋅⋅10029939849749525051()()()()()()a a a a a a a a a a a a =⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 101101101101101101a a a a a a =⋅⋅⋅⋅⋅⋅ 101101101101a ++++=10150a ⨯=5050a = 故答案为:5050a .【点睛】本题考查了有理数的乘方、乘法的结合律和交换律,依据已知计算等式,归纳出乘方运算的计算规律是解题关键.三、解答题23.(1)10%,20%;(2)300;(3)108;(4)90分及其以上【解析】【分析】(1)根据A 组,B 组在扇形统计图中所对应的圆心角度数即可得出结果;(2)根据题(1)A 组所占总人数的百分比以及条形统计图中A 组的具体人数即可得出总人数;(3)根据条形统计图中D 组的具体人数再结合总人数即可;(4)先求出E 组所占的百分比即可得出结果.【详解】解:(1)A 组人数占总人数的:36°÷360°×100%=10%,B 组人数占总人数的72°÷360°×100%=20%,故A 组、B 组分别占总人数的10%、20%;(2)30÷10%=300(人),故本次抽查学生总人数300人;(3)90÷300×360°=108°,D 组对应的圆心角为108°,a=108;(4)(360°-90°-72°-108°-36°)÷360°×1000=150(人),所以一等奖的分值定在90分及其以上即可.【点睛】本题主要考查的是扇形统计图和条形统计图的结合,正确的理解两个统计图是解题的关键.24.(1)2x﹣14;(2)k=1.【解析】【分析】(1)将A与B代入4A-2B中,即可解题,(2)将A与B代入2A﹣kB中,找到所有二次项,让二次项的系数和为零即可解题.【详解】解:(1)原式=4(x2﹣2)﹣2(2 x2﹣x+3)=4 x2﹣8﹣4 x2+2x﹣6=2x﹣14(2)2A﹣kB=2(x2﹣2)﹣k(2 x2﹣x+3)=2 x2﹣4﹣2kx2+kx﹣3k∵2A﹣kB 中不含x2项,∴2﹣2k=0,∴k=1【点睛】本题考查了整式的化简求值,属于简单题,找到并理解x2项系数为零是解题关键.25.(1)2;(2)1cm;(3)910秒或116秒【解析】【分析】(1)将x=﹣3代入原方程即可求解;(2)根据题意作出示意图,点C为线段AB上靠近A点的三等分点,根据线段的和与差关系即可求解;(3)求出D和B表示的数,然后设经过x秒后有PD=2QD,用x表示P和Q表示的数,然后分两种情况①当点D在PQ之间时,②当点Q在PD之间时讨论即可求解.【详解】(1)把x=﹣3代入方程(k+3)x+2=3x﹣2k得:﹣3(k+3)+2=﹣9﹣2k,解得:k=2;故k=2;(2)当C在线段AB上时,如图,当k=2时,BC=2AC,AB=6cm,∴AC=2cm,BC=4cm,∵D 为AC 的中点,∴CD =12AC =1cm . 即线段CD 的长为1cm ;(3)在(2)的条件下,∵点A 所表示的数为﹣2,AD =CD =1,AB =6,∴D 点表示的数为﹣1,B 点表示的数为4.设经过x 秒时,有PD =2QD ,则此时P 与Q 在数轴上表示的数分别是﹣2﹣2x ,4﹣4x . 分两种情况:①当点D 在PQ 之间时,∵PD =2QD ,∴()()1222441x x ⎡⎤---=---⎣⎦,解得x =910 ②当点Q 在PD 之间时,∵PD =2QD ,∴()()1222144x x ⎡⎤----=---⎣⎦,解得x =116. 答:当时间为910或116秒时,有PD =2QD . 【点睛】本题考查了方程的解,线段的和与差,数轴上的动点问题,一元一次方程与几何问题,分情况讨论是本题的关键.26.(1)20a =-,40b =;(2)①20; ②7.5t =或12.5秒【解析】【分析】(1)由绝对值和偶次方的非负性即可求出a 、b 值;(2)①t 秒后P 点表示的数为:204-+t ,t 秒后Q 点表示的数为:402-t ,根据t 秒后P 点和Q 点表示的是同一个数列式子即可得出t 的值;②分当P 和Q 未相遇时相距15个单位及当P 和Q 相遇后相距15个单位列式子即可得出答案.【详解】解:(1)由题意中绝对值和偶次方的非负性知, 200a +=且 400b -=.解得20a =-,40b =.故答案为:20a =-,40b =.(2)① P 点向右运动,其运动的路程为4t ,t 秒后其表示的数为:204-+t ,Q 点向左运动,其运动的路程为2t ,t 秒后其表示的数为:402-t ,由于P 和Q 在t 秒后相遇,故t 秒后其表示的是同一个数,∴204402t t -+=-解得 10t =.∴此时C 在数轴上表示的数为:2041020-+⨯=.故答案为:20.② 情况一:当P 和Q 未相遇时相距15个单位,设所用的时间为1t故此时有:114+21540(20)+=--t t解得17.5=t 秒情况二:当P 和Q 相遇后相距15个单位,设所用的时间为2t故此时有:224+21540(20)-=--t t解得212.5=t 秒.故答案为:7.5t =或12.5秒【点睛】本题考查了一元一次方程的应用、两点间的距离、数轴、绝对值以及偶次方的非负性,根据两点间的距离结合线段间的关系列出一元一次方程是解题的关键.27.(1)58a ;1116a ;(2) n AA =111111248163264a a a a a a +-+-++…+(-12)n-1a 【解析】【分析】(1)结合图形,根据线段的中心对称的定义即可得出答案; (2)先用a 表示AA 3、AA 4、AA 5、AA 6、AA 7再探究规律,即可写出线段n AA 的长度.【详解】解:(1)∵1AA a =,根据题意得,∴AA 4=111248a a a +-=58a ; 5AA =111248a a a +-+116a =1116a , 故答案为58a ;1116a ; (2)根据题意可得,AA 3=1124a a + AA 4=111248a a a +- AA 5=111248a a a +-+116a AA 6=111112481632a a a a a +-+-AA 7=111111248163264a a a a a a +-+-+ …… n AA =111111248163264a a a a a a +-+-++…+(-12)n-1a 【点睛】此题主要考查了中心对称及两点之间的距离,解题的关键是理解题意,学会探究规律,利用规律解决问题.28.(1)2;(2)存在,t=125;(3)54或127【解析】【分析】(1)根据AB 的长度和点P 的运动速度可以求得;(2)根据题意可得:当2BP BQ =时,点P 在AB 上,点Q 在BC 上,据此列出方程求解即可;(3)分两种情况:P 为接近点A 的三等分点,P 为接近点C 的三等分点,分别根据点的位置列出方程解得即可.【详解】解:(1)∵8AB =,点P 的运动速度为2个单位长度/秒,∴当P 为AB 中点时, 42=2÷(秒);(2)由题意可得:当2BP BQ =时,P ,Q 分别在AB ,BC 上,∵点Q 的运动速度为23个单位长度/秒, ∴点Q 只能在BC 上运动,∴BP=8-2t ,BQ=23t , 则8-2t=2×23t , 解得t=125, 当点P 运动到BC 和AC 上时,不存在2BP BQ =;(3)当点P 为靠近点A 的三等分点时,如图,AB+BC+CP=8+16+8=32,此时t=32÷2=16,∵BC+CQ=16+4=20,∴a=20÷16=54,当点P为靠近点C的三等分点时,如图,AB+BC+CP=8+16+4=28,此时t=28÷2=14,∵BC+CQ=16+8=24,∴a=24÷14=12 7.综上:a的值为54或127.【点睛】本题考查了一元一次方程的应用—几何问题,在点的运动过程中根据线段关系列出方程进行求解,需要一定的想象能力和计算能力,难度中等.。
北师大版(七年级)初一上册数学期末测试题及答案doc一、选择题1.下列各组数中,数值相等的是( ) A .﹣22和(﹣2)2 B .23和 32C .﹣33和(﹣3)3D .(﹣3×2)2和﹣32×222.如图所示的四个几何体中,从正面、上面、左面看得到的平面图形都相同的有( )A .1个B .2个C .3个D .4个3.已知关于x 的方程432x m -=的解是x m =-,则m 的值是( ) A .2B .-2C .-27D .274.如图1是一个正方体的展开图,该正方体按如图2所示的位置摆放,此时这个正方体朝下的一面的字是( )A .中B .国C .梦D .强5.小颖随机抽查他家6月份某5天的日用电量(单位:度),结果如下:9,11,7,10,8.根据这些数据,估计他家6月份日用电量为( ) A .6度B .7度C .8度D .9度6.若数a ,b 在数轴上的位置如图示,则( )A .a +b >0B .ab >0C .a ﹣b >0D .﹣a ﹣b >0 7.一组数据的最小值为6,最大值为29,若取组距为5,则分成的组数应为( ) A .4 B .5C .6D .78.一组按规律排列的多项式: 233547,,,,x y x y x y x y +-+-,其中第10个式子是( ) A .1019x y -B .1019x y +C .1021x y -D .1017x y -9.如图,若已知七巧板拼图中的平行四边形的面积为2,则图中,最大正方形面积为( )A.8B.10C.16D.3210.如图,每个图案都由若干个“●”组成,其中第①个图案中有7个“●”,第②个图案中有13个“●”,…,则第⑨个图案中“●”的个数为( )A.87 B.91 C.103 D.11111.下列图形都是由同样大小的黑色正方形纸片组成,其中第1个图中有3张黑色正方形纸片,第2个图中有5张黑色正方形纸片,第3个图中有7张黑色正方形纸片,…,按此规律排列下去第n个图中黑色正方形纸片的张数为()….A.4n+1 B.3n+1 C.3n D.2n+112.已知一组数:1,-2,3,-4,5,-6,7,…,将这组数排成下列形式:第1行 1第2行 -2,3第3行 -4,5,-6第4行 7,-8,9,-10第5行 11,-12,13,-14,15……按照上述规律排列下去,那么第10行从左边数第5个数是()A.-50 B.50 C.-55 D.55二、填空题13.如图是一个运算程序,若输入x的值为8,输出的结果是m,若输入x的值为3,输出的结果是n,则m-2n=______.14.计算(0.04)2018×[(﹣5)]2018的结果是_____.15.观察下列等式:12-3×1=1×(1-3);22-3×2=2×(2-3);32-3×3=3×(3-3);42-3×4=4×(4-3);…,则第n 个等式可表示为_____. 16.观察下列等式: ① 32 - 12 = 2 × 4 ② 52 - 32 = 2 × 8 ③ 72 - 52 = 2 × 12 ......那么第n (n 为正整数)个等式为___________17.统计得到的一组数据有 80 个,其中最大值为 141,最小值为 50,取组距为 10,可以分成 _______________组.18.小明受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作,请根据图中给出的信息,量筒中至少放入______个小球时有水溢出.19.一幅三角尺按如图方式摆放,且1∠的度数比2∠的度数大50,则2∠的大小为__________度.20.当n 取正整数时,(1+x )n 的展开式中每一项的系数可以表示成如下形式:(1)观察上面数表的规律,若(1+x )6=1+6x +15x 2+ax 3+15x 4+6x 5+x 6,则a =_____; (2)(1+x )7的展开式中每一项的系数和为_____. 21.已知关于x 的一元一次方程520202020xx m +=+的解为2019x =,那么关于y 的一元一次方程552020(5)2020yy m --=--的解为________. 22.如图所示,一动点从半径为2的O 上的0A 点出发,沿着射线0A O 方向运动到O上的点1A 处,再向左沿着与射线1A O 夹角为60°的方向运动到O 上的点2A 处;接着又从2A 点出发,沿着射线2A O 方向运动到O 上的点3A 处,再向左沿着与射线3A O 夹角为60°的方向运动到O 上的点4A 处.……按此规律运动到点2020A 处,则点2020A 与点0A 间的距离是___________.三、解答题23.(1)计算:()13564734-++- (2)计算:()320201342-⨯+÷- (3)x 22x 1146+--= 24.为了庆祝元旦,某商场在门前的空地上用花盆排列出了如图所示的图案,第1个图案中10个花盆,第2个图案中有19个花,……,按此规律排列下去.(1)第3个图案中有________一个花盆,第4个图案中右________个花盆; (2)根据上述规律,求出第n 个图案中花盆的个数(用含n 的代数式表示). 25.学校餐厅中,一张桌子可坐6人,有以下两种摆放方式:(1)当有5张桌子时,两种摆放方式各能坐多少人?(2)当有n张桌子时,两种摆放方式各能坐多少人?(3)新学期有200人在学校就餐,但餐厅只有60张这样的餐桌,若你是老师,你打算选择哪种方式来摆放餐桌?为什么?26.已知数轴上三点M,O,N对应的数分别为-3,0,1,点P为数轴上任意一点,其对应的数为x.(1)如果点P到点M、点N的距离相等,那么x的值是;(2)当x= 时,点P到点M、点N的距离之和是6;(3)如果点P以每秒钟1个单位长度的速度从点O向右运动时,点M和点N分别以每秒钟4个单位长度和每秒钟2个单位长度的速度也向右运动,且三点同时出发,那么几秒钟时点P到点M,点N的距离相等?27.如图,已知A、B、C三点,请完成下列问题:(1)作直线BC,射线CA;(2)作线段AB,并延长BA;(3)点M是线段BC的中点,点N是直线BC上的一点,若BC=6,NB=23BC,求MN的长.28.如图,两条直线AB、CD相交于点O,且∠AOC=∠AOD,射线OM(与射线OB重合)绕O点逆时针方向旋转,速度为15°/s,射线ON(与射线OD重合)绕O点顺时值方向旋转,速度为12°/s,两射线,同时运动,运动时间为t秒(本题出现的角均指小于平角的角)(1)图中一定有______个直角;当t=2时,∠MON的度数为_____,∠BON的度数为_____,∠MOC的度数为_____;(2)当0<t<12时,若∠AOM=3∠AON-60°,试求出t的值.(3)当0<t<6时,探究72COM BONMON∠+∠∠的值,在t满足怎样的条件是定值,在t满足怎样的条件不是定值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】将原式各项运用有理数的运算法则计算得到结果,比较即可.【详解】解:A、-22=-4,(-2)2=4,不相等,故A错误;B、23=8,32=9,不相等,故B错误;C、-33=(-3)3=-27,相等,故C正确;D、(-3×2)2=36,-32×22=-36,不相等,故D错误.故选C【点睛】此题考查了有理数的乘方,以及有理数的乘法,熟练掌握运算法则是解本题的关键.2.B解析:B【解析】【分析】分别找出每个图形从三个方向看所得到的图形即可得到答案.【详解】解:①正方体从上面、正面、左侧三个不同方向看到的形状都是正方形,故此选项正确;②球从上面、正面、左侧三个不同方向看到的形状都是圆,故此选项正确;③圆锥,从左边看是三角形,从正面看是三角形,从上面看是圆,故此选项错误;④圆柱从左面和正面看都是矩形,从上边看是圆,故此选项错误;故选B.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3.C解析:C【解析】【分析】将x=-m代入方程,解出m的值即可.【详解】将x=-m代入方程可得:-4m-3m=2,解得:m=-27.故选:C.【点睛】本题主要考查一元一次方程的解的意义以及求解方法,将解代入方程求解是解题关键.4.B解析:B【解析】【分析】动手进行实验操作,或者在头脑中模拟(想象)折纸、翻转活动即可求解.【详解】解:由图1可得,“中”和第三行的“国”相对;第二行“国”和“强”相对;“梦”和“梦”相对;由图2可得,此时小正方体朝下面的字即为“中”的相对面对应的字,即为“国”.故选:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.5.D解析:D【解析】【分析】先求出所抽查的这5天的平均用电量,从而估计他家6月份日用电量为.【详解】解:∵这5天的日用电量的平均数为91171085++++=9(度),∴估计他家6月份日用电量为9度,故选:D.【点睛】本题考查平均数的定义和用样本去估计总体.平均数等于所有数据的和除以数据的个数.6.D解析:D 【解析】 【分析】首先根据有理数a ,b 在数轴上的位置判断出a 、b 两数的符号,从而确定答案. 【详解】由数轴可知:a <0<b ,a<-1,0<b<1, 所以,A.a+b<0,故原选项错误; B. ab <0,故原选项错误; C.a-b<0,故原选项错误; D. 0a b -->,正确. 故选D . 【点睛】本题考查了数轴及有理数的乘法,数轴上的数:右边的数总是大于左边的数,从而确定a ,b 的大小关系.7.B解析:B 【解析】 【分析】用极差除以组距,如果商是整数,组数=这个整数加1,如果商不是整数,用进一法,确定组数; 【详解】∵296234.655-==, ∴分成的组数是5组. 故答案选B . 【点睛】本题主要考查了频数分布直方图,准确计算是解题的关键.8.A解析:A 【解析】 【分析】把已知的多项式看成由两个单项式组成,分别找出两个单项式的规律,也就知道了多项式的规律. 【详解】多项式的第一项依次是x ,x 2,x 3,x 4,…,x n , 第二项依次是y ,-y 3,y 5,-y 7,…,(-1)n+1y 2n-1, 所以第10个式子即当n=10时, 代入到得到x n +(-1)n+1y 2n-1=x 10-y 19.【点睛】本题主要考查了多项式,本题属于找规律的题目,把多项式分成几个单项式的和,分别找出各单项式的规律是解决这类问题的关键.9.C解析:C【解析】【分析】根据七巧板的性质,分别计算出每一块图形的面积,最后再求和即可.【详解】由题意可知,6号的面积为:2,则1号的面积为:1,2号的面积为:2,3号的面积为:2,4号的面积为:4,5号的面积为:1,7号的面积为:4,++++++=.所以最大正方形面积为:122412416故选C.【点睛】本题考查了七巧板拼图,计算出每一块图形的面积是解题的关键.10.D解析:D【解析】【分析】根据第①个图案中“●”有:1+3×(0+2)个,第②个图案中“●”有:1+4×(1+2)个,第③个图案中“●”有:1+5×(2+2)个,第④个图案中“●”有:1+6×(3+2)个,据此可得第⑨个图案中“●”的个数.【详解】解:∵第①个图案中“●”有:1+3×(0+2)=7个,第②个图案中“●”有:1+4×(1+2)=13个,第③个图案中“●”有:1+5×(2+2)=21个,第④个图案中“●”有:1+6×(3+2)=31个,…∴第9个图案中“●”有:1+11×(8+2)=111个,【点睛】本题考查规律型:图形的变化,解题的关键是将原图形中的点进行无重叠的划分来计数.11.D解析:D【解析】【分析】根据图形的规律可知,从第二个图形开始,每个图形中的黑色正方形纸片数比前一个图形多2个,由此可推出结果.【详解】第1个图中有3张黑色正方形纸片,第2个图中有5张黑色正方形纸片,第3个图中有7张黑色正方形纸片,…,依次类推,第n个图中黑色正方形纸片的张数为2n+1,故选:D.【点睛】本题考查了图形的规律,代数式表示图形的个数,掌握图形的规律是解题的关键.12.A解析:A【解析】【分析】分析可得,第n行有n个数,此行第一个数的绝对值为(1)12n n-+,且式子的奇偶,决定它的正负,奇数为正,偶数为负,依此即可得出第10行从左边数第5个数.【详解】解:第n行有n个数,此行第一个数的绝对值为(1)12n n-+,且式子的奇偶,决定它的正负,奇数为正,偶数为负.所以第10行第5个数的绝对值为:109550 2⨯+=,50为偶数,故这个数为:-50.故选:A.【点睛】本题考查探索与表达规律,能依据已给数据分析得出每行第一个数与行数之间的规律是解决此题的关键.二、填空题13.16【解析】【分析】【详解】∵x=8是偶数,∴代入-x+6得:m=-x+6=-×8+6=2,∵x=3是奇数,∴代入-4x+5得:n=-4x+5=-7,∴m -2n=2-2×(-7)=1解析:16【解析】【分析】【详解】∵x=8是偶数,∴代入-12x+6得:m=-12x+6=-12×8+6=2, ∵x=3是奇数,∴代入-4x+5得:n=-4x+5=-7,∴m-2n=2-2×(-7)=16,故答案是:16.【点睛】本题考查了求代数式的值,能根据程序求出m 、n 的值是解此题的关键.14..【解析】【分析】先将原式变形为[0.04×(﹣5)]2018,再根据乘方的定义计算可得.【详解】原式=[0.04×(﹣5)]2018=(﹣0.2)2018.故答案为.【点睛】本题考 解析:201815.【解析】【分析】先将原式变形为[0.04×(﹣5)]2018,再根据乘方的定义计算可得.【详解】原式=[0.04×(﹣5)]2018=(﹣0.2)2018201815=. 故答案为201815.【点睛】 本题考查了有理数的乘方,解题的关键是掌握有理数的乘方的定义和运算法则.15.【解析】【分析】由于每个等式第一个数值由1的平方到2的平方逐渐增加,接着减去的是3×1、3×2等,等式右边是前面数字的一种组合,由此即可得到第n 个等式.【详解】解:∵12-3×1=1×(1解析:23(3)n n n n -=-【解析】【分析】由于每个等式第一个数值由1的平方到2的平方逐渐增加,接着减去的是3×1、3×2等,等式右边是前面数字的一种组合,由此即可得到第n 个等式.【详解】解:∵12-3×1=1×(1-3);22-3×2=2×(2-3);32-3×3=3×(3-3);42-3×4=4×(4-3);……∴第n 个等式可表示为n 2-3n=n (n-3).故答案为:23(3)n n n n -=-.【点睛】此题主要考查了因式分解的应用,首先通过观察得到等式隐含的规律,然后利用规律即可解决问题. 16.【解析】【分析】通过观察可发现等式左边是两个连续奇数的平方差,右边是这两个奇数和的2倍,进而求出第n 个等式.【详解】通过观察发现:等式左边是两个连续奇数的平方差,右边是这两个奇数和的2倍,解析:()()22212124n n n +--=⨯【解析】【分析】通过观察可发现等式左边是两个连续奇数的平方差,右边是这两个奇数和的2倍,进而求出第n 个等式.【详解】通过观察发现:等式左边是两个连续奇数的平方差,右边是这两个奇数和的2倍, ()()()2221212212124n n n n n +--=++-=⨯. 故答案为:()()22212124n n n +--=⨯. 【点睛】 本题考查了数字类的变化规律,通过观察,分析、归纳并发现其中的规律,本题的关键规律是左边是两个连续奇数的平方差,右边是这两个奇数和的2倍.17.10【解析】【分析】组数定义:数据分成的组的个数称为组数,根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位.【详解】解:这组数据的极差为141-50=91,91÷10=9.1,解析:10【解析】【分析】组数定义:数据分成的组的个数称为组数,根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位.【详解】解:这组数据的极差为141-50=91,91÷10=9.1,因此数据可以分为10组,故答案为:10.【点睛】本题考查的是组数的计算,属于基础题,只要根据组数的定义来解即可.18.11【解析】【分析】本题首先算出放入一个球水面上升多少厘米,继而求解量筒高度与原水面高度之差,最后用两者之比求解此题.【详解】由图已知:放入一个小球水面上升:,量筒与原水面高度差:,解析:11【解析】【分析】本题首先算出放入一个球水面上升多少厘米,继而求解量筒高度与原水面高度之差,最后用两者之比求解此题.【详解】由图已知:-÷=,放入一个小球水面上升:(18.514)3 1.5cm-=,量筒与原水面高度差:301416cm÷≈,∵16 1.510.7∴量筒中至少放入11个球,水会溢出.故填:11.【点睛】本题考查有理数的运算,难点在于从图中获取有效信息点,并理清题目中蕴含的数学关系,其次注意计算仔细即可.19.20【解析】【分析】根据余角、补角的定义计算.【详解】解:根据题意可知,∠1+∠2=90°,∠1-∠2=50°,所以∠1=70°,∠2=20°.故答案是:20.【点睛】主要考查了余解析:20【解析】【分析】根据余角、补角的定义计算.【详解】解:根据题意可知,∠1+∠2=90°,∠1-∠2=50°,所以∠1=70°,∠2=20°.故答案是:20.【点睛】主要考查了余角和补角的概念以及运用.互为余角的两角的和为90°,互为补角的两角之和为180度.解此题的关键是能准确地从图中找出角之间的数量关系,从而计算出结果.要掌握一副三角板上的特殊角之间的关系.20.27【解析】【分析】(1)根据表中的规律,从而可以解答本题;(2)根据数学归纳法,写出前几项总结规律,从而可以解答本题.【详解】解:(1)由题意可得,(1+x)6=1+6x+1解析:27【解析】【分析】(1)根据表中的规律,从而可以解答本题;(2)根据数学归纳法,写出前几项总结规律,从而可以解答本题.【详解】解:(1)由题意可得,(1+x)6=1+6x+15x2+ax3+15x4+6x5+x6,则a=20;(2)∵当n=1时,多项式(1+x)1展开式的各项系数之和为:1+1=2=21,当n=2时,多项式(1+x)2展开式的各项系数之和为:1+2+1=4=22,当n=3时,多项式(1+x)3展开式的各项系数之和为:1+3+3+1=8=23,当n=4时,多项式(1+x)4展开式的各项系数之和为:1+4+6+4+1=16=24,…∴多项式(1+x)7展开式的各项系数之和=27.故答案为:20,27.【点睛】本题考查整式的运算,数字的变化规律,解题的关键是明确题意,利用数学归纳法解答本题.21.2024【解析】【分析】根据关于x的一元一次方程的解,可以得到m的值,把m的值代入关于y的方程式中,可以得到y的解.【详解】∵的解为,∴,解得:,∴方程可化为,∴,∴,∴,解析:2024【解析】【分析】根据关于x 的一元一次方程的解,可以得到m 的值,把m 的值代入关于y 的方程式中,可以得到y 的解.【详解】 ∵520202020x x m +=+的解为2019x =, ∴52020120201920290m +=⨯+, 解得:52020201920202019m =+-⨯, ∴方程552020(5)2020y y m --=--可化为 25052020(5)5202020192020202019y y --=---+⨯, ∴52020(5)20192020201920202020y y ---=-+⨯, ∴(2020)(5)2019(2020)2020202011y --=-⨯-, ∴52019y -=-, ∴2024y =,故答案为:2024.【点睛】本题考查了已知一元一次方程的解求参数,整体代换解一元一次方程,掌握整体代换的思想是解题的关键.22.【解析】【分析】连接A4A5、A0A5,,,分别求出,,,,,,,根据图形的运动得到按此规律6次一循环,即可求出点与点间的距离.【详解】如图,连接A4A5、A0A5,,,∵的半径为2, 解析:23 【解析】 【分析】 连接A 4A 5、A 0A 5,04A A ,02A A ,分别求出014A A =,0223A A =,032A A =,0423A A =,052A A =,060A A =,,根据图形的运动得到按此规律6次一循环,即可求出点2020A 与点0A 间的距离.【详解】如图,连接A 4A 5、A 0A 5,04A A ,02A A ,∵O 的半径为2,∴014A A =,0223A A =,032A A =,0423A A =,052A A =,060A A =,按此规律6次一循环,∵202063364÷=,∴0202023A A =.故答案为:23.【点睛】此题考查图形类规律的探究,根据图形的变化得到运动的规律是解题的关键.三、解答题23.(1)-30;(2)-3.5;(3)-4【解析】【分析】(1)根据加法结合律和交换律即可得到结果;(2)根据含乘方的有理数的混合运算即可得到结果;(3)根据解一元一次方程的步骤即可得到结果.【详解】解:(1)原式=13+47-(56+34)=60-90=-30;(2)原式=-1×3+4÷(-8)=-3-0.5=-3.5;(3)x 22x 1146+--= ()()3222112x x +--=364212x x +-+=4x -=4x =-【点睛】本题主要考查的是含乘方的有理数的混合运算以及解一元一次方程,掌握以上知识点是解题的关键.24.(1)28 ,37;(2)第n 个图案中有(91+n )个花盆【解析】【分析】(1)由图可知:第1个图案中有10个花盆,第2个图案中有2×10-1=19个花盆,第3个图案中有3×10-2=28个花盆;(2)由(1)中的规律得出第n 个图案中有10n-(n-1)=9n+1个花盆.【详解】(1)第1个图案中有10个花盆,第2个图案中有2×10-1=19个花盆,第3个图案中有3×10-2=28个花盆,第4个图案中有4×10-3=37个花盆;故答案为:)28 ,37;(2)由(1)中的规律得出:第n 个图案中有()10191n n n --=+个花盆.【点睛】本题考查了图形的变化规律,找出图形之间的联系,得出数字的运算规律:第n 个图案中有()10191n n n --=+个花盆是解决问题的关键.25.(1)22,14;(2)4n+2,2n+4;(3)第一种,见解析【解析】【分析】(1)旁边2人除外,每张桌可以坐4人,由此即可解决问题;旁边4人除外,每张桌可以坐2人,由此即可解决问题;(2)根据(1)中所得规律列式可得;(3)分别求出两种情形坐的人数,即可判断.【详解】(1)有5张桌子,用第一种摆设方式,可以坐5×4+2=22人;用第二种摆设方式,可以坐5×2+4=14人;(2)有n 张桌子,用第一种摆设方式可以坐4n +2人;用第二种摆设方式,可以坐2n +4(用含有n 的代数式表示);(3)选择第一种方式.理由如下;第一种方式:60张桌子一共可以坐60×4+2=242(人).第二种方式:60张桌子一共可以坐60×2+4=124(人).又242>200>124,所以选择第一种方式.【点睛】本题考查规律型−数字问题,解题的关键是学会探究规律,利用规律解决问题,属于中考常考题型.26.(1)-1;(2)-4或2;(3)2或1 2【解析】【分析】(1)根据题意列出关于x的方程x-(-3)=1-x,,求出方程的解即可得到x的值;(2)根据题意列出关于x的方程|x-(-3)|+|x-1|=6,,求出方程的解即可得到结果;(3)设t秒时P到M,到N得距离相等,由题意列出方程,求出方程的解即可得到t的值.【详解】解:(1)根据题意得:x-(-3)=1-x,解得:x=-1,故答案为:-1;(2)根据题意得:|x-(-3)|+|x-1|=6,即|x+3|+|x-1|=6,当x<-3时,-x-3-x+1=6,解得:x=-4,当-3≤x≤1时,-x-3+x-1=6,无解;当x>1时,x+3+x-1=6,解得:x=2,综上:x=-4或2;(3)设t秒时点P到点M,点N的距离相等,根据题意得:|-3+4t-t|=|1+2t-t|,即|3t-3|=|t+1|,∵t≥0,当t<-1时,不存在此种情况;当-1≤x≤1时,3t-3=-t-1,解得:t=12;当t>1时,3t-3=t+1,解得:t=2;综上:t=2或12. 【点睛】 此题考查了一元一次方程的应用,以及数轴上两点之间的距离计算方法,行程问题中的基本数量关系是解题关键.27.(1)图见解析;(2)图见解析;(3)MN 的长是1或7.【解析】【分析】(1)根据直线是向两方无限延长的,射线是向一方无限延长的画图即可;(2)根据线段的性质画图即可;(3)此题要分两种情况进行讨论:①当点N 在直线BC 上,且在点B 的上方时;②当点N 在直线BC 上,且在点B 的下方时分别进行计算.【详解】解:(1)(2)如图所示:(3)∵BC=6,23NB BC =,点M 平分线段BC , ∴BN=4,MB=3, ①当点N 在直线BC 上,且在点B 的上方时,MN=BN-BM=4-3=1,②当点N 在直线BC 上,且在点B 的下方时,MN=BN+BM=4+3=7, 所以MN 的长是1或7. 【点睛】本题考查画线段、射线、直线,线段的和差.(1)(2)中解题关键是掌握射线、线段、直线的性质;(3)中能分类讨论是解题关键.28.(1)4;144°,114°,60°;(2)107s 或10s ;(3),当0<t <103时,72COM BON MON ∠+∠∠的值不是定值,当103<t <6时,72COM BON MON∠+∠∠的值是3 【解析】【分析】(1)根据两条直线AB ,CD 相交于点O ,∠AOC=∠AOD ,可得图中一定有4个直角;当t=2时,根据射线OM ,ON 的位置,可得∠MON 的度数,∠BON 的度数以及∠MOC 的度数;(2)分两种情况进行讨论:当0<t≤7.5时,当7.5<t<12时,分别根据∠AOM=3∠AON-60°,列出方程式进行求解,即可得到t的值;(3)先判断当∠MON为平角时t的值,再以此分两种情况讨论:当0<t<103时,当103<t<6时,分别计算72COM BONMON∠+∠∠的值,根据结果作出判断即可.【详解】解:(1)如图所示,∵两条直线AB,CD相交于点O,∠AOC=∠AOD,∴∠AOC=∠AOD=90°,∴∠BOC=∠BOD=90°,∴图中一定有4个直角;当t=2时,∠BOM=30°,∠NON=24°,∴∠MON=30°+90°+24°=144°,∠BON=90°+24°=114°,∠MOC=90°-30°=60°;故答案为:4;144°,114°,60°;(2)当ON与OA重合时,t=90÷12=7.5(s),当OM与OA重合时,t=180°÷15=12(s),如图所示,当0<t≤7.5时,∠AON=90°-12t°,∠AOM=180°-15t°,由∠AOM=3∠AON-60°,可得180°-15t°=3(90°-12t°)-60°,解得t=107;如图所示,当7.5<t<12时,∠AON=12t°-90°,∠AOM=180°-15t°,由∠AOM=3∠AON-60°,可得180°-15t°=3(12t°-90°)-60°,解得t=10;综上所述,当∠AOM=3∠AON-60°时,t的值为10 7s或10s;(3)当∠MON=180°时,∠BOM+∠BOD+∠DON=180°,∴15t°+90°+12t°=180°,解得t=103,①如图所示,当0<t<103时,∠COM=90°-15t°,∠BON=90°+12t°,∠MON=∠BOM+∠BOD+∠DON=15t°+90°+12t°,∴72COM BONMON∠+∠∠=()()7901529012159012t tt t︒︒︒︒︒︒︒-++++=810812790tt︒︒︒-+(不是定值),②如图所示,当103<t<6时,∠COM=90°-15t°,∠BON=90°+12t°,∠MON=360°-(∠BOM+∠BOD+∠DON)=360°-(15t°+90°+12t°)=270°-27t°, ∴72COM BON MON ∠+∠∠=()()790152901227027t t t ︒︒︒︒︒︒-++- =8108127027t t ︒︒︒︒--=3(定值), 综上所述,当0<t <103时,72COM BON MON ∠+∠∠的值不是定值,当103<t <6时,72COM BON MON∠+∠∠的值是3. 【点睛】本题属于角的计算综合题,主要考查了角的和差关系的运用,解决问题的关键是将相关的角用含t 的代数式表示出来,并根据题意列出方程进行求解,以及进行分类讨论,解题时注意方程思想和分类思想的灵活运用.。
七年级(上)期末数学试卷、选择题1 6的绝对值是()A. - 6B. 6C. 土 6D.--62 .截止到2015年6月底,济南机动车总保有量为1640000辆,用科学记数法表示这个数为()A.16.4 X 105 B . 1.64 X 105C. 0.164 X 107D. 1.64 X 1063.下列调查最适合用抽样调查的是( )A .某书稿中的错别字B. 调查七(1)班学生的身高情况C. 某品牌灯泡的使用寿命7 .如果,.x a+2y 3与-3x 3y 2b -1是同类项,那么a 、b 的值分别是(D. 企业招聘,对应聘人员进行面试 如图所示,直线 a , b 被直线c 所截,/ 1与/ 2是(C.同旁内角 D .邻补角5. 下列方程变形正确的是(A. 由 3+x=5 得 x=5+3B.由 7x= - 4 得 7x=-4C.由.y=0 得 y=2D.由 3=x - 2 得 x=2+36. 如图,是一个正方体纸盒的展开图,若在其中的三个正方形折成正方体后相对的面上的两个数互为相反数,则填入正方形 A B. C 分别填上适当的数,使它们 A . B . C 的三个数依次为()B . 0, - 2, 1C.- 2, 0, 1D.2, 1 , 04.10. 下列几种说法:①两点之间线段最短;②任何数的平方都是正数;③几个角的和等于180°,我们就说这几个角互补;④34x3是7次单项式;⑤同旁内角的角平分线相互垂直.其中正确的语句有()句.A. 1B. 2C. 3D. 411. 如图,已知线段AB=6延长线段AB到C,使BC=2AB点D是AC的中点.贝U BD等于().4RD CA. 2B. 3C. 4D. 512 .如图,将长方形纸片ABCD的角C沿着GF折叠(点F在BC上,不与B, C重合),使点C落在长方形内部点E 处,若FH平分/ BFE,则/ GFH的度数a是()A. 90°< a V180B. 0°< a <90C. a =90°D. a随折痕GF位置的变化而变化&形如'匚的式子叫做二阶行列式,它的运算法则用公式表示为lb dl2 1的结果为()-3 4A. 11B.—11 C . 5 D.—2:严-be,依此法则计算9. 如图,直线AB CD相交于0, EOL AB,则/ 1与/ 2的关系是()C.互余D .互补13. 一家商店将某种服装按成本价提高 40财标价,又以8折(即按标价的80%优惠卖出,结果每件作服装仍可获利15元,则这种服装每件的成本是()A . 120 元B . 125 元 C. 135 元 D. 140 元14. 四边形 ABCD 和CEFG 都是正方形,且正方形 ABCD 勺边长为a ,正方形CEFG 的边长为b , BD, BF 和DF 后得到三角形 BDF 请用含字母a 和b 的代数式表示三角形 BDF 的面积可表示为A . ab B. — ab C. — b 2 D. — a 22 2 215.根据如图中箭头指向的规律,从 2014到2015再到2016,箭头的方向(二、填空题16. 0.75 ° = ____ '.17. 关于x 的方程mx+4=3x+5的解是x= - 1,贝U m ______ . 18.一个角的补角加上 10°后,等于这个角的余角的 3倍,则这个角=19.上午8点30分,时钟的时针和分针所构成的锐角度数为_ .20. 已知a , b 互为相反数,则 2015a+ 一 +2015b= ________ .3b21. 如图,已知直线 mi n ,直角三角板 ABC 的顶点A 在直线m 上,则/ a =连接 ()C.三、解答题(共72分)22. ( 1)计算:(-' + 2 )X(- 36)2 9 12(2)计算:100 +(- 2) 3-(- 2) + (-)3(3)化简:(-x2+3xy -—;)-(-厶x2+4xy - —y2)(4)先化简后求值:x2+ (2xy - 3y2)- 2 (x2+yx - 2y2),其中x=--;, y=3.23. 解方程:(1) 3 (2x - 1)- 2 (1 - x) =- 1(2)U2 他当天购进黄瓜和土豆各多少千克?3 如果黄瓜和土豆全部卖完,他能赚多少钱?26. 2015年10月17日是我国第二个“扶贫日’,某校学生会干部对学生倡导的“扶贫”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,对学校部分捐款人数进行调查和分组统计后,将数据整理成如图所示的统计图,(图中信息不完整),已知A、B两组捐款人数的比为1:5.扌软人数分组统计图1 捐款人数分组统计图2组别捐款额x/元人数A K X V 10aB10 < X V 20100C20 < X V 30D30 < X V 40E40W x请结合以上信息解答下列问题:(1)求a的值和参与调查的总人数;(2)补全“被调查的捐款人数分组统计图1”并计算扇形B的圆心角度数;(3)已知该校有学生2200人,请估计捐款数不少于30元的学生人数有多少人?27. 如图1所示,将一副三角尺的直角顶点重合在点0处.①/ AOC与/ BOD相等吗?说明理由;②/ AOD与/ BOC数量上有什么关系吗?说明理由.(2)若将这副三角尺按图2所示摆放,直角顶点重合在点O处,不添加字母,分析图中现有标注字母所表示的角;①找出图中相等关系的角;②找出图中互补关系的角,并说明理由.28 .如图,已知数轴上点A表示的数为8, B是数轴上位于点A左侧一点,且AB=22,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t >0)秒.(1)_____________________________ 出数轴上点B表示的数;点P表示的数 (用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2 ?(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(4)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.B O A0 «参考答案与试题解析一、选择题1 6的绝对值是()A.- 6B. 6C. 土6D.--6【考点】绝对值.【专题】计算题.【分析】根据绝对值的性质,当a是负有理数时,a的绝对值是它的相反数- a,解答即可;【解答】解:根据绝对值的性质,I - 6|=6 .故选B.【点评】本题考查了绝对值的性质,熟记:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2 .截止到2015年6月底,济南机动车总保有量为1640000辆,用科学记数法表示这个数为()55 7 6A. 16.4 X 10B. 1.64 X 10C. 0.164 X 10D. 1.64 X 10【考点】科学记数法一表示较大的数.【分析】科学记数法的表示形式为a x 10n的形式,其中1 w|a| v 10, n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值〉1时,n是正数;当原数的绝对值v 1时,n是负数.【解答】解:将1640000用科学记数法表示为:1.64 x 106.故选:D.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a x 10n的形式,其中1 w|a|v 10, n为整数,表示时关键要正确确定a的值以及n的值.3. 下列调查最适合用抽样调查的是()A. 某书稿中的错别字B. 调查七(1)班学生的身高情况C. 某品牌灯泡的使用寿命D. 企业招聘,对应聘人员进行面试【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查 结果比较近似. 【解答】解:A 、某书稿中的错别字适合普查,故 A 错误;B 、 调查七(1)班学生的身高情况,适合普查,故 B 错误;C 、 某品牌灯泡的使用寿命,适合抽样调查,故 C 正确;D 企业招聘,对应聘人员进行面试,适合普查,故D 错误;故选:C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的 特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选 择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4. 如图所示,直线 a , b 被直线c 所截,/ 1与/2是(【考点】同位角、内错角、同旁内角.【分析】根据三线八角的概念,以及同位角的定义作答即可.【解答】解:如图所示,/ 1和/ 2两个角都在两被截直线直线 b 和a 同侧,并且在第三条直线 线)的同旁,故/ 1和/ 2是直线b 、a 被c 所截而成的同位角.故选A.【点评】本题考查了同位角、内错角、同旁内角的定义•在截线的同旁找同位角和同旁内角,在截 线的两旁找内错角.要结合图形,熟记同位角、内错角、同旁内角的位置特点,比较它们的区别与 联系•两条直线被第三条直线所截所形成的八个角中,有四对同位角,两对内错角,两对同旁内角.5•下列方程变形正确的是()C.同旁内角D .邻补角c (截A 、 由 3+x=5 得 x=5+3 B.由 7x= - 4 得 x=-—4C.由 y=0 得 y=2D.由 3=x - 2 得 x=2+32【考点】解一元一次方程. 【专题】计算题.【分析】分另U 对所给的四个方程利用等式性质进行变形,可以找出正确答案. 【解答】解:A 、由3+x=5得x=5 - 3;B 、 由 7x= - 4 得 x=- 7C 、 由厶y=0得y=0;D 由 3=x - 2 得 x=2+3.故选D.【点评】主要考查了方程的变形,也就是解方程的基本步骤的分解.方程变形常用的方法有:移项、 合并同类项、去分母、去系数、去括号.解此类题型要熟悉各项计算的方法.6.如图,是一个正方体纸盒的展开图,若在其中的三个正方形A B. C 分别填上适当的数,使它们折成正方体后相对的面上的两个数互为相反数,则填入正方形 【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,再根据相反数的 定义解答. 【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“A ”与“-1”是相对面, “B ”与“2”是相对面, “C'与“0”是相对面,•••折成正方体后相对的面上的两个数互为相反数, •••填入正方形 A . B . C 的三个数依次为1、- 2、0.A .B .C 的三个数依次为(B . 0, - 2, 1 C.- 2, 0, 1 D.- 2, 1 , 0故选A.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分 析及解答问题.7. 如果._x a+2y 3与-Bxf 1是同类项,那么【考点】同类项;解二元一次方程组.【分析】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类 项的定义中相同字母的指数也相同,可分别求得 a 和b 的值.【解答】解:由同类项的定义,得.1-. - . ■,解得(a=l i :.故选A.【点评】同类项定义中的两个“相同”:(1) 所含字母相同;(2) 相同字母的指数相同,是易混点,因此成了中考的常考点.&形如'匚的式子叫做二阶行列式,它的运算法则用公式表示为b d2 1丁 ,的结果为( )一3 4A . 11 B.- 11 C . 5D.- 2【考点】有理数的混合运算. 【专题】压轴题;新定义.故选A.【点评】本题为信息题.根据题中给出的信息来答题,首先要理解信息,熟悉规则,然后运用. 9. 如图,直线 AB CD 相交于O, EOL AB,则/ 1与/ 2的关系是(【分析】 按照题中的位置,把数字代入=ad - be 进行计算.解:由题意得:2 1 -3 4=2 X 4- 1 X(- 3) =11.a 、b 的值分别是(A. <a=lB .a=0 c.a=2 D.b=2b=2b=lb=la clb J=ad- be ,依此法则计算【考点】对顶角、邻补角;余角和补角.【分析】由直线AB 与CD 相交于点O,则/ A0C 与/ 2是对顶角,根据对顶角相等得出/ AOC=/ 2.由EC L AB 于O,根据垂直的定义得出/ AOE=90 =Z 1+Z A0C 2 1 + Z 2,所以/ 1与/ 2互为余角.【解答】解:•••直线 AB CD 相交于0, •••/ AOC=z 2, 又••• EO L AB,•••/ AOE=/ 1+Z AOC=90 ,•••/ 1 + Z 2=90°,•Z 1与Z 2互为余角,故选C.【点评】本题考查了对顶角相等的性质,垂直的定义,解决本题的关键是利用垂直的定义,要注意 领会由垂直得直角这一要点.10. 下列几种说法:① 两点之间线段最短; ② 任何数的平方都是正数;③ 几个角的和等于180°,我们就说这几个角互补; ④34x 3是7次单项式;⑤ 同旁内角的角平分线相互垂直. 其中正确的语句有()句.A . 1 B. 2 C. 3 D. 4【考点】线段的性质:两点之间线段最短;单项式;比较线段的长短;余角和补角;同位角、内错 角、同旁内角.C.互余D .互补【分析】根据两点之间线段最短;任何数的平方都是非负数;如果两个角的和等于180°(平角),就说这两个角互为补角•即其中一个角是另一个角的补角;单项式中所有字母的指数的和叫做单项式的次数;互补的同旁内角的角平分线相互垂直进行分析即可.【解答】解:①两点之间线段最短,说法正确;②任何数的平方都是正数,说法错误,例如0的平方为0;③几个角的和等于180°,我们就说这几个角互补,说法错误;④34x3是7次单项式,说法错误,应为3次;⑤同旁内角的角平分线相互垂直,说法错误;正确的说法有1个,故选:A.【点评】此题主要考查了线段的性质、补角定义、单项式的次数、同旁内角,关键是掌握课本基础知识,不能混淆.11. 如.4 RD rA. 2B. 3C. 4D. 5【考点】两点间的距离.【分析】根据BC=2AB AB=6,可得BC的长,根据线段的和差,可得AC的长,再根据D是AC的中点,可得CD的长,根据线段的和差,可得答案.【解答】解:••• AB=6,延长线段AB到C,使BC=2AB••• BC=12AC=AB+BC=6+12=1,8•••点D是AC的中点,• CD=_AC=9,BD=B G CD=12- 9=3,故选:B.【点评】本题考查了两点间的距离,先由BC=2AB求出BC长,再由D是AC的中点,求出CD的长,由线段的和差,得计算结果.图,已知线段AB=6延长线段AB到C,使BC=2AB点D是AC的中点.贝U BD等于()12 .如图,将长方形纸片ABCD勺角C沿着GF折叠(点F在BC上,不与B, C重合),使点C落在长方形内部点E 处,若FH平分/ BFE则/ GFH的度数a是()A. 90°v a v 180°B. 0°v a v90°C. a =90°D. a随折痕GF位置的变化而变化【考点】角的计算.【专题】计算题.【分析】根据折叠的性质可以得到△GCF^A GEF即/ CFG=/ EFG再根据FH平分/ BFE即可求解.【解答】解:•••/ CFG=/ EFG且FH平分/ BFE/ GFH=/ EFG+Z EFH•••/ GFH=/ EFG+Z EFH= / EFC+ / EFB= (/ EFC吃EFB)= X 180° =90°.2 2 2 2故选C.【点评】本题主要考查了折叠的性质,注意在折叠的过程中存在的相等关系.13. 一家商店将某种服装按成本价提高40财标价,又以8折(即按标价的80%优惠卖出,结果每件作服装仍可获利15元,则这种服装每件的成本是()A. 120 元B. 125 元C. 135 元D. 140 元【考点】一元一次方程的应用.【专题】销售问题.【分析】通过理解题意可知本题的等量关系,即每件作服装仍可获利=按成本价提高40%后标价,又以8折卖出,根据这两个等量关系,可列出方程,再求解.【解答】解:设这种服装每件的成本是x元,根据题意列方程得:x+15= (x+40%x)X 80%解这个方程得:x=125则这种服装每件的成本是125元.故选:B.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程, 再求解.14. 四边形ABCD和CEFG都是正方形,且正方形ABCD勺边长为a,正方形CEFG的边长为b,连接BD, BF和DF后得到三角形BDF请用含字母a和b的代数式表示三角形BDF的面积可表示为()1J. 2 12A. abB. —abC. 一bD. —a2 2 2【考点】整式的混合运算.【分析】可利用S A BDF=S\BC+S梯形EFDC_S A BFE,把a、b代入,化简即可求出厶BDF的面积.【解答】解:如图,如图,S A BFC=S\BCD+S梯形CEFD" s BEFi 2 i i=a + (a+b)x b - (a+b) b1 2p.故选:D.B C F【点评】本题主要考查了正方形的性质及列代数式的知识,关键是根据题意将所求图形的面积分割, 从而利用面积和进行解答.15. 根据如图中箭头指向的规律,从2014到2015再到2016,箭头的方向()【分析】观察不难发现,每4个数为一个循环组依次循环,根据题意得出 2015是第504个循环组的第3个数,2016是第504个循环组的第4个数,进而解答即可. 【解答】解:由图可知,每4个数为一个循环组依次循环, 2012 -4=503,故2013是第504个循环的第1个数,2014是第504个循环组的第2个数,2015是第504个循环组的第 3个数,2016是第504个循环组的第4个数.故从2014到2015再到2016,箭头的方向是:.J ----故选:B.【点评】此题主要考查了数字变化规律,仔细观察图形,发现每 题的关键.二、填空题16. 0.75 ° = 45'.【考点】度分秒的换算.【分析】根据大单位化小单位乘以进率,可得答案. 【解答】解:0.75 ° =45 故答案为:45'.【点评】本题考查了度分秒的换算,利用大单位化小单位乘以进率是解题关键.17. 关于x 的方程mx+4=3x+5的解是x= - 1,贝U m= 2.【考点】一元一次方程的解.【分析】将x=- 1代入方程,得到关于 m 的方程,接下来,解得 m 的值即可. 【解答】解:将 x= - 1代入得:-m+4=-3+5. 解得;m=2【点评】本题主要考查的是一元一次方程的解得定义和解一元一次方程,掌握方程的解得定义是解 题的关键.4个数为一个循环组依次循环是解【考点】规律型:图形的变化类.18. —个角的补角加上10°后,等于这个角的余角的3倍,则这个角=40 ° .【考点】余角和补角.【专题】计算题.【分析】可先设这个角为/ a,则根据题意可得关于/ a的方程,解即可.【解答】解:设这个角为/ a,依题意,得180°-/ a +10°=3 (90°-/ a )解得/ a =40°.故答案为40.【点评】此题考查的是角的性质的灵活运用,根据两角互余和为90°,互补和为180°列出方程求解即得出答案.19. 上午8点30分,时钟的时针和分针所构成的锐角度数为75°.【考点】钟面角.【分析】根据时针与分针相距的份数乘以每份的度数,可得答案.1 R【解答】解:8点30分,时钟的时针和分针相距2+ 一 =—;份,58点30分,时钟的时针和分针所构成的锐角度数为30°X三=75 °,故答案为:75°.【点评】本题考查了钟面角,确定时针与分针相距的份数是解题关键.H 120. 已知a, b 互为相反数,则2015a+ .. +2015b= -—.3b ----- 旷【考点】代数式求值;相反数.【专题】推理填空题.【分析】根据a, b互为相反数,可以求得a+b=0,亍 --,从而可以求得2015a+ +2015b的值, 本题得以解决.【解答】解:••• a, b互为相反数,••• a+b=O, 2 ,b• 2015a+ +2015b3b=2015 (a+b) + !Sb=2015 X 03=_丄=:,故答案为:一3【点评】本题考查代数式求值、相反数,解题的关键是明确它们各自的意义.21. 如图,已知直线m V/ n,直角三角板ABC的顶点A在直线m上,则/ a = 48°【考点】平行线的性质.【专题】计算题.【分析】过C作CD与m平行,由m与n平行得到CD与n平行,利用两直线平行得到两对内错角相等,再由/ ACB为直角,即可确定出/ a的度数.【解答】解:过C作CD// m,■/ m// n,•CD// n,•••/ ACD=42,/ BCD=/ a ,•/ ACL BC,即/ ACB=90 ,•/ ACD+Z BCD=90 ,则/ a =90°- 42°=48°.故答案为:48°【点评】此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.三、解答题(共72分)22.( 18分)(2015秋?历城区期末)(1)计算:(-' +——)X( - 36)2 9 12(2)计算:100 +(- 2) 2-(- 2) + (-)(3)化简:(-x2+3xy -.-■)-( - x2+4xy - '. y2)(4)先化简后求值:x2+ (2xy - 3y2)- 2 (x2+yx - 2y2),其中x=-二,y=3.【考点】整式的加减一化简求值;有理数的混合运算.【专题】计算题;整式.【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(3)原式去括号合并即可得到结果;(4)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值. 【解答】解:(1)原式=-18+20- 21= - 19;(2)原式=100-4 - 2X =25 - 3=22;2(3)原式=-x2+3xy - —y2^-x2- 4xy+吕y2= - —x2- xy+y2;(4)原式=x2+2xy - 3y2- 2x2- 2xy+4y 2= - x2+y2,1 3当x=-二,y=3 时,原式=8 ,.【点评】此题考查了整式的加减-化简求值,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.23. (10分)(2015秋?历城区期末)解方程:(1) 3 (2x - 1)- 2 (1 - x) =- 1(2)「=2-二.2 5【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把y系数化为1,即可求出解. 【解答】解:(1)去括号得:6x- 3 - 2+2x= - 1,移项合并得:8x=4,解得:x= - 0.5 ;(2)去分母得:5y - 5=20 - 2y - 4,移项合并得:7y=21 ,解得:y=3.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.24. 直线a, b, c, d 的位置如图所示,已知/ 1=58°,/ 2=58°,/ 3=70。