2015年湖北省黄冈中学高二上学期数学期中试卷和解析(理科)
- 格式:doc
- 大小:359.00 KB
- 文档页数:21
湖北省黄冈中学2014-2015学年高二上学期期中数学模拟试卷一、选择题(本大题共8小题,每小题5分,满分40分).1.(5分)执行如图所示的程序框图,若输入n的值为7,则输出的s的值为()A.22 B.16 C.15 D.112.(5分)某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x﹣y|的值为()A.1B.2C.3D.43.(5分)已知事件A与事件B发生的概率分别为P(A)、P(B),有下列命题:①若A为必然事件,则P(A)=1.②若A与B互斥,则P(A)+P(B)=1.③若A与B互斥,则P(A∪B)=P(A)+P(B).其中真命题有()个.A.0B.1C.2D.34.(5分)设m,n是整数,则“m,n均为偶数”是“m+n是偶数”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件5.(5分)给出如下四个命题:①若“p且q”为假命题,则p、q均为假命题;②若等差数列{a n}的前n项和为S n,则三点(10,),(100,),(110,)共线;③“∀x∈R,x2+1≥1”的否定是“∃x∈R,x2+1≤1”;④在△ABC中,“A>B”是“sinA>sinB”的充要条件.其中正确的命题的个数是()A.4B.3C.2D.16.(5分)椭圆的焦距等于()A.20 B.16 C.12 D.87.(5分)已知椭圆:+=1(0<b<3),左右焦点分别为F1,F2,过F1的直线交椭圆于A,B 两点,若||+||的最大值为8,则b的值是()A.B.C.D.8.(5分)一只小蜜蜂在一个棱长为30的正方体玻璃容器内随机飞行,若蜜蜂在飞行过程中与正方体玻璃容器6个表面中至少有一个的距离不大于10,则就有可能撞到玻璃上而不安全;若始终保持与正方体玻璃容器6个表面的距离均大于10,则飞行是安全的,假设蜜蜂在正方体玻璃容器内飞行到每一位置可能性相同,那么蜜蜂飞行是安全的概率是()A.B.C.D.二、填空题(本大题共6小题,每小题5分,满分30分)9.(5分)用秦九韶算法求多项式f(x)=12+35x﹣8x2+79x3+6x4+5x5+3x6在x=﹣4的值时,V4的值为.10.(5分)如表是某小卖部一周卖出热茶的杯数与当天气温的对比表:若热茶杯数与气温近似地满足线性关系,则其关系式是.气温/℃18 13 10 4 ﹣1杯数24 34 39 51 6311.(5分)命题p:∀x∈R,2x2+1>0的否定是.12.(5分)命题“∃x∈R,2x2﹣3ax+9<0”为假命题,则实数a的取值范围为.13.(5分)过点P(0,1)的直线与曲线|x|﹣1=相交于两点A,B,则线段AB长度的取值范围是.14.(5分)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过点F1的直线交椭圆E 于A、B两点,若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为.三、解答题(本大题共6小题,满分80分.解答应写出文字说明.证明过程或演算步骤)15.(12分)某市为了了解市民对卫生管理的满意程度,通过问卷调查了学生、在职人员、退休人员共250人,结果如下表:学生在职人员退休人员满意x y 78不满意 5 z 12若在所调查人员中随机抽取1人,恰好抽到学生的概率为0.32.(Ⅰ)求x的值;(Ⅱ)现用分层抽样的方法在所调查的人员中抽取25人,则在职人员应抽取多少人?(Ⅲ)若y≥70,z≥2,求市民对市政管理满意度不小于0.9的概率.(注:满意度=)16.(12分)设集合P={1,2,3}和Q={﹣1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b组成数对(a,b),并构成函数f(x)=ax2﹣4bx+1(Ⅰ)写出所有可能的数对(a,b),并计算a≥2,且b≤3的概率;(Ⅱ)求函数f(x)在区间O,4nn﹣1n﹣210﹣2,2﹣2,22,42,42,4.1,+∞)上是增函数的概率.考点:几何概型.分析:(1)列举出所有的可能的数对,由分步计数原理知共有15个,看清要求满足的条件,写出所有的数对,要做到不重不漏.(2)设事件“f(x)=ax2﹣4bx+1在区间1,+∞)上为增函数”为B,因函数f(x)=ax2﹣4bx+1的图象的对称轴为x=且a>0,所以要使事件B发生,只需即2b≤a.由满足题意的数对有(1,﹣1)、(2,﹣1)、(2,1)、(3,﹣1)、(3,1),共5个,∴P(B)==.点评:本题主要考查列举,古典概型要求能够列举出所有事件和发生事件的个数,本题可以列举出所有事件,概率问题同其他的知识点结合在一起,实际上是以概率问题为载体,主要考查的是另一个知识点.17.(14分)某市中学生田径运动会总分获得冠、亚、季军的代表队人数情况如下表.大会组委会为使颁奖仪式有序进行,气氛活跃,在颁奖过程中穿插拙奖活动,并用分层抽样的方法从三个代表队中共抽取16人在前排就坐,其中亚军队有5人.名次性别冠军队亚军队季军队男生30 30 *女生30 20 30(1)求季军队的男运动员人数;(2)从前排就飧的亚军队5人(3男2女)中随机抽収2人上台领奖,请列出所有的基事件,并求亚军队中有女生上台领奖的概率;(3)抽奖活动中,运动员通过操作按键,使电脑看碟动产化.内的两个随机数x,y随后电脑自动运行如下所示的程序框图相应程序.若电脑显示“中奖”,则该运动员获相应奖品,若电脑显示“谢谢”,则不中奖.求该运动员获得奖品的概率.考点:几何概型;古典概型及其概率计算公式;程序框图.专题:计算题.分析:(1)先设季军队的男运动员人数为n,由分层抽样的方法得关于n的等式,即可解得n.(2)记3个男运动员分别为A1,A2,A3,2个女运动员分别为B1,B2,利用列举法写出所有基本事件和亚军队中有女生的情况,最后利用概率公式计算出亚军队中有女生上台领奖的概率;(3)由框图得到,点(x,y)满足条件,其表示的区域是图中阴影部分,利用几何概型的计算公式即可得到该运动员获得奖品的概率.解答:解:(1)设季军队的男运动员人数为n,由题意得,解得n=20.(2)记3个男运动员分别为A1,A2,A3,2个女运动员分别为B1,B2,所有基本事件如下:(A1,A2),(A1,A3),(A2,A3),(A1,B1),(A1,B2),(A2,B1),(A2,B1),(A3,B1),(A3,B1),(B1,B2),共10种,其中亚军队中有女生有7种,故亚军队中有女生上台领奖的概率为.(3)由已知,0≤x≤4,0≤y≤4,点(x,y)在如图所示的正方形内,由条件得到的区域是图中阴影部分,故该运动员获得奖品的概率为:=.点评:本小题主要考查古典概型及其概率计算公式、程序框图、几何概型等基础知识,考查运算求解能力,属于基础题.18.(14分)设命题p:实数x满足x2﹣4ax+3a2<0,其中a>0;命题q:实数x满足x2﹣5x+6≤0 (1)若a=1,且q∧p为真,求实数x的取值范围;(2)若p是q必要不充分条件,求实数a的取值范围.考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:(1)利用一元二次不等式的解法可化简命题p,若p∧q为真,则p真且q真,即可得出;(2)若p是q的必要不充分条件⇔解答:解:(1)p:实数x满足x2﹣4ax+3a2<0,其中a>0⇔(x﹣3a)(x﹣a)<0,∵a>0为,所以a<x<3a;当a=1时,p:1<x<3;命题q:实数x满足x2﹣5x+6≤0⇔2≤x≤3;若p∧q为真,则p真且q真,∴2≤x<3;故x的取值范围是2,3;(2)由m2﹣7am+12a2<0(a>0),得(m﹣3a)(m﹣4a)<0,即3a<m<4a,即p:3a<m<4a,若实数m满足方程+=1表示焦点在y轴上的椭圆,则,即,解得1<m<,即q:1<m<,若非q是非p的充分不必要条件,则p是q的充分不必要条件,即,即,即.点评:本题主要考查充分条件和必要条件的应用,根据条件求出对应的命题是解决本题的关键.20.(14分)设A(x1,y1),B(x2,y2)是椭圆,(a>b>0)上的两点,已知向量=(,),=(,),且,若椭圆的离心率,短轴长为2,O为坐标原点:(Ⅰ)求椭圆的方程;(Ⅱ)若直线AB过椭圆的焦点F(0,c),(c为半焦距),求直线AB的斜率k的值;(Ⅲ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.考点:直线与圆锥曲线的综合问题.专题:计算题;压轴题.分析:(Ⅰ)根据题意可求得b,进而根据离心率求得a和c,则椭圆的方程可得.(Ⅱ)设出直线AB的方程,与椭圆方程联立消去y,表示出x1+x2和x1x2,利用建立方程求得k.(Ⅲ)先看当直线的斜率不存在时,可推断出x1=x2,y1=﹣y2,根据=0求得x1和y1的关系式,代入椭圆的方程求得|x1|和|y1|求得三角形的面积;再看当直线斜率存在时,设出直线AB的方程,与椭圆方程联立,利用韦达定理表示出x1+x2和x1x2,利用=0求得2b2﹣k2=4,最后利用弦长公式和三角形面积公式求得答案.解答:解:(Ⅰ)2b=2.b=1,e=椭圆的方程为(Ⅱ)由题意,设AB的方程为y=kx+由已知=0得:=,解得k=±(Ⅲ)(1)当直线AB斜率不存在时,即x1=x2,y1=﹣y2,由=0,则又A(x1,y1)在椭圆上,所以S=所以三角形的面积为定值(2)当直线AB斜率存在时,设AB的方程为y=kx+b得到x1+x2=代入整理得:2b2﹣k2=4=所以三角形的面积为定值点评:本题主要考查了直线与圆锥曲线的综合问题.设直线方程的时候,一定要考虑斜率不存在时的情况,以免有所遗漏.。
湖北省黄冈中学2015年秋季期中考试高二数学试卷(理科)
第Ⅰ卷选择题
一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.经过圆的圆心且与直线平行的直线方程是()
A、B、
C、D、
2.已知直线,,若,则m的值是( )A、B、-2
C、D、2
3.某几何体的三视图如图所示,当a+b取最大值时,该几何体体积为()
A、B、
C、D、
4.如图正方体ABCD—A1B1C1D1的棱长为2,线段B1D1上有两个动点E、F,且EF=1则下列结论中错误的是()
A、EF∥平面ABCD
B、AC⊥BE
C、三棱锥A—BEF体积为定值
D、ΔBEF与ΔAEF面积相等
5.已知{a n}是等差数列,a3=8,S6=57,则过点P(2,a7),Q(3,a8)的直线斜率为()
A、3
B、
C、—3
D、-13
6.若点(1,1)和点(0,2)一个在圆的内部,另一个在圆的外部,则正实数a的取值范围是()
A、B、
C、(0,1)
D、(1,2)
7.如图,在四面体A—BCD中,AC与BD互相垂直,且长度分别为2和3,平行于这两条棱的平面与边AB、BC、CD、DA分别相交
于点E、F、G、H,记四边形EFGH的面积为y,设,则( )
A、函数f(x)的值域为(0,1]
B、函数y=f(x)满足f(x)=f(2-x)
C、函数y=f(x)的最大值为2
D、函数y=f(x)在上单调递增
8.正四面体ABCD的外接球半径为6,过棱AB作该球的截面,则截面面积的最小值为()
A、9π
B、4π
C、24π
D、16π。
2014-2015学年湖北省黄冈市黄梅一中高二(上)期中数学试卷(理科)一、选择题(共10小题)1.(5分)某地区高中分三类,A类学校共有学生2000人,B类学校共有学生3000人,C类学校共有学生4000人,若采取分层抽样的方法抽取900人,则A 类学校中的学生甲被抽到的概率为()A.B.C.D.2.(5分)设(﹣x)10=a0+a1x+a2x2+…+a10x10,则(a0+a2+…+a10)2﹣(a1+a3+…+a9)2的值为()A.0 B.2 C.﹣1 D.13.(5分)对两个变量y和x进行回归分析,得到一组样本数据:(x1,y1),(x2,y2),…,(x n,y n),则下列说法中不正确的是()A.由样本数据得到的回归方程=x+必过样本中心(,)B.残差平方和越小的模型,拟合的效果越好C.用相关指数R2来刻画回归效果,R2越小,说明模型的拟合效果越好D.若变量y和x之间的相关系数为r=﹣0.9362,则变量y和x之间具有线性相关关系4.(5分)在区域内任取一点P,则点P落在单位圆x2+y2=1内的概率为()A.B.C.D.5.(5分)某校高二年级有8个班,现有6名学生,分配到其中两个班,每班3人,共有种()方法.A.280 B.560 C.1120 D.33606.(5分)把一枚硬币任意抛掷三次,事件A=“至少一次出现反面”,事件B=“恰有一次出现正面”,则P(B|A)=()A.B.C.D.7.(5分)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,根据收集到的数据(如下表),由最小二乘法求得回归直线方程表中有一个数据模糊不清,请你推断出该数据的值为()A.68 B.68.2 C.69 D.758.(5分)执行如图所示的程序框图后,输出的值为4,则P的取值范围是()A.B.C.D.9.(5分)若x∈A,且∈A,则称A是“伙伴关系集合”.在集合M={﹣1,0,,,,1,2,3,4}的所有非空子集中任选一个集合,则该集合是“伙伴关系集合”的概率为()A.B.C. D.10.(5分)在数1,2,3,4,5的排列a1,a2,a3,a4,a5中,满足a1<a2,a2>a3,a3<a4,a4>a5的排列出现的概率为()A.B.C.D.二、填空题(共5小题)11.(5分)若展开式中的所有二项式系数和为512,则该展开式中的常数项为.12.(5分)设随机变量ξ服从正态分布N(0,1),若P(ξ>1)=p,则P(﹣1<ξ<0)=.13.(5分)随机变量ξ服从二项分布ξ~B(n,p),且Eξ=300,Dξ=200,则P 等于.14.(5分)将7个“省三好学生”名额分配给5个不同的学校,其中甲乙两校各要有2个名额,则不同的分配方案种数有种.(用数字作答)15.(5分)一支足球队每场比赛获胜(得3分)的概率为a,与对手踢平(得1分)的概率为b,负于对手(得0分)的概率为c(a,b,c∈(0,1)),已知该足球队进行一场比赛得分的期望是1,则+的最小值为.三、解答题(共6小题)16.(12分)用一颗骰子连掷三次,投掷出的数字顺次排成一个三位数,此时:(1)各位数字互不相同的三位数有多少个?(2)可以排出多少个不同的数?(3)恰好有两个相同数字的三位数共有多少个?17.(12分)已知的展开式中前三项的系数成等差数列.(Ⅰ)求n的值;(Ⅱ)求展开式中系数最大的项.18.(12分)某校在一次趣味运动会的颁奖仪式上,高一、高二、高三各代表队人数分别为120人、120人、n人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人在前排就坐,其中高二代表队有6人.(1)求n的值;(2)把在前排就坐的高二代表队6人分别记为a,b,c,d,e,f,现随机从中抽取2人上台抽奖.求a和b至少有一人上台抽奖的概率.(3)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个[0,1]之间的均匀随机数x,y,并按如图所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,求该代表中奖的概率.19.(12分)某校从参加某次知识竞赛的同学中,选取60名同学将其成绩(百分制)(均为整数)分成6组后,得到部分频率分布直方图(如图),观察图形中的信息,回答下列问题.(Ⅰ)求分数在[70,80)内的频率,并补全这个频率分布直方图;(Ⅱ)从频率分布直方图中,估计本次考试的平均分;(Ⅲ)若从60名学生中随机抽取2人,抽到的学生成绩在[40,70)记0分,在[70,100]记1分,用X表示抽取结束后的总记分,求X的分布列和数学期望.20.(13分)已知某种植物种子每粒成功发芽的概率都为,某植物研究所进行该种子的发芽实验,每次实验种一料种子,每次实验结果相互独立.假定某次实验种子发芽则称该次实验是成功的,如果种子没有发芽,则称该次实验是失败的.若该研究所共进行四次实验,设ξ表示四次实验结束时实验成功的次数与失败的次数之差的绝对值;(1)求随机变量ξ的数学期望(2)记“关于x的不等式ξx2﹣ξx+1>0的解集是实数集R”为事件A,求事件A 发生的概率P(A).21.(14分)已知圆C经过P(4,﹣2),Q(﹣1,3)两点,且在y轴上截得的线段长为,半径小于5.(1)求直线PQ与圆C的方程;(2)若直线l∥PQ,直线l与圆C交于点A、B,且以AB为直径的圆经过坐标原点,求直线l的方程.2014-2015学年湖北省黄冈市黄梅一中高二(上)期中数学试卷(理科)参考答案与试题解析一、选择题(共10小题)1.(5分)某地区高中分三类,A类学校共有学生2000人,B类学校共有学生3000人,C类学校共有学生4000人,若采取分层抽样的方法抽取900人,则A 类学校中的学生甲被抽到的概率为()A.B.C.D.【解答】解:抽样比f==,∴A类学校应该抽取2000×=200,∴A类学校中的学生甲被抽到的概率为P==.故选:A.2.(5分)设(﹣x)10=a0+a1x+a2x2+…+a10x10,则(a0+a2+…+a10)2﹣(a1+a3+…+a9)2的值为()A.0 B.2 C.﹣1 D.1【解答】解:设f(x)=则(a0+a2+…+a10)2﹣(a1+a3+…+a9)2=(a0+a1+…+a10)(a0﹣a1+a2﹣…﹣a9+a10)=f(1)f(﹣1)=()10()10=1.故选:D.3.(5分)对两个变量y和x进行回归分析,得到一组样本数据:(x1,y1),(x2,y2),…,(x n,y n),则下列说法中不正确的是()A.由样本数据得到的回归方程=x+必过样本中心(,)B.残差平方和越小的模型,拟合的效果越好C.用相关指数R2来刻画回归效果,R2越小,说明模型的拟合效果越好D.若变量y和x之间的相关系数为r=﹣0.9362,则变量y和x之间具有线性相关关系【解答】解:样本中心点在直线上,故A正确,残差平方和越小的模型,拟合效果越好,故B正确,R2越大拟合效果越好,故C不正确,当r的值大于0.75时,表示两个变量具有线性相关关系,故选:C.4.(5分)在区域内任取一点P,则点P落在单位圆x2+y2=1内的概率为()A.B.C.D.【解答】解:满足约束条件区域为△ABC内部(含边界),与单位圆x2+y2=1的公共部分如图中阴影部分所示,则点P落在单位圆x2+y2=1内的概率概率为P=.故选:D.5.(5分)某校高二年级有8个班,现有6名学生,分配到其中两个班,每班3人,共有种()方法.A.280 B.560 C.1120 D.3360【解答】解:由题意知本题是一个分步计数问题,首先把6个人平均分成两个组,作为两个元素,这是一个平均分组问题,有=10种结果,把这两个元素在8个位置排列,共有A82=56种结果,根据分步计数原理得到共有10×56=560,故选:B.6.(5分)把一枚硬币任意抛掷三次,事件A=“至少一次出现反面”,事件B=“恰有一次出现正面”,则P(B|A)=()A.B.C.D.【解答】解:由题意,P(AB)==,P(A)=1﹣=,∴P(B|A)==,故选:C.7.(5分)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,根据收集到的数据(如下表),由最小二乘法求得回归直线方程表中有一个数据模糊不清,请你推断出该数据的值为()A.68 B.68.2 C.69 D.75【解答】解:设表中有一个模糊看不清数据为m.由表中数据得:=30,=,由于由最小二乘法求得回归方程.将x=30,y=代入回归直线方程,得m=68.故选:A.8.(5分)执行如图所示的程序框图后,输出的值为4,则P的取值范围是()A.B.C.D.【解答】解:根据题意可知该循环体运行3次第一次:s=,n=2第二次:s==,n=3第三次:s==,n=4此时退出循环体,不满足S<P,所以,故选:D.9.(5分)若x∈A,且∈A,则称A是“伙伴关系集合”.在集合M={﹣1,0,,,,1,2,3,4}的所有非空子集中任选一个集合,则该集合是“伙伴关系集合”的概率为()A.B.C. D.【解答】解:∵集合M={﹣1,0,,,,1,2,3,4},∴集合M的所有非空子集的个数为:29﹣1=511.∵若x∈A,且∈A,则称A是“伙伴关系集合,∴若﹣1∈A,则∈A;若1∈A,则∈A;若2∈A,则∈A,2与一起成对出现;若3∈A,则∈A,3与一起成对出现;若4∈A,则∈A,4与一起成对出现.∴集合M的所有非空子集中,“伙伴关系集合”可能有:25﹣1=31个.∴在集合M={﹣1,0,,,,1,2,3,4}的所有非空子集中任选一个集合,则该集合是“伙伴关系集合”的概率为:.故选:C.10.(5分)在数1,2,3,4,5的排列a1,a2,a3,a4,a5中,满足a1<a2,a2>a3,a3<a4,a4>a5的排列出现的概率为()A.B.C.D.【解答】解:数1,2,3,4,5的排列共有A55=120种结果,记“满足a1<a2,a2>a3,a3<a4,a4>a5”为事件A,则A包含的结果有2A22+2A33=16由古典概率的计算公式可得P(A)=;故选:B.二、填空题(共5小题)11.(5分)若展开式中的所有二项式系数和为512,则该展开式中的常数项为84.【解答】解:展开式中所有二项式系数和为512,即2n=512,则n=9,T r+1=(﹣1)r C9r x18﹣3r令18﹣3r=0,则r=6,所以该展开式中的常数项为84.故答案为:84.12.(5分)设随机变量ξ服从正态分布N(0,1),若P(ξ>1)=p,则P(﹣1<ξ<0)=.【解答】解:画出正态分布N(0,1)的密度函数的图象如下图:由图象的对称性可得,若P(ξ>1)=p,则P(ξ<﹣1)=p,∴则P(﹣1<ξ<1)=1﹣2p,P(﹣1<ξ<0)=.故填:.13.(5分)随机变量ξ服从二项分布ξ~B(n,p),且Eξ=300,Dξ=200,则P等于.【解答】解:∵ξ服从二项分布B~(n,p)Eξ=300,Dξ=200∴Eξ=300=np,①;Dξ=200=np(1﹣p),②.可得1﹣p==,∴p=1﹣=.故答案为:.14.(5分)将7个“省三好学生”名额分配给5个不同的学校,其中甲乙两校各要有2个名额,则不同的分配方案种数有35种.(用数字作答)【解答】解:∵7个市三好学生名额是相同的元素,∴要满足甲、乙两校至少各有两个名额,可以先给甲和乙各两个名额,余下的三个相同的元素在五个位置任意放,当三个元素都给一个学校时,有5种结果,当三个元素分为1和2两种情况时,有4×5=20种结果,当三个元素按1、1、1分成三份时,有C53=10种结果,∴不同的分配方案有5+20+10=35种结果故答案为:35.15.(5分)一支足球队每场比赛获胜(得3分)的概率为a,与对手踢平(得1分)的概率为b,负于对手(得0分)的概率为c(a,b,c∈(0,1)),已知该足球队进行一场比赛得分的期望是1,则+的最小值为.【解答】解:因为该足球队进行一场比赛得分的期望是1,所以3a+b=1所以+=(3a+b)(+)=+=,当且仅当a=b取等号,+的最小值为.故答案为:.三、解答题(共6小题)16.(12分)用一颗骰子连掷三次,投掷出的数字顺次排成一个三位数,此时:(1)各位数字互不相同的三位数有多少个?(2)可以排出多少个不同的数?(3)恰好有两个相同数字的三位数共有多少个?【解答】解:(1)得到一个三位数,分三步进行:先填百位,再填十位,最后填个位.百位上的数字填法有6种,十位上的数字填法有5种,个位上的数字填法有4种,根据分步计数原理,各位数字互不相同的三位数有6×5×4=120个.(2)分三步进行:先填百位,再填十位,最后填个位,每种都有6种方法,根据分步计数原理,可以排出6×6×6=216个不同的数.(3)从三个位中任选两个位,填上相同的数字,有6C32种方法,剩下的一位数字的填法有5种,根据分步计数原理,恰好有两个相同的数字的三位数有6C32 C51=90 个.17.(12分)已知的展开式中前三项的系数成等差数列.(Ⅰ)求n的值;(Ⅱ)求展开式中系数最大的项.【解答】解:(Ⅰ)由题设,得,即n2﹣9n+8=0,解得n=8,n=1(舍去).(Ⅱ)设第r+1的系数最大,则即解得r=2或r=3.所以系数最大的项为T3=7x5,.18.(12分)某校在一次趣味运动会的颁奖仪式上,高一、高二、高三各代表队人数分别为120人、120人、n人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人在前排就坐,其中高二代表队有6人.(1)求n的值;(2)把在前排就坐的高二代表队6人分别记为a,b,c,d,e,f,现随机从中抽取2人上台抽奖.求a和b至少有一人上台抽奖的概率.(3)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个[0,1]之间的均匀随机数x,y,并按如图所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,求该代表中奖的概率.【解答】解:(1)由题意可得,∴n=160;(2)高二代表队6人,从中抽取2人上台抽奖的基本事件有(a,b),(a,c),(a,d),(a,e),(a,f),(b,c),(b,d),(b,e),(b.f),(c,d),(c,e),(c,f),(d,e),(d,f),(e,f)共15种,其中a和b至少有一人上台抽奖的基本事件有9种,∴a和b至少有一人上台抽奖的概率为=;(3)由已知0≤x≤1,0≤y≤1,点(x,y)在如图所示的正方形OABC内,由条件得到的区域为图中的阴影部分由2x﹣y﹣1=0,令y=0可得x=,令y=1可得x=1∴在x,y∈[0,1]时满足2x﹣y﹣1≤0的区域的面积为=∴该代表中奖的概率为=.19.(12分)某校从参加某次知识竞赛的同学中,选取60名同学将其成绩(百分制)(均为整数)分成6组后,得到部分频率分布直方图(如图),观察图形中的信息,回答下列问题.(Ⅰ)求分数在[70,80)内的频率,并补全这个频率分布直方图;(Ⅱ)从频率分布直方图中,估计本次考试的平均分;(Ⅲ)若从60名学生中随机抽取2人,抽到的学生成绩在[40,70)记0分,在[70,100]记1分,用X表示抽取结束后的总记分,求X的分布列和数学期望.【解答】解:(Ⅰ)设分数在[70,80)内的频率为x,根据频率分布直方图,则有(0.01+0.015×2+0.025+0.005)×10+x=1,可得x=0.3,所以频率分布直方图如图所示.(Ⅱ)平均分为:(Ⅲ)学生成绩在[40,70)的有0.4×60=24人,在[70,100]的有0.6×60=36人,并且X的可能取值是0,1,2.所以X的分布列为:.∴EX=0×+1×+2×==.20.(13分)已知某种植物种子每粒成功发芽的概率都为,某植物研究所进行该种子的发芽实验,每次实验种一料种子,每次实验结果相互独立.假定某次实验种子发芽则称该次实验是成功的,如果种子没有发芽,则称该次实验是失败的.若该研究所共进行四次实验,设ξ表示四次实验结束时实验成功的次数与失败的次数之差的绝对值;(1)求随机变量ξ的数学期望(2)记“关于x的不等式ξx2﹣ξx+1>0的解集是实数集R”为事件A,求事件A 发生的概率P(A).【解答】解:(1)由题意知ξ的可能取值为0,2,4,(2分)∵“ξ=0”指的是实验成功2次,失败2次.(2分)∴p(ξ=0)=.“ξ=2”指的是实验成功3次,失败1次或实验成功1次,失败3次.∴P(ξ=2)=.“ξ=4”指的是实验成功4次,失败0次或实验成功0次,失败4次.∴p(ξ=4)=,(6分)∴Eξ=.故随机变量ξ的数学期望为.(7分)(2)由题意知:“不等式ξx2﹣ξx+1>0的解集是实数R”为事件A.当ξ=0时,不等式化为1>0,其解集是R,说明事件A发生;当ξ=2时,不等式化为2x2﹣2x+1>0,∵△=﹣4<0,所以解集是R,说明事件A发生;当ξ=4时,不等式化为4x2﹣4x+1>0,其解集{x|x},说明事件A不发生.(10分)∴p(A)=p(ξ=0)+p(ξ=2)=.(12分)21.(14分)已知圆C经过P(4,﹣2),Q(﹣1,3)两点,且在y轴上截得的线段长为,半径小于5.(1)求直线PQ与圆C的方程;(2)若直线l∥PQ,直线l与圆C交于点A、B,且以AB为直径的圆经过坐标原点,求直线l的方程.【解答】解:(1)直线PQ的方程为y﹣3=×(x+1)即直线PQ的方程为x+y﹣2=0,C在PQ的中垂线y﹣=1×(x﹣)即y=x﹣1上,设C(n,n﹣1),则r2=|CQ|2=(n+1)2+(n﹣4)2,由题意,有r2=(2)2+|n|2,∴n2+12=2n2﹣6n+17,∴n=1或5(舍去),r2=13或37(舍去),∴圆C的方程为(x﹣1)2+y2=13.(2)设直线l的方程为x+y+m=0,由,得2x2+(2m﹣2)x+m2﹣12=0,设A(x1,y1),B(x2,y2),则x1+x2=1﹣m,x1x2=,∵以AB为直径的圆经过坐标原点,∴∠AOB=90°,∴x1x2+y1y2=0∴x1x2+(x1+m)(x2+m)=0,整理得m2+m﹣12=0,∴m=3或﹣4(均满足△>0),∴l的方程为x+y+3=0或x+y﹣4=0.。
湖北省黄冈中学秋季高二数学期中考试试题(理科)命题:熊斌校对:罗欢一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.抛物线22y x =的焦点坐标为( ) A .(1,0)B .1,04⎛⎫⎪⎝⎭C .10,4⎛⎫ ⎪⎝⎭D .10,8⎛⎫ ⎪⎝⎭2.如果双曲线22142x y -=右支上一点P 到双曲线右焦点的距离是2,那么点P 到右准线的距离是( ) A .26B .46C .22D .23.在正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是A 1D 1、C 1D 1的中点,则异面直线AB 1与EF 所成的角的大小为( ) A .60° B .90°C .45°D .30°4.下列说法正确的是( )A .平面α和平面β只有一个公共点B .两两相交的三条直线共面C .不共面的四点中,任何三点不共线D .有三个公共点的两平面必重合5.过双曲线22143x y -=左焦点F 1的直线交双曲线的左支于M 、N 两点,F 2为其右焦点,则|MF 2|+|NF 2|-|MN |的值为( ) A .6B .8C .10D .166.P 是曲线1cos sin x y αα=-+⎧⎨=⎩上任意一点,则点P 到点A (2,-4)的最远距离是( )A .6B .6C .26D .5CA 1 DD 1 B A BC F E7.抛物线24y x =的焦点为F ,准线为l ,经过F 的直线与抛物线在x 轴上方的部分相交于点A ,AK ⊥l ,垂足为K ,则AKF ∆的面积是( )A .4B .C .D .88.圆22210x y x +--=关于直线230x y -+=对称的圆的方程是( ) A .221(3)(2)2x y ++-=B .221(3)(2)2x y -++=C .22(3)(2)2x y ++-=D .22(3)(2)2x y -++=9.椭圆22221(0)x y a b a b +=>>的中心、右焦点、右顶点、右准线与x 轴的交点依次为O 、F 、A 、H ,则||||FA OH 的最大值为( )A .12B .13C .14D .不能确定10.设椭圆22221(0)x y a b a b +=>>的离心率为12e =,右焦点为F (c, 0),方程20ax bx c +-=的两个实根分别为x 1和x 2,则点P (x 1, x 2)( ) A .必在圆222x y +=内B .必在圆222x y +=上C .必在圆222x y +=外D .以上三种情形都有可能二、填空题(本大题共5小题,每小题5分,共25分,把答案填在题中横线上)11.双曲线221x y m-=的虚轴长是实轴长的2倍,则m =_____________.12.从圆222210x x y y -+-+=外一点P (3,2)向这个圆作一条切线PA ,A 为切点,则PA=_______________.13.已知正方形ABCD ,则以A 、B 为焦点,且过C 、D 两点的椭圆的离心率为_________. 14.已知圆C 1:22(3)1x y ++=和圆C 2:22(3)9x y -+=,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为_____________.15.设F 为抛物线24y x =的焦点,A 、B 、C 为该抛物线上三点,若0FA FB FC ++=,则||||||FA FB FC ++=____________.班级:__________ 姓名:____________ 座号:_________ 成绩:___________答题卡题号12345678910答案题号1112131415答案三、解答题(本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤)16.(本小题满分12分)以抛物线28y x上的点M与定点(6,0)A为端点的线段MA的中点为P,求P点的轨迹方程.17.(本小题满分12分)已知长方体ABCD—A1B1C1D1中,O1是上底面对角线A1C1、B1D1的交点,体对角线A1C交截面AB1D1于点P,求证:O1、P、A三点在同一条直线上.MAOPxy18.(本小题满分12分)设P 是双曲线221416x y -=右支上任一点,过点P 分别作两条渐近线的垂线,垂足分别为E 、F ,求||||PE PF ⋅的值.19.(本小题满分12分)已知椭圆22221(0)y x a b a b+=>>的一个焦点1(0,F -,对应的准线方程为y =.(1)求椭圆的方程;(2)直线l 与椭圆交于不同的两点M 、N ,且线段MN 恰被点13,22P ⎛⎫- ⎪⎝⎭平分,求直线l的方程.20.(本小题满分13分)设F 1、F 2分别是椭圆2214x y +=的左、右焦点.(1)若P 是该椭圆上的一个动点,求12PF PF ⋅的最大值和最小值;(2)设过定点M (0,2)的直线l 与椭圆交于不同的两点A 、B ,且∠AOB 为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.21.(本小题满分14分)如图,在平面直角坐标系xOy中,过定点C(0,p)作直线与抛物线22(0)=>相交于A、B两点.x py p∆面积的最小值;(1)若点N是点C关于坐标原点O的对称点,求ANB(2)是否存在垂直y轴的直线l,使得l被以AC为直径的圆截得的弦长恒为定值?若存在,求出l的方程;若不存在,说明理由.湖北省黄冈中学2019年秋季高二数学期中考试参考答案1.D 2.A 3.A 4.C 5.B 6. A7.C 8.C 9.C 10.A 11.412.213.21-14.221(1)8y x x -=-≤15.616.解:设点00(,),(,)M x y P x y ,则00622x x y y +⎧=⎪⎪⎨⎪=⎪⎩,∴00262x x y y =-⎧⎨=⎩.代入2008y x =得:2412y x =-.此即为点P 的轨迹方程.17.证明:如答图所示,∵11111,AC B D O = ∴111111,.O AC O B D ∈∈又∵111111111111,,,.AC AC B D AB D O AC O AB D ⊂⊂∴∈∈平面平面平面平面又∵1111111,,..AC AB D P P AC P AB D P AC =∴∈∈∴∈平面平面平面 又∵111,,A AC A AB D ∈∈平面平面∴O 1、P 、A 三点都是平面AB 1D 1与平面A 1C 的公共点. ∴O 1、P 、A 三点在同一条直线上.18.解:渐近线方程为20x y ±=,设P (x 0, y 0),则222200001416416x y x y -=⇒-=由点到直线的距离公式有0000||,||55PE PF ==,∴2200|4|16||||.55x y PE PF -⋅==19.解:(1)由22222292.c ac a b c ⎧-=-⎪⎪-=-⎨⎪⎪=+⎩得3,1a b ==即椭圆的方程为221.9y x +=(2)易知直线l 的斜率一定存在,设l :313,.2222k y k x y kx ⎛⎫-=+=++ ⎪⎝⎭即设M (x 1, y 1),N (x 2, y 2),由223,221.9k y kx y x ⎧=++⎪⎪⎨⎪+=⎪⎩ 得2222327(9)(3)0.424k k x k k x k +++++-= ∵x 1、x 2为上述方程的两根,则2222327(3)4(9)0424k k k k k ⎛⎫∆=+-+⋅+-> ⎪⎝⎭①∴21223.9k k x x k ++=-+∵MN 的中点为13,22P ⎛⎫- ⎪⎝⎭,∴1212 1.2x x ⎛⎫+=⨯-=- ⎪⎝⎭ ∴223 1.9k k k +-=-+ ∴2239k k k +=+,解得k =3.代入①中,229927184(99)180424⎛⎫∆=-+⋅+-=> ⎪⎝⎭∴直线l :y =3x +3符合要求.20.解:(1)易知2,1,a b c ===12(0),0).F F设P (x, y ),则22222121(,),)313(38).44x PF PF x y x y x y x x ⋅=-⋅-=+-=+--=-因为[2,2]x ∈-,故当x =0,即点P 为椭圆短轴端点时,21PF PF ⋅有最小值-2. 当2x =±,即点P 为椭圆长轴端点时,21PF PF ⋅有最大值1.(2)显然直线x =0不满足题设条件,可设直线l :11222,(,),(,).y kx A x y B x y =+ 联立222,1,4y kx x y =+⎧⎪⎨+=⎪⎩消去y ,整理得221430.4k x kx ⎛⎫+++= ⎪⎝⎭ ∴12122243,.1144k x x x x k k +=-=++ 由2221(4)43430,4k k k ⎛⎫∆=-+⨯=-> ⎪⎝⎭得k k >< ①又0900.AOB OA OB <∠<⇔⋅> ∴12120.OA OB x x y y ⋅=+>又222212121212222381(2)(2)2()44.111444k k k y y kx kx k x x k x x k k k --+=++=+++=++=+++∴222310.1144k k k -++>++即k 2<4. ∴-2<k <2. ②故由①②得2 2.k k -<<<< 21.解法一:(1)依题意,点N 的坐标为N (0,-p ),可设A (x 1, y 1),B (x 2, y 2),直线AB 的方程为y kx p =+,与x 2=2py联立得22,.x py y kx p ⎧=⎨=+⎩ 消去y 得22220.x pkx p --= 由韦达定理得212122,2.x x pk x x p +==-于是21212121212||||()42ABN BCN ACN S S S p x x p x x p x x x x ∆∆∆=+=⨯-=-=+-222224822,p p k p p k =+=+∴当k =0时,2min ()22.ABN S p ∆=(2)假设满足条件的直线l 存在,其方程为y=a , AC 的中点为O ',l 与以AC 为直径的圆相交于点P 、Q ,PQ 的中点为H ,则,O H PQ O ''⊥点的坐标为11,.22x y p +⎛⎫⎪⎝⎭∵2222111111||||(),222O P AC x y p y p '==+-=+ 111|||2|,22y p O H a a y p +'=-=--∴22222211111||||||())(2)(),442p PH O P O H y p a y p a y a p a ⎛⎫''=-=+---=-+- ⎪⎝⎭∴221||(2||)4().2p PQ PH a y a p a ⎡⎤⎛⎫==-+- ⎪⎢⎥⎝⎭⎣⎦ 令02p a -=,得2p a =,此时|PQ |=p 为定值,故满足条件的直线l 存在,其方程为2py =,即抛物线的通径所在的直线. 解法二:(1)前同解法一,再由弦长公式得222222222121212||2||1()414821 2.AB k x x k x x x x k p k p p k k =+-=+⋅+-=+⋅+=+⋅+又由点到直线的距离公式得221p d k=+,从而,22222112||21222221ABN pS d AB p k k p k k ∆=⋅⋅=⋅+⋅+⋅=++, (2)假设满足条件的直线l 存在,其方程为y=a ,则以AC 为直径的圆的方程为11(0)()()()0x x x y p y y --+--=,将直线方程y=a 代入得211()()0,x x x a p a y -+--=则21114()()4().2p x a p a y a y a p a ⎡⎤⎛⎫∆=---=-+- ⎪⎢⎥⎝⎭⎣⎦设直线l 与以AC 为直径的圆的交点为P (x 3, y 3),Q (x 4, y 4),则有3411||||4()2().22p p PQ x x a y a p a a y a p a ⎡⎤⎛⎫⎛⎫=-=-+-=-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦令0,22p p a a -==得,此时|PQ |=p 为定值,故满足条件的直线l 存在,其方程为2py =,即抛物线的通径所在的直线.NO AC By xl。
湖北省部分重点中学2015-2016上学期高二期中考试数学试题(理科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下列命题正确的是()A.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若两条直线和同一个平面所成的角相等,则这两条直线平行D.若两个平面都垂直于第三个平面,则这两个平面平行2.如果执行如图所示的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则()A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数3. 一条光线从点(﹣2,﹣3)射出,经y轴反射后与圆(x+3)2+(y﹣2)2=1相切,则反射光线所在直线的斜率为()A.﹣或﹣B.﹣或﹣C.﹣或﹣D.﹣或﹣4.在正方体ABCD﹣A1B1C1D1中,M为DD1的中点,O为底面ABCD的中心,P为棱A1B1上任意一点,则直线OP与直线AM所成的角是()A.B.C.D.与P点位置有关5.在同一坐标系下,直线ax+by=ab和圆(x﹣a)2+(y﹣b)2=r2(ab≠0,r>0)的图象可能是()A. B.C.D.6. 在梯形ABCD中,∠ABC=,AD//BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A. B. C. D.27. 某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x的值是()A.2 B.C.D.38.为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:据此估计,该社区一户收入为15万元家庭年支出为( )A.11.8万元B.11.4万元C.12.0万元D.12.2万元9. 右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0 B.2 C.4 D.1410. 已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为()(附:若随机变量ξ服从正态分布N(μ,σ²),则P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%.)A.4.56% B.13.59% C.27.18% D.31.74%11. 在正方体ABCD﹣A1B1C1D1中,E是棱CC1的中点,F是侧面BCC1B1内的动点,且A1F∥平面D1AE,则A1F与平面BCC1B1所成角的正切值构成的集合是()A.{t|} B.{t|≤t≤2}C.{t|2} D.{t|2}12. 已知△ABC的三边分别为AB=5,BC=4,AC=3,M是AB边上一点,P是平面ABC外一点,下列四个命题正确的是()①若PA⊥平面ABC,则三棱锥P﹣ABC的四个面都是直角三角形;②若PM⊥平面ABC,M是AB边上中点,则有PA=PB=PC;③若PC=5,PC⊥平面ABC,则△PCM面积的最小值为;④若PC=5,P在平面ABC上的射影是△ABC内切圆的圆心,则点P到平面ABC是的距离为.其中正确命题的序号是A.①②③B.①②④C.②③④D.①③④二、填空题(本大题共4小题,每小题5分,共20分)13.与直线3x+4y+5=0关于x轴对称的直线的方程为.14. 若在区间(﹣1,1)内任取实数a,在区间(0,1)内任取实数b,则直线ax﹣by=0与圆(x﹣1)2+(y﹣2)2=1相交的概率为.15. 在棱锥P﹣ABC中,侧棱PA、PB、PC两两垂直,Q为底面△ABC内一点,若点Q到三个侧面的距离分别为3、4、5,则以线段PQ为直径的球的表面积为.16. 点P在正方体ABCD﹣A1B1C1D1的面对角线BC1上运动,则下列四个命题:①三棱锥A﹣D1PC的体积不变;②DP⊥BC1;③A1P∥面ACD1;④面PDB1⊥面ACD1.其中正确的命题的序号是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本题满分10分)某校高二(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,可见部分如下:试根据图表中的信息解答下列问题:(I)求全班的学生人数及分数在[70,80)之间的频数;(II)为快速了解学生的答题情况,老师按分层抽样的方法从位于[70,80),[80,90)和[90,100]分数段的试卷中抽取8份进行分析,再从中任选3人进行交流,求交流的学生中,成绩位于[70,80)分数段的人和成绩位于[]90,100分数段的人均被抽到的概率。
湖北省黄冈市黄冈中学2014-2015学年高二上学期期中化学试题说明:1、本试卷分四部分,共100分,考试时间90分钟。
2、★的数目反映该题的难易程度,★数多表示该题难度大。
3、本试卷的选择题均为单项选择题。
4、请将答案填、涂在答题卡指定的位置上,答在试卷或其它位置上的答案无效。
5、本试卷可能用到的相对原子质量:H:1 O:16 Na:23 Cu:64第一部分元素及其化合物(10分)1、(10分)单质、氧化物、酸、碱及盐之间的转化是元素及其化合物的主要研究内容,试按要求完成下列试题:(1)磷酸钙与焦炭、石英砂混合,在电炉中加热到1500℃生成白磷(P4),反应为:2Ca3(PO4)2+6SiO2=6CaSiO3+2P2O510C+2P2O5 =P4↑+10CO↑上述反应中的各种物质,属于酸性氧化物的有★。
(2)试写出实验室制取CO2气体的离子方程式:★;(3)实验室常使用浓盐酸与MnO2固体共热制取Cl2,当制得0.1mol Cl2时,被氧化的HCl的物质的量为★★mol。
(4)将1molC与5molO2充分反应后的气体,全部通入到足量Na2O2再充分反应后,剩余气体的物质的量为★★mol。
(5)取FeSO4溶液,调pH约为7,加入淀粉KI溶液和H2O2,溶液呈蓝色并有红褐色沉淀生成。
当消耗2 mol I-时,共转移3 mol电子,该反应的离子方程式是★★★★。
第二部分反应热与化学平衡(15分)2、(2分)乙炔(C2H2)气体的燃烧热为△H=—1299.6 kJ·mol-1,请写出代表其燃烧热的热化学方程式:★。
3、(7分)已知:2A(g)+ B(g) 3C(g) △H=-90kJ·mol-1,实验室将2molA、2.5molB和1.5molC充入恒温密闭容器中发生上述反应,达平衡时放出45 kJ的热量,试回答下列问题:(1)充入气体后,反应向★(填“正”或“逆”)反应方向进行直至平衡。
2014-2015学年湖北省黄冈市武穴中学高二(上)期中数学试卷(理科)一、选择题(5分×10=50分)1.(5分)过点(﹣1,3)且垂直于直线x﹣2y+3=0的直线方程为()A.2x+y﹣1=0 B.2x+y﹣5=0 C.x+2y﹣5=0 D.x﹣2y+7=02.(5分)若圆x2+y2﹣2x﹣4y=0的圆心到直线x﹣y+a=0的距离为,则a的值为()A.﹣2或2 B.或C.2或0 D.﹣2或03.(5分)现从200件产品中随机出20件进行质量检验,列说法正确是()A.200件产品是总体B.20件产品是样本C.样本容量是200 D.样本容量是204.(5分)若椭圆的两焦点为(﹣2,0)和(2,0),且椭圆过点,则椭圆方程是()A.B.C.D.5.(5分)已知m,n表示两条不同直线,α表示平面,下列说法正确的是()A.若m∥α,n∥α,则m∥n B.若m⊥α,m⊥n,则n∥αC.若m∥α,m⊥n,则n⊥αD.若m⊥α,n⊂α,则m⊥n6.(5分)一个几何体的三视图如图所示,其中正视图是一个正三角形,则该几何体的体积为()A.B.C.1 D.7.(5分)甲、乙两名运动员在某项测试中的6次成绩如茎叶图所示,,分别表示甲乙两名运动员这项测试成绩的平均数,s1,s2分别表示甲乙两名运动员这项测试成绩的标准差,则有()A.B.C. D.8.(5分)已知椭圆E:=1(a>b>0)的左焦点为F(﹣2,0)过点F 的直线交椭圆于A,B两点.若AB的中点坐标为(﹣1,),则E的方程为()A.=1 B.=1C.=1 D.=19.(5分)已知二面角α﹣l﹣β为60°,AB⊂α,AB⊥l,A为垂足,CD⊂β,C∈l,∠ACD=135°,则异面直线AB与CD所成角的余弦值为()A.B.C.D.10.(5分)已知F1、F2分别是椭圆的左、右焦点,A是椭圆=1上一动点,圆C与F1A的延长线,F1F2的延长线以及线段AF2相切,若M(t,0)为其中一个切点,则()A.t=2 B.t>2C.t<2 D.t与2的大小关系不确定二、填空题(5×5=25分)11.(5分)防疫站对学生进行身体健康调查,某高二学生共有1200名,采用分层抽样法抽取一个容量为200的样本.已知女生比男生少抽了60人,则该校的女生人数应是.12.(5分)经过点P(0,﹣1)作直线l,若直线l与连接A(1,﹣2),B(2,1)的线段总有公共点,则直线l的倾斜角α的范围为.13.(5分)若方程(9﹣m)x2+(m﹣4)y2=1表示椭圆,则实数m的取值范围是.14.(5分)若椭圆的短轴为AB,它的一个焦点为F,则满足三角形ABF为等边三角的椭圆的离心率是.15.(5分)已知圆:(x+cosθ)2+(y﹣sinθ)2=1,直线l:y=kx.给出下面四个命题:①对任意实数k和θ,直线l和圆M有公共点;②对任意实数k,必存在实数θ,使得直线l和圆M相切;③对任意实数θ,必存在实数k,使得直线l和圆M相切;④存在实数k和θ,使得圆M上有一点到直线l的距离为3.其中正确的命题是(写出所以正确命题的编号)三、解答题(75分)16.(12分)已知△ABC的顶点A(6,1),AB边上的中线CM所在直线方程2x ﹣y﹣5=0,AC边上的高BH所在直线方程为x﹣2y﹣5=0.求:(Ⅰ)顶点C的坐标;(Ⅱ)直线BC的方程.17.(12分)如图所示的一块木料中,棱BC平行于面A′C′.(Ⅰ)要经过面A′C′内的一点P和棱BC将木料锯开,应怎样画线?(写出画法步骤,并在图中画出)(Ⅱ)说明所画的线与平面AC的位置关系.18.(12分)自点A(﹣3,3)发出的光线L射到x轴上,被x轴反射,其反射光线所在直线与圆x2+y2﹣4x﹣4y+7=0相切,求光线L所在直线的方程.19.(12分)我国发射的第一颗人造地卫星的运行轨道是以地心为一个焦点的椭圆,设地球的半径为R,卫星近地点,远地点离地面距离分别为m,n.求卫星轨道的离心率.20.(13分)如图,EC⊥平面ABC,EC∥BD,平面ACD⊥平面ECB.(Ⅰ)求证AC⊥BC;(Ⅱ)若CA=CB=CE=2BD,求二面角D﹣AE﹣C的余弦值.21.(14分)已知E为圆=16上的任意一点,A点坐标为线段AE的垂直平分线与直线CE相交于点Q(C点为圆心).(Ⅰ)当E点在圆C上运动时,求Q点轨迹M的方程;(Ⅱ)若一直线与曲线M相交于P,Q两点,且直线OP,PQ,OQ的斜率依次成等比数列,求△OPQ面积的取值范围.2014-2015学年湖北省黄冈市武穴中学高二(上)期中数学试卷(理科)参考答案与试题解析一、选择题(5分×10=50分)1.(5分)过点(﹣1,3)且垂直于直线x﹣2y+3=0的直线方程为()A.2x+y﹣1=0 B.2x+y﹣5=0 C.x+2y﹣5=0 D.x﹣2y+7=0【解答】解:根据题意,易得直线x﹣2y+3=0的斜率为,由直线垂直的斜率关系,可得所求直线的斜率为﹣2,又知其过点(﹣1,3),由点斜式得所求直线方程为2x+y﹣1=0.2.(5分)若圆x2+y2﹣2x﹣4y=0的圆心到直线x﹣y+a=0的距离为,则a的值为()A.﹣2或2 B.或C.2或0 D.﹣2或0【解答】解:把圆x2+y2﹣2x﹣4y=0化为标准方程为:(x﹣1)2+(y﹣2)2=5,所以圆心坐标为(1,2),∵圆心(1,2)到直线x﹣y+a=0的距离为,∴,即|a﹣1|=1,可化为a﹣1=1或a﹣1=﹣1,∴解得a=2或0.故选:C.3.(5分)现从200件产品中随机出20件进行质量检验,列说法正确是()A.200件产品是总体B.20件产品是样本C.样本容量是200 D.样本容量是20【解答】解:根据题意,得;从200件产品中随机出20件进行质量检验,200件产品的质量是总体,抽出20件产品的质量是样本,样本的容量是20.故选:D.4.(5分)若椭圆的两焦点为(﹣2,0)和(2,0),且椭圆过点,则椭圆方程是()A.B.C.D.【解答】解:由题意知,c=2,焦点在x 轴上,∴a2=b2+4,故可设椭圆的方程为+=1,把点代入椭圆的方程可求得b2=6,故椭圆的方程为+=1,故选:D.5.(5分)已知m,n表示两条不同直线,α表示平面,下列说法正确的是()A.若m∥α,n∥α,则m∥n B.若m⊥α,m⊥n,则n∥αC.若m∥α,m⊥n,则n⊥αD.若m⊥α,n⊂α,则m⊥n【解答】解:在正方体ABCD﹣A′B′C′D′中:令底面A′B′C′D′=αA、令m=AB,n=BC,满足m∥α,n∥α,但m∥n不成立,A错误;B、令m=AA′,n=A′B′,满足m⊥α,m⊥n,但n∥α不成立,B错误;C、令m=AB,n=AD,满足m∥α,m⊥n,但n⊥α不成立,C错误;故选:D.6.(5分)一个几何体的三视图如图所示,其中正视图是一个正三角形,则该几何体的体积为()A.B.C.1 D.【解答】解:由三视图可知:该几何体是如图所示的三棱锥,其中侧面PAC⊥面ABC,△PAC是边长为2的正三角形,△ABC是边AC=2,边AC上的高OB=1,PO=为底面上的高.于是此几何体的体积V==.故选:D.7.(5分)甲、乙两名运动员在某项测试中的6次成绩如茎叶图所示,,分别表示甲乙两名运动员这项测试成绩的平均数,s1,s2分别表示甲乙两名运动员这项测试成绩的标准差,则有()A.B.C. D.【解答】解:由茎叶图可看出甲的平均数是,乙的平均数是,∴两组数据的平均数相等.甲的方差是(36+1+0+0+1+36)=,乙的方差是(49+4+0+0+4+49)=.∴甲的标准差小于乙的标准差,故选:B.8.(5分)已知椭圆E:=1(a>b>0)的左焦点为F(﹣2,0)过点F 的直线交椭圆于A,B两点.若AB的中点坐标为(﹣1,),则E的方程为()A.=1 B.=1C.=1 D.=1【解答】解:设过点F的直线方程为:y=k(x+2),联立椭圆方程,消去y,得,(b2+a2k2)x2+4a2k2x+4a2k2﹣a2b2=0,设A(x1,y1),B(x2,y2),则x1+x2=﹣,即有AB中点为(﹣,),即有﹣=﹣1,=,又k==,解得,b2=a2,且c=2,即有a2﹣b2=4,解得,a2=8,b2=4.则有椭圆E的方程为:+=1.故选:D.9.(5分)已知二面角α﹣l﹣β为60°,AB⊂α,AB⊥l,A为垂足,CD⊂β,C∈l,∠ACD=135°,则异面直线AB与CD所成角的余弦值为()A.B.C.D.【解答】解:如图,过A点做AE⊥l,使BE⊥β,垂足为E,过点A做AF∥CD,过点E做EF⊥AE,连接BF,∵AE⊥l∴∠EAC=90°∵CD∥AF又∠ACD=135°∴∠FAC=45°∴∠EAF=45°在Rt△BEA中,设AE=a,则AB=2a,BE=a,在Rt△AEF中,则EF=a,AF=a,在Rt△BEF中,则BF=2a,∴异面直线AB与CD所成的角即是∠BAF,∴cos∠BAF===.故选:B.10.(5分)已知F1、F2分别是椭圆的左、右焦点,A是椭圆=1上一动点,圆C与F1A的延长线,F1F2的延长线以及线段AF2相切,若M(t,0)为其中一个切点,则()A.t=2 B.t>2C.t<2 D.t与2的大小关系不确定【解答】解:如图所示,切点分别为M,N,E.∵|F1F2|+|F2M|=|F1A|+|AE|,|AE|=|AN|,|F2M|=|F2N|.|F1A|+|AN|+|NF2|=2a=4,∴=4﹣,解得t=2.故选:A.二、填空题(5×5=25分)11.(5分)防疫站对学生进行身体健康调查,某高二学生共有1200名,采用分层抽样法抽取一个容量为200的样本.已知女生比男生少抽了60人,则该校的女生人数应是420.【解答】解:设该校的女生人数x,则男生人数为1200﹣x,抽样比例为,∵女生比男生少抽了60,∴,解得x=420,故答案为:42012.(5分)经过点P(0,﹣1)作直线l,若直线l与连接A(1,﹣2),B(2,1)的线段总有公共点,则直线l的倾斜角α的范围为.【解答】解:k PA=k PB=∵l与线段AB相交,∴k pA≤k≤k pB∴﹣1≤k≤1∴0≤tanα≤1或﹣1≤tanα<0由于y=tanx在[0,)及(﹣,0)均为减函数∴直线l的倾斜角α的范围为:故答案为:13.(5分)若方程(9﹣m)x2+(m﹣4)y2=1表示椭圆,则实数m的取值范围是{m|4<m<或} .【解答】解:∵方程(9﹣m)x2+(m﹣4)y2=1表示椭圆,∴,解得4<m<9,且m≠,∴实数m的取值范围是{m|4<m<或}.故答案为:{m|4<m<或}.14.(5分)若椭圆的短轴为AB,它的一个焦点为F,则满足三角形ABF为等边三角的椭圆的离心率是.【解答】解:∵椭圆的短轴为AB,它的一个焦点为F,则满足三角形ABF为等边三角的椭圆,∴b=,c==a,∴.故答案为:.15.(5分)已知圆:(x+cosθ)2+(y﹣sinθ)2=1,直线l:y=kx.给出下面四个命题:①对任意实数k和θ,直线l和圆M有公共点;②对任意实数k,必存在实数θ,使得直线l和圆M相切;③对任意实数θ,必存在实数k,使得直线l和圆M相切;④存在实数k和θ,使得圆M上有一点到直线l的距离为3.其中正确的命题是①②(写出所以正确命题的编号)【解答】解:∵圆:(x+cosθ)2+(y﹣sinθ)2=1恒过定点O(0,0)直线l:y=kx也恒过定点O(0,0),∴①正确;圆心M(﹣cosθ,sinθ)圆心到直线的距离d==≤1,∴对任意实数k和θ,直线l和圆M的关系是相交或者相切,∴②正确,③④都错误.故答案为:①②.三、解答题(75分)16.(12分)已知△ABC的顶点A(6,1),AB边上的中线CM所在直线方程2x ﹣y﹣5=0,AC边上的高BH所在直线方程为x﹣2y﹣5=0.求:(Ⅰ)顶点C的坐标;(Ⅱ)直线BC的方程.【解答】解:(Ⅰ)由于AC边所在的直线的斜率为﹣2,则它的方程为y﹣1=﹣2(x﹣6),即2x+y﹣13=0,解方程组,求得,故点C的坐标为(,4).(Ⅱ)(2)设B(m,n),则M(,).把M的坐标代入直线方程为2x﹣y﹣5=0,把点B的坐标代入直线x﹣2y﹣5=0,可得,求得,故点B(﹣,﹣).再用两点式求的直线BC的方程为=,化简为46x﹣41y+57=0.17.(12分)如图所示的一块木料中,棱BC平行于面A′C′.(Ⅰ)要经过面A′C′内的一点P和棱BC将木料锯开,应怎样画线?(写出画法步骤,并在图中画出)(Ⅱ)说明所画的线与平面AC的位置关系.【解答】解:(Ⅰ)过点P作B′C′的平行线,交A′B′、C′D′于点E,F,连结BE,CF;作图如右图,(Ⅱ)易知BE,CF与平面AC的相交,∵BC∥平面A′C′,又∵平面B′C′CB∩平面A′C′=B′C′,∴BC∥B′C′,∴EF∥BC,又∵EF⊄平面AC,BC⊂平面AC,∴EF∥平面AC.18.(12分)自点A(﹣3,3)发出的光线L射到x轴上,被x轴反射,其反射光线所在直线与圆x2+y2﹣4x﹣4y+7=0相切,求光线L所在直线的方程.【解答】解:已知圆的标准方程是(x﹣2)2+(y﹣2)2=1,它关于x轴的对称圆的方程是(x﹣2)2+(y+2)2=1,设光线L所在直线的方程是y﹣3=k(x+3)(其中斜率k待定)由题设知对称圆的圆心C'(2,﹣2)到这条直线的距离等于1,即.整理得:12k2+25k+12=0,解得:,或.故所求的直线方程是,或,即3x+4y﹣3=0,或4x+3y+3=0.19.(12分)我国发射的第一颗人造地卫星的运行轨道是以地心为一个焦点的椭圆,设地球的半径为R,卫星近地点,远地点离地面距离分别为m,n.求卫星轨道的离心率.【解答】解:椭圆的离心率:e=∈(0,1),(c为半焦距;a为长半轴)只要求出椭圆的c和a,由题意,结合图形可知,a=,c=OF1=﹣m﹣R=,所以e===.20.(13分)如图,EC⊥平面ABC,EC∥BD,平面ACD⊥平面ECB.(Ⅰ)求证AC⊥BC;(Ⅱ)若CA=CB=CE=2BD,求二面角D﹣AE﹣C的余弦值.【解答】(Ⅰ)证明:∵EC∥BD,∴四边形BDEC为平面图形,EC⊥平面ABC,AC⊂平面ABC,EC⊂平面ABC,∴AC⊥EC,EC⊥BC,∴∠ACB为A﹣EC﹣B的平面角,∴∠ACB=90°,∴AC⊥BC;(Ⅱ)∵AC,BC,EC两两垂直,∴分别以CA,CB,CE为x,y,z轴,建立坐标系,∵CA=CB=CE=2BD,∴A(2,0,0),C(0,0,0),E(0,0,2),D(0,2,1),∴=(﹣2,0,2),=(﹣2,2,1),=(0,0,2),设平面DAE的法向量=(x1,y1,z1),平面AEC的法向量为=(x2,y2,z2),∴,得=(1,),,得=(0,1,0),∴cos<>===∵二面角D﹣AE﹣C是锐二面角,∴二面角D﹣AE﹣C的余弦值为:.21.(14分)已知E为圆=16上的任意一点,A点坐标为线段AE的垂直平分线与直线CE相交于点Q(C点为圆心).(Ⅰ)当E点在圆C上运动时,求Q点轨迹M的方程;(Ⅱ)若一直线与曲线M相交于P,Q两点,且直线OP,PQ,OQ的斜率依次成等比数列,求△OPQ面积的取值范围.【解答】解:(Ⅰ)由圆的方程可知,圆心C(),A,半径等于4,设点Q的坐标为(x,y ),∵线段AE的垂直平分线与直线CE相交于点Q,∴|QA|=|EQ|.又|CQ|+|QE|=4(半径),∴|QC|+|QA|=4>|AC|=2.∴点Q的轨迹是以A,C为焦点的椭圆,且2a=4,c=,∴a=2,b=1,∴点M的轨迹方程为;(Ⅱ)设直线方程为y=kx+m,由,消去y得:(1+4k2)x2+8kmx+4(m2﹣1)=0,则△=64k2m2﹣16(1+4k2)(m2﹣1)=16(4k2﹣m2+1)>0,则,,故y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2,∵直线OP、PQ、OQ的斜率依次成等比数列,∴,即,则,由于m≠0,故k2=⇒k=±,∴直线l的斜率k为±.(3)∵直线OQ的斜率存在且不为0,及△>0∴0<m2<2,且m≠1.设d为点O到直线l的距离,则S△OPQ=d|PQ|===,<,则S△OPQ∴S的取值范围为(0,1).△OPQ。
湖北省黄冈中学2015-2016学年高二上学期期末考试数学试题(理科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.)1、总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字,则选出来的第5个个体的编号为()7816 6572 0802 6314 0702 4369 9728 01983204 9234 4935 8200 3623 4869 6938 7481A.08 B.07C.02 D.012、甲、乙两名学生的六次数学测验成绩(百分制)的茎叶图如图所示.①甲同学成绩的中位数大于乙同学成绩的中位数;②甲同学的平均分比乙同学的平均分高;③甲同学的平均分比乙同学的平均分低;④甲同学成绩的方差小于乙同学成绩的方差.上面说法正确的是()A.③④B.①②④C.②④D.①③④3、当输入x=-4时,如图的程序运行的结果是()A.7 B.8C.9 D.154、下列说法错误的是()A.若命题“p∧q”为真命题,则“p∨q”为真命题B.命题“若m>0,则方程x2+x-m=0有实根”的逆命题为真命题C.命题“若a>b,则ac2>bc2”的否命题为真命题D.若命题“”为假命题,则“”为真命题5、一名小学生的年龄和身高(单位:cm)的数据如下表:由散点图可知,身高y与年龄x之间的线性回归方程为,预测该学生10岁时的身高为()A.154 B.153C.152 D.1516、“a≠5且b≠-5”是“a+b≠0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既非充分条件也非必要条件7、某校共有学生2000名,各年级男、女生人数如下表:如果从全校学生中随机抽取一名学生,抽到二年级女生的概率为0.19.现用分层抽样的方法在全校学生中分年级抽取64名学生参加某项活动,则应在三年级中抽取的学生人数为()A.24 B.18C.16 D.128、已知双曲线的一个焦点与抛物线y2=-4x的焦点重合,且双曲线的离心率为,则此双曲线的方程为()A.B.C.D.9、如图,直三棱柱ABC—A1B1C1中,∠BAC=90°,AB=AC=2,,则AA1与平面AB1C1所成的角为()A.B.C.D.10、已知:a,b,c为集合A={1,2,3,4,5}中三个不同的数,通过如下框图给出的一个算法输出一个整数a,则输出的数a=4的概率是()A.B.C. D.11、如图,在平行六面体ABCD—A1B1C1D1中,底面是边长为1的正方形,若∠A1AB=∠A1AD=60°,且AA1=3,则A1C的长为()A.B.C. D.12、椭圆的左、右焦点分别为F1,F2,弦AB过F1,若△ABF2的内切圆周长为π,A、B两点的坐标分别为(x1,y1)和(x2,y2),则|y2-y1|的值为()A.B.C. D.二、填空题13、三进制数121(3)化为十进制数为__________.14、若命题“,使x2+(a-1)x+1<0”是假命题,则实数a的取值范围为__________.15、在区间上随机地取出一个数x,若满足|x|≤m的概率为,则m=__________.16、以下四个关于圆锥曲线的命题中:①双曲线与椭圆有相同的焦点;②以抛物线的焦点弦(过焦点的直线截抛物线所得的线段)为直径的圆与抛物线的准线是相切的;③设A、B为两个定点,k为常数,若|PA|-|PB|=k,则动点P的轨迹为双曲线;④过抛物线y2=4x的焦点作直线与抛物线相交于A、B两点,它们的横坐标之和等于5,则|AB|=7.其中真命题的序号为__________(写出所有真命题的序号)三、解答题17、(本小题满分10分)《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20~80mg/100ml(不含80)之间,属于酒后驾车;在80mg/100ml(含80)以上时,属于醉酒驾车.某市公安局交通管理部门在某路段的一次拦查行动中,依法检查了300辆机动车,查处酒后驾车和醉酒驾车的驾驶员共20人,检测结果如下表:(Ⅰ)绘制出检测数据的频率分布直方图(在图中用实线画出矩形框即可);(Ⅱ)求检测数据中醉酒驾驶的频率,并估计检测数据中酒精含量的众数、平均数.18、(本小题满分12分)p:实数x满足x2-4ax+3a2<0,其中a>0,q:实数x满足.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)是的充分不必要条件,求实数a的取值范围.19、(本小题满分12分)某射击运动员进行射击训练,前三次射击在靶上的着弹点A、B、C 刚好是边长分别为5cm,6cm,的三角形的三个顶点.(Ⅰ)该运动员前三次射击的成绩(环数)都在区间解析:.15、3解析:.16、①②④17、(1)检测数据的频率分布直方图如图:(5分)(2)检测数据中醉酒驾驶的频率是.(6分)估计检测数据中酒精含量的众数是35与55.(8分)估计检测数据中酒精含量的平均数是.(10分)18、(1)由,得,又a>0,所以a<x<3a.(2分)当a=1时,1<x<3,即p为真时实数x的取值范围是1<x<3.(3分)由得得2<x≤3,即q为真时实数x的取值范围是2<x≤3.(4分)若p∧q为真,则p真且q真,(5分)所以实数x的取值范围是2<x<3.(6分)(2)是的充分不必要条件,即,且推不出.即q是p的充分不必要条件,(8分)则,解得1<a≤2,所以实数a的取值范围是1<a≤2.(12分)19、(Ⅰ)前三次射击成绩依次记为x1、x2、x3,后三次成绩依次记为y1、y2、y3,从这6次射击成绩中随机抽取两个,基本事件是:,共15个,(3分)其中可使|a-b|>1发生的是后9个基本事件.故.(6分)(Ⅱ)因为着弹点若与A、B、C的距离都超过1cm,则着弹点就不能落在分别以A、B、C为圆心,半径为1cm的三个扇形区域内,只能落在扇形外的部分.(7分)因为(9分)满足题意部分的面积为,(11分)故所求概率为.(12分)20、(1)∵F(0,2),p=4,∴抛物线方程为x2=8y,(1分)与直线y=2x+2联立消去y得:x2-16x-16=0,设A(x1,y1),B(x2,y2).(2分)则x1+x2=16,x1x2=-16,(3分);(5分)(2)假设存在,由抛物线x2=2py与直线y=2x+2联立消去y得:x2-4px-4p=0.设A(x1,y1),B(x2,y2),△>0,则x1+x2=4p,x1x2=-4p,(7分)P(2p,4p+2),Q(2p,2p).(8分)方法一:(9分)(10分)(11分)故存在且满足△>0.(12分)方法二:由得:.(9分)即,(10分),(11分)代入得4p2+3p-1=0,.故存在且满足△>0.(12分)21、(1)证明:在图中,由题意可知,BA⊥PD,ABCD为正方形,所以在图中,SA⊥AB,SA=2,四边形ABCD是边长为2的正方形,(2分)因为SB⊥BC,AB⊥BC,所以BC⊥平面SAB,(4分)又SA平面SAB,所以BC⊥SA,又SA⊥AB,所以SA⊥平面ABCD.(6分)(2)方法一:建立空间直角坐标系,以AB为x轴,AD为y轴,AS为z轴,(7分)A(0,0,0),C(2,2,0),D(0,2,0),S(0,0,2).(8分).(10分)即二面角E—AC—D的正切值为.(12分)方法二:在AD上取一点O,使,连接EO.因为,所以EO//SA,所以EO⊥平面ABCD,过O作OH⊥AC交AC于H,连接EH,(7分)则AC⊥平面EOH,所以AC⊥EH.所以∠EHO为二面角E—AC—D的平面角,(9分),在Rt△AHO中,.(11分),即二面角E—AC—D的正切值为.(12分)22、(1)由题意知|PQ|=|AQ|,又∵|CP|=|CQ|+|PQ|=4.(2分),由椭圆定义知Q点的轨迹是椭圆,(3分)2a=4,即a=2,,∴Q的轨迹方程E:.(5分)(2)由题意知所求的直线不可能垂直于x轴,所以可设直线为:y=kx-2,M(x1,y1),N(x2,y2),联立方程组,将y=kx-2代入中得(7分)(8分),当且仅当即t=2时面积最大,最大值为1.(10分)(11分).(12分)。
黄冈中学2015届高二(上)期中考试数学(理)试题命题:胡华川 审题:汤彩仙 校对: 袁进本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第I 卷(选择题 共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个符合题目要求,请将正确选项的代号填入答题卡的相应位置.) 1.下列说法中正确的是( )A .一组数据的平均数一定大于这组数据中的每个数据B .一组数据不可能有两个众数C .一组数据的中位数一定是这组数据中的某个数据D .一组数据的方差越大,说明这组数据的波动程度越大 2.下列关于随机抽样的说法不正确...的是( ) A .简单随机抽样是一种逐个抽取不放回的抽样B .系统抽样和分层抽样中每个个体被抽到的概率都相等C .有2008个零件,先用随机数表法剔除8个,再用系统抽样方法抽取抽取20个作为样本,每个零件入选样本的概率都为1/2000D .当总体是由差异明显的几个部分组成时适宜采取分层抽样3.从一批产品中取出三件产品,设{A =三件产品全是正品},{B =三件产品全是次品},{C =三件产品不全是次品},则下列结论不正确...的是( ) A .A 与B 互斥且为对立事件 B .B 与C 为对立事件 C .A 与C 存在着包含关系 D .A 与C 不是互斥事件 4.某产品的广告费用与销售额y 的统计数据如下表:根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为 A .61.5万元 B . 62.5万元 C . 63.5万元 D . 65.0万元5.给出的四个程序框图,其中满足WHILE 语句结构的是( )A .①②B .②③C .②④D .③④6.若直线l :y =kx -3与直线x +y -3=0的交点位于第二象限,则直线l 的倾斜角的取值范围是( )A .3(,]24ππB .3[,)24ππC . 3(,)34ππD . 3(,)24ππ①②③④7.计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A ~F 共16个计数符号,A .A 5B .BFC .165D .B 98.张三和李四打算期中考试完后去旅游,约定第二天8点到9点之间在某处见面,并约定先到者等候后到者20分钟或者时间到了9点整即可离去,则两人能够见面的概率是( )A .49B .59C .79D .699.已知直线:10l ax by ++=,圆22:220M x y ax by +--=,则直线l 和圆M 在同一坐标系中的图形可能是( )10.已知a b ≠且2sin cos 10a a θθ+-=、2sin cos 10b b θθ+-=,则连接2(,)a a 、2(,)b b 两点的直线与单位圆221xy +=的位置关系是()A .相交B .相切C .相离D .不能确定第Ⅱ卷(非选择题 共100分)二、填空题(本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置.) 11.若数据组128,,,k k k 的平均数为3,方差为3,则1282(3),2(3),,2(3)k k k +++ 的平均数为_____,方差为_____.12.下课以后,教室里最后还剩下2位男同学,2位女同学.如果每次走出一个同学,则第2位走出的是男同学的概率是________.13.如图给出的是计算11112462014++++ 的值的一个程序框图,则判断框内应填入的条件是________.14.已知532()231f x x x x x =-+-+,应用秦九韶算法计算3x =时的值时,3v 的值为________..15.在平面直角坐标系中, ABC ∆的三个顶点(0,),(,0),(,0)A a B b C c ,点(0,)P p 在线段AO 上(异于端点).设,,,a b c p 均为非零实数,直线,BP CP 分别交,AC AB 于点E F 、. 一同学已正确算出直线OF 的方程:1111()(0x y c b p a-+-=. 请你写出直线OE 的方程:( )011=⎪⎪⎭⎫⎝⎛-+y a p x . 三、解答题:(本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤.) 16.(本小题12分)已知直线1l :60x my ++=,2l :(2)320m x y m -++=, 求当m 为何值时,1l 与 2l : (I )平行; (Ⅱ)相交; (Ⅲ) 垂直.17.(本小题12分)下列程序的输出结果构成了数列{}n a 的前10项.试根据该程序给出的数列关系,(I )求数列的第3项3a 和第4项4a ;(Ⅱ)写出该数列的递推公式,并求出其通项公式n a ;18.(本小题12分)圆M 的圆心在直线x y 2-= 上,且与直线1=+y x 相切于点)1,2(-A , (I )试求圆M 的方程;(Ⅱ)从点(3,1)P 发出的光线经直线y x =反射后可以照在圆M 上,试求发出光线所在直线的斜率取值范围. 19.(本小题12分)某校高一的一个班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:(Ⅰ)求分数在[50,60)的频率及全班人数;(Ⅱ)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;(Ⅲ)试用此频率分布直方图估计这组数据的众数和平均数.20.(本小题13分))已知函数22()24,,f x x ax b a b R=-+∈.(Ⅰ)若a从集合{}3,4,5中任取一个元素,b从集合{}1,2,3中任取一个元素,求方程()0f x=有两个不相等实根的概率;(Ⅱ)若a从区间[]0,2中任取一个数,b从区间[]0,3中任取一个数,求方程()0f x=没有实根的概率.21.(本小题14分)在平面直角坐标系xOy中,已知圆221:(1)1C x y++=,圆222:(3)(4)1C x y-+-=.(Ⅰ)若过点1(1,0)C-的直线l被圆2C截得的弦长为65,求直线l的方程;(Ⅱ)圆D是以1为半径,圆心在圆3C:22(+1)9x y+=上移动的动圆,若圆D上任意一点P分别作圆1C的两条切线,PE PF,切点为,E F,求四边形1PEC F的面积的取值范围;(Ⅲ)若动圆C同时平分圆1C的周长、圆2C的周长,如图所示,则动圆C是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.期中考试数学(理)参考答案1.答案:D 解析:一组数据的平均数介于这组数据中的最大数据与最小数据之间,所以A 错;众数是一组数据中出现最多的数据,所以可以不止一个,B 错;若一组数据的个数有偶数个,则其中中位数是中间两个数的平均值,所以不一定是这组数据中的某个数据,C 错;一组数据的方差越大,说明这组数据的波动越大,D 对.2.【答案】C 解析: C 选项中每个零件入选的概率应该12008。
2014-2015学年湖北省黄冈中学高二(上)期中数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是满足题目要求的.1.(5分)下列说法中正确的是()A.频率是概率的近似值,随着试验次数增加,频率会越来越接近概率B.要从1002名学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2名学生,这样对被剔除者不公平C.用秦九韶算法计算多项式f(x)=12+35x+9x3+5x5+3x6在当x=﹣1时的值时要用到6次加法和15次乘法D.数据2,3,4,5的方差是数据4,6,8,10的方差的一半2.(5分)2014年索契冬季奥运会的花样滑冰项目上,8个评委为某选手打出的分数如茎叶图所示,则这些数据的中位数是()A.84 B.85 C.86 D.87.53.(5分)某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为()A.35 B.25 C.15 D.74.(5分)从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是()A.至少有一个红球与都是红球B.至少有一个红球与都是白球C.至少有一个红球与至少有一个白球D.恰有一个红球与恰有二个红球5.(5分)某产品的广告费用x与销售额y的统计数据如下表根据上表可得回归方程=x+的为9.4,据此模型预报广告费用为6万元时销售额为()A.63.6万元B.65.5万元C.67.7万元D.72.0万元6.(5分)圆O1:x2+y2﹣2x=0和圆O2:x2+y2﹣4y=0的公共弦长为()A.B.C.3 D.7.(5分)设,求a2+a4+…+a2n的值()A.3n B.3n﹣2 C.D.8.(5分)4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为()A.B.C.D.9.(5分)某几何体的三视图如图所示,则该几何体的体积的最大值为()A.B.C.D.10.(5分)如图,已知点P(2,0),正方形ABCD内接于⊙O:x2+y2=2,M、N 分别为边AB、BC的中点,当正方形ABCD绕圆心O旋转时,•的取值范围是()A.[﹣1,1]B.[﹣,]C.[﹣2,2]D.[﹣,]二、填空题:本大题共5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.11.(5分)空间直角坐标系中与点P(2,3,5)关于yoz平面对称的点的坐标为.12.(5分)由数字0,1,2,3,4组成的没有重复数字且比2000大的四位数的个数为(用数字作答).13.(5分)在(1+x2)(1﹣2x)6的展开式中,x5的系数为.14.(5分)根据如图算法语句,当输出y的值为31时,输入的x值为.15.(5分)如果自然数a的各位数字之和等于7,那么称a为“吉祥数”.将所有“吉祥数”从小到大排成一列a1,a2,a3,…,若a n=2005,则n=.三、解答题:本大题共6个小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)高二某班50名学生在一次百米测试中,成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组[13,14),第二组[14,15),…,第五组[17,18],如图是按上述分组方法得到的频率分布直方图.(1)若成绩在区间[14,16)内规定为良好,求该班在这次百米测试中成绩为良好的人数;(2)请根据频率分布直方图估计样本数据的众数和中位数(精确到0.01).17.(12分)已知关于x的一元二次方程x2﹣2ax+b2=0.(1)若a是从0、1、2、3四个数中任取的一个数,b是从0、1、2三个数中任取的一个数,求上述方程没有实根的概率;(2)若a是从区间[0,3]内任取的一个数,b是从区间[0,2]内任取的一个数,求上述方程没有实根的概率.18.(12分)已知在的展开式中,第5项的系数与第3项的系数之比是56:3.(1)求n;(2)求展开式中的所有有理项;(3)求C n1+9C n2+81C n3+…+9n﹣1C n n的值.19.(12分)阅读如图的程序框图,解答以下问题:(1)如果输入的N=3,那么输出的S为多少?(2)对于输入的任何正整数N,都有对应S输出.证明:S<2.20.(13分)如图,四棱锥P﹣ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD,侧面PAD⊥底面ABCD,且△PAD为等腰直角三角形,∠APD=90°,M为AP的中点.(Ⅰ)求证:AD⊥PB;(Ⅱ)求证:DM∥平面PCB;(Ⅲ)求平面PAD与平面PBC所成锐二面角的余弦值.21.(14分)如图,圆C:x2﹣(1+a)x+y2﹣ay+a=0.(Ⅰ)若圆C与x轴相切,求圆C的方程;(Ⅱ)已知a>1,圆C与x轴相交于两点M,N(点M在点N的左侧).过点M 任作一条直线与圆O:x2+y2=4相交于两点A,B.问:是否存在实数a,使得∠ANM=∠BNM?若存在,求出实数a的值,若不存在,请说明理由.2014-2015学年湖北省黄冈中学高二(上)期中数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是满足题目要求的.1.(5分)下列说法中正确的是()A.频率是概率的近似值,随着试验次数增加,频率会越来越接近概率B.要从1002名学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2名学生,这样对被剔除者不公平C.用秦九韶算法计算多项式f(x)=12+35x+9x3+5x5+3x6在当x=﹣1时的值时要用到6次加法和15次乘法D.数据2,3,4,5的方差是数据4,6,8,10的方差的一半【解答】解:A选项,频率是概率的近似值,随着试验次数增加,频率会越来越接近概率,故A正确;B选项,每个个体被抽到的概率相等,故B错误C选项,用秦九韶算法计算多项式f(x)=12+35x+9x3+5x5+3x6在当x=﹣1时的值时要用到6次加法和6次乘法,故C错误;D选项,∵数据4,6,8,10分别是数据2,3,4,5的2倍,∴数据2,3,4,5的方差是数据4,6,8,10的方差的,故D错误.故选:A.2.(5分)2014年索契冬季奥运会的花样滑冰项目上,8个评委为某选手打出的分数如茎叶图所示,则这些数据的中位数是()A.84 B.85 C.86 D.87.5【解答】解:由茎叶图知,这些数据的中位数为:=86.故选:C.3.(5分)某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为()A.35 B.25 C.15 D.7【解答】解:青年职工、中年职工、老年职工三层之比为7:5:3,所以样本容量为=15.故选:C.4.(5分)从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是()A.至少有一个红球与都是红球B.至少有一个红球与都是白球C.至少有一个红球与至少有一个白球D.恰有一个红球与恰有二个红球【解答】解:从装有5个红球和3个白球的口袋内任取3个球,不同的取球情况共有以下几种:3个球全是红球;2个红球1个白球;1个红球2个白球;3个球全是白球.选项A中,事件“都是红球”是事件“至少有一个红球”的子事件;选项B中,事件“至少有一个红球”与事件“都是白球”是对立事件;选项C中,事件“至少有一个红球”与事件“至少有一个白球”的交事件为“2个红球1个白球”与“1个红球2个白球”;选项D中,事件“恰有一个红球”与事件“恰有二个红球”互斥不对立.故选:D.5.(5分)某产品的广告费用x与销售额y的统计数据如下表根据上表可得回归方程=x+的为9.4,据此模型预报广告费用为6万元时销售额为()A.63.6万元B.65.5万元C.67.7万元D.72.0万元【解答】解:∵=3.5,=42,∵数据的样本中心点在线性回归直线上,回归方程中的为9.4,∴42=9.4×3.5+,∴=9.1,∴线性回归方程是y=9.4x+9.1,∴广告费用为6万元时销售额为9.4×6+9.1=65.5,故选:B.6.(5分)圆O1:x2+y2﹣2x=0和圆O2:x2+y2﹣4y=0的公共弦长为()A.B.C.3 D.【解答】解:圆O1的圆心为(1,0),半径r1=1,圆O2的圆心为(0,2),半径r2=2,故两圆的圆心距,大于半径之差而小于半径之和,故两圆相交.圆和圆两式相减得到相交弦所在直线方程x ﹣2y=0,圆心O1(1,0)到直线x﹣2y=0距离为,由垂径定理可得公共弦长为2=,故选:B.7.(5分)设,求a2+a4+…+a2n的值()A.3n B.3n﹣2 C.D.【解答】解:令x=1,则(1+1+12)n=a0+a1+…+a2n①令x=﹣1,则(1﹣1+1)n=a0﹣a1+…+a2n②∴①+②得2(a0+a2+a4+…+a2n)=3n+1∴a0+a2+a4+…+a2n=令x=0,则a0=1,∴a2+a4+…+a2n=﹣1=故选:C.8.(5分)4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为()A.B.C.D.【解答】解:4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,基本事件总数n==6,取出的2张卡片上的数字之和为奇数包含的基本事件个数m==4,∴取出的2张卡片上的数字之和为奇数的概率为=.故选:C.9.(5分)某几何体的三视图如图所示,则该几何体的体积的最大值为()A.B.C.D.【解答】解:由三视图知,几何体是一个三棱锥,三棱锥的底面是一条直角边为1,斜边为b的直角三角形,∴另一条直角边是,三棱锥的一条侧棱与底面垂直,由勾股定理可知这条边是,∴几何体的体积是V=∵在侧面三角形上有a2﹣1+b2﹣1=6,∴V=,当且仅当侧面的三角形是一个等腰直角三角形,故选:D.10.(5分)如图,已知点P(2,0),正方形ABCD内接于⊙O:x2+y2=2,M、N 分别为边AB、BC的中点,当正方形ABCD绕圆心O旋转时,•的取值范围是()A.[﹣1,1]B.[﹣,]C.[﹣2,2]D.[﹣,]【解答】解:设M(cosα,sinα),∵,∴,∴N(﹣sinα,cosα),∴=(﹣sinα,cosα),=(cosα,sinα),∴=(cosα﹣2,sinα),∴=﹣sinα(cosα﹣2)+sinαcosα=2sinα,∵sinα∈[﹣1,1],∴2sinα∈[﹣2,2],∴•的取值范围是[﹣2,2].故选:C.二、填空题:本大题共5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.11.(5分)空间直角坐标系中与点P(2,3,5)关于yoz平面对称的点的坐标为(﹣2,3,5).【解答】解:根据关于坐标平面yOz的对称点的坐标的特点,可得点P(2,3,5)关于坐标平面yOz的对称点的坐标为:(﹣2,3,5).故答案为:(﹣2,3,5).12.(5分)由数字0,1,2,3,4组成的没有重复数字且比2000大的四位数的个数为72(用数字作答).【解答】解:当最高位为2时,其余的三位数任意取有=24个,当最高位为3或4的有=48个,根据分类计数原理可得,一共有72个.故答案为:7213.(5分)在(1+x2)(1﹣2x)6的展开式中,x5的系数为﹣352.【解答】解:根据题意,(1﹣2x)6展开式的通项为T r=C6r•(﹣2x)r=(﹣1)r C6r•2r x r,+1则(1+x2)(1﹣2x)6的展开式中出现x5的项有两种情况,第一种情况(1+x2)中出1,而(1﹣2x)6展开式中出x5项,其系数为1×(﹣1)525=﹣192,5C6第二种情况(1+x2)中出x2项,而(1﹣2x)6展开式中出x3项,其系数为=﹣160,则(1+x2)(1﹣2x)6展开式中x5的系数为﹣192﹣160=﹣352;故答案为:﹣352.14.(5分)根据如图算法语句,当输出y的值为31时,输入的x值为60.【解答】解:执行算法语句知程序的功能是求分段函数的值,其解析式为,故解得当y的值为31时,x的值为60.故答案为:60.15.(5分)如果自然数a的各位数字之和等于7,那么称a为“吉祥数”.将所有“吉祥数”从小到大排成一列a1,a2,a3,…,若a n=2005,则n=65.【解答】解:∵方程x1+x2+…+x i=m使x1≥1,x i≥0(i≥2)的整数解个数为.现取m=7,可知,k位“吉祥数”的个数为且P(1)==1,P(2)==7,P(3)==28对于四位“吉祥数”,其个数为满足a+b+c=6的非负整数解个数,即个.∵2005是形如的数中最小的一个“吉祥数”,∴2005是第1+7+28+28+1=65个“吉祥数”,即a n=2005,从而n=65.故答案为:65三、解答题:本大题共6个小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)高二某班50名学生在一次百米测试中,成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组[13,14),第二组[14,15),…,第五组[17,18],如图是按上述分组方法得到的频率分布直方图.(1)若成绩在区间[14,16)内规定为良好,求该班在这次百米测试中成绩为良好的人数;(2)请根据频率分布直方图估计样本数据的众数和中位数(精确到0.01).【解答】解:(1)根据频率分布直方图知,成绩在[14,16)内的人数为:50×0.18+50×0.38=28人;(2)由频率分布直方图知,众数落在第三组[15,16)内,是;∵数据落在第一、二组的频率为1×0.04+1×0.08=0.22<0.5,数据落在第一、二、三组的频率为1×0.04+1×0.08+1×0.38=0.6>0.5,∴中位数一定落在第三组[15,16)中;设中位数是x,∴0.22+(x﹣15)×0.38=0.5,解得中位数.17.(12分)已知关于x的一元二次方程x2﹣2ax+b2=0.(1)若a是从0、1、2、3四个数中任取的一个数,b是从0、1、2三个数中任取的一个数,求上述方程没有实根的概率;(2)若a是从区间[0,3]内任取的一个数,b是从区间[0,2]内任取的一个数,求上述方程没有实根的概率.【解答】解:(1)设事件A为“方程x2﹣2ax+b2=0无实根”;﹣﹣﹣﹣﹣﹣﹣﹣(1分)当△=4a2﹣4b2=4(a2﹣b2)<0,即a<b时,方程x2﹣2ax+b2=0无实根.﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)所有的(a,b)共12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2).其中,第一个数表示a的取值,第二个数表示b的取值.事件A包含3个基本事件(0,1),(0,2),(1,2),由于每个基本事件发生的可能性都相同,﹣﹣﹣﹣﹣﹣(4分)∴事件A发生的概率P(A)==.﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)答:方程x2﹣2ax+b2=0没有实根的概率为.﹣﹣﹣﹣﹣﹣﹣(7分)(2)设事件B为“方程x2﹣2ax+b2=0无实根”;﹣﹣﹣﹣(8分)如图,试验的所有基本事件所构成的区域为矩形OABC:{(a,b)|0≤a≤3,0≤b≤2},其中构成事件B的区域为三角形OEC,即{(a,b)|0≤a≤3,0≤b≤2,a<b},由于点(a,b)落在区域内的每一点是随机的,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)∴事件B发生的概率P(B)===.﹣﹣﹣﹣﹣﹣﹣(13分)答:方程x2﹣2ax+b2=0没有实根的概率为.﹣﹣﹣﹣﹣﹣﹣﹣(14分)18.(12分)已知在的展开式中,第5项的系数与第3项的系数之比是56:3.(1)求n;(2)求展开式中的所有有理项;(3)求C n1+9C n2+81C n3+…+9n﹣1C n n的值.【解答】解:(1)由题意可得,,解得n=10.=•(﹣2)r•,令5﹣为整数,r可取0,(2)因为通项公式为:T r+16,于是有理项为和T7=13400.(3)==.19.(12分)阅读如图的程序框图,解答以下问题:(1)如果输入的N=3,那么输出的S为多少?(2)对于输入的任何正整数N,都有对应S输出.证明:S<2.【解答】解:(1)第一次循环得到:T=1,S=1,k=2;第二次循环得到:;,4>3满足条件,输出(2)由题意知,而n>2时有n!>2n﹣1∴经验证,n=1,2也有S<2.20.(13分)如图,四棱锥P﹣ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD,侧面PAD⊥底面ABCD,且△PAD为等腰直角三角形,∠APD=90°,M为AP的中点.(Ⅰ)求证:AD⊥PB;(Ⅱ)求证:DM∥平面PCB;(Ⅲ)求平面PAD与平面PBC所成锐二面角的余弦值.【解答】(I)证明:取AD的中点G,连结PG、GB、BD.∵PA=PD,∴PG⊥AD…(2分)∵AB=AD,且∠DAB=60°,∴△ABD是正三角形,BG⊥AD,又PG∩BG=G,∴AD⊥平面PGB.∴AD⊥PB.…(4分)(II)证明:取PB的中点F,连结MF,CF,∵M、F分别为PA、PB的中点,∴MF∥AB,且.∵四边形ABCD是直角梯形,AB∥CD且AB=2CD,∴MF∥CD且MF=CD,…(6分)∴四边形CDMF是平行四边形.∴DM∥CF.∵CF⊂平面PCB,DM⊄平面PCB,∴DM∥平面PCB.…(8分)(III)解:∵侧面PAD⊥底面ABCD,又∵PG⊥AD,∴PG⊥底面ABCD.∴PG⊥BG.∴直线GA、GB、GP两两互相垂直,故以G为原点,直线GA、GB、GP所在直线为x轴、y轴和z轴,建立如图所示的空间直角坐标系G﹣xyz.设PG=a,则由题意得:,.∴.设是平面PBC的法向量,则且.∴取,得.∵M是AP的中点,∴.∴..∴.平面PAD的法向量,设平面PAD与平面PBC所成锐二面角为θ,则,…(10分)∴平面PAD与平面PBC所成锐二面角的余弦值为.…(12分)21.(14分)如图,圆C:x2﹣(1+a)x+y2﹣ay+a=0.(Ⅰ)若圆C与x轴相切,求圆C的方程;(Ⅱ)已知a>1,圆C与x轴相交于两点M,N(点M在点N的左侧).过点M 任作一条直线与圆O:x2+y2=4相交于两点A,B.问:是否存在实数a,使得∠ANM=∠BNM?若存在,求出实数a的值,若不存在,请说明理由.【解答】(Ⅰ)因为由可得x2﹣(1+a)x+a=0,由题意得△=(1+a)2﹣4a=(a﹣1)2=0,所以a=1,故所求圆C的方程为x2﹣2x+y2﹣y+1=0.(Ⅱ)令y=0,得x2﹣(1+a)x+a=0,即(x﹣1)(x﹣a)=0,求得x=1,或x=a,所以M(1,0),N(a,0).假设存在实数a,当直线AB与x轴不垂直时,设直线AB的方程为y=k(x﹣1),代入x2+y2=4得,(1+k2)x2﹣2k2x+k2﹣4=0,设A(x1,y1),B(x2,y2),从而.因为NA、NB的斜率之和为,而(x 1﹣1)(x2﹣a)+(x2﹣1)(x1﹣a)=2x1x2﹣(a+1)(x2+x1)+2a==,因为∠ANM=∠BNM,所以,NA、NB的斜率互为相反数,,即,得a=4.当直线AB与x轴垂直时,仍然满足∠ANM=∠BNM,即NA、NB的斜率互为相反数.综上,存在a=4,使得∠ANM=∠BNM.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.2.如图,已知四边形ABCD内接于⊙O,对角线AC⊥BD于P,设⊙O的半径是2。
蕲春县2015年秋高中期中教学质量检测高二数学(理)试题温馨提示:本试卷共4页。
考试时间120分钟。
请将答案填写在答题卡上。
一、本大题共12小题,每小题5分,在每小题列出的四个选项中,只有一项是符合题目要求的。
1.命题:“若a 2+b 2=0(a ,b ∈R),则a =0且b =0”的逆否命题是( ). A .若a 2+b 2≠0则a ≠0且b ≠0(a ,b ∈R ) B .若a =b ≠0(a ,b ∈R ),则a 2+b 2≠0 C .若a ≠0且b ≠0(a ,b ∈R ),则a 2+b 2≠0 D .若a ≠0或b ≠0(a ,b ∈R ),则a 2+b 2≠02.已知两定点F 1,F 2和一动点M ,则“|MF 1|+|MF 2|=2a (2a 为正常数)”是“点M 的轨迹是以F 1,F 2为焦点的椭圆”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.过圆x 2+y 2=25上一点P (-4,-3)的圆的切线方程为( ) A .4x -3y -25=0 B .4x +3y +25=0C .3x +4y -25=0D .3x -4y -25=04.直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k =1”是“△OAB 的面积为12”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分又不必要条件5.已知实数1,m ,4构成一个等比数列,则圆锥曲线221x y m+=的离心率为( ) A 2 B 3 C 23 D 266.已知椭圆的焦点是F 1,F 2,P 是椭圆上的一动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( ). A .圆B .椭圆C .双曲线的一支D .抛物线72) A .12(,)44±B .12(,)84±C .12(,)44D .12(,)848.与椭圆2214x y +=共焦点且过点Q (2,1)的双曲线方程是( ) A .1222=-y x B .1422=-y x C .13322=-y x D .1222=-y x9.给出下列命题:①若p q ∧为假命题,则,p q 均为假命题;②设,x y R ∈,命题“若0,xy =则220x y +=”的否命题是真命题; ③直线和抛物线只有一个公共点是直线和抛物线相切的充要条件; 则其中正确的个数是( ) A .0B .1D .310.M (3,0)是圆x 2+y 2-8x -2y +10=0内一点,过M 点最长的弦所在的直线方程是( ).A .x +y -3=0B .x -y -3=0C .2x -y -6=0D .2x +y -6=011.已知双曲线22221x y a b-=的两焦点分别为F 1,F 2,一条垂直于x 轴的直线交双曲线的右支于M ,N 两点,且121,MF MF F MN ⊥∆为等边三角形,则双曲线的离心率为( )A .52B .13+C .3D .31-12.已知点M 是214y x =上的一点,F 为抛物线的焦点,A 在圆C :22(1)(4)1x y -+-= 上,则||||MA MF +的最小值为( ) A .2B .4C .8D .10二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.若,a b ≤则22ac bc ≤,则命题的原命题、逆命题、否命题和逆否命题中正确命题的个数是______.14.已知圆229x y +=,直线:l y x b =+,若圆229x y +=上恰有2个点到直线l 的距离等于1,则b 的取值范围为 .15.如图,一桥拱的形状为抛物线,此时水面距桥拱顶端h =6m ,水面宽为b =24m ,若水面上升2m 后,水面宽为 米. 16.已知点P (x 0,y 0)在椭圆C :12222=+b y a x (a >b >0)上,如果经过点P 的直线与椭圆只有一个公共点时,称直线为椭圆的切线,此时点P 称为切点,这条切线方程可以表示为:12020=+b y y a x x .根据以上性质,解决以下问题:已知椭圆L :2214x y +=,若Q (2,2)是椭圆L 外一点,经过Q 点作椭圆L 的两条切线,切点分别为A 、B ,则直线AB 的方程是 .三、解答题(解答应写出文字说明,证明过程或演算步骤) 17.(本小题10分)求适合下列条件的曲线方程⑴焦点在y 轴上,焦距是4,且经过点M (3,2)的椭圆标准方程;⑵顶点是双曲线16x 2-9y 2=144的中心,准线过双曲线的左顶点,且垂直于坐标轴的抛物线的标准方程.18.(本小题12分)已知命题:p 方程22192x y k k+=-表示焦点在y 轴上的椭圆;命题:q 方程2212x y k-=表示双曲线,且离心率(3,2)e ∈,若命题p ∧q 为假命题, p ∨q 为真命题,求实数k 的取值范围.19.(本小题12分)已知曲线C 上的点到点F (1,0)的距离比它到直线x =-3的距离小2.⑴求曲线C 的方程;⑵△AOB 的一个顶点为曲线C 的顶点O ,A 、B 两点都在曲线C 上,且∠AOB =90°,证明直线AB 必过一定点.20.(本题小12分)已知抛物线1C :24(0)y px p =>,焦点为2F ,其准线与x 轴交于点1F ;椭圆2C :分别以12F F 、为左、右焦点,其离心率12e =;且抛物线1C 和椭圆2C 的一个交点记为M . ⑴当p =1时,求椭圆C 2的标准方程;⑵在⑴的条件下,若直线l 经过椭圆C 2的右焦点F 2,且与抛物线C 1相交于A ,B 两点,若弦长|AB |等于△MF 1F 2的周长,求直线l 的方程.21.(本小题12分)已知椭圆22:2 4.C x y +=⑴求椭圆C 的离心率;⑵设O 为原点,若点A 在直线2y =上,点B 在椭圆C 上,且,OA OB ⊥求线段AB 长度的最小值.22.(本小题12分)))(,(000a x y x P ±≠是双曲线E :)0,0(12222>>=-b a by a x 上一点,M ,N 分别是双曲线E 的左、右顶点,直线PM ,PN 的斜率之积为51. ⑴求双曲线的离心率;⑵过双曲线E 的右焦点且斜率为1的直线交双曲线于A 、B 两点,O 为坐标原点,C 为双曲线上一点,满足→→→+=---------OB OA OC λ,求λ的值.高二理科数学参考答案及评分标准一、选择题 题号 12 3 4 5 6 7 8 9 10 11 12 答案 DBBACABABBBB二、填空题13.2 14.(42,22)(22,42)--⋃ 15.86 16.420x y +-=三、解答题17.解:⑴设椭圆方程为:22221(0,0)x y a b a b+=>>依题意可得:2c =4,即c =2,a 2=b 2+4 …………………….2分 由椭圆过点(3,2)得:224914b b+=+,解得:2212,16b a ==……………………..4分故椭圆方程:2211216x y += ……………………..5分 ⑵双曲线的顶点坐标为(-3,0)故抛物线的准线为3x =- ………….………….7分 依题意设抛物线方程为:22y px = 则32p-=-即6p = ………….………….9分 所以抛物线的方程为:212y x = ……………………10分18.解:命题:p Q 方程22192x y k k+=-表示焦点在y 轴上的椭圆 920903292k k k k k->⎧⎪∴>⇒<<⎨⎪>-⎩………….………….4分命题:q 方程2212x y k-=表示双曲线,且离心率(3,2)e ∈ 20,(2,3)462k k e k +∴>=∈⇒<< ………….………….8分 命题q p ∧为假命题,q p ∨为真命题所以p ,q 是一真一假命题………….………….9分 ①p 真q 假,则9334246k k k k ⎧<<⎪<≤⎨⎪≤≥⎩得或………………….10分②p 假q 真,则93962246k k k k ⎧≤≥⎪≤<⎨⎪<<⎩或得……….………….11分故k 的取值范围为(]93,4,62⎡⎫⋃⎪⎢⎣⎭……….………….12分 19.解:⑴24y x =……………………..5分⑵证明设1122(,),(,)A x y B x y 依题意设直线AB :x my n =+224404x my n y my n y x =+⎧⇒--=⎨=⎩ 121224416160y y my y n m n +=⎧⎪∴⋅=-⎨⎪∆=+>⎩222221212124416y y y y x x n ⋅⋅=⋅==∠AOB =90°121200OA OB x x y y ∴⋅=+=uu r uu u r即代入得:240,40n n n -=∴=∆>此时所以直线AB 必过定点(4,0)………………….12分 20.⑴椭圆方程为22143x y +=………….………….4分⑵(Ⅰ)若直线l 的余率不存在,则:x =1,且A(1,2),B(1,-2),∴|AB|=4又∵△MF 1F 2的周长等于|MF 1|+|MF 2|+|F 1F 2|=2a +2c =6≠|AB| ∴直线l 的斜率必存在.………….………….6分(Ⅱ)设直线l 的斜率为k ,则l :y =k(x -1)由⎪⎩⎪⎨⎧-==)1(42x k y x y ,得k 2x 2-(2k 2+4)x +k 2=0∵直线l 与抛物线C 1有两个交点A ,B ∴△=[-(2k 2+4)]2-4k 4=16k 2+>0,且k ≠0设刚可得222142k k x x +=+,x 1x 2=1于是]4))[(1(||1||212212212x x x x k x x k AB -++=-+=22422222)1(4)1616)(1(]4)42)[(1(k k kk k y kk +=++=-++=∵△MF 1F 2的周长等于|MF 1|+|MF 2|+|F 1F 2|=2a +2c =6由6)1(422=+kk ,解得k =±2 胡所求直线l 的方程为)1(2-=x y ±.………….……….12分21.⑴由题意,椭圆C 的标准方程为x 24+y 22=1.所以a 2=4,b 2=2,从而c 2=a 2-b 2=2.因此a =2,c = 2.故椭圆C 的离心率e =c a =22. ……………………4分⑵设点A ,B 的坐标分别为(t ,2),(x 0,y 0),其中x 0≠0.因为OA ⊥OB ,所以OA →·OB →=0,即tx 0+2y 0=0,解得t =-2y 0x 0.……………………6分又x 2+2y 20=4,所以|AB |2=(x 0-t )2+(y 0-2)2=⎝⎛⎭⎪⎫x 0+2y 0x 02+(y 0-2)2=x 20+y 20+4y 20x 20+4=x 2+4-x 202+2(4-x 20)x 20+4=x 202+8x 20+4 (0<x 20≤4). ……………………10分 因为x 202+8x 20≥4(0<x 20≤4),当x 20=4时等号成立,所以|AB |2≥8. (12)分22.⑴点))(,(000a x y x P ±≠是双曲线E :)0,0(12222>>=-b a by a x 上,有1220220=-b y a x ,由题意又有510000=+⋅-a x y a x y , 可得225b a =,22226b b a c =+= 则530==a c e ……………………4分⑵联立⎩⎨⎧-==-cx y b y x 22255,得03510422=+-b cx x ,设),(11y x A ,),(22y x B则⎪⎪⎩⎪⎪⎨⎧==+4352522121bx x c x x ,设),(33---y x OC =→,→→→+=---------OB OA OC λ,即⎩⎨⎧+=+=213213y y y x x x λλ 又C 为双曲线上一点,即2232355b y x =-,有22212215)(5)(b y y x x =+-+λλ化简得:221212222212125)5(2)5()5(b y y x x y x y x =-+-+-λλ又),(11y x A ,),(22y x B 在双曲线上,所以2212155b y x =-,2222255b y x =-由⑴式又有22212121212121105)(54))((55b c x x c x x c x c x x x y y x x =-++-=---=-得:042=+λλ,解出0=λ,或4-=λ…………………12分。
湖北省黄冈中学2015届高三数学上学期期中试题 理(含解析)新人教A 版本试卷是高三理科试卷,以基础知识和基本技能为为主导,在注重考查运算能力和分析问题解决问题的能力,知识考查注重基础、注重常规、注重主干知识,兼顾覆盖面.试题重点考查:不等式、导数数列、函数的性质及图象、三角函数的性质、三角恒等变换与解三角形、数列等;考查学生解决实际问题的综合能力,是份较好的试卷.【题文】一.选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 【题文】1. 设集合{}|12A x x =-<,{}|2,[0,2]x B y y x ==∈,则A B =I ( )A .[0,2]B .(1,3)C .[)1,3D .(1,4)【知识点】集合及其运算A1【答案解析】C A={13x x -<<},B={14y y ≤≤}则A B =I [)1,3故选C. 【思路点拨】先分别求出集合A,B 再求结果。
【题文】2. 若α是第三象限角,且1tan 3α=,则cos α=( )A. BC.D. 【知识点】同角三角函数的基本关系式与诱导公式C2【答案解析】C α是第三象限角,且1tan 3α=所以cos α=10-【思路点拨】根据同角三角关系,再根据角所在象限求出余弦值。
【题文】3. 函数3()log (21)xf x =+的值域为( )A. (0,)+∞B. [)0,+∞C. (1,)+∞D. [)1,+∞【知识点】函数及其表示B1【答案解析】A ∵2x+1>1恒成立,∴函数的定义域是R ,∵函数y=log 3x 在定义域上是增函数,∴y >log 31=0,则原函数的值域是(0,+∞).故选:A .【思路点拨】先判断出真数大于1恒成立,再由以3为底对数函数是增函数,求出原函数的值域.【题文】4. 已知向量i r 与j r 不共线,且,,1AB i m j AD ni j m =+=+≠u u u r r r u u u r r r,若,,A B D 三点共线,则实数,m n 满足的条件是( )A.1m n += B.1m n +=- C.1mn =D.1mn =-【知识点】平面向量基本定理及向量坐标运算F2【答案解析】C 由,,1AB i m j AD ni j m =+=+≠u u u r r r u u u r r r,且A 、B 、D 三点共线,所以存在非零实数λ,使AB u u u r =λAD u u u r ,即()i m j ni j λ+=+r r r r ,所以1n m λλ=⎧⎨=⎩,所以mn=1.故答案为C .【思路点拨】因为AB u u u r 与AD u u u r共起点A ,所以要使A 、B 、D 三点共线,只需存在非零实数λ,使AB u u u r =λAD u u u r成立即可,代入整理后可得mn 的值.【题文】5. 函数1()lg f x x x=-的零点所在的区间是( ) A.()0,1B .()1,2C .()2,3D .()3,10【知识点】函数与方程B9 【题文】6. 若数列{}n a 满足110n npa a +-=,*,n N p ∈为非零常数,则称数列{}n a 为“梦想数列”。
湖北省黄冈中学高二上学期期中考试(数学理)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列命题中,正确的是( )A .点在区域内B .点在区域内C .点在区域内D .点在区域内2.若关于 ,x y 的方程 2220x y m x y x y n +++-+= 表示的曲线是圆,则 n m + 的取值范围是(A )5(,)4-∞ (B )5,4⎛⎤-∞ ⎥⎝⎦ (C )5(,)4+∞ (D )5,4⎡⎫+∞⎪⎢⎣⎭3.已知两条直线和互相垂直,则等于( )A .2B .1C .0D .4. 图中共顶点的椭圆①、②与双曲线③、④的离心率分别 为,其大小关系为( ) A.B. C. D.5.一动圆与两圆和都外切,则动圆圆心轨迹为( )A.圆B.椭圆C.双曲线的一支D.双曲线6.已知为两个不相等的非零实数, 则方程与所表示的曲线可能是( )7.直线与曲线不相交,则的值为( )A.或3 B. C.3 D.[,3]中的任意值8.设分别为具有公共焦点、的椭圆和双曲线的离心率,为两曲线的一个公共点,且满足,则的值为()A.1 B. C.2 D.不确定9.若圆上有且仅有两个点到直线的距离等于1,则半径的取值范围是()A. B. C. D.10.过原点作两条相互垂直的直线分别与椭圆交于、与、,则四边形面积最小值为()A. B. C. D.二、填空题(本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置上.)11.圆心在直线上且与轴相切于点(1,0)的圆的方程为.12.椭圆:的长轴长为,右准线方程为.13.轴上有一点,它与两定点,的距离之差最大,则点坐标是.14.点在椭圆上运动,、分别在两圆和上运动,则的取值范围为_________.15已知椭圆的左焦点为,设过点且不与坐标轴垂直的直线交椭圆于、两点,线段的垂直平分线与轴交于点,则在以下四个值中,①;②;③;④0,点横坐标的可能取值为_________.三、解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.)16.(本小题满分11分)(I)画出(为参数)表示的图形;(II)求由曲线所围成图形的面积.17.(本小题满分12分)若双曲线过点,其渐近线方程为.(I)求双曲线的方程;(II)已知,,在双曲线上求一点,使的值最小.18.(本小题满分12分)直线过点.(I)若直线的倾斜角的正弦值为,求的方程;(II)若直线分别交轴、轴的正半轴于、两点,当取最小时,求直线的方程.19.(本小题满分12分)预算用元购买单件为50元的桌子和椅子,希望使桌椅的总数尽可能的多,但椅子不少于桌子数,且不多于桌子数的1.5倍,问桌、椅各买多少张才行?本小题满分14分)已知圆.(I)若直线过点,且与圆交于两点、,=,求直线的方程;(II)过圆上一动点作平行于轴的直线,设直线与轴的交点为,若向量,求动点的轨迹方程;(Ⅲ)若直线,点A在直线N上,圆上存在点,且(为坐标原点),求点的横坐标的取值范围.21. (本小题满分14分)已知椭圆上存在一点到椭圆左焦点的距离与到椭圆右准线的距离相等.(I)求椭圆的离心率的取值范围;(II)若椭圆上的点到焦点距离的最大值为,最小值为,求椭圆的方程;(Ⅲ)若直线与(II)中所述椭圆相交于、两点(、不是左右顶点),且以为直径的圆经过椭圆的右顶点,求证:直线过定点,并求出该定点坐标.参考答案AADAC CACCA; 14,; ; ; ②③16. (I)略;(II) 17.(Ⅰ)(II),最小值为18.(I)或,所以的方程为或(II)设直线方程为,则∵,∴,即时取“=”号.所求直线的方程为.19. 设桌椅分别买X,Y张,把所给的条件表示成不等式组,即约束条件为由∴B点的坐标为(25,)因为X∈N,Y∈N*,故取Y=37 ,故有买桌子25张,椅子37张是最好选择Ⅰ)①当直线垂直于轴时,则此时直线方程为,满足题意.②若直线不垂直于轴,设其方程为,即设圆心到此直线的距离为,则∴,,故所求直线方程为,综上所述,所求直线为或(Ⅱ)设点,,则∵,∴即,又∵,∴由已知,直,线M //OX轴,所以,,∴点的轨迹方程是() .(Ⅲ)依题意点,设.过点作圆的切线,切点为,则.从而,即,就是,,,解得.21. (Ⅰ)设点P的坐标为,则|PF|=,∴=,整理得:,而,∴,解得(II),,∴椭圆的方程为.(Ⅲ)设,联立得.则又,∵椭圆的右顶点为,解得:,且均满足,当时,的方程为,直线过定点,与已知矛盾.当时,的方程为,直线过定点,∴直线过定点,定点坐标为.。
2015-2016学年湖北省黄冈市高二(上)期末数学试卷(理科)一、选择题1.总体编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号是()7816 6572 0802 6314 0702 4369 9728 01983204 9234 4935 8200 3623 4869 6938 7481.A.08 B.07 C.02 D.012.甲乙两名学生,六次数学测验成绩(百分制)如图所示.①甲同学成绩的中位数大于乙同学成绩的中位数;②甲同学的平均分比乙同学高;③甲同学的平均分比乙同学低;④甲同学成绩方差小于乙同学成绩的方差.上面说法正确的是()A.③④B.①②④ C.②④D.①③④3.当输入x=﹣4时,如图的程序运行的结果是()A.7 B.8 C.9 D.154.下列说法错误的是()A.若命题“p∧q”为真命题,则“p∨q”为真命题B.命题“若m>0,则方程x2+x﹣m=0有实根”的逆命题为真命题C.命题“若a>b,则ac2>bc2”的否命题为真命题D.若命题“¬p∨q”为假命题,则“p∧¬q”为真命题由散点图可知,身高y与年龄x之间的线性回归方程为=8.8x+,预测该学生10岁时的身高为()A .154B .153C .152D .1516.“a ≠5且b ≠﹣5”是“a+b ≠0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既非充分条件也非必要条件7.某校共有学生2000名,各年级男、女生人数如下表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级8.已知双曲线﹣=1的一个焦点与抛物线y 2=﹣4x 的焦点重合,且双曲线的离心率为,则此双曲线的方程为( )A .5x 2﹣=1B .5x 2﹣=1C .﹣=1D .﹣=19.如图,直三棱柱ABC ﹣A 1B 1C 1中,∠BAC=90°,AB=AC=2,,则AA 1与平面AB 1C 1所成的角为( )A .B .C .D . 10.如图,在平行六面体ABCD ﹣A 1B 1C 1D 1中,底面是边长为1的正方形,若∠A 1AB=∠A 1AD=60°,且A 1A=3,则A 1C 的长为( )A .B .C .D .11.已知:a ,b ,c 为集合A={1,2,3,4,5}中三个不同的数,通过如框图给出的一个算法输出一个整数a ,则输出的数a=4的概率是( )A.B.C.D.12.过原点的直线与双曲线(a>0,b>0)交于M,N两点,P是双曲线上异于M,N的一点,若直线MP与直线NP的斜率都存在且乘积为,则双曲线的离心率为()A.B.C.D.213.椭圆的左、右焦点分别为F1,F2,弦AB过F1,若△ABF2的内切圆周长为4,A、B两点的坐标分别为(x1,y1)和(x2,y2),则|y2﹣y1|的值为()A.B.C.D.二、填空题14.三进制数121化为十进制数为.(3)15.若命题“∃x∈R,使x2+(a﹣1)x+1<0”是假命题,则实数a的取值范围为.16.在区间[﹣2,4]上随机地取一个数x,若x满足|x|≤m的概率为,则m=.17.以下五个关于圆锥曲线的命题中:①双曲线与椭圆有相同的焦点;②以抛物线的焦点弦(过焦点的直线截抛物线所得的线段)为直径的圆与抛物线的准线是相切的.③设A、B为两个定点,k为常数,若|PA|﹣|PB|=k,则动点P的轨迹为双曲线;④过抛物线y2=4x的焦点作直线与抛物线相交于A、B两点,则使它们的横坐标之和等于5的直线有且只有两条.⑤过定圆C上一定点A作圆的动弦AB,O为原点,若,则动点P的轨迹为椭圆其中真命题的序号为(写出所有真命题的序号)三、解答题18.《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20~80mg/100ml (不含80)之间,属于酒后驾车;在80mg/100ml(含80)以上时,属于醉酒驾车.某市公安局交通管理部门在某路段的一次拦查行动中,依法检查了300辆机动车,查处酒后驾车和20(2)求检测数据中醉酒驾驶的频率,并估计检测数据中酒精含量的众数、平均数.19.p:实数x满足x2﹣4ax+3a2<0,其中a>0,q:实数x满足(1)若a=1,且p∧q为真,求实数x的取值范围;(2)¬p是¬q的充分不必要条件,求实数a的取值范围.20.某射击运动员进行射击训练,前三次射击在靶上的着弹点A、B、C刚好是边长分别为的三角形的三个顶点.(Ⅰ)该运动员前三次射击的成绩(环数)都在区间[7.5,8.5)内,调整一下后,又连打三枪,其成绩(环数)都在区间[9.5,10.5)内.现从这6次射击成绩中随机抽取两次射击的成绩(记为a和b)进行技术分析.求事件“|a﹣b|>1”的概率.(Ⅱ)第四次射击时,该运动员瞄准△ABC区域射击(不会打到△ABC外),则此次射击的着弹点距A、B、C的距离都超过1cm的概率为多少?(弹孔大小忽略不计)21.已知抛物线C:x2=2py(p>0)的焦点为F,直线2x﹣y+2=0交抛物线C于A,B两点,P是线段AB的中点,过P作x轴的垂线交抛物线C于点Q.(1)若直线AB过焦点F,求|AF|•|BF|的值;(2)是否存在实数p,使得以线段AB为直径的圆过Q点?若存在,求出p的值;若不存在,说明理由.22.在直角梯形PBCD中,,A为PD的中点,如图.将△PAB沿AB折到△SAB的位置,使SB⊥BC,点E在SD上,且,如图.(Ⅰ)求证:SA⊥平面ABCD;(Ⅱ)求二面角E﹣AC﹣D的正切值.23.已知点P是圆C:(x+)2+y2=16上任意一点,A(,0)是圆C内一点,线段AP 的垂直平分线l和半径CP交于点Q,O为坐标原点.(1)当点P在圆上运动时,求点Q的轨迹E的方程.(2)设过点B(0,﹣2)的动直线与E交于M,N两点,当△OMN的面积最大时,求此时直线的方程.2015-2016学年湖北省黄冈市高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题1.总体编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号是()7816 6572 0802 6314 0702 4369 9728 01983204 9234 4935 8200 3623 4869 6938 7481.A.08 B.07 C.02 D.01【分析】根据随机数表,依次进行选择即可得到结论.【解答】解:从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字中小于20的编号依次为08,02,14,07,02,01,.其中第二个和第四个都是02,重复.可知对应的数值为08,02,14,07,01,则第5个个体的编号为01.故选:D.2.甲乙两名学生,六次数学测验成绩(百分制)如图所示.①甲同学成绩的中位数大于乙同学成绩的中位数;②甲同学的平均分比乙同学高;③甲同学的平均分比乙同学低;④甲同学成绩方差小于乙同学成绩的方差.上面说法正确的是()A.③④B.①②④ C.②④D.①③④【分析】由茎叶图数据,求出甲、乙同学成绩的中位数,平均数,估计方差,从而解决问题.【解答】解:根据茎叶图数据知,①甲同学成绩的中位数是81,乙同学成绩的中位数是87.5,∴甲的中位数小于乙的中位数;②甲同学的平均分是==81,乙同学的平均分是==85,∴乙的平均分高;③甲同学的平均分是=81乙同学的平均分是=85,∴甲比乙同学低;④甲同学成绩数据比较集中,方差小,乙同学成绩数据比较分散,方差大.∴正确的说法是③④.故选:A.3.当输入x=﹣4时,如图的程序运行的结果是()A.7 B.8 C.9 D.15【分析】由已知中的程序语句可得:该程序的功能是计算并输出分段函数y=的值,将x=﹣4,代入可得答案.【解答】解:由已知中的程序语句可得:该程序的功能是计算并输出分段函数y=的值,∵x=﹣4<3,故y=(﹣4)2﹣1=15,故选:D4.下列说法错误的是()A.若命题“p∧q”为真命题,则“p∨q”为真命题B.命题“若m>0,则方程x2+x﹣m=0有实根”的逆命题为真命题C.命题“若a>b,则ac2>bc2”的否命题为真命题D.若命题“¬p∨q”为假命题,则“p∧¬q”为真命题【分析】通过对选项判断命题的真假,找出错误命题即可.【解答】解:若命题“p∧q”为真命题,则“p∨q”为真命题,满足命题的真假的判断,是正确的.命题“若m>0,则方程x2+x﹣m=0有实根”的逆命题为:“若方程x2+x﹣m=0有实数根,则m>0”,方程x2+x﹣m=0有实数根只要△=1+4m≥0,所以不一定得到m>0,所以B错.命题“若a>b,则ac2>bc2”的否命题为:若a≤b,则ac2≤bc2,显然是真命题.若命题“¬p∨q”为假命题,则p是真命题,¬q是真命题,则“p∧¬q”为真命题,正确.故选:B.由散点图可知,身高y与年龄x之间的线性回归方程为=8.8x+,预测该学生10岁时的身高为()A.154 B.153 C.152 D.151【分析】先计算样本中心点,进而可求线性回归方程,由此可预测该学生10岁时的身高.【解答】解:由题意,=7.5,=131代入线性回归直线方程为,131=8.8×7.5+,可得=65,∴∴x=10时,=153故选B.6.“a≠5且b≠﹣5”是“a+b≠0”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既非充分条件也非必要条件【分析】根据充分必要条件的定义,分别证明其充分性和必要性,从而得到答案.【解答】解:a≠5且b≠﹣5推不出a+b≠0,例如:a=2,b=﹣2时a+b=0,a+b≠0推不出a≠5且b≠﹣5,例如:a=5,b=﹣6,故“a≠5且b≠﹣5”是“a+b≠0”的既非充分条件也非必要条件,故选:D.7.某校共有学生2000名,各年级男、女生人数如下表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级【分析】根据题意先计算二年级女生的人数,则可算出三年级的学生人数,根据抽取比例再计算在三年级抽取的学生人数.【解答】解:依题意我们知道二年级的女生有380人,那么三年级的学生的人数应该是500,即总体中各个年级的人数比例为3:3:2,故在分层抽样中应在三年级抽取的学生人数为.故选C.8.已知双曲线﹣=1的一个焦点与抛物线y2=﹣4x的焦点重合,且双曲线的离心率为,则此双曲线的方程为()A.5x2﹣=1 B.5x2﹣=1 C.﹣=1 D.﹣=1【分析】根据抛物线的方程算出其焦点为(﹣1,0),从而得出左焦点为F(﹣1,0),再设出双曲线的方程,利用离心率的公式和a、b、c的平方关系建立方程组,解出a、b的值即可得到该双曲线的方程.【解答】解:∵抛物线方程为y2=﹣4x,∴2p=4,得抛物线的焦点为(﹣1,0).∵双曲线的一个焦点与抛物y2=﹣4x的焦点重合,∴双曲线的左焦点为F(﹣1,0),设双曲线的方程为(a>0,b>0),可得a2+b2=1…①∵双曲线的离心率等,∴=,即…②由①②联解,得a2=,b2=,∴该双曲线的方程为5x2﹣=1.故选B.9.如图,直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,,则AA1与平面AB1C1所成的角为()A.B.C.D.【分析】建立空间坐标系,求出平面的法向量,利用向量法进行求解即可.【解答】解:∵直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,,∴建立以A为坐标原点,AC,AB,AA1分别为x,y,z轴的空间直角坐标系如图:则A1(0,0,),A(0,0,0),B1(0,2,),C1(2,0,),则=(0,2,),=(2,0,),设平面AB1C1的法向量为=(x,y,z),=(0,0,),则•=2y+z=0,•=2x+z=0,令z=1,则x=﹣,y=﹣,即=(﹣,﹣,1),则AA1与平面AB1C1所成的角θ满足sinθ=|cos<,>|==,则θ=,故选:A.10.如图,在平行六面体ABCD﹣A1B1C1D1中,底面是边长为1的正方形,若∠A1AB=∠A1AD=60°,且A1A=3,则A1C的长为()A.B. C. D.【分析】用空间向量解答.【解答】解:∵=+﹣;∴2=(+﹣)2;即2=•+•﹣•+•+•﹣•﹣(•+•﹣•)=1+0﹣3×1×cos60°+0+1﹣3×1×cos60°﹣(3×1×cos60°+3×1×cos60°﹣9);=1﹣+1﹣﹣+9=5,∴A1C=.故选A.11.已知:a,b,c为集合A={1,2,3,4,5}中三个不同的数,通过如框图给出的一个算法输出一个整数a,则输出的数a=4的概率是()A.B.C.D.【分析】由程序框图知,输入a、b、c三数,输出其中的最大数,由于输出的数为4,故问题为从集合A中任取三个数,求最大数为4的概率,计算出从5个数中取三个的取法总数和所取的数最大为4的取法个数,代入古典概型概率计算公式,可得答案.【解答】解:由程序框图知,输入a、b、c三数,输出其中的最大数,由于输出的数为4,故问题为从集合A中任取三个数,求最大数为4的概率,从集合A中任取三个数有=10种取法,其中最大数为4时,表示从1,2,3中任取2两个数,有=3种取法,故概率P=.故选:C.12.过原点的直线与双曲线(a>0,b>0)交于M,N两点,P是双曲线上异于M,N的一点,若直线MP与直线NP的斜率都存在且乘积为,则双曲线的离心率为()A.B.C.D.2【分析】设P(x0,y0),M(x1,y1),则N(x2,y2).利用k PM k PN=,化简,结合平方差法求解双曲线C的离心率.【解答】解:由双曲线的对称性知,可设P(x0,y0),M(x1,y1),则N(x2,y2).由k PM k PN=,可得:,即,即,又因为P(x0,y0),M(x1,y1)均在双曲线上,所以,,所以,所以c2=a2+b2=,所以双曲线C的离心率为e===.故选:A.13.椭圆的左、右焦点分别为F1,F2,弦AB过F1,若△ABF2的内切圆周长为4,A、B两点的坐标分别为(x1,y1)和(x2,y2),则|y2﹣y1|的值为()A.B.C.D.【分析】求出椭圆的焦点坐标,结合椭圆的定义,通过三角形的面积转化求解即可.【解答】解:椭圆:,a=5,b=4,∴c=3,左、右焦点F1(﹣3,0)、F2(3,0),△ABF2的内切圆面积为π,则内切圆的半径为r=,而△ABF2的面积=△A F1F2的面积+△BF1F2的面积=×|y1|×|F1F2|+×|y2|×|F1F2|=×(|y1|+|y2|)×|F1F2|=3|y2﹣y1|(A、B在x轴的上下两侧)又△ABF2的面积=×r(|AB|+|BF2|+|F2A|)=(2a+2a)=a=5.所以3|y2﹣y1|=5,|y2﹣y1|=.故选:D.二、填空题14.三进制数121(3)化为十进制数为16.【分析】利用累加权重法,即可将三进制数转化为十进制,从而得解.【解答】解:由题意,121(3)=1×32+2×31+1×30=16故答案为:1615.若命题“∃x∈R,使x2+(a﹣1)x+1<0”是假命题,则实数a的取值范围为﹣1≤a≤3.【分析】先求出命题的否定,再用恒成立来求解【解答】解:命题“∃x∈R,使x2+(a﹣1)x+1<0”的否定是:““∀x∈R,使x2+(a﹣1)x+1≥0”即:△=(a﹣1)2﹣4≤0,∴﹣1≤a≤3故答案是﹣1≤a≤316.在区间[﹣2,4]上随机地取一个数x,若x满足|x|≤m的概率为,则m=3.【分析】画出数轴,利用x满足|x|≤m的概率为,直接求出m的值即可.【解答】解:如图区间长度是6,区间[﹣2,4]上随机地取一个数x,若x满足|x|≤m的概率为,所以m=3.故答案为:3.17.以下五个关于圆锥曲线的命题中:①双曲线与椭圆有相同的焦点;②以抛物线的焦点弦(过焦点的直线截抛物线所得的线段)为直径的圆与抛物线的准线是相切的.③设A、B为两个定点,k为常数,若|PA|﹣|PB|=k,则动点P的轨迹为双曲线;④过抛物线y2=4x的焦点作直线与抛物线相交于A、B两点,则使它们的横坐标之和等于5的直线有且只有两条.⑤过定圆C上一定点A作圆的动弦AB,O为原点,若,则动点P的轨迹为椭圆其中真命题的序号为①②④(写出所有真命题的序号)【分析】①根据椭圆和双曲线的c是否相同即可判断.②根据抛物线的性质和定义进行判断.③根据双曲线的定义进行判断.④根据抛物线的定义和性质进行判断.⑤根据圆锥曲线的根据方程进行判断.【解答】解:①由得a2=16,b2=9,则c2=16+9=25,即c=5,由椭圆得a2=49,b2=24,则c2=49﹣24=25,即c=5,则双曲线和椭圆有相同的焦点,故①正确,②不妨设抛物线方程为y2=2px(p>0),取AB的中点M,分别过A、B、M作准线的垂线AP、BQ、MN,垂足分别为P、Q、N,如图所示:由抛物线的定义可知,|AP|=|AF|,|BQ|=|BF|,在直角梯形APQB中,|MN|=(|AP|+|BQ|)=(|AF|+|BF|)=|AB|,故圆心M到准线的距离等于半径,∴以AB为直径的圆与抛物线的准线相切,故②正确,③平面内与两个定点F1,F2的距离的差的绝对值等于常数k(k<|F1F2|)的点的轨迹叫做双曲线,当0<k<|AB|时是双曲线的一支,当k=|AB|时,表示射线,∴故③不正确;④过抛物线y2=4x的焦点F(1,0)作直线l与抛物线相交于A、B两点,当直线l的斜率不存在时,横坐标之和等于2,不合题意;当直线l的斜率为0时,只有一个交点,不合题意;∴设直线l的斜率为k(k≠0),则直线l为y=k(x﹣1),代入抛物线y2=4x得,k2x2﹣2(k2+2)x+k2=0;∵A、B两点的横坐标之和等于5,∴=5,解得k2=,∴这样的直线有且仅有两条.故④正确,⑤设定圆C的方程为(x﹣a)2+(x﹣b)2=r2,其上定点A(x0,y0),设B(a+rcosθ,b+rsinθ),P(x,y),由=(+)得,消掉参数θ,得:(2x﹣x0﹣a)2+(2y﹣y0﹣b)2=r2,即动点P的轨迹为圆,故⑤错误;故答案为:①②④三、解答题18.《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20~80mg/100ml (不含80)之间,属于酒后驾车;在80mg/100ml(含80)以上时,属于醉酒驾车.某市公安局交通管理部门在某路段的一次拦查行动中,依法检查了300辆机动车,查处酒后驾车和20(2)求检测数据中醉酒驾驶的频率,并估计检测数据中酒精含量的众数、平均数.【分析】(1)计算酒精含量(mg/100ml)在各小组中的,绘制出频率分布直方图即可;(2)计算检测数据中酒精含量在80mg/100ml(含80)以上的频率,根据频率分布直方图中小矩形图最高的底边的中点是众数,再计算数据的平均数值.【解答】解:(1)酒精含量(mg/100ml)在[20,30)的为=0.015,在[30,40)的为=0.020,在[40,50)的为=0.005,在[50,60)的为=0.20,在[60,70)的为=0.010,在[70,80)的为=0.015,在[80,90)的为=0.010,在[90,100]的为=0.005;绘制出酒精含量检测数据的频率分布直方图如图所示:…(2)检测数据中醉酒驾驶(酒精含量在80mg/100ml(含80)以上时)的频率是;…根据频率分布直方图,小矩形图最高的是[30,40)和[50,60),估计检测数据中酒精含量的众数是35与55;…估计检测数据中酒精含量的平均数是0.015×10×25+0.020×10×35+0.005×10×45+0.020×10×55+0.010×10×65+0.015×10×75+0.010×10×85+0.005×10×95=55.…19.p:实数x满足x2﹣4ax+3a2<0,其中a>0,q:实数x满足(1)若a=1,且p∧q为真,求实数x的取值范围;(2)¬p是¬q的充分不必要条件,求实数a的取值范围.【分析】(1)若a=1,分别求出p,q成立的等价条件,利用且p∧q为真,求实数x的取值范围;(2)利用¬p是¬q的充分不必要条件,即q是p的充分不必要条件,求实数a的取值范围.【解答】解:(1)由x2﹣4ax+3a2<0,得(x﹣3a)(x﹣a)<0.又a>0,所以a<x<3a.当a=1时,1<x<3,即p为真时实数x的取值范围是1<x<3.由得得2<x≤3,即q为真时实数x的取值范围是2<x≤3.若p∧q为真,则p真且q真,所以实数x的取值范围是2<x<3.(2)¬p是¬q的充分不必要条件,即¬p⇒¬q,且¬q推不出¬p.即q是p的充分不必要条件,则,解得1<a≤2,所以实数a的取值范围是1<a≤2.20.某射击运动员进行射击训练,前三次射击在靶上的着弹点A、B、C刚好是边长分别为的三角形的三个顶点.(Ⅰ)该运动员前三次射击的成绩(环数)都在区间[7.5,8.5)内,调整一下后,又连打三枪,其成绩(环数)都在区间[9.5,10.5)内.现从这6次射击成绩中随机抽取两次射击的成绩(记为a和b)进行技术分析.求事件“|a﹣b|>1”的概率.(Ⅱ)第四次射击时,该运动员瞄准△ABC区域射击(不会打到△ABC外),则此次射击的着弹点距A、B、C的距离都超过1cm的概率为多少?(弹孔大小忽略不计)【分析】(Ⅰ)前三次射击成绩依次记为x1,x2,x3,后三次成绩依次记为y1,y2,y3,从这6次射击成绩中随机抽取两个,利用列举法求出基本事件个数,并找出可使|a﹣b|>1发生的基本事件个数.由此能求出事件“|a﹣b|>1”的概率.(Ⅱ)因为着弹点若与x1、x2、x3的距离都超过y1、y2、y3cm,利用几何概型能求出此次射击的着弹点距A、B、C的距离都超过1cm的概率.【解答】解:(Ⅰ)前三次射击成绩依次记为x1,x2,x3,后三次成绩依次记为y1,y2,y3,从这6次射击成绩中随机抽取两个,基本事件是:{x1,x2},{x1,x3},{x2,x3},{y1,y2},{y1,y3},{y2,y3},{x1,y1},{x1,y2},{x1,y3},{x2,y1},{x2,y2},{x2,y3},{x3,y1},{x3,y2},{x3,y3},共15个,…其中可使|a﹣b|>1发生的是后9个基本事件.故.…(Ⅱ)因为着弹点若与x1、x2、x3的距离都超过y1、y2、y3cm,则着弹点就不能落在分别以6为中心,半径为{x1,x2},{x1,x3},{x2,x3}cm的三个扇形区域内,只能落在扇形外的部分…因为,…满足题意部分的面积为,…故所求概率为.…21.已知抛物线C:x2=2py(p>0)的焦点为F,直线2x﹣y+2=0交抛物线C于A,B两点,P是线段AB的中点,过P作x轴的垂线交抛物线C于点Q.(1)若直线AB过焦点F,求|AF|•|BF|的值;(2)是否存在实数p,使得以线段AB为直径的圆过Q点?若存在,求出p的值;若不存在,说明理由.【分析】(1)求出p=4,可得抛物线方程,与直线y=2x+2联立消去y,设A(x1,y1),B (x2,y2),利用韦达定理,通过|AF||BF|=(y1+2)(y2+2)求解即可.(2)假设存在,由抛物线x2=2py与直线y=2x+2联立消去y,设A(x1,y1),B(x2,y2),通过△>0,以及韦达定理推出P(2p,4p+2),Q(2p,2p),方法一利用弦长公式,求出p.方法二:通过化简,结合韦达定理,求解p即可.【解答】解:(1)∵F(0,2),p=4,∴抛物线方程为x2=8y,…与直线y=2x+2联立消去y得:x2﹣16x﹣16=0,设A(x1,y1),B(x2,y2)…则x1+x2=16,x1x2=﹣16,…∴|AF||BF|=(y1+2)(y2+2)=(2x1+4)(2x2+4)=80;…(2)假设存在,由抛物线x2=2py与直线y=2x+2联立消去y得:x2﹣4px﹣4p=0.设A(x1,y1),B(x2,y2),△>0,则x1+x2=4p,x1x2=﹣4p,…P(2p,4p+2),Q(2p,2p),…方法一∴|PQ|=2p+2,……,∴4p2+3p﹣1=0,…故存在p=且满足△>0…方法二:由得:(x1﹣2p)(x2﹣2p)+(y1﹣2p)(y2﹣2p)=0…即(x1﹣2p)(x2﹣2p)+(2x1+2﹣2p)(x2+2﹣2p)=0,…∴,…代入得4p2+3p﹣1=0,.故存在p=且满足△>0,∴p=…22.在直角梯形PBCD中,,A为PD的中点,如图.将△PAB沿AB折到△SAB的位置,使SB⊥BC,点E在SD上,且,如图.(Ⅰ)求证:SA⊥平面ABCD;(Ⅱ)求二面角E﹣AC﹣D的正切值.【分析】(法一)(1)由题意可知,翻折后的图中SA⊥AB①,易证BC⊥SA②,由①②根据直线与平面垂直的判定定理可得SA⊥平面ABCD;(2)(三垂线法)由考虑在AD上取一点O,使得,从而可得EO∥SA,所以EO⊥平面ABCD,过O作OH⊥AC交AC于H,连接EH,∠EHO为二面角E﹣AC ﹣D的平面角,在Rt△AHO中求解即可(法二:空间向量法)(1)同法一(2)以A为原点建立直角坐标系,易知平面ACD的法向为,求平面EAC 的法向量,代入公式求解即可【解答】解法一:(1)证明:在题平面图形中,由题意可知,BA⊥PD,ABCD为正方形,所以在翻折后的图中,SA⊥AB,SA=2,四边形ABCD是边长为2的正方形,因为SB⊥BC,AB⊥BC,SB∩AB=B所以BC⊥平面SAB,又SA⊂平面SAB,所以BC⊥SA,又SA⊥AB,BC∩AB=B所以SA⊥平面ABCD,(2)在AD上取一点O,使,连接EO因为,所以EO∥SA因为SA⊥平面ABCD,所以EO⊥平面ABCD,过O作OH⊥AC交AC于H,连接EH,则AC⊥平面EOH,所以AC⊥EH.所以∠EHO为二面角E﹣AC﹣D的平面角,.在Rt△AHO中,∴,即二面角E﹣AC﹣D的正切值为解法二:(1)同方法一(2)解:如图,以A为原点建立直角坐标系,A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),S(0,0,2),E(0,)∴平面ACD的法向为设平面EAC的法向量为=(x,y,z),由,所以,可取所以=(2,﹣2,1).所以所以即二面角E﹣AC﹣D的正切值为23.已知点P是圆C:(x+)2+y2=16上任意一点,A(,0)是圆C内一点,线段AP 的垂直平分线l和半径CP交于点Q,O为坐标原点.(1)当点P在圆上运动时,求点Q的轨迹E的方程.(2)设过点B(0,﹣2)的动直线与E交于M,N两点,当△OMN的面积最大时,求此时直线的方程.【分析】(1)直接由题意可得|CQ|+|AQ|=4>|AC|=2,符合椭圆定义,且得到长半轴和半焦距,再由b2=a2﹣c2求得b2,则点Q的轨迹方程可求;(2)设M(x1,y1),N(x2,y2),由题意可设直l的方程为:y=kx﹣2,与椭圆的方程联立可得根与系数的关系,再利用三角形的面积计算公式即可得出S△OMN.通过换元再利用基本不等式的性质即可得出.【解答】解:(1)由题意知|PQ|=|AQ|,又∵|CP|=|CQ|+|PQ|=4…∴|CQ|+|AQ|=4>|AC|=2由椭圆定义知Q点的轨迹是椭圆,a=2,c=…∴b=1,∴点Q的轨迹E的方程=1.…(2)由题意知所求的直线不可能垂直于x轴,所以可设直线为:y=kx﹣2,M(x1,y1),N (x2,y2),联立方程组,将y=kx﹣2代入=1得(1+4k2)x2﹣16kx+12=0…当△>0时,即k 2>时,x 1+x 2=,x 1x 2=,…则△OMN 的面积S=|OB||x 1﹣x 2|=…设=t >0,∴,最大值为1…∴=2,k=±,满足△>0…∴直线的方程为y=±x ﹣2…2016年4月9日。
2014-2015学年湖北省黄冈市浠水县实验高中高二(上)期中数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)某中学高二年级的一个研究性学习小组拟完成下列两项调查:①从某社区430户高收入家庭,980户中等收入家庭,290户低收入家庭中任意选出170户调查社会购买力的某项指标;②从本年级12名体育特长生中随机选出5人调查其学习负担情况;则该研究性学习小组宜采用的抽样方法分别是()A.①用系统抽样,②用随机抽样B.①用系统抽样,②用分层抽样C.①用分层抽样,②用系统抽样D.①用分层抽样,②用简单随机抽样2.(5分)过定点P(2,1),且倾斜角是直线l:x﹣y﹣1=0的倾斜角两倍的直线方程为()A.x﹣2y﹣1=0 B.2x﹣y﹣1=0 C.y﹣1=2(x﹣2) D.x=23.(5分)已知两直线l1:x+(1+m)y=2﹣m,l2:2mx+4y=﹣16,若l1∥l2则m 的取值为()A.m=1 B.m=﹣2 C.m=1或m=﹣2 D.m=﹣1或m=24.(5分)已知点A(1,2),B(3,2),以线段AB为直径作圆C,则直线l:x+y ﹣3=0与圆C的位置关系是()A.相交且过圆心B.相交但不过圆心C.相切D.相离5.(5分)在空间直角坐标系中点P(1,3,﹣5)关于xoy对称的点的坐标是()A.(﹣1,3,﹣5) B.(1,﹣3,5)C.(1,3,5)D.(﹣1,﹣3,5)6.(5分)如图,程序框图的输出结果为﹣18,那么判断框①表示的“条件”应该是()A.i>10?B.i>9?C.i>8?D.i>7?7.(5分)直线y=k(x+1)与圆(x+1)2+y2=1相交于A,B两点,则|AB|的值为()A.2 B.1C.D.与k有关的数值8.(5分)已知两点A(﹣1,0)、B(0,2),若点P是圆(x﹣1)2+y2=1上的动点,则△ABP面积的最大值和最小值之和为()A.+B.4 C.3 D.9.(5分)随机地向曲线y=与直线y=0所围成的封闭区域内掷一点,则该点与原点所确定的直线的倾斜角小于的概率为()A.+B.C.D.+10.(5分)在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有()A.56个B.57个C.58个D.60个二、填空题本大题共5小题,每小题5分,共25分,把答案填在题中横线上. 11.(5分)一个以原点为圆心的圆与圆x2+y2+8x﹣4y=0关于直线l对称,则直线l 的方程为 .12.(5分)执行如图所示的程序框图,如果输入的N 是6,那么输出的p= .13.(5分)三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是 (结果用最简分数表示).14.(5分)在△AOB 的边OA 上有5个点,边OB 上有6个点,加上O 点共12个点,以这12个点为顶点的三角形有 个.15.(5分)下列说法中,正确的是 (填上所有正确的序号)①数据4、6、7、7、9、4的众数是4;②一个人打靶时连续射击两次,则事件“至少有一次中靶”与事件“两次都不中靶”互为对立事件;③如果数据x 1、x 2、…、x n 的平均数为3,方差为0.2,则3x 1+5,3x 2+5,…,3x n +5的平均数和方差分别为14和1.8;④数据4、6、7、7、9、4的中位数是6.5;⑤把四进制数1000(4)化为二进制数是1000000(2).三、解答题本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤.16.(12分)某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:(Ⅰ)求回归直线方程=bx +a ,其中b=﹣20,a=﹣b ;(Ⅱ)预计在今后的销售中,销量与单价仍然服从(I)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入﹣成本)17.(12分)高校在2016年的自主招生考试成绩中随机抽取40名学生的笔试成绩,按成绩共分成五组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100],得到的频率分布直方图如图所示,同时规定成绩在85分以上(含85分)的学生为“优秀”,成绩小于85分的学生为“良好”,且只有成绩为“优秀”的学生才能获得面试资格.(1)求出第4组的频率,并补全频率分布直方图;(2)根据样本频率分布直方图估计样本的中位数;(3)如果从“优秀”和“良好”的学生中分别选出3人和2人,再从这5人中选2人,那么至少有一人是“优秀”的概率是多少?18.(12分)有A、B、C、D、E五位工人参加技能竞赛培训.现分别从A、B二人在培训期间参加的若干次预赛成绩中随机抽取8次.用右侧茎叶图表示这两组数据(1)A、B二人预赛成绩的中位数分别是多少?(2)现要从A、B中选派一人参加技能竞赛,从平均状况和方差的角度考虑,你认为派哪位工人参加合适?请说明理由;(3)若从参加培训的5位工人中选2人参加技能竞赛,求A、B二人中至少有一人参加技能竞赛的概率.19.(12分)已知动点M(x,y)到定点F1(﹣1,0)与到定点F2(1,0)的距离之比为3.(Ⅰ)求动点M的轨迹C的方程,并指明曲线C的轨迹;(Ⅱ)设直线l:x=x+b,若曲线C上恰有两个点到直线l的距离为1,求实数b 的取值范围.20.(13分)已知关于x的一次函数y=mx+n.(1)设集合P={﹣2,﹣1,1,2,3}和Q={﹣2,3},分别从集合P和Q中随机取一个数作为m和n,求函数y=mx+n是增函数的概率;(2)实数m,n满足条件求函数y=mx+n的图象经过一、二、三象限的概率.21.(14分)已知圆心为C的圆经过点A(1,4),B(3,6),且圆心C在直线4x﹣3y=0上.(1)求圆C的方程;(2)已知直线l:y=x+m(m为正实数),若直线l截圆C所得的弦长为,求实数m的值.(3)已知点M(﹣4,0),N(4,0),且P为圆C上一动点,求|PM|2+|PN|2的最小值.2014-2015学年湖北省黄冈市浠水县实验高中高二(上)期中数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)某中学高二年级的一个研究性学习小组拟完成下列两项调查:①从某社区430户高收入家庭,980户中等收入家庭,290户低收入家庭中任意选出170户调查社会购买力的某项指标;②从本年级12名体育特长生中随机选出5人调查其学习负担情况;则该研究性学习小组宜采用的抽样方法分别是()A.①用系统抽样,②用随机抽样B.①用系统抽样,②用分层抽样C.①用分层抽样,②用系统抽样D.①用分层抽样,②用简单随机抽样【解答】解:①由于三种收入的家庭差异比使用较明显,故①应用分层抽样.②由于12名特长生人数比较少,可以使用简单随机抽样即可,故选:D.2.(5分)过定点P(2,1),且倾斜角是直线l:x﹣y﹣1=0的倾斜角两倍的直线方程为()A.x﹣2y﹣1=0 B.2x﹣y﹣1=0 C.y﹣1=2(x﹣2) D.x=2【解答】解:可设直线l的倾斜角为α,根据x﹣y﹣1=0求出直线的斜率为1,根据斜率k=tanα=1得到α=45°;因为所求直线的倾斜角为2α=90°,所以得到该直线与x轴垂直且过(2,1),所以该直线方程为x=2故选:D.3.(5分)已知两直线l1:x+(1+m)y=2﹣m,l2:2mx+4y=﹣16,若l1∥l2则m的取值为()A.m=1 B.m=﹣2 C.m=1或m=﹣2 D.m=﹣1或m=2【解答】解:由题意可得=≠,由得=可得m=1,或m=﹣2,当m=﹣2时,不满足≠,故选:A.4.(5分)已知点A(1,2),B(3,2),以线段AB为直径作圆C,则直线l:x+y ﹣3=0与圆C的位置关系是()A.相交且过圆心B.相交但不过圆心C.相切D.相离【解答】解:∵点A(1,2),B(3,2),∴AB的中点C的坐标为(2,2),且|AB|==2,故线段AB为直径的圆C圆心坐标为(2,2),半径为1,∵圆心到直线x+y﹣3=0的距离d==<1,且d≠0,故直线l:x+y﹣3=0与圆C相交但不过圆心,故选:B.5.(5分)在空间直角坐标系中点P(1,3,﹣5)关于xoy对称的点的坐标是()A.(﹣1,3,﹣5) B.(1,﹣3,5)C.(1,3,5)D.(﹣1,﹣3,5)【解答】解:过点A(1,3,﹣5)作平面xOy的垂线,垂足为H,并延长到A′,使AH′=AH,则A′的横坐标与纵坐标不变,竖坐标变为原来纵坐标的相反数,即得:A′(1,3,5).故选:C.6.(5分)如图,程序框图的输出结果为﹣18,那么判断框①表示的“条件”应该是()A.i>10?B.i>9?C.i>8?D.i>7?【解答】解:执行程序框图,有s=6,i=1第1次执行循环体,有m=4,s=10,i=2不满足条件,第2次执行循环体,有m=2,s=12,i=3不满足条件,第3次执行循环体,有m=0,s=12,i=4不满足条件,第4次执行循环体,有m=﹣2,s=10,i=5不满足条件,第5次执行循环体,有m=﹣4,s=6,i=6不满足条件,第6次执行循环体,有m=﹣6,s=0,i=7不满足条件,第7次执行循环体,有m=﹣8,s=﹣8,i=8不满足条件,第8次执行循环体,有m=﹣10,s=﹣18,i=9根据题意,此时应该满足条件,退出执行循环体,输出s的值为﹣18.故判断框①表示的“条件”应该是i>8?故选:C.7.(5分)直线y=k(x+1)与圆(x+1)2+y2=1相交于A,B两点,则|AB|的值为()A.2 B.1C.D.与k有关的数值【解答】解:由于圆(x+1)2+y2=1的圆心为(﹣1,0),半径等于1.而直线y=k(x+1)恰好经过圆心,且与圆(x+1)2+y2=1相交于A,B两点,则弦|AB|的值等于圆的直径2,故选:A.8.(5分)已知两点A(﹣1,0)、B(0,2),若点P是圆(x﹣1)2+y2=1上的动点,则△ABP面积的最大值和最小值之和为()A.+B.4 C.3 D.【解答】解:由两点A(﹣1,0)、B(0,2),∴|AB|=,直线AB的方程为:=1即2x﹣y+2=0.由圆(x﹣1)2+y2=1可得圆心C(1,0),半径r=1.则圆心C到直线AB的距离d==.∵点P是圆(x﹣1)2+y2=1上的动点,∴点P到直线AB的最大距离d max=d+r=;点P到直线AB的最小距离d min=d﹣r=.∴△ABP面积的最大值和最小值之和===4.故选:B.9.(5分)随机地向曲线y=与直线y=0所围成的封闭区域内掷一点,则该点与原点所确定的直线的倾斜角小于的概率为()A.+B.C.D.+【解答】解:根据条件,可知曲线是以(2,0)为圆心,2为半径的半圆,随机地向曲线y=与直线y=0所围成的封闭区域内掷一点,则该点与原点所确定的直线的倾斜角小于的概率等于S1与半圆的面积的比,如图,原点与该点的连线与x轴的夹角小于的点应在S1区域内,S1的面积和半圆面积的比值即为落在S1内的概率S1=S△AOC+S扇形ABC=+=2+π,==2π,半圆面积是S半圆由几何概型的公式得P==.故选:B.10.(5分)在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有()A.56个B.57个C.58个D.60个【解答】解:根据题意,大于23145且小于43521的数有以下几种情况,①前三位为231,有1个,即23154,②前三位为234、235,有2×A22=4个,③前两位是24、25,有2×A33=12个,④首位是3,有A44=24个,⑤前两位是41、42,有2×A33=12个,⑥前三位为431、432,有2×A22=4个,⑦前三位为435,有1个,即43512;综合可得,共有1+4+12+24+12+4+1=58个,故选:C.二、填空题本大题共5小题,每小题5分,共25分,把答案填在题中横线上. 11.(5分)一个以原点为圆心的圆与圆x2+y2+8x﹣4y=0关于直线l对称,则直线l的方程为2x﹣y+5=0.【解答】解:圆x2+y2+8x﹣4y=0的圆心坐标(﹣4,2),原点与圆心的中点坐标(﹣2,1),对称轴的斜率为:=2,直线l的方程为:y﹣2=2(x+2),即2x﹣y+5=0.故答案为:2x﹣y+5=0;12.(5分)执行如图所示的程序框图,如果输入的N是6,那么输出的p=15.【解答】解:执行程序框图,有N=6,i=1,s=1满足条件i<N,s=1,i=3满足条件i<N,s=3,i=5满足条件i<N,s=15,i=7不满足条件i<N,输出s的值为15.故答案为:15.13.(5分)三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是(结果用最简分数表示).【解答】解:每个同学都有三种选择:跳高与跳远;跳高与铅球;跳远与铅球 三个同学共有3×3×3=27种 有且仅有两人选择的项目完全相同有××=18种其中表示3个同学中选2个同学选择的项目,表示从三种组合中选一个,表示剩下的一个同学有2中选择故有且仅有两人选择的项目完全相同的概率是=故答案为:14.(5分)在△AOB 的边OA 上有5个点,边OB 上有6个点,加上O 点共12个点,以这12个点为顶点的三角形有 165 个. 【解答】解析:C 312﹣C 36﹣C 37=165. 故答案为:16515.(5分)下列说法中,正确的是 ②③④⑤ (填上所有正确的序号) ①数据4、6、7、7、9、4的众数是4;②一个人打靶时连续射击两次,则事件“至少有一次中靶”与事件“两次都不中靶”互为对立事件;③如果数据x 1、x 2、…、x n 的平均数为3,方差为0.2,则3x 1+5,3x 2+5,…,3x n +5的平均数和方差分别为14和1.8;④数据4、6、7、7、9、4的中位数是6.5; ⑤把四进制数1000(4)化为二进制数是1000000(2).【解答】解:①数据4、6、7、7、9、4的众数是4和7,故①错误;②一个人打靶时连续射击两次,则事件“至少有一次中靶”与事件“两次都不中靶”互为对立事件,故②正确;③如果数据x 1、x 2、…、x n 的平均数为3,方差为0.2,则3x 1+5,3x 2+5,…,3x n +5的平均数和方差分别为3×3+5=14和32×0.2=1.8,故③正确; ④数据4、6、7、7、9、4的中位数是=6.5,故④正确;⑤把四进制数1000(4)化为二进制数是1000000(2),故⑤正确;故正确的命题有:②③④⑤,故答案为:②③④⑤三、解答题本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤.16.(12分)某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:(Ⅰ)求回归直线方程=bx+a,其中b=﹣20,a=﹣b;(Ⅱ)预计在今后的销售中,销量与单价仍然服从(I)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入﹣成本)【解答】解:(I),=∵b=﹣20,a=﹣b,∴a=80+20×8.5=250∴回归直线方程=﹣20x+250;(II)设工厂获得的利润为L元,则L=x(﹣20x+250)﹣4(﹣20x+250)=﹣20∴该产品的单价应定为元,工厂获得的利润最大.17.(12分)高校在2016年的自主招生考试成绩中随机抽取40名学生的笔试成绩,按成绩共分成五组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100],得到的频率分布直方图如图所示,同时规定成绩在85分以上(含85分)的学生为“优秀”,成绩小于85分的学生为“良好”,且只有成绩为“优秀”的学生才能获得面试资格.(1)求出第4组的频率,并补全频率分布直方图;(2)根据样本频率分布直方图估计样本的中位数;(3)如果从“优秀”和“良好”的学生中分别选出3人和2人,再从这5人中选2人,那么至少有一人是“优秀”的概率是多少?【解答】解:(1)其它组的频率为(0.01+0.07+0.06+0.02)×5=0.8,所以第4组的频率为0.2,频率分布图如图:…(3分)(2)设样本的中位数为x,则5×0.01+5×0.07+(x﹣85)×0.06=0.5,…(5分)解得,所以样本中位数的估计值为…(6分)(3)依题意良好的人数为40×0.4=16人,优秀的人数为40×0.6=24人优秀与良好的人数比为3:2,所以采用分层抽样的方法抽取的5人中有优秀3人,良好2人…(8分)记“从这5人中选2人至少有1人是优秀”为事件M,将考试成绩优秀的三名学生记为A,B,C,考试成绩良好的两名学生记为a,b 从这5人中任选2人的所有基本事件包括:AB,AC,BC,Aa,Ab,Ba,Bb,Ca,Cb,ab共10个基本事件…(9分)事件M含的情况是:AB,AC,BC,Aa,Ab,Ba,Bb,Ca,Cb,共9个…(10分)所以…(12分)18.(12分)有A、B、C、D、E五位工人参加技能竞赛培训.现分别从A、B二人在培训期间参加的若干次预赛成绩中随机抽取8次.用右侧茎叶图表示这两组数据(1)A、B二人预赛成绩的中位数分别是多少?(2)现要从A、B中选派一人参加技能竞赛,从平均状况和方差的角度考虑,你认为派哪位工人参加合适?请说明理由;(3)若从参加培训的5位工人中选2人参加技能竞赛,求A、B二人中至少有一人参加技能竞赛的概率.【解答】解:(1)A的中位数是(83+85)/2=84,B的中位数是:(84+82)/2=83;(2)派B参加比较合适.理由如下:==85,==85,S2B=[(78﹣85)2+(79﹣85)2+(80﹣85)2+(83﹣85)2+(85﹣85)2+(90﹣85)2+(92﹣85)2+(95﹣85)2]=35.5S2A=[(75﹣85)2+(80﹣85)2+(80﹣85)2+(83﹣85)2+(85﹣85)2+(90﹣85)2+(92﹣85)2+(95﹣85)2]=41;∵=,S2<S2A,∴B的成绩较稳定,派B参加比较合适.(3)任派两个(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E)共10种情况;A、B两人都不参加(C,D),(C,E),(D,E)有3种.至少有一个参加的对立事件是两个都不参加,所以P=1﹣=.19.(12分)已知动点M(x,y)到定点F1(﹣1,0)与到定点F2(1,0)的距离之比为3.(Ⅰ)求动点M的轨迹C的方程,并指明曲线C的轨迹;(Ⅱ)设直线l:x=x+b,若曲线C上恰有两个点到直线l的距离为1,求实数b 的取值范围.【解答】解:(Ⅰ)由动点M(x,y)到定点F1(﹣1,0)与到定点F2(1,0)的距离之比为3,得,整理得:,∴曲线C的轨迹是以为圆心,以为半径的圆;(Ⅱ)设圆心到直线l的距离为d,则当时,圆C上恰有两个点到直线l的距离为1.由l:y=x+b,即l:x﹣y+b=0,∴.由,得<<.解<得,b<或b>﹣;解<得,∴实数b的取值范围是∪.20.(13分)已知关于x的一次函数y=mx+n.(1)设集合P={﹣2,﹣1,1,2,3}和Q={﹣2,3},分别从集合P和Q中随机取一个数作为m和n,求函数y=mx+n是增函数的概率;(2)实数m,n满足条件求函数y=mx+n的图象经过一、二、三象限的概率.【解答】解:(1)抽取的全部结果所构成的基本事件空间为:Ω={(﹣2,﹣2),(﹣2,3),(﹣1,﹣2),(﹣1,3),(1,﹣2),(1,3),(2,﹣2),(2,3),(3,﹣2),(3,3)}共10个基本事件(2分)设使函数为增函数的事件空间为A:则A={(1,﹣2),(1,3),(2,﹣2),(2,3),(3,﹣2),(3,3)}有6个基本事件(4分)所以,(6分)(2)m、n满足条件m+n﹣1≤0,﹣1≤m≤1,﹣1≤n≤1的区域如图所示:使函数图象过一、二、三象限的(m,n)为区域为第一象限的阴影部分∴所求事件的概率为.(12分)21.(14分)已知圆心为C的圆经过点A(1,4),B(3,6),且圆心C在直线4x﹣3y=0上.(1)求圆C的方程;(2)已知直线l:y=x+m(m为正实数),若直线l截圆C所得的弦长为,求实数m的值.(3)已知点M(﹣4,0),N(4,0),且P为圆C上一动点,求|PM|2+|PN|2的最小值.【解答】解:(1)设圆C的方程为(x﹣a)2+(y﹣b)2=r2,由条件可知:.解得:,故圆C的方程为:(x﹣3)2+(y﹣4)2=4.(2)圆心C到直线l:y=x+m的距离为,即:|m﹣1|=1,解得m=2或0.∵m是正实数,∴m=2.(3)不妨设P(x,y),则|PM|2+|PN|2=2(x2+y2)+32.∵x2+y2表示圆上动点P(x,y)与原点O的距离的平方,且|OP|min=3,∴|PM|2+|PN|2的最小值为2×32+32=50.赠送初中数学几何模型【模型三】双垂型:图形特征:运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC.(1)如图,当∠APB=90°时,若AC=5,PC=,求BC的长;(2)当∠APB=90°时,若AB=APBC的面积是36,求△ACB的周长.2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。
2014-2015学年湖北省部分重点中学高二(上)期中数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)根据下列算法语句,当输入x为60时,输出y的值为()A.25 B.30 C.31 D.612.(5分)已知集合A={x|x2﹣x﹣2<0},,在区间(﹣3,3)上任取一实数x,则x∈A∩B的概率为()A.B.C.D.3.(5分)某人忘记了电话号码的最后一个数字,随意拨号,则拨号不超过3次而接通电话的概率为()A.B.C.D.4.(5分)对某同学的6次数学测试成绩(满分100分)进行统计,作出的茎叶图如图所示,给出关于该同学数学成绩的以下说法:①中位数为84;②众数为85;③平均数为85;④极差为12.其中,正确说法的序号是()A.①②B.③④C.②④D.①③5.(5分)为了研究高中学生对乡村音乐的态度(喜欢和不喜欢两种态度)与性别的关系,运用2×2列联表进行独立性检验,经计算K2=8.01,则认为“喜欢乡村音乐与性别有关系”的把握性约为()A.0.1% B.1% C.99% D.99.9%6.(5分)执行如图的程序框图,若输入的x∈[0,1],则输出的x的范围是()A.[1,3]B.[3,7]C.[7,15] D.[15,31]7.(5分)一个几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.8.(5分)设A、B、C、D是球面上的四点,AB、AC、AD两两互相垂直,且AB=3,AC=4,AD=,则球的表面积为()A.36πB.64πC.100πD.144π9.(5分)如表是一位母亲给儿子作的成长记录:根据以上样本数据,她建立了身高y(cm)与年龄x(周岁)的线性回归方程为=7.19x+73.93,给出下列结论:①y与x具有正的线性相关关系;②回归直线过样本的中心点(6,117.1);③儿子10岁时的身高是145.83cm;④儿子年龄增加1周岁,身高约增加7.19cm.其中,正确结论的个数是()A.1 B.2 C.3 D.410.(5分)设点P是函数y=﹣图象上的任意一点,点Q(2a,a﹣3)(a∈R),则|PQ|的最小值为()A.﹣2 B.C.﹣2 D.﹣2二、填空题:本大题共5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.11.(5分)某单位有职工200名,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1﹣200编号,并按编号顺序平均分为40组(1﹣5号,6﹣10号,…,196﹣200号).若第5组抽出的号码为22,则第10组抽出的号码应是.12.(5分)已知P是△ABC所在平面内一点,,现将一粒黄豆随机撒在△ABC内,则黄豆落在△PBC内的概率是.13.(5分)过点(1,2)引圆x2+y2=1的两条切线,则这两条切线与x轴,y轴所围成的四边形的面积是.14.(5分)如图,ABCD﹣A1B1C1D1为正方体,下面结论中正确的是.(把你认为正确的结论都填上)①BD∥平面CB1D1;②AC1⊥平面CB1D1;③AC1与底面ABCD所成角的正切值是;④二面角C﹣B1D1﹣C1的正切值是;⑤过点A1与异面直线AD与CB1成70°角的直线有2条.15.(5分)已知圆:(x+cosθ)2+(y﹣sinθ)2=1,直线l:y=kx.给出下面四个命题:①对任意实数k和θ,直线l和圆M有公共点;②对任意实数k,必存在实数θ,使得直线l和圆M相切;③对任意实数θ,必存在实数k,使得直线l和圆M相切;④存在实数k和θ,使得圆M上有一点到直线l的距离为3.其中正确的命题是(写出所以正确命题的编号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)在一个盒子中装有6枝圆珠笔,其中3枝一等品,2枝二等品和1枝三等品,从中任取3枝,求:(Ⅰ)取出的3枝中恰有1枝一等品的概率;(Ⅱ)取出的3枝中一、二、三等品各一枝的概率;(Ⅲ)取出的3枝中没有三等品的概率.17.(12分)已知圆C:x2+(y﹣1)2=5,直线l:mx﹣y+1﹣m=0,且直线l与圆C交于A、B两点.(1)若|AB|=,求直线l的倾斜角;(2)若点P(1,1),满足2=,求直线l的方程.18.(12分)为了分析某次考试数学成绩情况,用简单随机抽样从某班中抽取25名学生的成绩(百分制)作为样本,得到频率分布表如下:(Ⅰ)求样本频率分布表中a,b的值,并根据上述频率分布表,在下表中作出样本频率分布直方图;(Ⅱ)计算这25名学生的平均数及方差(同一组中的数据用该组区间的中点值作代表);(Ⅲ)从成绩在[50,70)的学生中任选2人,求至少有1人的成绩在[60,70)中的概率.19.(12分)如图,四棱锥P﹣ABCD中,PA⊥平面ABCD,AB∥CD,∠BAD=∠ADC=90°,AB=AD=2CD,E为PB的中点.(Ⅰ)证明:CE⊥AB;(Ⅱ)若二面角P﹣CD﹣A为45°,求直线CE与平面PAB所成角的正切值.(Ⅲ)若PA=kAB,求平面PCD与平面PAB所成的锐二面角的余弦值.20.(13分)已知关于x的二次函数f(x)=ax2﹣4bx+1.(Ⅰ)设集合A={﹣1,1,2,3,4,5}和B={﹣2,﹣1,1,2,3,4},分别从集合A,B中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率.(Ⅱ)设点(a,b)是区域内的随机点,求函数f(x)在区间[1,+∞)上是增函数的概率.21.(14分)在平面直角坐标系xOy中,已知圆M过坐标原点O且圆心在曲线上.(Ⅰ)若圆M分别与x轴、y轴交于点A、B(不同于原点O),求证:△AOB的面积为定值;(Ⅱ)设直线与圆M 交于不同的两点C,D,且|OC|=|OD|,求圆M的方程;(Ⅲ)设直线与(Ⅱ)中所求圆M交于点E、F,P为直线x=5上的动点,直线PE,PF与圆M的另一个交点分别为G,H,求证:直线GH过定点.2014-2015学年湖北省部分重点中学高二(上)期中数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)根据下列算法语句,当输入x为60时,输出y的值为()A.25 B.30 C.31 D.61【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算并输出分段函数y=的函数值.当x=60时,则y=25+0.6(60﹣50)=31,故选:C.2.(5分)已知集合A={x|x2﹣x﹣2<0},,在区间(﹣3,3)上任取一实数x,则x∈A∩B的概率为()A.B.C.D.【解答】解:∵A={x|x2﹣x﹣2<0}=(﹣1,2),=(﹣2,1),所以A∩B={x|﹣1<x<1},所以在区间(﹣3,3)上任取一实数x,则“x∈A∩B”的概率为,故选:A.3.(5分)某人忘记了电话号码的最后一个数字,随意拨号,则拨号不超过3次而接通电话的概率为()A.B.C.D.【解答】解;∵数值为0,1,2,3,4,5,6,7,8,9,共10个数字,∴每次拨对号码的概率为,∴拨号不超过3次而接通电话的概率为=,故选:B.4.(5分)对某同学的6次数学测试成绩(满分100分)进行统计,作出的茎叶图如图所示,给出关于该同学数学成绩的以下说法:①中位数为84;②众数为85;③平均数为85;④极差为12.其中,正确说法的序号是()A.①②B.③④C.②④D.①③【解答】解:将各数据按从小到大排列为:78,83,83,85,90,91.可见:中位数是=84,∴①是正确的;众数是83,②是不正确的;=85,∴③是正确的.极差是91﹣78=13,④不正确的.故选:D.5.(5分)为了研究高中学生对乡村音乐的态度(喜欢和不喜欢两种态度)与性别的关系,运用2×2列联表进行独立性检验,经计算K2=8.01,则认为“喜欢乡村音乐与性别有关系”的把握性约为()A.0.1% B.1% C.99% D.99.9%【解答】解:∵K2=8.01>6.635,对照表格:∴有99%的把握说学生性别与支持该活动有关系.故选:C.6.(5分)执行如图的程序框图,若输入的x∈[0,1],则输出的x的范围是()A.[1,3]B.[3,7]C.[7,15] D.[15,31]【解答】解:执行程序框图,有x∈[0,1],n=1满足条件n≤3,有x∈[1,3],n=2满足条件n≤3,有x∈[3,7],n=3满足条件n≤3,有x∈[7,15],n=4不满足条件n≤3,输出x的值.故选:C.7.(5分)一个几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.【解答】解:三视图复原的几何体是一个半圆锥和圆柱的组合体,它们的底面直径均为2,故底面半径为1,圆柱的高为1,半圆锥的高为2,故圆柱的体积为:π×12×1=π,半圆锥的体积为:×=,故该几何体的体积V=π+=,故选:B.8.(5分)设A、B、C、D是球面上的四点,AB、AC、AD两两互相垂直,且AB=3,AC=4,AD=,则球的表面积为()A.36πB.64πC.100πD.144π【解答】解:∵A、B、C、D是球面上的四点,AB、AC、AD两两互相垂直,且AB=3,AC=4,AD=,∴可以判断:以AB、AC、AD为棱长的长方体,∴体对角线长为==6,外接球的直径为6,半径为3,∴球的表面积为4π×32=36π,故选:A.9.(5分)如表是一位母亲给儿子作的成长记录:根据以上样本数据,她建立了身高y(cm)与年龄x(周岁)的线性回归方程为=7.19x+73.93,给出下列结论:①y与x具有正的线性相关关系;②回归直线过样本的中心点(6,117.1);③儿子10岁时的身高是145.83cm;④儿子年龄增加1周岁,身高约增加7.19cm.其中,正确结论的个数是()A.1 B.2 C.3 D.4【解答】解;线性回归方程为=7.19x+73.93,①7.19>0,即y随x的增大而增大,y与x具有正的线性相关关系,①正确;②回归直线过样本的中心点为(6,117.1),②正确;③当x=10时,=145.83,此为估计值,所以儿子10岁时的身高的估计值是145.83cm而不一定是实际值,③错误;④回归方程的斜率为7.19,则儿子年龄增加1周岁,身高约增加7.19cm,④正确,故选:C.10.(5分)设点P是函数y=﹣图象上的任意一点,点Q(2a,a﹣3)(a∈R),则|PQ|的最小值为()A.﹣2 B.C.﹣2 D.﹣2【解答】解:由函数y=﹣得(x﹣1)2+y2=4,(y≤0),对应的曲线为圆心在C(1,0),半径为2的圆的下部分,∵点Q(2a,a﹣3),∴x=2a,y=a﹣3,消去a得x﹣2y﹣6=0,即Q(2a,a﹣3)在直线x﹣2y﹣6=0上,过圆心C作直线的垂线,垂足为A,则|PQ|min=|CA|﹣2=,故选:C.二、填空题:本大题共5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.11.(5分)某单位有职工200名,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1﹣200编号,并按编号顺序平均分为40组(1﹣5号,6﹣10号,…,196﹣200号).若第5组抽出的号码为22,则第10组抽出的号码应是47.【解答】解:根据系统抽样方法的特征,知;第5组抽出的号码为22,即(5﹣1)×5﹣x=22,∴x=2,即第1组抽出的号码是2;∴第10组抽出的号码应是(10﹣1)×5+2=47.故答案为:47.12.(5分)已知P是△ABC所在平面内一点,,现将一粒黄豆随机撒在△ABC内,则黄豆落在△PBC内的概率是.【解答】解:以PB、PC为邻边作平行四边形PBDC,则,∵,∴,得:,由此可得,P是△ABC边BC上的中线AO的中点,点P到BC的距离等于A到BC的距离的.=S△ABC.∴S△PBC将一粒黄豆随机撒在△ABC内,黄豆落在△PBC内的概率为P==故答案为:13.(5分)过点(1,2)引圆x2+y2=1的两条切线,则这两条切线与x轴,y轴所围成的四边形的面积是.【解答】解:由题意易知x=1是圆的一条切线,设另一条切线斜率为k,则切线方程为:kx﹣y+2﹣k=0,那么切线为:3x﹣4y+5=0.当x=0时y=则这两条切线与x轴,y轴所围成的四边形的面积:(2+)×=故答案为:14.(5分)如图,ABCD﹣A1B1C1D1为正方体,下面结论中正确的是①②④.(把你认为正确的结论都填上)①BD∥平面CB1D1;②AC1⊥平面CB1D1;③AC1与底面ABCD所成角的正切值是;④二面角C﹣B1D1﹣C1的正切值是;⑤过点A1与异面直线AD与CB1成70°角的直线有2条.【解答】解:如图,正方体ABCD﹣A1B1C1D1 中,由于BD∥B1D1 ,由直线和平面平行的判定定理可得BD∥平面CB1D1 ,故①正确.由正方体的性质可得B1D1⊥A1C1,CC1⊥B1D1,故B1D1⊥平面ACC1A1,故B1D1⊥AC1.同理可得B1C⊥AC1.再根据直线和平面垂直的判定定理可得,AC1⊥平面CB1D1 ,故②正确.AC1与底面ABCD所成角的正切值为=,故③不正确.取B1D1的中点M,则∠CMC1即为二面角C﹣B1D1﹣C1的平面角,Rt△CMC1中,tan∠CMC1===,故④正确.由于异面直线AD与CB1成45°的二面角,如图,过A1作MN∥AD、PQ∥CB1,设MN与PQ确定平面α,∠PA1M=45°,过A1在面α上方作射线A1H,则满足与MN、PQ 成70°的射线A1H有4条:满足∠MA1H=∠PA1H=70°的有一条,满足∠PA1H=∠NA1H=70°的有一条,满足∠NA1H=∠QA1H=70°的有一条,满足QA1H=∠MA1H=70°的有一条.故满足与MN、PQ 成70°的直线有4条,故过点A1与异面直线AD与CB1成70°角的直线有4条,故⑤不正确.故答案为①②④.15.(5分)已知圆:(x+cosθ)2+(y﹣sinθ)2=1,直线l:y=kx.给出下面四个命题:①对任意实数k和θ,直线l和圆M有公共点;②对任意实数k,必存在实数θ,使得直线l和圆M相切;③对任意实数θ,必存在实数k,使得直线l和圆M相切;④存在实数k和θ,使得圆M上有一点到直线l的距离为3.其中正确的命题是①②(写出所以正确命题的编号)【解答】解:∵圆:(x+cosθ)2+(y﹣sinθ)2=1恒过定点O(0,0)直线l:y=kx也恒过定点O(0,0),∴①正确;圆心M(﹣cosθ,sinθ)圆心到直线的距离d==≤1,∴对任意实数k和θ,直线l和圆M的关系是相交或者相切,∴②正确,③④都错误.故答案为:①②.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)在一个盒子中装有6枝圆珠笔,其中3枝一等品,2枝二等品和1枝三等品,从中任取3枝,求:(Ⅰ)取出的3枝中恰有1枝一等品的概率;(Ⅱ)取出的3枝中一、二、三等品各一枝的概率;(Ⅲ)取出的3枝中没有三等品的概率.【解答】解:记3枝一等品为A,B,C,2枝二等品为D,E,1枝三等品为F.从6枝圆珠笔中任取3枝的方法有20种(列举略).(Ⅰ)取出的3枝中恰有1枝一等品的方法有9种(列举略),所以,所求概率.…(4分)(Ⅱ)取出的3枝中一、二、三等品各一枝的概率的方法有6种(列举略),所以,所求概率…(8分)(Ⅲ)取出的3枝中没有三等品的方法有10种(列举略),所以,所求概率.…(12分)17.(12分)已知圆C:x2+(y﹣1)2=5,直线l:mx﹣y+1﹣m=0,且直线l与圆C交于A、B两点.(1)若|AB|=,求直线l的倾斜角;(2)若点P(1,1),满足2=,求直线l的方程.【解答】解:(1)由于半径r=,|AB|=,∴弦心距d=,再由点到直线的距离公式可得d==,解得m=±.故直线的斜率等于±,故直线的倾斜角等于或.(2)设点A(x1,mx1﹣m+1),点B(x2,mx2﹣m+1 ),由题意2=,可得2(1﹣x1,﹣mx1+m )=(x2﹣1,mx2﹣m ),∴2﹣2x1=x2﹣1,即2x1+x2=3.①再把直线方程y﹣1=m(x﹣1)代入圆C:x2+(y﹣1)2=5,化简可得(1+m2)x2﹣2m2x+m2﹣5=0,由根与系数的关系可得x1+x2=②.由①②解得x1=,故点A的坐标为(,).把点A的坐标代入圆C的方程可得m2=1,故m=±1,故直线L的方程为x﹣y=0,或x+y﹣2=0.18.(12分)为了分析某次考试数学成绩情况,用简单随机抽样从某班中抽取25名学生的成绩(百分制)作为样本,得到频率分布表如下:(Ⅰ)求样本频率分布表中a,b的值,并根据上述频率分布表,在下表中作出样本频率分布直方图;(Ⅱ)计算这25名学生的平均数及方差(同一组中的数据用该组区间的中点值作代表);(Ⅲ)从成绩在[50,70)的学生中任选2人,求至少有1人的成绩在[60,70)中的概率.【解答】解:(Ⅰ)∵频数总数是2+3+9+a+1=25,∴a=10;又∵成绩在[80,90)的频率是,∴b=0.4;画出频率分布直方图如下:;…(5分)(Ⅱ)这25名学生的平均数为;方差为+(85﹣77)2×10+(95﹣77)2×1]=;或s2=(﹣22)2×0.08+(﹣12)2×0.12+(﹣2)2×0.36+8×0.4+18×0.04=96;…(9分)(Ⅲ)成绩在[50,60)的学生共有2人,记为a,b,在[60,70)共有3人,记为c,d,e;从成绩在[50,70)的5名学生任选2人的方法有ab、ac、ad、ae、bc、bd、be、cd、ce、de,共10种,其中至少有1人的成绩在[60,70)中方法有ac、ad、ae、bc、bd、be、cd、ce、de,共9种,∴所求的概率为.…(12分)19.(12分)如图,四棱锥P﹣ABCD中,PA⊥平面ABCD,AB∥CD,∠BAD=∠ADC=90°,AB=AD=2CD,E为PB的中点.(Ⅰ)证明:CE⊥AB;(Ⅱ)若二面角P﹣CD﹣A为45°,求直线CE与平面PAB所成角的正切值.(Ⅲ)若PA=kAB,求平面PCD与平面PAB所成的锐二面角的余弦值.【解答】解:(Ⅰ)如图,取AB的中点F,连结EF,FC;则EF∥PA,CF∥AD;∵PA⊥平面ABCD;∴EF⊥平面ABCD,AB⊂平面ABCD;∴EF⊥AB,即AB⊥EF;AB⊥AD;∴AB⊥CF,EF∩CF=F;∴AB⊥平面EFC,CE⊂平面EFC;∴AB⊥CE,即CE⊥AB;(Ⅱ)∵PA⊥平面ABCD,CD⊂平面ABCD;∴PA⊥CD,即CD⊥PA;又CD⊥AD;∴CD⊥平面PAD,PD⊂平面PAD;∴CD⊥PD,AD⊥CD;∴∠PDA为二面角P﹣CD﹣A的平面角;∴∠PDA=45°;∴PA=AD;∵AB=AD=2CD;∴PA=AB=AD;由(Ⅰ)知,∠CEF为CE与平面PAB所成的角;因为;所以直线CE与平面PAB所成角的正切值为2;(Ⅲ)过点P作PG∥AB;由PA⊥平面ABCD,∴PA⊥AB,∴PA⊥PG;CD⊥平面PAD,∴CD⊥PD;∵CD∥AB∥PG,∴PG⊥PD,即PD⊥PG;∵PG∥AB∥CD;∴PG是平面PCD和平面PAB的交线;∴∠APD为所求锐二面角的平面角;∴.20.(13分)已知关于x的二次函数f(x)=ax2﹣4bx+1.(Ⅰ)设集合A={﹣1,1,2,3,4,5}和B={﹣2,﹣1,1,2,3,4},分别从集合A,B中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率.(Ⅱ)设点(a,b)是区域内的随机点,求函数f(x)在区间[1,+∞)上是增函数的概率.【解答】解:要使函数y=f(x)在区间[1,+∞)上是增函数,则a>0且,即a>0且2b≤a.(Ⅰ)所有(a,b)的取法总数为6×6=36个,满足条件的(a,b)有(1,﹣2),(1,﹣1),(2,﹣2),(2,﹣1),(2,1),(3,﹣2),(3,﹣1),(3,1),(4,﹣2),(4,﹣1),(4,1),(4,2),(5,﹣2),(5,﹣1),(5,1),(5,2)共16个,所以,所求概率.…(6分)(Ⅱ)如图,求得区域的面积为.由,求得所以区域内满足a>0且2b≤a的面积为.所以,所求概率.21.(14分)在平面直角坐标系xOy中,已知圆M过坐标原点O且圆心在曲线上.(Ⅰ)若圆M分别与x轴、y轴交于点A、B(不同于原点O),求证:△AOB的面积为定值;(Ⅱ)设直线与圆M 交于不同的两点C,D,且|OC|=|OD|,求圆M的方程;(Ⅲ)设直线与(Ⅱ)中所求圆M交于点E、F,P为直线x=5上的动点,直线PE,PF与圆M的另一个交点分别为G,H,求证:直线GH过定点.【解答】解:(Ⅰ)由题意可设圆M的方程为,即.令x=0,得;令y=0,得x=2t.∴(定值).…(4分)(Ⅱ)由|OC|=|OD|,知OM⊥l.所以,解得t=±1.当t=1时,圆心M到直线的距离小于半径,符合题意;当t=﹣1时,圆心M到直线的距离大于半径,不符合题意.所以,所求圆M的方程为.…(8分)(Ⅲ)设P(5,y0),G(x1,y1),H(x2,y2),又知,,所以,.因为3k PE=k PF,所以.将,代入上式,整理得2x1x2﹣7(x1+x2)+20=0.①设直线GH的方程为y=kx+b,代入,整理得.所以,.代入①式,并整理得,即,解得或.当时,直线GH的方程为,过定点;当时,直线GH的方程为,过定点检验定点和E,F共线,不合题意,舍去.故GH过定点.…(14分)赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。
2014-2015学年湖北省黄冈中学高二(上)期中数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是满足题目要求的.1.(5分)下列说法中正确的是()A.频率是概率的近似值,随着试验次数增加,频率会越来越接近概率B.要从1002名学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2名学生,这样对被剔除者不公平C.用秦九韶算法计算多项式f(x)=12+35x+9x3+5x5+3x6在当x=﹣1时的值时要用到6次加法和15次乘法D.数据2,3,4,5的方差是数据4,6,8,10的方差的一半2.(5分)2014年索契冬季奥运会的花样滑冰项目上,8个评委为某选手打出的分数如茎叶图所示,则这些数据的中位数是()A.84 B.85 C.86 D.87.53.(5分)某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为()A.35 B.25 C.15 D.74.(5分)从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是()A.至少有一个红球与都是红球B.至少有一个红球与都是白球C.至少有一个红球与至少有一个白球D.恰有一个红球与恰有二个红球5.(5分)某产品的广告费用x与销售额y的统计数据如下表根据上表可得回归方程=x+的为9.4,据此模型预报广告费用为6万元时销售额为()A.63.6万元B.65.5万元C.67.7万元D.72.0万元6.(5分)圆O1:x2+y2﹣2x=0和圆O2:x2+y2﹣4y=0的公共弦长为()A.B.C.3 D.7.(5分)设,求a2+a4+…+a2n的值()A.3n B.3n﹣2 C.D.8.(5分)4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为()A.B.C.D.9.(5分)某几何体的三视图如图所示,则该几何体的体积的最大值为()A.B.C.D.10.(5分)如图,已知点P(2,0),正方形ABCD内接于⊙O:x2+y2=2,M、N 分别为边AB、BC的中点,当正方形ABCD绕圆心O旋转时,•的取值范围是()A.[﹣1,1]B.[﹣,]C.[﹣2,2]D.[﹣,]二、填空题:本大题共5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.11.(5分)空间直角坐标系中与点P(2,3,5)关于yoz平面对称的点的坐标为.12.(5分)由数字0,1,2,3,4组成的没有重复数字且比2000大的四位数的个数为(用数字作答).13.(5分)在(1+x2)(1﹣2x)6的展开式中,x5的系数为.14.(5分)根据如图算法语句,当输出y的值为31时,输入的x值为.15.(5分)如果自然数a的各位数字之和等于7,那么称a为“吉祥数”.将所有“吉祥数”从小到大排成一列a1,a2,a3,…,若a n=2005,则n=.三、解答题:本大题共6个小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)高二某班50名学生在一次百米测试中,成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组[13,14),第二组[14,15),…,第五组[17,18],如图是按上述分组方法得到的频率分布直方图.(1)若成绩在区间[14,16)内规定为良好,求该班在这次百米测试中成绩为良好的人数;(2)请根据频率分布直方图估计样本数据的众数和中位数(精确到0.01).17.(12分)已知关于x的一元二次方程x2﹣2ax+b2=0.(1)若a是从0、1、2、3四个数中任取的一个数,b是从0、1、2三个数中任取的一个数,求上述方程没有实根的概率;(2)若a是从区间[0,3]内任取的一个数,b是从区间[0,2]内任取的一个数,求上述方程没有实根的概率.18.(12分)已知在的展开式中,第5项的系数与第3项的系数之比是56:3.(1)求n;(2)求展开式中的所有有理项;(3)求C n1+9C n2+81C n3+…+9n﹣1C n n的值.19.(12分)阅读如图的程序框图,解答以下问题:(1)如果输入的N=3,那么输出的S为多少?(2)对于输入的任何正整数N,都有对应S输出.证明:S<2.20.(13分)如图,四棱锥P﹣ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD,侧面PAD⊥底面ABCD,且△PAD为等腰直角三角形,∠APD=90°,M为AP的中点.(Ⅰ)求证:AD⊥PB;(Ⅱ)求证:DM∥平面PCB;(Ⅲ)求平面PAD与平面PBC所成锐二面角的余弦值.21.(14分)如图,圆C:x2﹣(1+a)x+y2﹣ay+a=0.(Ⅰ)若圆C与x轴相切,求圆C的方程;(Ⅱ)已知a>1,圆C与x轴相交于两点M,N(点M在点N的左侧).过点M 任作一条直线与圆O:x2+y2=4相交于两点A,B.问:是否存在实数a,使得∠ANM=∠BNM?若存在,求出实数a的值,若不存在,请说明理由.2014-2015学年湖北省黄冈中学高二(上)期中数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是满足题目要求的.1.(5分)下列说法中正确的是()A.频率是概率的近似值,随着试验次数增加,频率会越来越接近概率B.要从1002名学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2名学生,这样对被剔除者不公平C.用秦九韶算法计算多项式f(x)=12+35x+9x3+5x5+3x6在当x=﹣1时的值时要用到6次加法和15次乘法D.数据2,3,4,5的方差是数据4,6,8,10的方差的一半【解答】解:A选项,频率是概率的近似值,随着试验次数增加,频率会越来越接近概率,故A正确;B选项,每个个体被抽到的概率相等,故B错误C选项,用秦九韶算法计算多项式f(x)=12+35x+9x3+5x5+3x6在当x=﹣1时的值时要用到6次加法和6次乘法,故C错误;D选项,∵数据4,6,8,10分别是数据2,3,4,5的2倍,∴数据2,3,4,5的方差是数据4,6,8,10的方差的,故D错误.故选:A.2.(5分)2014年索契冬季奥运会的花样滑冰项目上,8个评委为某选手打出的分数如茎叶图所示,则这些数据的中位数是()A.84 B.85 C.86 D.87.5【解答】解:由茎叶图知,这些数据的中位数为:=86.故选:C.3.(5分)某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为()A.35 B.25 C.15 D.7【解答】解:青年职工、中年职工、老年职工三层之比为7:5:3,所以样本容量为=15.故选:C.4.(5分)从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是()A.至少有一个红球与都是红球B.至少有一个红球与都是白球C.至少有一个红球与至少有一个白球D.恰有一个红球与恰有二个红球【解答】解:从装有5个红球和3个白球的口袋内任取3个球,不同的取球情况共有以下几种:3个球全是红球;2个红球1个白球;1个红球2个白球;3个球全是白球.选项A中,事件“都是红球”是事件“至少有一个红球”的子事件;选项B中,事件“至少有一个红球”与事件“都是白球”是对立事件;选项C中,事件“至少有一个红球”与事件“至少有一个白球”的交事件为“2个红球1个白球”与“1个红球2个白球”;选项D中,事件“恰有一个红球”与事件“恰有二个红球”互斥不对立.故选:D.5.(5分)某产品的广告费用x与销售额y的统计数据如下表根据上表可得回归方程=x+的为9.4,据此模型预报广告费用为6万元时销售额为()A.63.6万元B.65.5万元C.67.7万元D.72.0万元【解答】解:∵=3.5,=42,∵数据的样本中心点在线性回归直线上,回归方程中的为9.4,∴42=9.4×3.5+,∴=9.1,∴线性回归方程是y=9.4x+9.1,∴广告费用为6万元时销售额为9.4×6+9.1=65.5,故选:B.6.(5分)圆O1:x2+y2﹣2x=0和圆O2:x2+y2﹣4y=0的公共弦长为()A.B.C.3 D.【解答】解:圆O1的圆心为(1,0),半径r1=1,圆O2的圆心为(0,2),半径r2=2,故两圆的圆心距,大于半径之差而小于半径之和,故两圆相交.圆和圆两式相减得到相交弦所在直线方程x ﹣2y=0,圆心O1(1,0)到直线x﹣2y=0距离为,由垂径定理可得公共弦长为2=,故选:B.7.(5分)设,求a2+a4+…+a2n的值()A.3n B.3n﹣2 C.D.【解答】解:令x=1,则(1+1+12)n=a0+a1+…+a2n①令x=﹣1,则(1﹣1+1)n=a0﹣a1+…+a2n②∴①+②得2(a0+a2+a4+…+a2n)=3n+1∴a0+a2+a4+…+a2n=令x=0,则a0=1,∴a2+a4+…+a2n=﹣1=故选:C.8.(5分)4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为()A.B.C.D.【解答】解:4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,基本事件总数n==6,取出的2张卡片上的数字之和为奇数包含的基本事件个数m==4,∴取出的2张卡片上的数字之和为奇数的概率为=.故选:C.9.(5分)某几何体的三视图如图所示,则该几何体的体积的最大值为()A.B.C.D.【解答】解:由三视图知,几何体是一个三棱锥,三棱锥的底面是一条直角边为1,斜边为b的直角三角形,∴另一条直角边是,三棱锥的一条侧棱与底面垂直,由勾股定理可知这条边是,∴几何体的体积是V=∵在侧面三角形上有a2﹣1+b2﹣1=6,∴V=,当且仅当侧面的三角形是一个等腰直角三角形,故选:D.10.(5分)如图,已知点P(2,0),正方形ABCD内接于⊙O:x2+y2=2,M、N 分别为边AB、BC的中点,当正方形ABCD绕圆心O旋转时,•的取值范围是()A.[﹣1,1]B.[﹣,]C.[﹣2,2]D.[﹣,]【解答】解:设M(cosα,sinα),∵,∴,∴N(﹣sinα,cosα),∴=(﹣sinα,cosα),=(cosα,sinα),∴=(cosα﹣2,sinα),∴=﹣sinα(cosα﹣2)+sinαcosα=2sinα,∵sinα∈[﹣1,1],∴2sinα∈[﹣2,2],∴•的取值范围是[﹣2,2].故选:C.二、填空题:本大题共5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.11.(5分)空间直角坐标系中与点P(2,3,5)关于yoz平面对称的点的坐标为(﹣2,3,5).【解答】解:根据关于坐标平面yOz的对称点的坐标的特点,可得点P(2,3,5)关于坐标平面yOz的对称点的坐标为:(﹣2,3,5).故答案为:(﹣2,3,5).12.(5分)由数字0,1,2,3,4组成的没有重复数字且比2000大的四位数的个数为72(用数字作答).【解答】解:当最高位为2时,其余的三位数任意取有=24个,当最高位为3或4的有=48个,根据分类计数原理可得,一共有72个.故答案为:7213.(5分)在(1+x2)(1﹣2x)6的展开式中,x5的系数为﹣352.【解答】解:根据题意,(1﹣2x)6展开式的通项为T r=C6r•(﹣2x)r=(﹣1)r C6r•2r x r,+1则(1+x2)(1﹣2x)6的展开式中出现x5的项有两种情况,第一种情况(1+x2)中出1,而(1﹣2x)6展开式中出x5项,其系数为1×(﹣1)525=﹣192,5C6第二种情况(1+x2)中出x2项,而(1﹣2x)6展开式中出x3项,其系数为=﹣160,则(1+x2)(1﹣2x)6展开式中x5的系数为﹣192﹣160=﹣352;故答案为:﹣352.14.(5分)根据如图算法语句,当输出y的值为31时,输入的x值为60.【解答】解:执行算法语句知程序的功能是求分段函数的值,其解析式为,故解得当y的值为31时,x的值为60.故答案为:60.15.(5分)如果自然数a的各位数字之和等于7,那么称a为“吉祥数”.将所有“吉祥数”从小到大排成一列a1,a2,a3,…,若a n=2005,则n=65.【解答】解:∵方程x1+x2+…+x i=m使x1≥1,x i≥0(i≥2)的整数解个数为.现取m=7,可知,k位“吉祥数”的个数为且P(1)==1,P(2)==7,P(3)==28对于四位“吉祥数”,其个数为满足a+b+c=6的非负整数解个数,即个.∵2005是形如的数中最小的一个“吉祥数”,∴2005是第1+7+28+28+1=65个“吉祥数”,即a n=2005,从而n=65.故答案为:65三、解答题:本大题共6个小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)高二某班50名学生在一次百米测试中,成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组[13,14),第二组[14,15),…,第五组[17,18],如图是按上述分组方法得到的频率分布直方图.(1)若成绩在区间[14,16)内规定为良好,求该班在这次百米测试中成绩为良好的人数;(2)请根据频率分布直方图估计样本数据的众数和中位数(精确到0.01).【解答】解:(1)根据频率分布直方图知,成绩在[14,16)内的人数为:50×0.18+50×0.38=28人;(2)由频率分布直方图知,众数落在第三组[15,16)内,是;∵数据落在第一、二组的频率为1×0.04+1×0.08=0.22<0.5,数据落在第一、二、三组的频率为1×0.04+1×0.08+1×0.38=0.6>0.5,∴中位数一定落在第三组[15,16)中;设中位数是x,∴0.22+(x﹣15)×0.38=0.5,解得中位数.17.(12分)已知关于x的一元二次方程x2﹣2ax+b2=0.(1)若a是从0、1、2、3四个数中任取的一个数,b是从0、1、2三个数中任取的一个数,求上述方程没有实根的概率;(2)若a是从区间[0,3]内任取的一个数,b是从区间[0,2]内任取的一个数,求上述方程没有实根的概率.【解答】解:(1)设事件A为“方程x2﹣2ax+b2=0无实根”;﹣﹣﹣﹣﹣﹣﹣﹣(1分)当△=4a2﹣4b2=4(a2﹣b2)<0,即a<b时,方程x2﹣2ax+b2=0无实根.﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)所有的(a,b)共12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2).其中,第一个数表示a的取值,第二个数表示b的取值.事件A包含3个基本事件(0,1),(0,2),(1,2),由于每个基本事件发生的可能性都相同,﹣﹣﹣﹣﹣﹣(4分)∴事件A发生的概率P(A)==.﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)答:方程x2﹣2ax+b2=0没有实根的概率为.﹣﹣﹣﹣﹣﹣﹣(7分)(2)设事件B为“方程x2﹣2ax+b2=0无实根”;﹣﹣﹣﹣(8分)如图,试验的所有基本事件所构成的区域为矩形OABC:{(a,b)|0≤a≤3,0≤b≤2},其中构成事件B的区域为三角形OEC,即{(a,b)|0≤a≤3,0≤b≤2,a<b},由于点(a,b)落在区域内的每一点是随机的,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)∴事件B发生的概率P(B)===.﹣﹣﹣﹣﹣﹣﹣(13分)答:方程x2﹣2ax+b2=0没有实根的概率为.﹣﹣﹣﹣﹣﹣﹣﹣(14分)18.(12分)已知在的展开式中,第5项的系数与第3项的系数之比是56:3.(1)求n;(2)求展开式中的所有有理项;(3)求C n1+9C n2+81C n3+…+9n﹣1C n n的值.【解答】解:(1)由题意可得,,解得n=10.=•(﹣2)r•,令5﹣为整数,r可取0,(2)因为通项公式为:T r+16,于是有理项为和T7=13400.(3)==.19.(12分)阅读如图的程序框图,解答以下问题:(1)如果输入的N=3,那么输出的S为多少?(2)对于输入的任何正整数N,都有对应S输出.证明:S<2.【解答】解:(1)第一次循环得到:T=1,S=1,k=2;第二次循环得到:;,4>3满足条件,输出(2)由题意知,而n>2时有n!>2n﹣1∴经验证,n=1,2也有S<2.20.(13分)如图,四棱锥P﹣ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD,侧面PAD⊥底面ABCD,且△PAD为等腰直角三角形,∠APD=90°,M为AP的中点.(Ⅰ)求证:AD⊥PB;(Ⅱ)求证:DM∥平面PCB;(Ⅲ)求平面PAD与平面PBC所成锐二面角的余弦值.【解答】(I)证明:取AD的中点G,连结PG、GB、BD.∵PA=PD,∴PG⊥AD…(2分)∵AB=AD,且∠DAB=60°,∴△ABD是正三角形,BG⊥AD,又PG∩BG=G,∴AD⊥平面PGB.∴AD⊥PB.…(4分)(II)证明:取PB的中点F,连结MF,CF,∵M、F分别为PA、PB的中点,∴MF∥AB,且.∵四边形ABCD是直角梯形,AB∥CD且AB=2CD,∴MF∥CD且MF=CD,…(6分)∴四边形CDMF是平行四边形.∴DM∥CF.∵CF⊂平面PCB,DM⊄平面PCB,∴DM∥平面PCB.…(8分)(III)解:∵侧面PAD⊥底面ABCD,又∵PG⊥AD,∴PG⊥底面ABCD.∴PG⊥BG.∴直线GA、GB、GP两两互相垂直,故以G为原点,直线GA、GB、GP所在直线为x轴、y轴和z轴,建立如图所示的空间直角坐标系G﹣xyz.设PG=a,则由题意得:,.∴.设是平面PBC的法向量,则且.∴取,得.∵M是AP的中点,∴.∴..∴.平面PAD的法向量,设平面PAD与平面PBC所成锐二面角为θ,则,…(10分)∴平面PAD与平面PBC所成锐二面角的余弦值为.…(12分)21.(14分)如图,圆C:x2﹣(1+a)x+y2﹣ay+a=0.(Ⅰ)若圆C与x轴相切,求圆C的方程;(Ⅱ)已知a>1,圆C与x轴相交于两点M,N(点M在点N的左侧).过点M 任作一条直线与圆O:x2+y2=4相交于两点A,B.问:是否存在实数a,使得∠ANM=∠BNM?若存在,求出实数a的值,若不存在,请说明理由.【解答】(Ⅰ)因为由可得x2﹣(1+a)x+a=0,由题意得△=(1+a)2﹣4a=(a﹣1)2=0,所以a=1,故所求圆C的方程为x2﹣2x+y2﹣y+1=0.(Ⅱ)令y=0,得x2﹣(1+a)x+a=0,即(x﹣1)(x﹣a)=0,求得x=1,或x=a,所以M(1,0),N(a,0).假设存在实数a,当直线AB与x轴不垂直时,设直线AB的方程为y=k(x﹣1),代入x2+y2=4得,(1+k2)x2﹣2k2x+k2﹣4=0,设A(x1,y1),B(x2,y2),从而.因为NA、NB的斜率之和为,而(x 1﹣1)(x2﹣a)+(x2﹣1)(x1﹣a)=2x1x2﹣(a+1)(x2+x1)+2a==,因为∠ANM=∠BNM,所以,NA、NB的斜率互为相反数,,即,得a=4.当直线AB与x轴垂直时,仍然满足∠ANM=∠BNM,即NA、NB的斜率互为相反数.综上,存在a=4,使得∠ANM=∠BNM.赠送初中数学几何模型【模型三】双垂型:图形特征:运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC.(1)如图,当∠APB=90°时,若AC=5,PC=,求BC的长;(2)当∠APB=90°时,若AB=APBC的面积是36,求△ACB的周长.2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.第21页(共21页)3.如图,在四边形ABCD 中,AB=AD ,∠DAB=∠BCD=90°,(1)若AB =3,BC +CD =5,求四边形ABCD 的面积(2)若p = BC +CD ,四边形ABCD 的面积为S ,试探究S 与p 之间的关系。