七年级数学上代数式知识点和练习
- 格式:doc
- 大小:615.50 KB
- 文档页数:6
夯实基础融会贯通 苏教版七年级数学精准训练提升能力 第三章代数式知识点与典题 第一节字母表示数 一、知识点1、用字母表示数,能更简便、更清晰地表示有关数量关系。
2、用字母表示数,还可以表示有关规律性的数量关系。
二、典题1、小明今年n 岁,小明比小丽大2岁,小丽今年________岁。
2、小丽5h 走了Skm ,那么她的平均速度________km/h 。
3、一件羊毛衫标价a 元,若按标价的8折出售,则这件羊毛衫的售价是______元。
4、某水果市场规定:苹果批发价为每千克2.5元,小王携带现金3 000元到这个市场采购苹果,并以批发价买进,如果购买了苹果x 千克,用x•表示小王付款后的剩余现金.5、如图,上列图形都是由面积为1的正方形按一定的规律组成,其中,第 (1)个图形中面积为1的正方形有2个,第 (2) 个图形中面积为1的正方形有5个,第 (3)个图形中面积为1的正方形有9个……按此规律.则第 (n ) 个图形中面积为1的正方形的个数为 .第二节代数式 一、知识点1、代数式的定义像n 、-2 、5s 、0.8a 、a m、2n +500、abc 、2ab+2bc +2ac 等式子都是代数式。
单独一个数或一个字母也是代数式。
2、列代数式的注意点列代数式时,数字与字母、字母与字母相乘,乘号通常用·表示或省略不写,并且把数字写在字母的前面,除法运算通常写成分数的形式。
3、单项式定义:像0.9a ,0.8b ,2a ,2a 2,15×1.5%m 等都是数与字母的积,这样的代数式叫单项式。
单独一个数或一个字母也是单项式。
单项式中的数字因数叫做这个单项式的系数。
单项式中所有字母的指数的和叫做它的次数。
4、多项式的相关概念几个单项式的和叫做多项式。
其中的每个单项式叫做多项式的一个项。
次数最高项的次数叫做这个多项式的次数。
单项式和多项式都是代数式. 5、 整式的定义单项式和多项式统称整式 二、典题1、王洁同学买m 本练习册花了n 元,那么买2本练习册要______元.2、如果陈秀娟同学用v 千米/时的速度走完路程为9千米的路,那么需_______•小时.3、在西部大开发的过程中,为了保护环境,促进生态平衡,国家计划以每年10%的速度栽树绿化,如果第一年植树绿化是a 公顷,那么,•到第三年的植树绿化为_______公顷.4、说出下列代数式的意义:(1)2a-3c ; (2) ab+1; (3)a-b 25、在代数式21215,5,,,,,233x y z x y a x y xyz y π+---+-中有……( )A 、5个整式B 、4个单项,3个多项式C 、6个整式,4个单项式D 、6个整式,单项式与多项式个数相同 6、甲、乙两人同时同地同向而行,甲每小时走a 千米,乙每小时走b 千米.如果从起点到终点的距离为m 千米,甲的速度比乙快,那么甲比乙提前到达终点 ( ) A .(m b -m a)小时 B .(m a -m b)小时C .ma b+小时 D .ma b-小时第三代数式的值 一、知识点1、用数值代替代数式里的字母,按代数式指明的运算,计算后所得的结果,叫做代数式的值。
七年级上册代数式知识点代数式是高中数学中非常重要的一个知识点,也是中学数学的一个重要基础。
在七年级上册学习代数式时,我们主要学习了以下内容:一、代数式的基本概念代数式是由数字、字母、加减乘除符号等运算符号组成的式子,例如2x+3、(a+b)(a-b)等。
二、代数式的简化和展开1、代数式的简化简化代数式是指将具有相同变量的项合并为一个同类项,并通过移项、分配律、合并同类项等方法,将代数式化为规范形式,例如:2x+3x-5x=0 => 0=0-x2、代数式的展开展开代数式是指根据分配律,将代数式拆分成多个项的和的形式,例如:(a+b)(a-b)=a^2-b^2三、一元一次方程一元一次方程是一种形如ax+b=0的方程,其中a、b为常数,x为未知数。
在解一元一次方程时,我们需要通过移项、合并同类项、化简等步骤,求出未知数的值。
四、二元一次方程组二元一次方程组是由两个一元一次方程构成的方程组,形如:ax+by=cdx+ey=f在解二元一次方程组时,我们可以通过消元、代入等方法求出未知数的值。
五、乘法公式和因式分解1、乘法公式乘法公式指的是两个或两个以上代数式相乘所得到的代数式,例如:(a+b)(a-b)=a^2-b^2(ab)^2=a^2b^22、因式分解因式分解指的是将一个代数式分解成若干个因式的积的形式,例如:x^2-4=(x+2)(x-2)a^2+2ab+b^2=(a+b)^2以上是七年级上册代数式的主要知识点,掌握了这些知识,同学们就能够顺利地进行代数式的运算和解方程,也为将来的高中数学打下了坚实的基础。
《第1课时 代数式》基础训练知识点1 代数式的概念1.下列式子中,不属于代数式的是( )A.3a +B.2mnC.0D.x y >2.下列语句正确的是( )A.1a +不是一个代数式B.0是代数式C.2S r π=是一个代数式D.单独一个字母a 不是代数式3.下列式子符合代数式书写要求的是( )A.4aB.x y ÷C.132mD.52a - 知识点2 列代数式4.某校购进价格a 元的排球100个,价格b 元的篮球50个,则该校一共需支付( )A.(100a +50b )元B.(100a -50b )元C.(50a +100b )元D.(50a -100b )元5.用代数式表示:(1)x 与y 两数的差的平方:_________;(2)a 与b 的平方差:_________.6.设一个三位数的个位数字为a ,十位数字为b ,百位数字为c ,请你用含a ,b ,c 的代数式表示这个三位数:_________.7.某风景区在“十一”黄金周期间推出了特惠活动:票价为每人100元,团体购票超过20人,票价可以享受八折优惠.活动期间,某旅游团有m (m>20)人来该景区观光,则应付票价总额为_________元.知识点3 代数式的意义8.下列解释3a 表示的意义不正确的是( )A.如果葡萄的价格是3元/千克,那么3a 表示买a 千克葡萄的金额B.如果一个等边三角形的边长为a ,那么3a 表示这个三角形的周长C.如果在校平均一天的生活费用为a 元,那么3a 表示3天的生活费用D.如果步行的速度为a米/分钟,那么3a表示步行3米所用的时间9.苹果每千克a元,梨每千克b元,则代数式2a+b表示购买_________.6a的意义.10.(教材P83习题T3(3)变式)联系实际背景,说明代数式2参考答案1.D2.B3.D4.A5.2x y-22(1)()-(2)a b6.10010++c b a7.80m8.D9.2千克苹果和1千克梨的钱数10.解:答案不唯一,如:6个边长为a的正方形的面积之和.。
七年级代数式知识点及例题代数式在初中数学中占有重要地位,是进一步学习高中数学和其他科学学科的基础。
本文将为大家介绍七年级代数式的知识点,并通过例题让大家更好地掌握这些知识点。
一、代数式的概念代数式指用数字和字母以及运算符号组成的式子,例如:2x+3y或a²-b²等。
其中数字和字母都被称为代数项,符号+、-、×和÷被称为代数式的运算符号。
二、代数式的基本运算1. 合并同类项合并同类项是代数式基本原则之一。
同类项有相同的字母部分,其指数可以不同,例如:3x、5x和-2x就是同类项。
将同类项相加或相减得到的结果称为合并同类项。
例如:2x²+3x²=5x²,6xy-2xy=4xy。
2. 去括号一般情况下,可以使用分配律去掉括号,从而简化代数式。
例如:3(x+2)=3x+6。
3. 移项移项是指将代数式中的各个式子移到等式两边,通过加、减或乘、除等运算来求解。
三、代数式的解题方法1. 代入法代入法是求解代数式的一种简单方法。
将给定的数值代入代数式中,然后通过基本运算得出最终结果。
例如:已知x=2,求2x+3,将x=2代入得:2*2+3=7。
2. 整理法整理法是指通过基本运算对代数式进行化简,化简后的代数式更符合求解要求,从而实现对代数式求解的目的。
例如:已知3x+2=8,将式子化简为3x=6,然后得出x=2的解。
四、常见的七年级代数式例题1. 合并同类项:将3x+5x+2y-7y合并同类项,并化简为最简代数式。
解:同类项3x和5x的和是8x,同类项2y和-7y的和是-5y,因此合并同类项后得到8x-5y。
2. 去括号:化简3(x+2)+2(x-1),并将其化简为最简代数式。
解:根据分配律,展开式子3(x+2)+2(x-1)得到3x+6+2x-2。
将同类项3x和2x合并,同类项6和-2合并,得到最简代数式5x+4。
3. 求解未知数:已知3x+2=8,求x的值。
2022-2023学年七年级数学上册章节同步实验班培优题型变式训练(北师大版)专题02 代数式【题型1】代数式表示数、图形的规律1.(2022·河北廊坊·七年级期末)如图.用棋子按规律摆出下列一组图形,据此规律,第2022个,图形棋子的枚数为( )A.6065B.6068C.6069D.6071【答案】B【分析】由所给的图形不难看出第n个图形所棋子枚数是:3n+2,从而可求解.【详解】解:∵第1个图形棋子枚数为:5=3×1+2,第2个图形棋子枚数为:5+3=3×2+2,第3个图形棋子枚数为:5+3+3=3×3+2,∴第n 个图形棋子枚数为:3n +2,∴第2022个图形棋子枚数为:3×2022+2=6068,故B 正确.故选:B .【点睛】此题考查图形的变化规律,找出图形之间的联系,得出规律是解题的关键.【变式1-1】2.(2022·黑龙江大庆·期中)观察下面一系列等式:23181-=´,22531682-==´,22752483-==´,22973284,-==´…分析其规律,并用含有a 的字母表示这个规律__________.【答案】()()2221218a a a+--=【分析】根据题意观察式子,发现等式的左边为连续的两个奇数的平方差,右边为8与从1开始的自然数的乘积,据此用代数式表示即可求解.【详解】解:23181-=´,22531682-==´,22752483-==´,22973284,-==´…分析其规律,可得()()2221218a a a +--=.故答案为:()()2221218a a a +--=.【点睛】本题考查了用代数式表示式子的规律,发现规律是解题的关键.【题型2】代数式的书写方法1.(2021·福建·晋江市磁灶中学七年级期中)下列代数式书写规范的是( )A .2m n ´B .526abC .a b ¸D .3xD、该选项正确.故选D.【点睛】本题考查了代数式的书写要求,解决本题的关键是掌握代数式的书写要求.要求:(1)数与字母,字母与字母相乘,乘号可以省略,也可写成“.”;(2)数字要写在前面;(3)带分数一定要写成假分数;(4)在含有字母的除法中,一般不用“÷”号,而写成分数的形式.【变式2-1】2.(2022·全国·七年级课时练习)将下列各式按照列代数式的规范要求重新书写:(1)a×5,应写成_______ ;(2)S÷t应写成_________;(3)123a a b´´-´,应写成______;(4)413x, 应写成______.【题型3】代数式表示的实际意义1.(2022·内蒙古通辽·七年级期末)下列赋予4m实际意义的叙述中不正确的是()A.若一个两位数中的十位数字和个位数字分别为4和m,则4m表示这个两位数B.若正方形的边长为m厘米,则4m表示这个正方形的周长(单位:厘米)C.若葡萄的价格是4元/千克,则4m表示买m千克葡萄的金额(单位:元)D.若一辆汽车行驶的速度是m千米/小时,则4m表示该汽车4小时行驶的路程(单位:千米)【答案】A【分析】根据两位数的表示=十位数字×10+个位数字;正方形周长=边长×4;金额=单价×重量;路程=速度×时间进行分析即可.【详解】解:A、若一个两位数中的十位数字和个位数字分别为4和m,则(4×10+m)表示这个两位数,原说法不正确,故此选项符合题意;B、若正方形的边长为m厘米,则4m表示这个正方形的周长,原说法正确,故此选项不符合题意;C、若葡萄的价格是4元/千克,则4m表示买m千克葡萄的金额,原说法正确,故此选项不符合题意;D、若一辆汽车行驶的速度是m千米/小时,则4m表示该汽车4小时行驶的路程,原说法正确,故此选项不符合题意;故选:A.【点睛】本题主要考查代数式,解题的关键是掌握代数式的书写规范和实际问题中数量间的关系.【变式3-1】2.(2022·江苏·七年级)某超市的苹果价格如图,试说明代数式100﹣9.8x的实际意义__.【答案】用100元买每斤9.8元的苹果x斤余下的钱【分析】根据题意结合图片得出代数式100﹣9.8x的实际意义.【详解】解:代数式100﹣9.8x 的实际意义为:用100元买每斤9.8元的苹果x 斤余下的钱.故答案为:用100元买每斤9.8元的苹果x 斤余下的钱.【点睛】此题主要考查了代数式,结合题意利用图片得出是解题关键.【题型4】求代数式的值1.(2021·湖北·公安县教学研究中心七年级阶段练习)已知|2|a =-,则a -5=( )A .3-B .3C .7-D .7【答案】A【分析】由绝对值的意义求出a 的值,再代入a -5中计算即可.【详解】∵|2|a =-,∴2a =,∴a -5=2-5=-3.故选A .【点睛】本题考查求一个数的绝对值,代数式求值.掌握正数和0的绝对值是它本身,负数的绝对值是它的相反数是解题关键.【变式4-1】2.(2021·江西·宜春九中七年级阶段练习)已知150y x -++--=,则x y +=__________.一.选择题1.(2022·全国·七年级专题练习)某商店促销的方法是将原价x 元的衣服以(0.8x ﹣10)元出售,意思是( )A .原价减去10元后再打8折B .原价打8折后再减去10元C .原价减去10元后再打2折D .原价打2折后再减去10元【答案】B【分析】根据先算乘法可知先打折,再减价.【详解】解:将原价x 元的衣服以(0.8x ﹣10)元出售,意思是原价打8折后再减去10元,故选:B .【点睛】本题考查代数式的实际意义.理解运算中乘为打折,减是减价是解题关键.2.(2021·湖南·宁远县教研室七年级期中)下列式子中不是代数式的是( )A .32a b +B .52+C .1a b +=D .1b a +【答案】C【分析】根据代数式的定义:用基本运算符号(基本运算包括加减乘除、乘方和开方)把数或表示数的字母连接起来的式子,由此可排除选项.【详解】解:A 、是代数式,故不符合题意;B 、是代数式,故不符合题意;C 、中含有“=”,不是代数式,故符合题意;D 、是代数式,故不符合题意;故选C .【点睛】本题主要考查代数式的定义,熟练掌握代数式的定义是解题的关键.3.(2022·全国·七年级专题练习)下列各式中,符合整式书写规则的是( )A .5x ´B .72xyC .124xyD .1x y-¸【答案】B【分析】利用代数式的书写要求分别判断得出答案.【详解】解:A 、5x ´不符合代数式的书写要求,应为5x ,故此选项不符合题意;4.(2022.湖北.利川市思源实验学校七年级阶段练习)小王利用计算机设计了一个程序,输入和输出的数据如下表:输入 (1)2345…输出…1225310417526…那么,当输入数据8时,输出的数据是( )A .861B .863C .865D .8675.(2021·全国·七年级单元测试)已知3257x y -+=,那么多项式15102x y -+的值为( )A .8B .10C .12D .35【答案】C【分析】由多项式3257x y -+=,可求出322x y -=,从而求得1510x y -的值,继而可求得答案.【详解】解:∵3257x y -+=∴322x y -=∴151010x y -=∴1510+2x y -10+212==故选C .【点睛】本题考查了求多项式的值,关键在于利用“整体代入法”求代数式的值.6.(2019·海南·中考真题)当m =-1时,代数式2m+3的值是( )A .-1B .0C .1D .2【答案】C【分析】将=1m -代入代数式即可求值;【详解】解:将=1m -代入232(1)31m +=´-+=;故选C .【点睛】本题考查代数式求值;熟练掌握代入法求代数式的值是解题的关键.二、填空题7.(2018·上海·中考真题)某商品原价为a 元,如果按原价的八折销售,那么售价是_____元.(用含字母a 的代数式表示).【点睛】本题考查了销售问题、列代数式,弄清题意,列出符合题意的代数式是解题的关键.8.(2020·河北·模拟预测)若4x y +=,a ,b 互为倒数,则1()52x y ab ++的值是_________9.(2019·广东·中考真题)已知23x y =+,则代数式489x y -+的值是_____.【答案】21【分析】由已知可得x-2y=3,继而对所求的式子进行变形后,利用整体代入思想即可求得答案.【详解】∵x=2y+3,∴x-2y=3,∴4x-8y+9=4(x-2y)+9=4×3+9=21,故答案为21.【点睛】本题考查了代数式求值,正确的进行变形是解题的关键.10.(2022·全国·七年级课时练习)某书店新进了一批图书,甲、乙两种书的进价分别为4元/本、5元/本.现购进m 本甲种书和n 本乙种书,共付款Q 元.(1)用含m ,n 的代数式表示Q =______;(2)若共购进3510´本甲种书及3310´本乙种书,Q =______(用科学记数法表示).【答案】 4m +5n 43.510´【分析】(1)根据题意列代数式即可;(2)根据题意列出算式进行化简即可.【详解】解:(1)由题意,得Q =4m +5n ;(2)Q =4×3510´+5×3310´=20×310+15×310=35×310=43.510´.故答案为:4m +5n ,43.510´.【点睛】本题考查了整式中的列代数式,科学记数法的运算,正确地理解能力和计算能力是解决问题的关键.三、解答题11.(2021·全国·七年级单元测试)如图所示,有长为l 的篱笆,利用它和一面墙围城长方形园子,在园子的长边上开了1米的门,园子的宽为t .(1)用关于l ,t 的代数式表示园子的面积.(2)当l =100m ,t =30m 时,求园子的面积.【答案】(1)()12S l t t =+-;(2)21230m 【分析】(1)表示出长,利用长方形的面积列出算式即可;(2)把l =100m ,t =30m 代入(1)求得答案即可;【详解】解:(1)宽为t,长为:l +1-2t 面积为:()12S l t t =+-(2)当l =100m ,t =30m 时S=()()12100123030l t t +-=+-´´=1230故园子的面积为21230m 【点睛】本题考查根据实际,列出代数式,再代入求值,关键在于找到等量关系.12.(2022·全国·七年级专题练习)(1)观察下面的点阵图与等式的关系,并填空:第1个点阵2213112++=+第2个点阵13531++++=______+______第3个点阵++++++=______+______.1357531(2)通过猜想,写出第n个点阵相对应的等式.【答案】(1)22,32,32,42(2)1+3+5+…+(2n﹣1)+(2n+1)+(2n﹣1)+…+5+3+1=n2+(n+1)2【分析】(1)根据点阵图即可求解;(2)根据(1)中的3个等式得出规律,进而写出第n个点阵相对应的等式.【详解】(1)第1个点阵1+3+1=12+22,第2个点阵1+3+5+3+1=22+32,第3个点阵1+3+5+7+5+3+1=32+42.故答案为22,32,32,42;(2)根据(1)中的3个等式,可以发现,第n个点阵的对角点最多有2n+1个,而且等号右侧是22++,n n(1)∴第n个点阵相对应的等式为:1+3+5+…+(2n﹣1)+(2n+1)+(2n﹣1)+…+5+3+1=n2+(n+1)2.【点睛】本题考查了规律型:图形的变化类,要求学生通过观察,分析、归纳发现其中的规律.13.(2022·全国·七年级专题练习)用同样大小的两种不同颜色(白色.灰色)的正方形纸片,按如图方式拼成长方形.[观察思考]第(1)个图形中有212=´张正方形纸片;´+==´张正方形纸片;第(2)个图形中有2(12)623´++==´张正方形纸片;第(3)个图形中有2(123)1234第(4)个图形中有2(1234)2045´+++==´张正方形纸片;……以此类推(1)[规律总结]第(5)个图形中有__________张正方形纸片(直接写出结果).(2)根据上面的发现我们可以猜想:123n ++++=L __________.(用含n 的代数式表示)(3)[问题解决]根据你的发现计算:101102103200++++L .14.(2022·全国·七年级专题练习)特殊值法,又叫特值法,是数学中通过设题中某个未知量为特殊值,从而通过简单的运算,得出最终答案的一种方法.例如:已知:432432106a x a x a x a x a x ++++=,则:①取0x =时,直接可以得到00a =;②取1x =时,可以得到432106a a a a a ++++=;③取1x =-时,可以得到432106a a a a a -+-+=-;④把②,③的结论相加,就可以得到4222a a +020+=a ,结合①00a =的结论,从而得出420a a +=.请类比上例,解决下面的问题:已知654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=.求:(1)0a 的值;(2)6543210++++++a a a a a a a 的值;(3)642a a a ++的值.【答案】(1)4(2)8(3)0【分析】(1)观察等式可发现只要令x =1即可求出a 0;(2)观察等式可发现只要令x =2即可求出a 6+a 5+a 4+a 3+a 2+a 1+a 0的值;(3)令x =2即可求出等式①,令x =0即可求出等式②,两个式子相加即可求出来.(1)解:当1x =时,∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=,∴0414a =´=;(2)解:当2x =时,∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=,∴65432108a a a a a a a +++++=+;(3)解:当2x =时,∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=,∴65432108a a a a a a a +++++=+①;当0x =时,∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=,∴65432100+-++=--a a a a a a a ②;用①+②得:406282222++=+a a a a ,∴642040a a a a ++=-=.【点睛】本题主要考查代数式求值问题,合理理解题意,整体思想求解是解题的关键.15.(2019·贵州贵阳·中考真题)如图是一个长为a ,宽为b 的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a ,b 的代数式表示矩形中空白部分的面积;(2)当a =3,b =2时,求矩形中空白部分的面积.【答案】(1)S =ab ﹣a ﹣b +1;(2)矩形中空白部分的面积为2;【分析】(1)空白区域面积=矩形面积-两个阴影平行四边形面积+中间重叠平行四边形面积;(2)将a=3,b=2代入(1)中即可;【详解】(1)S =ab ﹣a ﹣b +1;(2)当a=3,b=2时,S=6﹣3﹣2+1=2;【点睛】本题考查阴影部分面积,平行四边形面积,代数式求值;能够准确求出阴影部分面积是解题的关键.。
七年级代数式考点及知识点代数式是代数学中的一个重要概念,它是数与字母的组合,可以用来表达一些运算关系或者数学方程式。
在初中数学中,代数式也是一个重要的考点,而且在七年级中就已经涉及到了一些基本的知识和技能。
本文将从以下几个方面对七年级代数式的考点和知识点进行讲解。
一、代数式的定义和表示代数式是由数字、字母和运算符号组合而成的表达式,它可以用一组数或者字母的值来代替其中的变量。
代数式可以表示数学中的各种运算关系,比如加减乘除、指数、根式等等。
在代数式中,一般会用字母表示未知量或者变量,而数字则表示已知量或者常数。
代数式的表示方式有两种,一种是算式的形式,另一种则是一般式的形式。
二、代数式的基本性质代数式具有许多基本的性质,例如:1. 代数式可以进行加减乘除和指数运算,满足运算法则和运算律;2. 代数式中的运算符号可以改变位置,但结果不变;3. 代数式中的因式可以提取出来,从而简化表达式;4. 代数式中的括号可以展开或者合并,但结果不变;5. 代数式可以进行分式拆分或者合并,以简化表达式。
三、代数式的含义和应用代数式在数学中的应用非常广泛,可以用于解方程、求解未知量、分析数据等等。
在初中数学中,常见的应用场景如下:1. 根据实际问题建立代数式,分析问题的特征和规律;2. 判断代数式中的常数和变量,求解未知量的值;3. 应用代数式进行数据分析和统计,得出结论和规律。
四、七年级代数式的考点和知识点在七年级数学中,涉及到代数式的考点和知识点主要有以下几个方面:1. 代数式的基本概念和性质:理解代数式的定义和表示,掌握代数式的基本性质和运算法则;2. 一元一次方程与简单的代数式:理解一元一次方程的概念和求解方法,掌握简单的代数式的表达和分析;3. 代数式和图象:掌握代数式和图象的关系,了解一些基本的代数图形;4. 代数式的应用:掌握代数式在实际问题中的应用场景,了解代数式在数学中的传统应用和新兴应用。
五、总结代数式是初中数学中一个重要的概念和考点,掌握代数式的基本概念和性质,理解代数式的应用场景,可以提高解题的效率和准确性。
七年级上册代数式的知识点代数式是代数学中最基础和重要的概念之一,是初中数学的重要基础。
作为代数学中最基础的概念,学生必须深入了解和掌握代数式的知识点,以便能更好地应对高年级的代数学习。
本文将介绍七年级上册代数式的知识点。
一、代数式的概念代数式是用代数符号表示的运算式,其中包含被求值的未知数和已知数、加减乘除符号等运算符号。
代数式可以根据它是否具有值进行区别。
如果一个代数式中所有字母均已知,那么可以通过代数式计算得到代数式的值。
反之,如果代数式中存在未知数,那么暂时还无法求出它的值。
二、代数式的基本性质1.相同的代数式可互相代替,即两个式子相等。
2.在代数式中,加减法与乘法满足分配律。
3.在代数式中,异号相乘为负,同号相乘为正。
三、代数式的合并同类项代数式中,如果含有同类项,可以通过合并同类项简化式子。
同类项是指指数相同并且变量相同的项。
比如:2x + 3y - 2x + 4z = 3y + 4z此时,2x和-2x相抵消了,剩余的项变成了3y和4z,即合并了同类项。
四、代数式的分配原理代数式的分配原理是指在代数式中,括号中的系数和被加减数均应与括号外的系数相乘。
也就是说,对于代数式a(b + c),应先将括号内的式子乘以a,再将其分别加起来。
例:3(x + 4) = 3x + 122(y - 5) = 2y - 10五、代数式的化简代数式化简是指将代数式转化为等效的简化形式,化简目的是便于后续的运算。
例:3x + 5x - 2x = 6x3(a - 2) + 2(3 - a) = -1a + 9六、代数式的因式分解代数式的因式分解是将代数式分解成一个或多个因式相乘的形式。
因式分解是代数式的重要基础,通过因式分解可以大大简化式子,易于后续的计算。
代数式的因式分解需要掌握一些基本技巧,如公因式法、配方法、分组法等。
例:1.2x² + 6xy = 2x(2x + 3y)2.6x² - 3x = 3x(2x - 1)七、代数式的求值代数式的求值是指根据代数式中字母的具体取值,求出代数式的值。
七年级上册数学《代数式的加减》代数式加减知识点整理七年级上册数学《代数式的加减》知识点整理一、代数式的定义代数式是由数字和字母(称为变量)以及加法、减法运算符号组成的算式。
代数式可以表示数值之间的关系。
二、代数式的加法1. 同类项相加:对于同类项(指字母部分相同的项),将它们的系数相加,字母部分保持不变。
同类项相加:对于同类项(指字母部分相同的项),将它们的系数相加,字母部分保持不变。
例如:- 2x + 3x = 5x- 4ab + 2ab = 6ab2. 合并同类项:将多个同类项相加合并为一个项。
合并同类项:将多个同类项相加合并为一个项。
例如:- 3x + 2x + 5x = 10x- 2ab + 5ab = 7ab三、代数式的减法1. 减去一个代数式:将被减去的代数式中的每一项取相反数,再进行加法运算。
减去一个代数式:将被减去的代数式中的每一项取相反数,再进行加法运算。
例如:- 3x - 2x = x- 4ab - 2ab = 2ab2. 合并同类项后再减:先合并被减代数式和减去代数式的同类项,再进行减法运算。
合并同类项后再减:先合并被减代数式和减去代数式的同类项,再进行减法运算。
例如:- 5x - 2x - 3x = 0- 7ab - 4ab = 3ab四、简化代数式1. 合并同类项:将代数式中所有同类项相加合并为一个项。
合并同类项:将代数式中所有同类项相加合并为一个项。
2. 去括号:根据括号前的符号,将括号内的代数式和外部的代数式相乘或相除,并保留符号。
去括号:根据括号前的符号,将括号内的代数式和外部的代数式相乘或相除,并保留符号。
3. 去括号后再合并同类项:先按照上述方法去括号,再合并同类项。
去括号后再合并同类项:先按照上述方法去括号,再合并同类项。
例如:- 2(x + 3) = 2x + 6- 3(2x - 5) = 6x - 15以上是七年级上册数学《代数式的加减》的知识点整理,希望对你有帮助!。
七年级代数式知识点归纳总结金子塔七年级数学上册第二章代数式知识点归纳一、代数式代数式是由数、字母和运算符号(加、减、乘、除、乘方、开方等)连接而成的式子,用字母表示数,可以使问题变得准确又简单。
一个单独的数或字母也可以是代数式。
需要注意的是,代数式中可以含有括号,但不能含有“=。
<、≠”等符号。
在等式和不等式中,等号和不等号两边的式子一般都是代数式。
字母所表示的数必须符合实际问题的意义,才能使代数式有意义。
代数式的书写格式:在代数式中出现乘号时,通常省略不写,数字与字母相乘时,数字应写在字母前面。
带分数与字母相乘时,应先把带分数化成假分数。
数字与数字相乘时,一般仍用“×”号,即“×”号不省略。
在代数式中出现除法运算时,一般写成分数的形式,分数线具有“÷”号和括号的双重作用。
如果表示和(或)差的代数式后有单位名称,则必须把代数式括起来,再将单位名称写在式子的后面。
列代数式的步骤:抓住表示数量关系的关键词语,弄清运算顺序,用运算符号把数与表示数的字母连接。
代数式的值代数式的值是指把代数式里的字母用数代入,计算后得出的结果。
求代数式的值的步骤有两个:用数值代替代数式里的字母,简称“代入”;按照代数式指定的运算关系计算出结果,简称“计算”。
在代入时,将相应的字母换成指定的数,运算符号、原来的数及运算顺序都不能改变。
在代入时,需要恢复必要的运算符号,如省略的乘号要还原。
当字母取值为负数时,代入时要注意将该数添加括号。
二、整式由数与字母的积组成的代数式叫做单项式,也称为整式。
数字因数叫做这个单项式的系数;所有字母的指数之和叫做这个单项式的次数。
例如,a3b的次数是4.单项式是代数式中的一种,指只含有一个项的代数式。
单项式可以是一个数、一个字母或数与字母的乘积,其中字母可以有指数。
当单项式的系数为1或-1时,这个“1”应省略不写,如-ab的系数是-1,a3b的系数是1.多项式是由几个单项式相加或相减得到的代数式。
七年级数学上册第三单元的必背知识点一、代数式1. 定义:用基本运算符号 (如加、减、乘、除、乘方等)把数和字母连接而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
2. 单项式:表示数与字母乘积的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
系数:单项式中的数字因数叫做单项式的系数。
次数:单项式中所有字母的指数和叫做单项式的次数。
如果某个字母没有指数,则默认其指数为1;常数的次数为0。
3. 多项式:几个单项式的和叫做多项式。
项:多项式中的每个单项式叫做多项式的项。
次数:多项式里次数最高项的次数,叫做这个多项式的次数。
常数项:不含字母的项叫做常数项,其次数为0。
4. 整式:单项式和多项式统称为整式。
注意,分母上含有字母的式子不是整式。
5. 代数式的书写规范:数与字母、字母与字母相乘时,乘号可以省略不写或用“·”表示,并把数字放到字母前。
出现除式时,用分数表示。
带分数与字母相乘时,带分数要化成假分数。
若运算结果为加减的式子,当后面有单位时,要用括号把整个式子括起来。
二、整式的加减1. 同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
2. 合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。
合并同类项的法则是同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。
3. 整式的加减运算步骤:如果有括号,先去括号(注意去括号法则)。
识别并合并同类项。
写出合并后的结果。
三、运算律和计算公式1. 加法交换律和结合律:交换律:a+b=b+a结合律:(a+b)+c=a+(b+c)2. 乘法交换律和结合律:交换律:ab=ba结合律:(ab)c=a(bc)3. 乘法对加法的分配律:a(b+c)=ac+bc4. 基本计算公式:长方形周长:C=2(a+b);面积:S=ab正方形周长:C=4a;面积:S=a^2平行四边形面积:S=ah三角形面积:S=(1/2)ah梯形面积:S=(1/2)(a+b)h圆形周长:C=πd(或2πr);面积:S=πr^2四、其他注意事项在进行整式的加减运算时,要注意去括号和合并同类项的正确性。
七年级代数式所有知识点代数式是指由数字、字母和运算符号构成的式子,它是代数学中最基本的概念之一。
在七年级代数课程中,代数式是一个很重要的部分。
在本文中,我们将探讨七年级代数式的所有知识点。
一、代数式的定义代数式可以用字母或符号来代替某些数,其中的符号可以是加号、减号、乘号、除号以及其他一些数学符号。
代数式通常用来表示某些计算或者某些关系式。
举例来说, 3x+5 就是一个代数式。
二、代数式的种类在七年级代数中,代数式主要可分为以下几种:1. 单项式:只含有一个变量的代数式,如2x、3y、4z等等。
2. 多项式:含有多项变量或者常数项的代数式,如3x+4y、2x²+3x+1、3x²+5x+7等等。
3. 基本代数式:就是由运算符和数字组合形成的简单代数式,如 3+5=8。
4. 存在量:代表某个未知变量或者数量的代数式,如x+10=20。
5. 等式:代表两个代数式等于的关系式,如 3x+2=14。
6. 不等式:代表两个代数式不等于的关系式,如x+2≤5。
三、代数式的基本性质在七年级的代数课程中,有以下几个代数式的基本性质:1. 同类项可以相加,但不同类项不能相加。
例如,2x和3x是同类项,可以相加;但是2x和3y就不是同类项,不能相加。
2. 代数式可以进行等式的变形。
例如,将等式3x+2=14变形成3x=12。
3. 代数式的反运算。
例如,将3x+2=14的等式反过来写成3x=12,再进行反运算得出x=4。
4. 代数式的合并和分解。
例如,将 3x²+5x+2 这个代数式从高到低依次分解可以得到3x²+(2x+3x)+2。
4. 代数式的化简。
例如,化简 3x+2x+5y-4x+3 的代数式得到 5x+5y+3。
四、代数式的解法七年级代数的课程中,代数式的解法主要分为以下几种:1. 把含有未知量的代数式转化为等式,并进行等式运算。
例如,把 2x+5=15 的代数式转化为 2x=10,再进行反运算得到x=5。
七年级上代数式知识点总结代数式是代数学中的基础知识点,也是学习高中数学和大学数学的首要步骤。
在七年级上学期的代数学中,学生需要学习并掌握代数式的相关知识点。
本文将对七年级上代数式的知识点进行总结,以帮助学生快速掌握其中的内容。
一、代数式的基本概念代数式由常数、变量和运算符号组成,例如2x+3或x²+4x-5。
其中,常数是不变的数值,变量是代表未知量的字母,运算符号包括加、减、乘、除等。
代数式的值依赖于变量的取值,当变量的值确定时,代数式的值也就被确定下来。
二、代数式的加减法代数式的加减法是指将两个或多个代数式相加或相减的运算。
例如,(2x+3)+(4x-5)=6x-2。
在进行代数式的加减法时,需要将同类项合并,即将系数相同、字母相同、次数相同的项合并在一起。
对于没有同类项的代数式,其加减法就是将其合并后去除括号。
代数式的乘法是指将两个或多个代数式相乘的运算。
例如,(2x+3)(4x-5)=8x²-2x-15。
在进行代数式的乘法时,需要将每一项分别相乘得到新的代数式,然后将所有的代数式相加合并成一个代数式。
需要注意的是,在乘法中有些特殊的式子需要记住,例如平方、立方等。
四、代数式的除法代数式的除法是指将一个代数式除以另一个代数式的运算。
例如,(6x²+9x)/(3x)=2x+3。
在进行代数式的除法时,需要根据代数式的除法原理将分子分母都约分,然后整理成标准形式。
五、代数式的公因式提取代数式的公因式提取是指将一组代数式中相同的公因式提取出来。
例如,4x²+8x=4x(x+2)。
在进行公因式提取时,需要将相同的公因式提到括号外,然后再用代数式乘法将其扩展开。
代数式的组合是指将多个代数式按照不同的方式组合而成新的代数式。
例如,(2x+3)(x-1)+(4x-5)²=13x²+14x-8。
在进行代数式的组合时,可以采用括号分配律、组合律、交换律等代数式运算规律。
初一数学(上)知识点代数初步知识1. 代数式:用运算符号+ - ³ ÷ 连接数及字母的式子称为代数式(单独一个数或一个字母也是代数式)2.几个重要的代数式:(m 、n 表示整数)(1)a 与b 的平方差是: a 2-b 2 ; a 与b 差的平方是:(a-b )2 ;(2)若a 、b 、c 是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c ;(3)若m 、n 是整数,则被5除商m 余n 的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n 、n+1 ; 有理数1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数;a >0 ⇔ a 是正数;a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ;(3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; (3) 0a 1a a>⇔= ; 0a 1a a<⇔-=;(4) |a|是重要的非负数,即|a|≥0;注意:|a|²|b|=|a ²b|, ba b a=. 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;倒数是本身的数是±1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a 2是重要的非负数,即a 2≥0;若a 2+|b|=0 ⇔ a=0,b=0;15.科学记数法:把一个大于10的数记成a ³10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明. 整式的加减1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
七年级上册数学代数知识点归纳在七年级数学中,代数是一个很重要的知识点。
这个领域涵盖了方程、多项式、因式分解、代数式和一些简单的函数等概念。
以下是七年级上册数学代数知识点的归纳总结。
一、基本代数知识1. 代数式:代数式是由数字、字母和运算符号组成的式子,如:3x + 2y。
2. 方程:方程是一个等式,其中至少有一个未知数,如:x + 5 = 9。
3. 不等式:不等式是一个包含大于或小于号的数学式子,如:3x + 4 < 10。
4. 系数:指代数式中字母的乘数,如:3x中的系数为3。
二、一元一次方程1. 定义:一元一次方程是一个含有一个未知数且最高次数为1的方程。
2. 解法:可以通过移项、加减消元等方法来解决一元一次方程。
3. 实践应用:一元一次方程在生活中应用广泛,如:计算物品价格折扣、解决包裹快递运费等问题。
三、解一元一次不等式1. 定义:一元一次不等式是一个含有一个未知数且最高次数为1的不等式。
2. 解法:可通过移项、加减消元等方法来求解。
3. 实践应用:一元一次不等式在生活中应用广泛,如:解决物品优惠、绿化带修剪等问题。
四、一元二次方程1. 定义:一元二次方程是一个含有一个未知数且最高次数为2的方程。
2. 解法:可以用配方法、公式法等方法解决一元二次方程。
3. 实践应用:一元二次方程在生活中也有广泛的应用,如:计算速度、计算物体的质量等问题。
五、因式分解1. 定义:因式分解是将一个多项式表示成一系列因式(单项式或常数)的乘积的操作。
2. 解法:可以根据公式或试除法等方法进行因式分解。
3. 实践应用:因式分解可以用于简化分式、求解极值等问题。
六、整式的加减1. 定义:将同类项合并的操作。
2. 解法:将同类项相加或减后,保留原有的系数。
3. 实践应用:整式的加减可以应用于实际的计算中,如:计算面积、周长等。
总的来说,代数知识点在初中数学中是很重要的一部分,对于学生的数学学习有着较大的影响。
七年级数学上册代数式知识点复习及练习知识点1代数式 1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
2、代数式求值的一般步骤:(1)代数式化简(2)代入计算(3)对于某些特殊的代数式,可采用“整体代入”进行计算。
知识点2、单项式的概念式子x 3,m t xy a ---,6.2,,32它们都是数或字母的积,象这样的式子叫做单项式, 单独的一个数或一个字母也是单项式。
注意:单项式是一种特殊的式子,它包含一种运算、三种类型。
一种运算是指数与字母、字母与字母之间只能是乘法的一种运算,不能有加、减、除等运算符号;三种类型是指:一是数字与字母相乘组成的式子,如ab 2;二是字母与字母组成的式子,如3xy ;三是单独的一个数或字母,如m a ,2-,。
知识点3、单项式的系数单项式中的数字因数叫做这个单项式的系数。
注意:(1)单项式的系数可以是整数,也可能是分数或小数。
如42x 的系数是2;3ab 的系数是31,2.7m 的系数是2.7。
(2)单项式的系数有正有负,确定一个单项式的系数,要注意包含在它前面的符号, 如-()xy 2的系数是-2(3)对于只含有字母因素的单项式,其系数是1或-1,不能认为是0,如-2xy 的系数是-1;2xy 的系数是1。
(4)表示圆周率的π,在数学中是一个固定的常数,当它出现在单项式中时,应将其作为系数的一部分,而不能当成字母。
如2πxy 的系数就是2π知识点4、单项式的次数一个单项式中,所有字母的指数和叫做这个单项式的次数。
注意:(1)计算单项式的次数时,应注意是所有字母的指数和,不要漏掉字母指数是1的情况。
如单项式z y x 342的次数是字母z y x ,,的指数和,即4+3+1=8,而不是7次,应注意字母Z 的指数是1而不是0.(2)单项式是一个单独字母时,它的指数是1,如单项式m 的指数是1,单项式是单独的一个常数时,一般不讨论它的次数。
新浙教版七年级上册数学第四章《代数式》知识点及典型例题@关于代数式分类的拓展考点一、关于代数式的书写是否正确的问题考点二、关于去括号的问题;考点三、关于代数式中考概念的题目考点四、关于代数式求值的问题,主要有先化简再直接代入、整体代入、稍作变形后再代入(把整式的加减也归入这一类)考点五、用代数式表示实际生活中的问题考点六、用代数式表示图形的长度及面积问题考点七、用代数式求关于规律性的题目将考点与相应习题联系起来考点一、关于代数式的书写是否正确的问题^1、下列代数式书写规范的是()A.512ab2B.ab÷c C.a-cbD.m·32、下列代数式书写规范的是()A.a÷3 B.8×a C.5a D.21 2 a考点二、关于去括号的问题1、下列运算正确的是()A.-3(x-1)=-3x-1 B.-3(x-1)=-3x+1 C.-3(x-1)=-3x-3 D.-3(x-1)=-3x+3 2、下列去括号中错误的是(),A.2x2-(x-3y)= 2x2-x+3y B.13x2+(3y2-2xy)=13x2-2xy +3y2C.a2-4(-a+1)= a2-4a-4 D.- (b-2a)-(-a2+b2)= - b+2a+a2-b23、下列去括号,错误的有()个①x2+(2x-1)= x2+2x-1,②a2-(2a-1)= a2-2a-1,③m-2(n-1)=m-2n-2,④a-2(b-c)=a-2b+cA. 0B. 1C. 2D. 34、去括号:-[-(1-a)-(1-b)]=考点三、关于代数式中与概念有直接关系的题目1、单项式中-27πa2b的系数和次数分别是(),A.-27,4 B.27,4 C.-27π,3 D.27π,32.下列代数式中,不是整式的是()A. 13a2+12a+1 B. a2+1bC. m+12D.2006x+y3.下列说法正确的是()⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧)(被开方数含有字母无理式分式多项式单项式整式有理式代数式A. x 2-3x 的项是x 2,3xB.3a b +是单项式 C. 12,πa ,a 2+1都是整式 D. 3a 2bc-2是二次二项式 4、若m ,n 为自然数,则多项式x m -y n -2m+n 的次数是( )A. mB. nC. m+nD. m ,n 中较大的数 5、下列各项式子中,是同类项的有( )组 。