OPEN_meter欧洲智能量测系统
- 格式:pdf
- 大小:1.45 MB
- 文档页数:25
欧盟高级计量架构 OPEN meter 标准体系介绍陶维青;沙磊【摘要】在远程抄表系统框架基础上介绍了OPEN meter标准体系,分析了OPEN meter标准的推出目的、系统框架和接口框架,并着重介绍了集中器和电表之间的接口MI1-CI1的模型,给出OPEN meter工程在框架基础上做出的测试报告结果。
最后对未来OPEN meter的发展前景做出了展望。
%Basing on the remote meter-reading system , the OPEN meter ’ s standard system was introduced;and the standards ’ purpose , system framework and interface framework were discussed , including the MI 1-CI1 interface model between concentrator and meter interface .The test report for OPEM meter was presented and its prospect was forecasted .【期刊名称】《化工自动化及仪表》【年(卷),期】2014(000)006【总页数】5页(P609-613)【关键词】高级计量架构;OPEN meter;PRIME;接口【作者】陶维青;沙磊【作者单位】合肥工业大学电气与自动化工程学院,合肥230009; 安徽科大智能电网技术有限公司,合肥230088;合肥工业大学电气与自动化工程学院,合肥230009【正文语种】中文【中图分类】TH7012007年1月,欧洲委员会采用了能量和气候改变方案,该方案的主要目标是:到2020年,温室气体排放量必须减少20%,在欧洲能源体系中,可再生能源必须占20%,同时欧洲主要能源消耗量必须减少20%。
2021移动LTE考试题库基础篇及答案14考号姓名分数一、单选题(每题1分,共100分)1、在进行RRC连接成功率低的问题排查时,不需要采集的数据A.问题小区历史告警和现在状态B.小区载波性能统计C.天线型号D.UE呼叫失败CallTrace信令跟踪答案:C2、LTE上行功控分为几种?A.1种B.2种C.3种D.4种答案:C3、切换包括()三个阶段没有A.切换测量B.切换决策C.切换执行D.切换等待答案:D4、天线端口由()定义A.流数B.码字C.参考信号D.秩答案:C5、EPS网络特点是( )。
A.同时提供分组域和电路域B.仅提供分组域,无电路域C.不提供分组域,仅有电路域D.既无分组域,也无电路域答案:B6、LTE/EPC网络的去附着流程可由什么实体发起()A.UEB.MMEC.HSSD.以上都对答案:D7、ICIC是:的干扰规避:A.时域B.频域C.空域D.码域答案:B8、假定小区输出总功率为46dBm,在2天线时,单天线功率是?A.46dmB.43dbmC.49bmD.40dbm答案:B9、下述关于2*2 MIMO说法正确的是?()A.2发是指eNodeB端,2收也是指eNodeB端B.2发是指eNodeB端,2收是指UE端C.2发是指UE端,2收也是指UE端D.2发是指UE端,2收是指eNodeB端答案:B10、SPS调度可以应用在()方向A.仅上行B.仅下行C.仅上行和下行同时应用D.上行或下行或上下行同时应用答案:D11、关于空闲态小区重选对现有2/3G网络及用户体验的影响,下面说法错误的是( )A.A、需软件升级LTE覆盖区内所有2/3G现网无线设备,小区广播中支持LTE邻区、重选优先级等新参数的配置B.B、需软件升级LTE覆盖区内所有SGSN以识别LTE多模终端并将其路由至LTE网络C.C、执行重选时对用户拨打电话没有影响D.D、频繁重选导致终端耗电增加,待机时间缩短答案:C12、在信道编码中,码块分段时最大的码块大小为Z的值为:A.4096B.5120C.6144D.7168答案:C13、宏分集的取舍决定了()的网络架构A.E-UTRANC.RNCD.UE答案:A14、LTE网络中用( )表示信号质量。
OpenITS多场景虚拟交通测量平台使用说明随着信息技术的高速发展,交通数据获取能力越来越强、体量越来越大,这些海量的数据为交通领域的研究提供了新的手段和数据基础。
交通流信息的检测作为交通系统重要的数据资源,可用于掌控道路交通的运行情况,精确诱导控制等,检测数据的完备性课提升交通数据感知质量,为交通系统的可视、可测、可控提供了技术支撑。
为了契合交通信息技术发展潮流,“OpenITS研究计划联盟”开放了一个多场景虚拟交通测量平台()。
在此测量平台下,可自定义交通测量场景,生成模拟检测数据,以支撑交通基础问题研究。
虚拟交通测量平台旨在整合一个全域、全量、全时数据环境,精确刻画车辆出行、路口及路网状态,为路网交通状态感知与分析提供良好基础,从而为本次大赛提供了一个统一的、开放的、可拓展的研究环境。
1、平台简介多场景虚拟交通测量平台是基于精准重现的全量交通行为仿真平台搭建的交通流参数测量平台,包括线圈和浮动车两类时空范围可选、参数可设置的检测场景。
通过开放测量场景,可支撑数据预处理、交通信息提取、数据挖掘、交通状态分析与预测、数据驱动的新型交通理论方法等交通基础问题研究。
此外,平台也支撑检测布局优化的基础研究,受限于检测器布设的成本及精度问题,现实中往往无法实现交通网络状态的全面感知。
借助虚拟交通测量平台,参赛者在比赛中能在全网范围自主选择各类任意数量的检测手段对网络进行感知,并基于检测数据自定义地布局和开展赛题相关的应用研究。
2、平台说明虚拟交通测量平台的交通数据主要来源于安徽省宣城市。
该城市路网拥有密布的电警卡口,检测粒度可细化至车辆个体级、车道级、秒级的过车信息。
虚拟交通测量平台基于交通流冲击波理论,倒推中间运动过程,实现了个体车辆轨迹的重构。
该平台正是通过这些完备的出行信息检测与时空轨迹重构,实现了交通场景的全息重构与生成。
图1 多场景交通测量平台(安徽宣城)虚拟交通测量平台提供了感应线圈和浮动车GPS信息检测等各类测量工具,可以模拟交通信息数据采集,为参赛者提供了自定义检测的研究数据。
改进型自适应无迹卡尔曼姿态算法侯江宽;马珺;贾华宇【摘要】提出了一种改进型自适应无迹卡尔曼滤波姿态算法,能够有效的解决MEMS陀螺仪的漂移和噪声问题,同时减小运动加速度对加速度计的影响.将改进的自适应Sage-Husa算法与无迹卡尔曼滤波器相结合,使量测噪声统计特性在线更新,提高系统的抗干扰能力,避免扩展卡尔曼滤波的线性化误差,可以得到精确的全姿态角.每次迭代只更新3个欧拉角,提高了系统的解算速度.飞行实验和分析表明:改进算法能够有效的提高姿态解算精度,收敛速度快,自适应能力强,稳定可靠,具有较强的鲁棒性,在干扰消失时能够快速得到准确姿态角.%An improved adaptive unscented Kalman filter for attitude determination is proposed, which can effectively solve the drift and noise problem of gyroscope and reduce the influence of motion acceleration on the ac-celerometer. Combining the improved adaptive Sage-Husa algorithm with the unscented Kalman filter,the statistic characteristic of the measurement noise is updated on-line,the anti-jamming capability of the system is improved, and the linearization error of the extended Kalman filter can be avoided. And we can get the precise Attitude angle. Only three Euler angles are updated each iteration which can improve the solution speed of the system. The flight experiment and analysis show that the improved algorithm can effectively improve the accuracy of attitude determi-nation,improve convergence speed,strong adaptability,robustness and stability,and can get the accurate attitude an-gle quickly when the interference disappears.【期刊名称】《传感技术学报》【年(卷),期】2017(030)010【总页数】7页(P1518-1524)【关键词】传感器;姿态解算;无迹卡尔曼滤波器;自适应Sage-Husa算法;多旋翼飞行器【作者】侯江宽;马珺;贾华宇【作者单位】太原理工大学物理与光电工程学院,山西晋中030600;太原理工大学物理与光电工程学院,山西晋中030600;太原理工大学信息工程学院,山西晋中030600【正文语种】中文【中图分类】TP27获取准确的姿态是无人飞行器实现自主飞行的前提条件[1],由于MEMS(Micro Electro Mechanical Systems)传感器的高集成度、低成本,在微型飞行器上大量使用。
4-1课时作业Ⅰ.阅读理解A(2021·福州模拟)When Millet was a boy he worked on his needy father's farm. At the rest hour in the fields the other workers would all take naps, but young Millet would spend time drawing.Finally the village where he lived gave him a little money to Paris to study art.When Millet reached Paris he had a tough time.Fortunately, when he was almost starving someone bought one of his peasant paintings, which enabled his family to leave for Barbizon.Millet's pictures of peasants at work were painted in a unique way. The painter would go out on the farms and watch them carefully—digging, hoeing, spreading manure, sawing wood, or sowing grain. Then he would come home and paint what he had seen. So astonishingly accurate was his memory that he could paint at home without models and get all the movements of his figures right. When he did need a figure to go by he would ask his wife to pose for him.One of his noted artworks is called “The Sower”,which shows a man seeding. He reaches into his bag for seed and then swings backward to scatter the seed, and with each swing of his hand the sower strides forward. In Millet's picture the sower has been working hard, but his swinging step and arm still move smoothly, like a machine. Only the man's head reveals his great tiredness.Another m asterpiece is called “The Gleaners”. A gleaner is someone picking up the leftover in the field after the wheat harvest.When farmers near Barbizon are extremely badly-off, even the little the gleaners can find is a help. You can see from Millet's picture what back-breaking work gleaning must be.1.What do we know about Millet?A.His wife supported him to be a painter.B.He was keen on painting as a kid.C.He spent his whole life in Barbizon.D.He was brought up in Paris.2.How did he paint the laboring farmers?A.Asking models for help.B.Imagining figures in the field.C.Remembering what he had observed.D.Recalling the days on his father's farm.3.What do Millet's works convey?A.The farmers' hardships.B.The scene of farming.C.His love for the village.D.His anxiety about the farmers.4.What painting style of Millet can be inferred from the text?A.Impressionistic.B.Abstract.C.Romantic. D. Realistic.【语篇解读】本文主要介绍了著名画家Millet从小就喜欢画画,他的画作主要描绘了农民劳动时的场景。
FACT SHEET - TS600-PCB, QMS-C-AS-201-01, 03-2023 © MPI 2023 Corporation - Data subject to change without further notice.Instrument Shelf • Test instrument(s) located above the station • Shortest connection to RF probes, ≥ 800 mmQAlibria®• Metrology-grade multiline TRL calibration by integra-tion with NIST StatistiCal• TMR/TMRR calibration methods with on-board standards • Simple, intuitive, multitouch operator interface• Open data base for probes and c ustom c alibration standards RF Calibration• QAlibria® as unique calibartion software• Optional 3 auxiliary chucks for calibration substrates • Built-in ceramic for accurate calibration •1 µm flatness for consistent contact qualityOptional Mounts• For 1x or 2x monitors, standard or large size • Keyboard tray • Laptop trayPCB-Holders• Various holders for horizontal and vertical PCB moun-ting• Free mounting on large breadbord top plate on stage - For horizontal PCB‘s up to 550 x 500 mm- For vertical PCB‘s from 10 x 10 mm up to 100 mm • Optional holder for 3 AUX sites, to mount on bread-board or on MAG base for horizontal and vertical mount - 45° mirrors for easy probe positioning on vertical PCB XYZ Stage Movement• Universal breadboard top plate for highest flexibility • 100 x 100 mm XY total stage movement • 50 mm Z movement•Can be easily removed to adopt for testing large ver-tical boardsVibration Isolation Table• Standard or TMC type on request• Ac tive vibration dampening and auto-levelling func -tionMicroscope Mount and Movements• Stable bridge for high quality optics• 600 x 550 mm fast movement range, to be combined with 50 x 50 mm XY manual movements• 150 mm Z adjustment in 7x 25mm steps combined with 32 mm manual focus drive (coarse/fine)Optics• SZ12 with large 95 mm WD and optical resolving po -wer of 2.5 µm• Combined with CAM-4000P for detailled observation • Ideal for testing on small RF pads Probe Gantries• Stable and rigid design• Supports DC/CV and RF measurements • 3 gantries in E/W/N position•Designed for 550 x 500 mm XY probing areaProbe Platen Slider Set• Rail-guided MicroPositioner mounting• Instrumentation extenders mounted closest to the RF probeHighly flexible RF MicroPositioner• Dedicated PCB version of MP60 for unrivalled stability and flexibility• Integrated yaw base• Probe arm with two horizontal +/- 90° pivots and large vertical dovetail mountTITAN TM Probes• Robust Ni-alloy tip material for probing on hard and rough pads• Short forward skate for probing on small solder bumps and HDI traces• Unique probe tip visibility for consistent contact and repeatable calibration and measurements • Flexible tips for probing on uneven surfaces• Deep and extra-deep access for test on populated boards• Varoius configurations, incl. dual probes w. adjustable channel-to-channel pitchMPI TS600-PCB | Manual Probe System for PCB TestingFor accurate and reliable RF and mmW measurements on PCB boards***Available Options***• Vibration isolation table • Various MicroPositioners。
openflow计量表项(meter entry)结构OpenFlow计量表项(meter entry)结构是软件定义网络中的一个重要组成部分,用于进行流量控制和限制。
本文将详细介绍OpenFlow 计量表项的结构、功能和使用方法。
一、OpenFlow计量表项的结构OpenFlow计量表项包括三个主要部分:计量表ID、范围和计量仪表信息。
1. 计量表ID:用于标识每个计量表项,具有唯一性。
2. 范围:用于指定计量表的流量范围,包括流速和流量大小。
3. 计量仪表信息:用于定义计量仪表的行为和属性,包括速率限制、计费比率和选项等。
二、OpenFlow计量表项的功能OpenFlow计量表项具有以下功能:1. 流量控制:可以设置速率限制、流量限制等,以控制网络中的流量量。
2. 流量管理:可以对不同类型的流进行管理,如视频流、数据流等。
3. 费用计算:可以实现流量计费,并根据计量表的不同设置费用比率。
4. 安全性控制:可以设置流量监控和异常检测等功能,以保障网络安全。
三、OpenFlow计量表项的使用方法使用OpenFlow计量表项,需要完成以下步骤:1. 创建计量表:使用控制器创建一个计量表,为其指定一个唯一的ID,并设定计量表的范围和计量仪表信息。
2. 在交换机上配置计量表:将创建的计量表配置到交换机上,使其实现对网络流量进行控制和管理。
3. 通过控制器对计量表进行管理:可以使用控制器实时监测和管理计量表的状态,如动态调整流量限制和流量范围等。
4. 实现计量表的功能:根据需要实现计量表的流量控制、流量管理、费用计算和安全性控制等功能。
综上所述,OpenFlow计量表项是SDN中的重要功能模块,可以对网络流量进行有效的控制和管理。
在实际应用中,可以根据需要对其进行灵活的配置和调整,以满足不同的业务需求和网络规模。
DSG & DMG SeriesIncremental Linear EncodersInstallation GuideFor Models:DSG-TT, DSG-EV, DSG-EM DMG-TT,DMG-EV, DMG-EMContentsnewall Measurement systems2Contents1.Introduction1.1Brackets 1.2Preparation 1.3Warnings2.technical specification2.1Cable Connections 2.2Output Signals 2.3Resolution Options2.4Maximum T raverse Rates2.5Recommended Encoder Connections2.6DSG-EM/EV & DMG-EM/EV Interface Module3.DsG encoder Assembly4. DMG encoder Assembly5. Mounting the Reader Head5.1DSG 5.2DMG6.Mounting the scales and support Brackets6.1DSG 6.1.1 Double End Mounting 6.1.2 Single End Mounting6.1.3Encoders in Excess of 2.5 meters6.1.4Center Supports For Scales in Excess of 2.5 meters6.2DMG6.2.1 Single End Mounting7.Fitting the scale Guard 8.Cable Routing 9.Final Check10.scale Bracket orientation options 11.Dimension DrawingsIntroduction1.0IntRoDuCtIonThis manual will provide mounting instructions for Newall's DSG and DMG Incremental Linear Encoders. It isimportant that you read and understand this manual prior to beginning the installation.If at any time during the installation you should have any questions, contact Newall or your local authorised representative.1.1BracketsDue to the variety of machine types and applications, it may be necessary to design, make and fit custom bracketsfor the encoder assembly. If brackets are needed, make certain they are rigid enough to prevent any flexing ordistorting while the machine is in operation. Newall offers a variety of bracket kits to aid in the installation.Contact Newall or your local authorised representative for details.1.2PreparationPrior to beginning the installation the machine should be studied to determine where the encoder(s) will be fitted.For best results, it is recommended that the encoder be fitted as close to the machine lead screw or axial driveshaft as possible.DSG: Overall Length = T ravel + 258mm (10.2”)DMG: Overall Length = T ravel + 187mm (7.4”)Outboard mounting of the scale support brackets will add approximately 20mm (3/4") to the stated travel. (Referto Section 10.0)For a more compact installation, scale travels of 300mm (12") or less may be fitted by supporting one end of thescale only by use of a single end mounting block. (Refer to Figure 6.4 and 6.10)It is prefered the moving member of the encoder assembly is the reader head; the scale can be the movingmember but only on certain applications.Cable routing from the reader head should be examined (see section 7). Extension cables are available in a varietyof lengths. Contact Newall or your local authorised representative for further details.For encoders larger than 1500mm (60”) travel, a setup tube (blank scale) is recommended.1.3WarningsIf for any reason the machine axis travel is greater than the actual scale travel it is recommended that mechanicalstops are fitted to the machine to avoid damage caused by over-travel. Newall will not accept responsibility forscale and reader head damage caused by machine over-travel.Both the reader head and the scale are precision made components and it is important that they are handled withcare. By design the encoders can withstand the rigours of the harsh workshop environment. However, permanent damage can occur through bending or severe impact.It is important that the scale be kept at least 13mm (0.5") away from any magnetic bases on indicators or magnetic chucks.DSG and DMG encoders are designed to operate with Digital Readout Systems and therefore may not operatecorrectly with automated or closed loop motion control systems. For closed loop motion control applicationsplease refer to SHG & MHG encodersnewall Measurement systems3technical specificationCertificate No FM360964newall Measurement systemsCable Connections2.1 CABLE CONNECTIONSThe following pin out details apply to DSG-TT/EV/EM, DMG-TT/EV/EMNote: Pin 1 (Orange wire) is used during manufacture and should either not be connected or tied to 0V .2.2 Output Signals2.2.1 DSG-TT and DMG-TTNewall TT series linear encoders provide a differential quadrature output at RS422 TTL levels.The distance between successive edges of the combined pulse train A and B is one measuring step (resolution)2.2.2 DSG-EV/EM and DMG-EV/EMNewall EV & EM series linear encoders provide differential sinusoidal output signals, (via an external module), that are phase shifted by 90°, and can provide 1Vpp or 11µApp signal levels depending on which model is selected.No reference mark is provided with the DSG or DMG range of encoders.newall Measurement systems5technical specificationThe DSG and DMG encoders have a maximum output rate of 1MHz.250kHz Channel frequency500ns min6newall Measurement systemsCable Connections 2.5 Recommended Encoder ConnectionsTTL levels.1Vpp SVV Interface Module (Part No: 600-83640)11µApp SVM Interface Module( Part no: 600-83650)encoder AssemblyMounting the Reader HeadFigure 5.1 - Alignment of the DSG Reader HeadFinal adjustments can be carried out by use of laminated shims, which are included with each encoder assembly. Each layer of shim is equivalent to 0.05mm (0.002").5.2DMGFigure 5.2 - Alignment of the DMG Reader HeadMount the reader head together with its bracket(s) to the machine and secure the assembly parallel with axis travel to within 0.05mm (0.002"). (Refer to Figure 5.2)newall Measurement systemsnotes:Erroneous readings will occur if the reader head is allowed to travel beyond the effective travel limits. (Refer to Figure 6.1)The pre-load on the balls are factory set via the set screw at the tensioner end. Do not tamper with or adjust the set screw as this will alter the calibration and accuracy specification of the scale. (Refer to Figure 6.1)Once the reader head is secured and correctly aligned, the scale support brackets can now be fitted. The scale support brackets consist of the support pin, the support link and the pillar(s).raverse the machine to its maximum position toward the non-cable entry side of the reader head. Maximum position means all available travel, including hand winding past any electrical limits or trip dogs.Carefully slide the blank scale (or DSG scale if less than 1500mm (60") travel), allowing for a sufficient amount of scale to project from the reader head in order to fit the scale support brackets.Assemble the scale support link to the scale support pin leaving approximately 3mm (1/8") gap between the bottom of the pin shoulder and the top of the link.Slide the link/pin assembly onto the scale to approximately 5mm (0.2") away from the end of the reader head. Mounting the scalenewall Measurement systems10Figure 6.1 - DSG ScaleFIXED ENDTENSIONER END16mm EFFECTIVE TRAVEL LIMITS 30mmMounting the scale A maximum of two support pillars may be screwed together to allow for sufficient adjustment of the scale. If twopillars are insufficient to enable the scale to be mounted, then additional brackets will be necessary. These bracketsmust be sufficiently rigid to prevent any axial movement of the scale.Loosely fit the support link/pin assembly onto the pillar and pass the scale through the reader head and into thesupport pin. While gently sliding the scale forward and back 25 - 50mm (1" - 2") through the support pin, carefullytighten the hex screws on the support link, ensuring that the scale slides smoothly through the reader head and intothe support pin. If any interference is detected then fully loosen the hex screws on the support link and repeat this step.note: Do not force the scale through the support pinFigure 6.2 - Reader Head and Bracket AlignmentRemove the scale from the reader head and traverse the machine to its full extent in the opposite direction. Full extent means hand winding past electrical limits.Assemble the scale support link to the scale support pin leaving approximately 3mm (1/8") gap between the bottom ofthe pin shoulder and the top of the link.Slide the link/pin assembly onto the scale making certain that there is sufficient clearance between the reader head andthe support link to prevent damage to the reader head cable. Do not secure the support pin to the scale at this time.T ransfer punch through the support link and into the machine casting. It is important that the support link be kept square to its mounting surface at all times.newall Measurement systems11A maximum of two support pillars may be screwed together to allow for sufficient adjustment of the scale. If two pillars are insufficient to enable the scale to be mounted, then additional brackets will be necessary. These brackets must be sufficiently rigid to prevent any axial or radial movement of the scale.Loosely fit the support link/pin assembly onto the pillar and pass the scale through the reader head and into the support pin. While gently sliding the scale forward and back 25 - 50mm (1" - 2") through the support pin, carefully tighten the hex screws on the support link, ensuring that the scale slides smoothly through the reader head and into the support pin. If any interference is detected then fully loosen the hex screws on the support link and repeat this step.Repeat the above steps at the other end of the machine. Then carefully slide the DSG Scale through the support pin,through the reader head and into the opposite support pin. Tighten the hex screws on the anchor pins.6.1.2single end Mounting note: the maximum total length of the scale must not exceed 610mm (24") when using a singleend mounting kit. the single end mounting kit is sold separately, ask for part number600-63610.Remove the white rivet from the fixed end of the scale, by prying out with a straight edge screwdriver/tool.After the reader head has been installed slide the scale through the reader head and insert the fixed end of the scale into the single end mounting block. (Refer to Figure 6.4)Once the position for the single end mounting block has been determined mark the machine casting using the slot in the mounting block as the guide . Drill and tap M6 x 12mm deep. Fit the mounting block using the M6 socket head cap screw and washer.Check the alignment by gently sliding the scale through the head and in and out of the mounting block, adjustments may be carried out by altering the M5 jacking screws. When the alignment is complete secure the scale by inserting the M5 screw and washer through the mounting block and into the fixed end of the scale.Mounting the scalenewall Measurement systems12Figure 6.3 - Support PillarsMounting the scaleMounting the scale newall Measurement systems14Figure 6.5 - Long Scale Support Bracket Assembly6.1.4Center supports for scales in excess of 2.5 Meters (100”) travelSee data sheet supplied with center supports kit 600-84605Mounting the scale The scale support brackets kit consists of the Anchor Pin, Support Pin , Support Link, and Pillar(s). (Refer to Figure6.8) In order to avoid the risk of damage to the scale during installation all DMG encoders include a set up bar. Theset up bar is of the same diameter as the DMG Scale and will be used to align the brackets to the reader head.Figure 6.8 - DMG Scale Support BracketT raverse the machine to its maximum position toward the non-cable entry side of the reader head. Maximum position means all available travel, including hand winding past any electrical limits or trip dogs.Carefully slide the DMG Scale set-up bar through the reader head, allowing for sufficient scale to project from thereader head in order to fit the scale support brackets.Assemble the support link to the anchor pin leaving approximately 3mm (1/8") gap between the bottom of the anchor shoulder and the top of the link.Slide the link/anchor assembly onto the scale set-up bar to approximately 5mm (0.2") away from the end of the reader head.T ransfer punch through the support link and into the machine casting. It is important that the support link be kept square to its mounting surface at all times.Remove the link/anchor assembly and the scale set-up bar from the reader head. Drill and tap M6 x 12mm deep holeinto the machine casting as marked by the transfer punch. Fit the pillar(s) to the machine casting by using one of the methods shown in Figure 6.3. The pillar shoulder fits square and flush to the machine surface.A maximum of two support pillars may be screwed together to allow for sufficient adjustment of the scale.If two pillars are insufficient to enable the scale to be mounted, then additional brackets will be necessary. These brackets must be sufficiently rigid to prevent any axial movement of the scale.Loosely fit the support link/anchor assembly onto the pillar and pass the scale set-up bar through the reader head andinto the anchor pin. While gently sliding the scale set-up bar in and out of the anchor pin, carefully tighten the capscrews on the support link, ensuring that the scale set-up bar slides smoothly through the reader head and into the anchor pin. If any interference is detected then fully loosen the cap screws on the support link and repeat this step.Remove the scale set-up bar from the reader head and traverse the machine to its full extent in the opposite direction. Full extent means hand winding past electrical limits.Assemble the scale support link to the support pin leaving approximately 3mm (1/8") gap between the bottom of the mounting shoulder and the top of the link. (Refer to Figure 6.8)newall Measurement systems15Mounting the scale newall Measurement systems 16Slide the link/pin assembly onto the scale set-up bar making certain that there is sufficient clearance between the reader head and the support link to prevent damage to the reader head cable. Do not secure the support pin to the scale at this time.T ransfer punch through the support link and into the machine casting. It is important that the support link be kept square to its mounting surface at all times.Remove the link/pin assembly and the scale from the reader head. Drill and tap M6 x 12mm deep into the machine casting as marked by the transfer punch. Fit the pillar(s) to the machine casting by using one of the methods shown in Figure 6.3. The pillar shoulder fit square and flush to the machine surface.Loosely fit the support link/pin assembly onto the pillar and pass the scale set-up bar through the reader head and into the support pin. While gently sliding the set-up bar forward and back 25 - 50mm (1" - 2") through the support mounting, carefully tighten the screws on the support link, ensuring that the scale set-up bar slides smoothly through the reader head and into the support pin. If any interference is detected then fully loosen the screws on the support link and repeat this step.Carefully slide the DMG Scale through the support pin, ensuring the fixed end is inserted first, through the reader head and into the anchor pin.Using the M3 x 16 skt cap screw and spring washer, secure the scale to the anchor pin. It is important that the nylon set screw on the support pin be only “pinched” to the scale at the tensioner end. DO NOT OVER TIGHTEN THENYLON SET SCREW ON THE SUPPORT PIN. Figure 6.9 - Reader Head and Bracket AlignmentMounting the scale / Fitting the scale GuardFitting the scale Guard / Cable Routing / Final Check newall Measurement systems18Figure 7.1 - Fitting the Scale Guard (example shown using a DSG Scale)8.0 CABLe RoutInGThe most important and the most over looked aspect of fitting the encoder is proper cable routing. Dangling and loose cables can be snagged or broken causing irreparable damage. Care should be taken in order to ensure that the cables are secured to the machine and that cable loops do not interfere with any part of the machine or the encoder movements. "P" clips and thread forming screws are provided to route the cables.note: the armoured cable is an integral part of the reader head. If the cable becomes damaged,then it would have to be replaced complete with the reader head.If extension cables are used, do not allow the plug and socket junction to lie in the swarf tray or in the direct flow of coolant or oil.In order to avoid problems associated with electrical noise and interference, do not allow the cables to lie across electrical motors, fuse boxes or electrical pumps.9.0FInAL CHeCkPrior to putting the encoder into operation, slowly traverse the machine axis to both extents of its travel checking at all times that the cables are secure and that machine over travel cannot occur. Newall will not accept responsibility for encoder malfunction caused by over travel or damaged cables.scale Bracket orientation 10.0 sCALe BRACket oRIentAtIon oPtIonsnewall Measurement systems 20newall Measurement systems21newall Measurement systems22notes newall Measurement systems23EUROPENewall Measurement Systems Ltd. Technology Gateway, Cornwall Road South Wigston, Leicester LE18 4XH United KingdomTel: +44 (0) 116 264 2730***************.ukAMERICASNewall Electronics Inc.1803 O’Brien RdColumbus, Ohio 43228 USATel: +1 614 771 0213CHINA & TAIWANSensata Technologies China Co., Ltd.BM Intercontinental Business Center 30th Floor100 Yu Tong RoadShanghai 200070People’s Republic of ChinaTel: +86 212 2306 1500SINGAPORE AND KOREA Sensata Technologies Co., Ltd.3 Bishan Place #02-04Singapore 579838Tel: +65 647 86 867JAPANSensata Technologies Japan Ltd. Shin Yokohama Square Bldg, 7F2-3-12 Shin-Yakohama, Kohoku-ku Yokahama-shiKanagawa 222-0033 JapanTel: +81 45 277 7120For more information about this or any of our productsplease contact us at****************or visit DSGDMG1016ENUS023-82220-UK/0。
MPI TS150-AIT | 150 mm Manual Probe SystemIndustry’s first explicitly designed 150 mm probe system providing accurat e tests for mm-wave, THz, and automated impedance tuner applicationsFEATURES / BENEFITSSPECIFICATIONSChuck XY Stage (Standard)Total travel range 180 x 300 mm (7.1 x 11.8 in)Fine-travel range 25 x 25 mm fine micrometer control Fine-travel resolution < 1.0 µm (0.04 mils) @ 500 µm/rev Planarity< 10 µm Theta travel (standard)360°Theta travel (fine)± 5.0°Theta resolution 7.5 x 10-3 gradientMovement Puck controlled air bearing stage Chuck Z Stage Travel range 10 mm (0.4 in)Fine-travel resolution< 1.0 µm (0.04 mils) @ 500 µm/rev, with digital indicatorManual Microscope Stage (Linear)Movement range 50 x 50 mm (2 x 2 in) or 80 x 80 mm (3.15 x 3.15 in)Resolution < 5µm (0.2 mils)Scope lift Manual, tilt-back or vertical (depending on microscope type)MovementIndependently controlled X and Y movement with locking screwsVariety of Applications• Seamless integration of any banded, differential or broadband frequency extenders and automated impedance tuners• Novel design of extenders/tuners integration for maximum of measurement dynamic• Maximum on mechanical stability and repeatability combined with convenient and safety operation Ergonomic Design• Unique puck controlled air bearing stage for quick single-handed operation• Rigid and large platen accommodates large area MicroPositioners, holding mmw extenders• Highly repeatable platen lift design with three discrete positions for contact, separation, and loading Upgradability• Optional vibration isolated support for large automated impedance tuners• Dedicated optics for shorting the cables and waveguide’s lengths, for maximum of measurement directivity• Various chuck options, PCB holders and a wide range of accessories such as DC/RF/mmW MicroPositionersSpecifications Design For unsurpassed stability: low profile, four pole support Material Nickel plated steelDimensionLarge area platen, see drawing Chuck top to platen top Min. 28 mmMax. No of MicroPositioners 2x mmW E/W + 2x RF N/S and 4x DC or 2x mmW E/W + 8x DC Platen lift control 3 positions - contact (0), separation (300 µm), and loading (3 mm)Separation repeatability < 1 µm (0.04 mils) by …automated“ control mmW MicroPositioner mounting Bolt downRF MicroPositioner mounting Magnetic with guided rail DC MicroPositioner mountingMagneticProbe Platen design for DC, RF and THz MicroPositionersPROBE PLATENPlaten Lift with Probe Hover Control™MPI Probe Hover Control™ comes with hover heights (50, 100 or 150 µm) for easy and convenient probe to pad alignment.Separation Probe Hover Control™Probe in contactFREQUENCY EXTENDER ADAPTATIONSeamless integration of any frequency extenders for best measurement directivity at 200 mm wafers.To achieve optimum tuning range & highest gammaAUTOMATED IMPEDANCE TUNER INTEGRATIONSCONTACT / OVER-TRAVEL CONTROLMPI offers the worldwide unique and most accurate contact / over-travel control with 1 µm accuracy for easy measurement reproducibility and accuracy.XY digital micrometers are optionally available as well.RF Wafer Chuck Connectivity Coax BNC (f)Diameter 160 mm with 2 integrated AUX areasMaterial Nickel Plated Aluminium (flat with 0.5 mm holes)Chuck surfacePlanar with 0.5 mm diameter holes in centric sections Vacuum holes sections (diameter)3, 27, 45, 69, 93, 117, 141 mmVacuum actuation Manual switch between Center (4 holes), 50, 100, 150 mm (2, 4, 6 in)Supported DUT sizes Single DUTs down to 4 x 4 mm size or wafers 50 mm (2 in) thru 150 mm (6 in)*Surface planarity ≤± 5 µmRigidity< 15 µm / 10 N @edgeNON-THERMAL CHUCKSElectrical Specification Operation voltage In accordance with EC 61010, certificates for higher voltages available upon request Isolation> 2 GΩ*Single DUT testing requires higher vacuum conditions dependent upon testing application.*Single DUT testing requires higher vacuum conditions dependent upon testing application.Auxiliary Chuck Quantity 2 AUX chucksPositionIntegrated to rear side of main chuck Substrate size (W x L)Max. 25 x 25 mm (1 x 1 in)Material Ceramic, RF absorbing material for accurate calibration Surface planarity ≤± 5 µmVacuum controlControlled independently, separate from chucksMP80-DXMPI auxiliary chucks made by ceramicThermal chuck system for testing single ICs The optional MP80-DX MicroPositioner with the integrated digital micrometerenables outstanding simplicity for the multiline TRL.When operating the MP80-DX, the operator simply needs to zero-out the digital micrometer after the initial adjustment of the probes, i.e., on the thru standard. Next, the distance between RF probes can be easily re-adjusted to the required value of ∆l with the precision better than 1 µm.THERMAL CHUCKSSpecifications of MPI ERS Integrated Technology35 °C to 150 °C20 °C to 200 °C25 °C to 150 °CMaximal wafer size 150 mm 150 mm 25 x 25 mm Single ICConnectivityCoax BNC (f)Kelvin Triax (f)Coax BNC (f)Temperature control method Cooling air / Resistance heater Cooling air / Resistance heater Peltier heater CoolantAir (user supplied)Air (user supplied)Air (max. 50 l/min)Smallest temperature selection step 0.1 °C 0.1 °C 0.1 °C Chuck temperature display resolution0.1 °C 0.01 °C 0.1 °C External touchscreendisplay operation N/A Yes N/A Temperature stability ±0.5 °C ±0.08 °C ±0.2 °C Temperature accuracy ±1 °C ±0.1 °C ±1 °C Control method DC/PID Low noise DC/PIDDC/PID InterfacesRS232C RS232C RS232C Chuck surface plating Nickel plated with pinhole surface Nickel plated with pinhole surface Gold plated with pinhole surface Temperature sensor Pt100 1/3DIN Pt100 1/3DIN, 4-line wired Pt100 1/3DIN, 4-line wired Temperature uniformity < ±1 °C < ±0.5 °C < ±0.5 °C Surface flatness and base parallelism < ±15 µm < ±10 µm < ±15 µm Heating and cooling rates 35 to 150 °C < 10 min 150 to 35 °C < 15 min 20 to 200°C < 15 mins 200 to 20°C < 15 mins 25 to 150 °C < 6 min 150 to 25 °C < 6 min Electrical isolation > 0.5 T Ω at 25 °C> 10 T Ω at 25 °C > 300 G Ω at 200 °C> 0.5 T Ω at 25 °CLeakage @ 10 V N/A N/A N/A Capacitance< 750 pF < 750 pF < 750 pF Maximum voltage between chuck top and GND500 V DC500 V DC500 V DCt e m p e r a t u r e [°C ]time [min]AC3 150 mm +35°C to +150°C510152020406080100120140160TYPICAL TRANSITION TIMEThermal Chuck Electrical Supply Electrical SupplyHot only thermal chucks Electrical primary connection 100 to 240 VAC auto switch Frequency50 Hz / 60 HzCompressed Air Supply Operating pressure 6.0 bar (0.6 MPa, 87 psi) at specified flow rate CDA dew point≤ 0 °CController Dimensions / Power and Air Consumption System Type W x D x H (mm)Weight (kg)Power Cons. (VA)max. Air Flow (l/min)35 to 150 °C 300 x 265 x 135 1050020020 to 200 °C 300 x 360 x 135 1270020025 to 150 °C300 x 261 x 1353.310050General Probe System Power 100-240 V AC 50/60 Hz for optical accessories* only Vacuum -0.5 bar (for single DUT) / -0.3 bar (for wafers)Compressed air6.0 bar *e.g. microscope illumination, CCD cameras, monitors.FACILITY REQUIREMENTSWARRANTYPHYSICAL DIMENSIONSStation Platform with Bridge*Dimensions (W x D x H)670 x 680 x 710 mm (26.4 x 26.8 x 28.0 in)Weight~120 kg (265 lb.)• Warranty*: 12 months• Extended service contract: contact MPI Corporation for more information*See MPI Corporation‘s Terms and Conditions of Sale for more details.*Station accessories, such as different microscopes, cameras, or laser cutters, may change the total height.MPI Global PresenceDirect contact:Asiaregion:****************************EMEAregion:******************************Americaregion:********************************MPI global presence: for your local support, please find the right contact here:/ast/support/local-support-worldwide© 2020 Copyright MPI Corporation. All rights reserved.Vibration Isolation TableWeightApprox. 210 kg ( 463 lb.)Approx. 210 kg ( 463 lb.)。
智能电表的概念及应用
0引言
随着电力市场化改革的推进、气候变化的加剧、环境监管要求日趋严格及国家能源政策的最新调整,电力网络跟电力市场、用户之间的协调和交换越来越紧密,电能质量水平要求逐步提高,可再生能源等分布式发电资源数量不断增加,传统电力网络已经难以支撑如此多的发展要求。
为此人们提出了发展智能电网(smart grid)的设想,以实现在传统电网基础上的升级换代。
为了在智能电网领域寻求突破,加强联系与合作,已形成了多个全球性联盟组织。
智能电表是智能电网(特别是智能配电网)数据采集的基本设备之一,承担着原始电能数据采集、计量和传输的任务,是实现信息集成、分析优化和信息展现的基础。
在智能电表基础上构建的高级量测体系(advanced metering infrastructure,AMI)、自动抄表(automatic meter reading,AMR)系统能为用户提供更加详细的用电信息,使用户可以更好地管理他们的用电量,以达到节省电费和减少温室气体排放的目标;电力零售商可以根据用户的需求灵活地制定分时电价,推动电力市场价格体系的改革;配电公司能够更加迅速地检测故障,并及时响应强化电力网络控制和管理。
意大利、英国、荷兰等欧洲国家以及美国、澳大利亚等国均开展了AMI/AMR系统的建设,通过将先进的通信技术引入到新型的电子式计量设备中,研发出了能实现能耗监测、具备双向通信等能力的智能电表。
本文将根据国内外厂商和研究机构对智能电表的研究和应用成果,对智能电表的定义进行归纳,阐述其在智能电网中的定位、功能和应用,并简要介绍世界范围内智能电表的应用状况。
1智能电表的概念。
Designed for Variety of On-Wafer Applications • Device Modeling - DC-IV / DC-CV / Pulse-IV• RF and mmW - RF Setup from 26 GHz to 110 GHz & beyond • Failure Analysis - Probe card / Internode Probing • Wafer Level Reliability - Hot / Cold / Long-term test MPI ShielDEnvironment™ for Accurate Measurements • Designed for Advanced EMI / RFI / Light-Tight Shielding • fA low-leakage capabilities• Ready for temperature range -60 °C to 300 °CErgonomic Design and Options• Front and advanced automated single wafer side loading capability with easy pre-alignment f or automated routines • Vertical Control Environment (VCE™) with observation of the probing area f rom the side f or saf e operation • Integrated active vibration isolation• Completely integrated prober control f or f aster, saf er and convenient system and test operation• T he Safety Test Management (STM™) option to load/un-load waf ers at any chuck temperatures and auto dew point controlMPI TS2000-SE | 200 mm Automated Probe SystemFor accurate and reliable DC/CV, RF and mmW measurementsFEATURES / BENEFITSSPECIFICATIONSChuck XY Stage (Programmable)Travel range 210 x 300 mm (8.27 x 11.81 in)Resolution 0.5 µm Accuracy ± 2.0 µm Repeatability ± 2.0 µmXY stage drive High resolution stepper motor with linear encoder feedback system Speed*4-Speed XY chuck stage adjustable speed movement Slowest: 10 µm / sec | Fastest: 50 mm / secChuck Z Stage (Programmable)Travel range 50 mm (2 in)Resolution 0.2 µm Accuracy ± 2.0 µm Repeatability ± 1.0 µmZ stage drive High resolution stepper motor with integrated pin drive system for easy wafer loadingSpeed*3-Speed Z chuck stage adjustable speed movement Slowest: 10 µm / sec | Fastest: 20 mm / sec *The speed is instantaneous speed, not average speed. There is accelerate and decelerate time when moving.SPECIFICATIONSChuck Theta Stage (Programmable)Travel range± 6.0°Resolution0.0004°Accuracy< 2.0 µm (measured at the edge of the 200 mm chuck) Repeatability< 1.0 µmTheta stage drive High resolution stepper motor with linear encoder feedback system Video Camera (Vertical Control Environment TM)Sensor type1/1.8" mono CCDSensor size7.07 mm x 5.3 mmCamera pixels 3 MPResolution2048 x 1536 pixelsWafer Alignment CameraSensor type1/1.8" color CCDSensor size7.07 mm x 5.3 mmCamera pixels 3 MPResolution2048 x 1536 pixelsMICROSCOPE MOVEMENTXYZ Programmable XY manual,Z programmable XYZ manualXY - Travel range*50 x 50 mm50 x 50 mm50 x 50 mm / 80 x 80 mm Resolution 1 µm (0.04 mils)< 5 µm (0.2 mils)< 5 µm (0.2 mils) Repeatability< 2 µm (0.08 mils)N/A N/A Accuracy< 5 µm (0.2 mils)N/A N/AZ - Travel range 140 mm140 mm140 mm, pneumatic Resolution 0.05 µm (0.002 mils)0.05 µm (0.002 mils)N/A Repeatability< 2 µm (0.08 mils)< 2 µm (0.08 mils)< 2 µm (0.08 mils) Accuracy< 4 µm (0.16 mils)< 4 µm (0.16 mils)N/A*In case of ShielDEnvironment™ X x Y: 25 mm x 25 mmPROBE PLATENMPI ShielDEnvironment™ is a high performance local environmental chamber providing excellent EMI- and light-tight shielded test environment for ultra-low noise, low capacitance measurements.MPI ShielDEnvironment™ allows up to 4-port RF or up to 8-ports DC/Kelvin or a combination of those configu-rations. MPI ShielDCap™ provides easy reconfiguration of measurement setup as well as EMI/noise shielding - which make great difference in simplifying day to day operations.ShielDEnvironment™ Electrical Specifications*EMI shielding > 30 dB (typical) @ 1 kHz to 1 MHz Light attenuation ≥ 130 dBSpectral noise floor ≤ -180 dBVrms/rtHz (≤ 1 MHz)System AC noise≤ 5 mVp-p (≤ 1 GHz)*Including 4 MicroPositioners.KEY FEATURESAutomated Single Wafer LoaderConvenient wafer loading with easy pre-alignment for automated routines. Loading or unloading of 100, 150or 200 mm wafer is straight forward and intuitive.Wafer Hot SwapThe automated single wafer loader and the Safety Test Management (STM™) provide a unique capability to load/unload wafers at any chuck temperature. Cooling down or heating up to ambient is not required anymore for loading or unloading the wafer.Manual Wafer LoadingLoading or unloading of wafer up to 200 mm or subst-rates is straight forward and intuitive. The unique MPI chuck design allows easy single ICs or wafer fragments loading in the front. Furthermore MPI SmartVacuum TM technology automatically recognizes the wafer size or the single Die and protects the wafer in case of power interruptions or inexperience operators from releasing the vacuum inside the ShielDEnvironment TM .No roll-out stage guaranties highest mechanical stabili-ty and short tube length for faster cool down time. Easy access to the AUX chucks f or handling of calibration substrates, cleaning or contact check pads.Integrated Active Vibration IsolationHighly effective vibration insulation with automatic le-vel controlled air-spring damping system.Internal frequency: 2.5 Hz Automatic load leveling.* Picture is courteously provided by ERS.Minimized CDA ConsumptionWith the ERS patented technology, using the chiller for purging the ShielDEnvironment TM , the CDA consumpti-on is reduced by as much as 50%. Nitrogen purging is still possible by using separate valve.Thermal Chuck OperationThe thermal chuck can be operated by using the ful-ly integrated touchscreen display, which is placed at a convenient location in front of the operator for fast operation and immediate feedback.Integrated Prober ControlThe hardware system controller is completely integra-ted into the probe system and designed to provide fas-ter, safer and a more convenient probe system control and test operation. The keyboard and mouse are stra-tegically located to control the software if necessary, as well as the Windows® based instrumentation.OPTIONAL FEATURESVertical Control Environment TM (VCE TM )The VCE TM allows the probing area to be observed from the side for safe operation. It automatically detects the height of the tips and defines the position of the chuck contact. The wizard-guided setup procedure takes into account working with probe cards and DC or RF probes. It saves time during initial contacting and prevents da-mage to probes or pads, especially in the covered MPI ShielDEnvironment TM .Safety Test Management STM™The STM™ system prevents opening of any doors during testing. Accidental opening of any system door during a ne-gative chuck temperature is impossible on any event.Furthermore, an intelligent dew point control routine avoids moisture condensation during cold testing. The system automatically monitors the flow of CDA or Nitro-gen. If the flow is interrupted or insufficient, the STM™ automatically turns the chuck into a safe mode by hea-ting up the chuck as fast as possible to 60 °C.mDrive™In addition to the standard joystick control, mDrive TM provides a truly intuitive, manual, one or two hands operation of all existing programmable stages, such as chuck, scope or MicroPositioners. X- and Y-axis fine con-trol is available for the selected stage, where Z safety function requires additional enabling.NoiseShield™MPI’s exclusive NoiseShield™ offers in combination with MPI ShielDEnvironment™ for unsurpassed active EMI-Shielding of DUT and the measurement instru-ment (such as pre-amplifier unit). In addition, it provi-des all cables and connectors close to DUT.The NoiseShield™ option provides shortest possible cable lengths to reduce parasitic capacitance and to maximize test system roll-off frequency. It reduces ex-ternal magnetic field influences on the measurement results and makes the 1/f, RTN Setup more robust and test lab location less independent.Low impedance cables (for DC or RF pad design), ex-cellent low-impedance system’s grounding and ferrite cores on the unique MPI Kelvin probes are part of the delivery in order to make the probe station completely “invisible” and the measurement results to reach the limit of the instrumentation.Probe Hover Control PHC™MPI Probe Hover Control PHC™ Allows easy manualcontrol of probe contact and separation to wafer. Se-paration distance can accurately control with micro-meter f eedback f or probe to waf er/pad positioning. Ease of use guarantees the safest operation by mini-mizing error during critical set-up and probe change operations.Automated Test Over Multiple Temperatures ATMT™True to our mission of making complex probe station operation as intuitive as possible, minimizing training costs, and continuously focusing on reducing cost of test, MPI designed unique and cost-effective technolo-gies, that enable Automated Test over Multiple Temperatures ATMT™. In combination with MPI’s WaferWallet® or WaferWallet®MAX, Device Modeling and Wafer Level Reliability engineers will benefit from these features to generate significant more measurement data and will increase the entire Test Cell efficiency.ATMT™ DCFor DC over temperature measurements, Device Mo-deling and Wafer Level Reliability engineers are com-monly using Celadon’s, high temperature, low leaka-ge probe cards. MPI and Celadon are finally offering leading edge, complete measurement solutions, enabling Automated Test over Multiple Temperatures ATMT™ DC at wide temperature range: -60…300°C.For the case of a few measurements performed with MicroPositioners, MPI has developed thermally stab-le Kelvin LTM probes that allow Automated Test over Multiple Temperatures ATMT™ at -40 to 175°C.ATMT™ RFMPI's SmartCarrier™ uniquely combines different materials that automatically compensate or the lateral expansions of the RF probes and the waf er without the need for complex software or program-mable MicroPositioners*.SENTIO®'s new patent-pending ContactSense™ image processing can determine the new contact positions on-the-f ly with an accuracy of a f ew micrometers, completing MPI's Automated Test over Multiple Tem-peratures ATMT™ RF.*One programmable MicroPositioner is recommended for automa-ted RF calibration by using QAlibria®Celadon, high-performance,low-leakage probe cards MPI Kelvin L TM high temperatureprobe arms RF L TM probe arms, equipped withSmartCarrier™TYPICAL CONFIGURATION WITH MPI KELVIN AND MPI KELVIN-HIGH TEMPERATRUE PROBES INSIDE ShielDEnvironment TMTypical MPI configuration with Kelvin ProbesSOFTWARE SOLUTIONMPI‘s automated engineering probe systems are con-trolled by the unique and revolutionary, multi-touch operation SENTIO® Software Suite: simple and intu-itive operation saves signif icant training time. The scroll, zoom, and move commands mimic modern smart mobile devices and allows everyone to become an expert in just minutes. Switching between the active application and the other APPs is just a matter of a simple finger sweep.By implementing intuitive multi-touch operation, QAlibria® provides crisp and clear guidance to the RF calibration process, minimizes configuration mis-takes and helps to reach accurate calibration results the fastest. QAlibria® offers industry standard and ad-vanced calibration methods.QAlibria® includes TOSM (SOLT), TMR, TMRR methods, and 4-port calibration capability additionally to the integration of NIST StatistiCal calibration packages providing easy access to the NIST multiline TRL metrology-level calibration and uncertain analysis.NON-THERMAL CHUCKSStandard Wafer ChuckConnectivity Coax BNC (f)Diameter210 mmMaterial Stainless steelChuck surface Planar with centric engraved vacuum groovesVacuum grooves sections (diameter) 3, 27, 45, 69, 93, 117, 141, 164, 194 mmVacuum actuation Multizone control - All connected in meander shape, center hole in 3mm diameterSupported DUT sizes Single DUTs down to 5x5 mm size or wafers 50 mm (2 in) thru 200 mm(8 in)*Surface planarity≤± 5 µm**Rigidity< 15 µm / 10 N @edge*Single DUT testing requires higher vacuum conditions dependent upon testing application.**By using SENTIO® topography**By using SENTIO® topographyAuxiliary ChuckQuantity 2 AUX chucksPosition Integrated to front side of main chuckSubstrate size (W x L)Max. 25 x 25 mm (1 x 1 in)Material Ceramic, RF absorbing material for accurate calibrationSurface planarity≤± 5 µmVacuum control Controlled independently, separate from chucksElectrical Specification (Triax)THERMAL CHUCKSSpecifications of MPI ERS AirCool® TechnologySpecifications of MPI ERS AirCool® PRIME TechnologyAmbient to 200/300 °C20 °C to200/300 °CAmbient to200/300 °C20 °C to200/300 °CChuck type RF RF Ultra low noise Ultra low noise Connectivity Kelvin Triax (f)Kelvin Triax (f)Kelvin Triax (f)Kelvin Triax (f)Temperature control methodCooling air /Resistance heaterCooling air /Resistance heaterCooling air /Resistance heaterCooling air /Resistance heaterCoolant Air (user supplied)Air (user supplied)Air (user supplied)Air (user supplied) Smallest temperatureselection step0.1 °C0.1 °C0.1 °C0.1 °C Chuck temperaturedisplay resolution 0.01 °C0.01 °C0.01 °C0.01 °C External touchscreendisplay operation Yes Yes Yes Yes Temperature stability±0.08 °C±0.08 °C±0.08 °C±0.08 °C Temperature accuracy ±0.1 °C0.1 °C0.1 °C0.1 °C Control method Low noise DC/PID Low noise DC/PID Low noise DC/PID Low noise DC/PID Chuck pinhole surfaceplating: 200 °C / 300 °C Nickel / Gold Nickel / Gold Nickel / Gold Nickel / GoldSmartVacuum™ distribution In front for single DUT 5x5 mm (4 holes), In center for 150, 200 mm (6, 8 in)Temperature sensor Pt100 1/3DIN,4-line wired Pt100 1/3DIN,4-line wiredPt100 1/3DIN,4-line wiredPt100 1/3DIN,4-line wiredTemperature uniformity< ±0.5 °C at ≤ 200 °C< ±1 °C at > 200 °C < ±0.5 °C at ≤ 200 °C< ±1 °C at > 200 °C< ±0.5 °C at ≤ 200 °C< ±1 °C at > 200 °C< ±0.5 °C at ≤ 200 °C< ±1 °C at > 200 °CSurface flatness andbase parallelism < ±12 µm < ±12 µm < ±12 µm < ±12 µm Max. Voltage betweenForce-to-GND600 V DC600 V DC600 V DC600 V DC Force-to-Guard100 V DC100 V DC 600 V DC 600 V DC Guard-to-GND400 V DC400 V DC400 V DC400 V DCHeating rates*35 to 200 °C < 16 min35 to 300 °C < 20 min 20 to 200 °C < 15 min20 to 300 °C < 22 min35 to 200 °C < 18 min35 to 300 °C < 26 min20 to 200 °C < 16 min20 to 300 °C < 28 minCooling rates*200 to 35 °C < 23 min300 to 35 °C < 31 min 200 to 20 °C < 27 min300 to 20 °C < 32 min200 to 35 °C < 24 min300 to 35 °C < 32 min200 to 20 °C < 35 min300 to 20 °C < 34 minLeakage @ 10 VN/A N/A < 15 fA at 25 °C< 30 fA at 200 °C< 50 fA at 300 °C< 15 fA at 25 °C< 30 fA at 200 °C< 50 fA at 300 °CElectrical isolation > 5 T Ω at 25 °C> 1 T Ω at 200 °C> 0.5 T Ω at 300 °C> 5 T Ω at 25 °C> 1 T Ω at 200 °C> 0.5 T Ω at 300 °CN/A N/ACapacitanceForce-to-Guard< 1600 pF< 1600 pF< 600 pF< 600 pF Guard-to-Shield< 2000 pF< 2000 pF < 2000 pF < 2000 pF *Typical data for all chucks based on FPS requirements.> 1 T Ω at 200 °C, > 0.5 T Ω at 300 °C CapacitanceForce-to-Guard< 1600 pF< 1600 pF< 1600 pF Guard-to-Shield< 2000 pF< 2000 pF < 2000 pF *Typical data for all chucks based on FPS requirements.Chuck type Ultra low noise Ultra low noise Ultra low noise Connectivity Kelvin Triax (f)Kelvin Triax (f)Kelvin Triax (f) Temperature control method Cooling air / Resistance heaterCoolant Air (user supplied)Air (user supplied)Air (user supplied) Smallest temperatureselection step0.1 °C0.1 °C0.1 °C Chuck temperaturedisplay resolution 0.01 °C0.01 °C0.01 °C External touchscreendisplay operation Yes Yes Yes Temperature stability ±0.08 °C±0.08 °C±0.08 °C Temperature accuracy 0.1 °C0.1 °C0.1 °C Control method Low noise DC/PID Low noise DC/PID Low noise DC/PID Interfaces RS232C RS232C RS232C Chuck pinhole surfaceplating: 200°C / 300°C Nickel / Gold Nickel / Gold Nickel / Gold SmartVacuum™ distribution In front for single DUT 5x5 mm (4 holes), In center for 150, 200 mm (6, 8 in) Temperature sensor Pt100 1/3DIN, 4-line wiredTemperature uniformity< ±0.5 °C at ≤ 200 °C, < ±1 °C at > 200 °CSurface flatness andbase parallelism < ±12 µm < ±12 µm < ±12 µm Max. Voltage betweenForce-to-GND600 V DC600 V DC600 V DC Force-to-Guard600 V DC600 V DC600 V DC Guard-to-GND400 V DC400 V DC400 V DC Heating rates*25 °C-10 to 25 °C < 3 min-40 to 25 °C < 4 min-60 to 25 °C < 5 min200 °C25 to 200 °C < 15 min300 °C25 to 300 °C < 26 min25 to 300 °C < 26 min25 to 300 °C < 26 min Cooling rates*AC3 Mode300 °C300 to 25 °C < 12 min300 to 25 °C < 14 min200 °C200 to 25 °C < 8 min200 to 25 °C < 10 min25 °C25 to -10 °C < 6 min25 to -40 °C < 12 min25 to -60 °C < 26 minTURBO Mode300 °C300 to 25 °C < 12 min300 to 25 °C < 12 min200 °C200 to 25 °C < 8 min200 to 25 °C < 8 min25 °C25 to -10 °C < 6 min25 to -40 °C < 10 min25 to -60 °C < 17 min300 °C< 50 fA < 50 fA < 50 fA CapacitanceForce-to-Guard< 600 pF< 600 pF< 600 pF Guard-to-Shield< 2000 pF< 2000 pF < 2000 pF*Typical data for all chucks based on FPS requirements.ERS AirCool® Fusion*, Controller IntegratedChiller -40 °C / -60 °C ERS AirCool® Fusion*, Controller IntegratedChiller -10 °C*ERS electronic GmbH patented solutionTYPICAL TRANSITION TIME200 mm PRIME RF Chuck 35°C to +300°C200 mm PRIME ULN Chuck 35°C to +300°C200 mm PRIME ULN Chuck 20°C to +300°C200 mm PRIME RF Chuck -10°C to +300°C200 mm PRIME ULN Chuck -40°C to +300°CREGULATORY COMPLIANCEFACILITY REQUIREMENTSSUPPORTED SOFTWARE PLATFORMSGeneral Probe System Power 100-240 V AC nominal ; 50/60 Hz Vacuum -0.9 bar Compressed air6.0 barDriversWaferPro / IC-CAP & EasyEXPERT from Keysight, BSIMPro & NoisePro fromProPlus, ACS from KeithleyEmulation modeAvailable for various prober control software** Please contact your local support for more details.3rd party, TÜV tested according to• IEC 61010-1: 2010 + Am1:2016; EN 61010-1: 2010; IEC/EN 61010-2-010: 2014; IEC/EN 61010-2-081: 2015; EN ISO 12100: 2010; UL 61010-1: 2012/R: 2016-04; UL 61010-2-010: 2015; CAN/CSA-C22.2 No. 61010-1: 2012/U2: 2016-04; CAN/CSA-C22.2 No. 61010-2-010:2015and certified for CE and US/Canada (NRTL), SEMI S2 and S8.Copies of certificates are available on requestSYSTEM CONTROLLER SPECIFICATIONSCPU Intel® Core TM i7-7700, 3.6 GHz, 8M Cache, 14nm, 65W TDP, LGA1151(4C/8T)RAMDDR4 2400 MHz 16 GB x 164 bit operating system Windows 10 Professional (English)Power 460 W Storage SSD 500 GBLAN One internal and one external TCP/IP ports USB Ports Internal (on PC) x3, external x1GPIB interfaceOptional200 mm PRIME ULN Chuck -60°C to +300°C200 mm PRIME RF Chuck -60°C to +300°CWARRANTY• Warranty*: 12 months• Extended service contract: contact MPI Corporation for more information*See MPI Corporation‘s Terms and Conditions of Sale for more details.MPI Global PresenceDirect contact:Asiaregion:****************************EMEAregion:******************************Americaregion:********************************MPI global presence: for your local support, please find the right contact here:/ast/support/local-support-worldwide© 2023 Copyright MPI Corporation. All rights reserved.SpecificationsSystem Dimensions (W x D x H)1180 x 970 x 1450 mm (46.5 x 38.2 x 57.1 in)Weight650 kg (includes anti-vibration table and system accessories)PHYSICAL DIMENSIONS*Can vary depends on monitor/chiller position.。
半导体芯片、晶圆、LED芯片、外延、TFT-LDE制程冷却水〔PCW〕系统施工标准名目1.一般说明2.产品.材料说明3.施工说明笑嘻嘻半导体有限公司〔二号厂房〕31.一般说明1.1.说明3 台泵浦扬程103 m 75kw 流量5000 LPM , sus 304 本体,主管φ225A sus 304 40s 保温。
缓冲水槽 sus 304, 连接RO 或DI 水。
过滤器sus304 ,5 μm(标准滤材) , pou 7 kg/c㎡。
制程冷却水系统,供给机台16℃供给 21℃回水稳定冷却水系统, 冷却机台温度。
本标准适用于制程冷却水系统之设计、制造、运输、安装及测试等一般要求。
1.2.工程范围制程冷却水系统 :泵浦组,桶槽, 板式热交换器(协作冰水系统),管路,PLC 把握系统,1.2.1.本案工程范围包含运送安装、及测试调整以下之制程冷却水系统:1.2.1.1制程冷却水泵浦。
1.2.1.2.板式热交换器。
1.2.1.3.制程冷却水泵浦防振基座之安装与调整,防振基座需包含避振弹簧基座及。
1.2.1.4.缓冲水槽及附属管路。
1.2.1.5.制程冷却水过滤器。
1.2.1.6.全部把握组件及把握管线。
1.2.1.7.全部水泵之动力配线。
1.2.1.8.防止结露之必要保温。
1.3.标准及法规1.3.1.各设备应符合以下任一项标准:1.3.1.1.ASTM1.3.1.2.lSO1.3.1.3.ANSL1.3.1.4.NEMA1.4.送审资料1.4.1.送审设备型录、尺寸图、材质和电气规格表。
1.4.2.送审系统负荷运转分析(SYSTEM PROFILE ANALYSlS)如下:1.4.2.1.多台泵浦并联运转性能曲线图(PARALLEL PUMPlNG CURVES)1.4.2.2.系统运转特性图(SYSTEM CURVE)1.4.2.3.系统并联连接点(PUMP STAGlNG POINTS)笑嘻嘻半导体有限公司〔二号厂房〕41.4.3.泵浦用于开放系统时,应标示净正吸水头需求(NPSHR)。
Chapter 9 SpecificationsIntroductionPerformance CharacteristicsFLUKE guarantees the properties expressed in numerical values with the stated tolerance. Specified non-tolerance numerical values indicate those that could be nominally expected from the mean of a range of identical ScopeMeter test tools.Environmental DataThe environmental data mentioned in this manual are based on the results of the manufacturer’s verification procedures.Safety CharacteristicsThe test tool has been designed and tested in accordance with Standards ANSI/ISA S82.01-1994, EN 61010.1 (1993) (IEC 1010-1), CAN/CSA-C22.2No.1010.1-92 (including approval), UL3111-1 (including approval) Safety Requirements for Electrical Equipment for Measurement, Control, and Laboratory Use.This manual contains information and warnings that must be followed by the user to ensure safe operation and to keep the instrument in a safe condition. Use of this equipment in a manner not specified by the manufacturer may impair protection provided by the equipment.198187Fluke 192/196/199Users Manual88Dual Input OscilloscopeIsolated Inputs A and B (Vertical)Bandwidth, DC CoupledFLUKE 199.......................................200 MHz (-3 dB)FLUKE 196.......................................100 MHz (-3 dB)FLUKE 192.........................................60 MHz (-3 dB)Lower Frequency Limit, AC Coupledwith 10:1 probe......................................<2 Hz (-3 dB)direct (1:1).............................................<5 Hz (-3 dB)Rise TimeFLUKE 199.......................................................1.7 ns FLUKE 196.......................................................3.5 ns FLUKE 192.......................................................5.8 ns Analog Bandwidth Limiters..............20 MHz and 10 kHz Input Coupling ...................................................AC, DC Polarity................................................Normal, Inverted Sensitivity Rangeswith 10:1 probe............................50 mV to 1000 V/div direct (1:1)......................................5 mV to 100 V/div Trace Positioning Range..............................±4 divisions Input Impedance on BNCDC Coupled.....................1 M Ω (±1 %)//15 pF (±2 pF)Max. Input Voltagewith 10:1 probe......................................600 V CAT III1000 V CAT IIdirect (1:1).............................................300 V CAT III (For detailed specifications, see “Safety ”)Vertical Accuracy....................±(1.5 % + 0.04 range/div)Digitizer Resolution...................8 bits, separate digitizerfor each inputHorizontalMaximum Time Base Speed:FLUKE 199.....................................................5 ns/div FLUKE 196.....................................................5 ns/div FLUKE 192...................................................10 ns/div Minimum Time Base Speed (Scope Record)....2 min/div Real Time Sampling Rate (for both inputs simultaneously)FLUKE199:5 ns to 2 µs /div.................................up to 2.5 GS/s 5 µs to 120 s/div..........................................20 MS/s FLUKE 196:5 ns to 2 µs /div....................................up to 1 GS/s 5 µs to 120 s/div..........................................20 MS/s FLUKE 19210 ns to 2 µs /div..............................up to 500 MS/s 5 µs to 120 s/div..........................................20 MS/sSpecificationsDual Input Oscilloscope989Record LengthScope Record Mode..........27500 points on each input Scope Normal Mode............1000 points on each input Scope Glitch Capture Mode...500 points on each input Glitch Detection5 µs to 120 s/div.......displays glitches as fast as 50 ns Waveform Display...............A, B, A+B, A-B, A*B, A vs BNormal, Average (2,4,8,64 x), Persistence Time Base Accuracy......................................±100 ppmTrigger and DelayTrigger Modes.....................................Automatic, Edge,External, Video, Pulse Width Trigger Delay............................... up to +1000 divisions Pre Trigger View...........................one full screen length Max. Delay...................................................10 secondsAutomatic Connect-and-View TriggerSource...........................................................A, B, EXT Slope.................................................Positive, NegativeEdge TriggerScreen Update..........Free Run, On Trigger, Single Shot Source...........................................................A, B, EXT Slope.................................................Positive, NegativeTrigger Level Control Range.........................±4 divisions Trigger Sensitivity A and BDC to 5 MHz at >5 mV/div........................0.5 divisions DC to 5 MHz at 5 mV/div..............................1 division 200 MHz (FLUKE 199).................................1 division 250 MHz (FLUKE 199)...............................2 divisions 100 MHz (FLUKE 196).................................1 division 150 MHz (FLUKE 196)...............................2 divisions 60 MHz (FLUKE 192)...................................1 division 100 MHz (FLUKE 192)...............................2 divisionsIsolated External TriggerBandwidth...........................................................10 kHz Modes..................................................Automatic, Edge Trigger Levels (DC to 10 kHz).................120 mV, 1.2 VVideo TriggerStandards...........................PAL, PAL+, NTSC, SECAM Modes.....................Lines, Line Select, Field 1 or Field 2Source........................................................................A Polarity...............................................Positive, Negative Sensitivity.....................................0.7 division sync levelFluke 192/196/199Users Manual90Pulse Width TriggerScreen Update...........................On Trigger, Single Shot Trigger Conditions..........<T, >T, ≈T (±10 %), ≠T(±10 %)Source.........................................................................A Polarity...................................Positive or negative pulse Pulse Time Adjustment Range.......1/100 div. to 250 div.with a maximum resolution of 50 ns.Continuous Auto SetAutoranging attenuators and time base, automatic Connect-and-View ™ triggering with automatic source selection.ModesNormal..................................15 Hz to max. bandwidth Low Frequency.......................1 Hz to max. bandwidth Minimum Amplitude A and BDC to 1 MHz.....................................................10 mV 1 MHz to max. bandwidth..................................20 mVAutomatic Capturing Scope ScreensCapacity..........................100 dual input scope Screens For viewing screens, see Replay function.Automatic Scope MeasurementsThe accuracy of all readings is within ± (% of reading +number of counts) from 18 °C to 28 °C. Add 0.1x (specific accuracy) for each °C below 18 °C or above 28 °C. For voltage measurements with 10:1 probe, add probe accuracy unless the probe has been calibrated on the test tool. At least 1.5 waveform period must be visible on the screen.GeneralInputs..................................................................A and B DC Common Mode Rejection (CMRR)................>100 dB AC Common Mode Rejection at 50, 60, or 400 Hz......>60 dBDC Voltage (VDC)Maximum Voltagewith 10:1 probe..................................................1000 V direct (1:1)...........................................................300 V Maximum Resolutionwith 10:1 probe.....................................................1 mV direct (1:1).........................................................100 µV Full Scale Reading........................................1100 counts Accuracy at 5 s to 5 µs/div..................±(1.5 % +5 counts)Normal Mode AC Rejection at 50 or 60 Hz ...........>60 dBSpecificationsAutomatic Scope Measurements991AC Voltage (VAC)Maximum Voltagewith 10:1 probe................................................1000 V direct (1:1).........................................................300 V Maximum Resolutionwith 10:1 probe...................................................1 mV direct (1:1).......................................................100 µV Full Scale Reading.....................................1100 counts AccuracyDC coupled:DC to 60 Hz..............................±(1.5 % +10 counts)AC coupled, low frequencies:50 Hz direct (1:1).....................±(2.1 % + 10 counts)60 Hz direct (1:1).....................±(1.9 % + 10 counts)With the 10:1 probe the low frequency roll off point will be lowered to 2 Hz, which improves the AC accuracy for low frequencies. When possible use DC coupling for maximum accuracy.AC or DC coupled, high frequencies:60 Hz to 20 kHz.......................±(2.5 % + 15 counts)20 kHz to 1 MHz.........................±(5 % + 20 counts)1 MHz to 25 MHz......................±(10 % + 20 counts)For higher frequencies the instrument ’s frequency roll off starts affecting accuracy.Normal Mode DC Rejection...........................>50 dBAll accuracies are valid if:• The waveform amplitude is larger than one division • At least 1.5 waveform period is on the screenAC+DC Voltage (True RMS)Maximum Voltagewith 10:1 probe................................................1000 V direct (1:1).........................................................300 V Maximum Resolutionwith 10:1 probe...................................................1 mV direct (1:1).......................................................100 µV Full Scale Reading.....................................1100 counts AccuracyDC to 60 Hz ...............................±(1.5 % + 10 counts)60 Hz to 20 kHz..........................±(2.5 % + 15 counts)20 kHz to 1 MHz............................±(5 % + 20 counts)1 MHz to 25 MHz ........................±(10 % + 20 counts)For higher frequencies the instrument ’s frequency roll off starts affecting accuracy.Fluke 192/196/199Users Manual92Amperes (AMP)With Optional Current Probe or Current ShuntRanges...........................same as VDC, VAC, VAC+DC Probe Sensitivity................100 µV/A, 1 mV/A, 10 mV/A,100 mV/A, 1 V/A, 10 V/A, and 100 V/A Accuracy ........................same as VDC, VAC, VAC+DC(add current probe or current shunt accuracy)PeakModes.........................Max peak, Min peak, or pk-to-pk Maximum Voltagewith 10:1 probe...............................................1000 V direct (1:1)........................................................300 V Maximum Resolutionwith 10:1 probe................................................10 mV direct (1:1).........................................................1 mV Full Scale Reading.......................................800 counts AccuracyMax peak or Min peak.............................±0.2 division Peak-to-peak..........................................±0.4 divisionFrequency (Hz)Range....................................1.000 Hz to full bandwidth Full Scale Reading....................................9 999 counts with at least 10 waveform periods on screen.Accuracy1 Hz to full bandwidth....................±(0.5 % +2 counts)Duty Cycle (DUTY)Range...................................................4.0 % to 98.0 %Pulse Width (PULSE)Resolution (with GLITCH off).......................1/100 division Full Scale Reading.......................................999 counts Accuracy1 Hz to full bandwidth....................±(0.5 % +2 counts)SpecificationsAutomatic Scope Measurements993PowerPower Factor .....................ratio between Watts and VA Range......................................................0.00 to 1.00Watt.................................RMS reading of multiplicationcorresponding samples of input A (volts)and Input B (amperes)Full Scale Reading ....................................999 counts VA............................................................Vrms x Arms Full Scale Reading ....................................999 counts VA Reactive................................................√((VA)2-W 2)Full Scale Reading ....................................999 countsPhaseRange..........................................-180 to +180 degrees Resolution.......................................................1 degree Accuracy0.1 Hz to 1 MHz........................................±1 degrees 1 MHz to 10 MHz......................................±3 degreesTemperature (TEMP)With Optional Temperature ProbeRanges (°C or °F)...............................-40.0 to +100.0 °-100 to +250 °-100 to +500 °-100 to +1000 °-100 to + 2500 °Probe Sensitivity..........................1 mV/°C and 1 mV/°FDecibel (dB)dBV..............................................dB relative to one volt dBm.................dB relative to one mW in 50 Ω or 600 ΩdB on........................................VDC, VAC, or VAC+DC Accuracy.........................same as VDC, VAC, VAC+DCFluke 192/196/199Users Manual94MeterMeter InputInput Coupling ..........................................................DC Frequency Response.....................DC to 10 kHz (-3 dB)Input Impedance..............1 M Ω(±1 %)//10 pF (±1.5 pF)1000 V CAT II600 V CAT III(For detailed specifications, see “Safety ”)Meter FunctionsRanging....................................................Auto, Manual Modes.................................................Normal, RelativeDMM Measurements on Meter InputsThe accuracy of all measurements is within ± (% of reading + number of counts) from 18 °C to 28 °C.Add 0.1x (specific accuracy) for each °C below 18 °C or above 28 °C.GeneralDC Common Mode Rejection (CMRR)................>100 dB AC Common Mode Rejection at 50, 60, or 400 Hz......>60 dBOhms (Ω)Ranges..............................500.0 Ω, 5.000 k Ω, 50.00 k Ω,500.0 k Ω, 5.000 M Ω, 30.00 M ΩFull Scale Reading500 Ω to 5 M Ω...........................................5000 counts 30 M Ω........................................................3000 counts Accuracy.............................................±(0.6 % +5 counts)Measurement Current.................0.5 mA to 50 nA, ±20 %decreases with increasing ranges Open Circuit Voltage.................................................<4 VContinuity (CONT)Beep.......................................................<50 Ω (±30 Ω)Measurement Current............................0.5 mA, ±20 %Detection of shorts of...........................................≥1 msSpecificationsDMM Measurements on Meter Inputs995DiodeMaximum Voltage Reading....................................2.8 V Open Circuit Voltage..............................................<4 V Accuracy.............................................±(2 % +5 counts)Measurement Current............................0.5 mA, ±20 %Temperature (TEMP)With Optional Temperature ProbeRanges (°C or °F)...............................-40.0 to +100.0 °-100.0 to +250.0 °-100.0 to +500.0 °-100 to +1000 °-100 to + 2500 °Probe Sensitivity..........................1 mV/°C and 1 mV/°FDC Voltage (VDC)Ranges....500.0 mV, 5.000 V, 50.00 V, 500.0 V, 1100 V Full Scale Reading.....................................5000 counts Accuracy..........................................±(0.5 % +5 counts)Normal Mode AC Rejection at 50 or 60 Hz ±1 %>60 dBAC Voltage (VAC)Ranges....500.0 mV, 5.000 V, 50.00 V, 500.0 V, 1100 V Full Scale Reading.....................................5000 counts Accuracy15 Hz to 60 Hz...............................±(1 % +10 counts)60 Hz to 1 kHz.............................±(2.5 % +15 counts)For higher frequencies the frequency roll off of the Meter input starts affecting accuracy.Normal Mode DC Rejection................................>50 dBAC+DC Voltage (True RMS)Ranges....500.0 mV, 5.000 V, 50.00 V, 500.0 V, 1100 V Full Scale Reading.....................................5000 counts AccuracyDC to 60 Hz ...................................±(1 % +10 counts)60 Hz to 1 kHz.............................±(2.5 % +15 counts)For higher frequencies the frequency roll off of the Meter input starts affecting accuracy.All accuracies are valid if the waveform amplitude is larger than 5 % of full scale.Fluke 192/196/199Users Manual96Amperes (AMP)With Optional Current Probe or Current ShuntRanges...........................same as VDC, VAC, VAC+DC Probe Sensitivity................100 µV/A, 1 mV/A, 10 mV/A,100 mV/A, 1 V/A, 10 V/A, and 100 V/A Accuracy ........................same as VDC, VAC, VAC+DC(add current probe or current shunt accuracy)RecorderTrendPlot (Meter or Scope)Chart recorder that plots a graph of min and max values of Meter or Scope measurements over time.Measurement Speed...................> 2.5 measurements/s Time/Div.......................................10 s/div to 20 min/div Record Size................................13500 points per input Recorded Time Span...........................90 min to 8 days Time Reference...................time from start, time of dayScope RecordRecords scope waveforms in deep memory while displaying the waveform in Roll mode.Source...................................................Input A, Input B Max. Sample Speed (10 ms/div to 1 min/div).....20 MS/s Glitch capture (10 ms/div to 1 min/div)..................50 ns Time/Div in normal mode.............10 ms/div to 2 min/div Record Size.................................27500 points per input Recorded Time Span............................11 s to 30 hours Acquisition Modes.....................................Single SweepContinuous Roll External Triggering Time Reference...................time from start, time of dayZoom, Replay and CursorsZoomHorizontal MagnificationScope Record........................................... up to 100x TrendPlot.....................................................up to 50x Scope............................................................up to 8x ReplayDisplays a maximum of 100 captured dual input Scope screens.Replay modes..........Step by Step, Replay as Animation Cursor MeasurementsCursor Modes................................single vertical cursordual vertical cursorsdual horizontal cursors (Scope mode)Markers....................automatic markers at cross points Measurements.....................................value at cursor 1value at cursor 2 difference between values at cursor 1 and 2time between cursorsTime of Day (Recorder modes)Time from Start (Recorder modes)Rise Time MiscellaneousDisplayView Area......................................132 mm (5.2 inches) Backlight...................Cold Cathode Fluorescent (CCFL)Temperature compensated Brightness.............................Power Adapter: 60 cd / m2Batteries: 35 cd / m2 Rechargeable NiMH Batteries:Operating Time...............................................4 hours Charging Time.................................................4 hours Allowable ambienttemperature during charging:.0 to 40 °C (32 to 104 °F) Auto power downtime (battery saving):............5 min, 30 min or disabled Battery Charger / Power Adapter BC190:•BC190/801 European line plug 230 V ±10 %•BC190/803 North American line plug 120 V ±10 %•BC190/804 United Kingdom line plug 230 V ±10 %•BC190/806 Japanese line plug 100 V ±10 %•BC190/807 Australian line plug 230 V ±10 %•BC190/808 Universal switchable adapter 115 V ±10 % or 230 V ±10 %, with plug EN60320-2.2GLine Frequency........................................ 50 and 60 Hz97Users Manual98Probe CalibrationManual pulse adjustment and automatic DC adjustment with probe check.Generator Output....................................3 Vpp / 500 Hzsquare waveMemoryNumber of Scope Memories.......................................10Each memory can contain two waveforms plus corresponding setupsNumber of Recorder Memories....................................2Each memory can contain:• a dual input TrendPlot(2 x 13500 points per input)• a dual input Scope Record (2 x 27500 points per input)• 100 dual input Scope screensMechanicalSize.....................64 x 169 x 254 mm (2.5 x 6.6 x 10 in)Weight..................................................1.95 kg (4.3 lbs)including batteryOptical InterfacePortType.......................................RS-232, optically isolated To Printer...........................supports Epson FX, LQ, andHP Deskjet ®, Laserjet ®, and Postscript• Serial via PM9080 (optically isolated RS-232 Adapter/Cable, optional).• Parallel via PAC91 (optically isolated Print Adapter Cable, optional).To PC/Notebook• Serial via PM9080 (optically isolated RS-232 Adapter/Cable, optional), using SW90W (FlukeView ®softwarefor Windows 95®, 98®, Me ®, 2000® and NT4®).Environmental -PRF-28800F, Class 2TemperatureOperating:battery only.........................0 to 50 °C (32 to 122 °F) power adapter....................0 to 40 °C (32 to 104 °F) Storage..........................-20 to +60 °C (-4 to +140 °F)HumidityOperating:0 to 10 °C (32 to 50 °F).....................noncondensing10 to 30 °C (50 to 86 °F).................................. 95 %30 to 40 °C (86 to 104 °F).................................75 %40 to 50 °C (104 to 122 °F)...............................45 % Storage:-20 to +60 °C (-4 to +140 °F)............noncondensingAltitude Operating.......................................3 km (10 000 feet) Storage........................................12 km (40 000 feet)Vibration (Sinusoidal).......................................max. 3 gShock............................................................max. 30 g Electromagnetic Compatibility (EMC)Emission and immunitiy...........EN-IEC61326-1 (1997) Enclosure Protection...........................IP51, ref: IEC52999Users Manual100Designed for measurements on 1000 V Category II Installations, 600 V Category III Installations, Pollution Degree 2, per:• ANSI/ISA S82.01-1994• EN61010-1 (1993) (IEC1010-1)• CAN/CSA-C22.2 No.1010.1-92• UL3111-1Max. Input VoltagesInput A and B directly.............................300 V CAT III Input A and B via 10:1 probe.................1000 V CAT II600 V CAT IIIMETER/EXT TRIG inputs......................1000 V CAT II600 V CAT III From any terminal to ground.................1000 V CAT II600 V CAT IIIBetween any terminal............................1000 V CAT II600 V CAT III Voltage ratings are given as “working voltage”. They should be read as Vac-rms (50-60 Hz) for AC sinewave applications and as Vdc for DCapplications.Figure 51. Max. Input Voltage v.s. FrequencyNoteOvervoltage Category III refers to distribution level and fixed installation circuits inside abuilding. Overvoltage Category II refers to local level, which is applicable for appliances and portable equipment.Figure 52. Safe Handling: Max. Input Voltage Between Scope References, and BetweenScope References and Meter Reference 10:1 ProbeSafetyMax. Input Voltage..........................1000 V CAT II600 V CAT III Max. Floating Voltagefrom any terminal to ground...................1000 V CAT II600 V CAT IIIup to 400 Hz Electrical specificationsInput Impedance at probe tip10 MΩ (±2 %)//14 pF (±2 pF)Capacity Adjustment Range.........................10 to 22 pF Attenuation at DC (1 MΩ input)....................10 x (±2 %) Bandwidth (with FLUKE 199)......DC to 200 MHz (-3 dB) EnvironmentalTemperatureOperating...........................0 to 50 °C (32 to 122 °F) Storage........................-20 to +60 °C (-4 to +140 °F) AltitudeOperating....................................3 km (10 000 feet) Storage......................................12 km (40 000 feet) HumidityOperating at 10 to 30 °C (50 to 86 °F).............. 95 %101Users Manual102FR E QUE NCY (MHz)MAX. INPUTVOLT Figure 53. Max. Voltage From Probe Tip to Groundand From Probe Tip to Probe ReferenceFR E QUE NCY (MHz)MAX. VOLT AGEF ROM PR OBE R E FE R E NCE T O GROUNDFigure 54. Safe Handling: Max. Voltage From ProbeReference to GroundElectromagnetic ImmunityThe Fluke 190 series, including standard accessories, conforms with the EEC directive 89/336 for EMC immunity, as defined by EN-61326-1, with the addition of the following tables.Scope Mode (10 ms/div): Trace disturbance with VPS200 voltage probe shortedTable 1No visible disturbance E = 3V/mFrequency range 10 kHz to 20 MHz 5 mV/div to 100 V/divFrequency range 20 MHz to 100 MHz100 mV/div to 100 V/divFrequency range 100 MHz to 1 GHz500 mV/div to 100 V/div *)(*)With the 20 MHz Bandwidth Filter switched on: no visible disturbance.With the 20 MHz Bandwidth Filter switched off: disturbance is max 2 div.Table 2Disturbance less than 10% of full scale E = 3V/mFrequency range 20 MHz to 100 MHz10 mV/div to 50 mV/divTest Tool ranges not specified in tables 1 and 2 may have a disturbance of more than 10% of full scale.Meter Mode (Vdc, Vac, Vac+dc, Ohm and Continuity): Reading disturbance with test leads shortedTable 3Disturbance less than 1% of full scale E = 3V/mFrequency range 10 kHz to 1 GHz500mV to 1000V , 500Ohm to 30 MOhm ranges103。
智能电表——欧洲应用智能电表(Smart Meter)严格说来,电表,这个是用电单位与电力公司之间连接点的一个量测装置。
电力公司就是依据电表的数据来向各个用电单位收费。
几十年(应该说近百年)来,电表的变化很小,就是跑一个数字说明现在累计的用电度数是多少。
而智能电表则是利用了网络通讯做一个类似电力公司与家庭之间的闸门。
就像是家里利用ADSL或是Cable与电信公司或有线电视公司的连接点一样。
所不同的地方在于,数字电表传送的是每个用电单位的用电信息,而这个通讯很可能就借用 ADSL,TV Cable,甚至是即将要出现的WiMAX无线网络(这个或许有机会我也会提)。
有这样的通道代表的是双向沟通,也就在传送用电单位的用电量信息的同时,电力公司也可以进一步与用电单位沟通,透过某种协议来控制每个用电单位的用电量。
举个很简单的例子说明:你家里希望每天用电不要超过 100 元,但是你希望晚上 17:00 到隔天 10:00 一定要有电。
那电力公司就可以帮你看,17:00 到 10:00 一定供电,但是假如超过预算,他隔天就帮你断电到 17:00直到你平均的用电不超过 100 元为止。
这个是很简单的例子,复杂一点的,你可以设定优先度,甚至每小时的上限,或是其它的条件。
(这些条件要实际运用之后会更丰富)。
或许看起来没甚么,但是未来我们可能要用时间电价,也就是尖峰用电与离峰用电的价格会不一样,那就会有更多的设定可以考虑了。
而回到我们的家庭节能系统的结合,我们假如可以排定每一个电器的用电优先序,甚至可以让智能电表不要完全断电,而只停止非绝对必要的电气的运作以达到电费最佳化的地步都是可能的。
由于电费最佳化其实约略等于用电最佳化(中间还是有一点差距,不过那个交给我们这些无聊的学术人士来吵就好了),用电最佳化其实就能源运用的最佳化。
而这个电表若是未来能与小型再生能源系统结合(例如小型风力发电机,热对流发电机),整个的节能功效是非常可观的。