中考第一轮复习之三角形专题复习
- 格式:doc
- 大小:204.00 KB
- 文档页数:11
专题:三角形三心教学目标1、掌握三角形外心的性质;2、掌握三角形内心的性质;3、掌握三角形重心的性质。
知识点1、三角形外心:外接圆的圆心、三边垂直平分线的交点;到三个顶点的距离相等;2、三角形内心:内切圆的圆心、三角角平分线的交点;到三边的距离相等;3、三角形重心:三边中线的交点;中线分为2:1的两部分;6个三角形的面积相等。
经典例题例1、(1)如图,在△ABC中,AE是BC边上的中线,点G是△ABC的重心,过点G作GF∥AB交BC于点F,那么=()A.B.C.D.(2)如图,点P是△ABC的重心,若△ABC的面积为12,则△BPC的面积为()A.3 B.4 C.5 D.6举一反三1.(1)如图,在Rt△ABC中,∠BAC=90°,中线AD,BE相交于点F.EG∥BC,交AD于点G.GF=1,则BC的长为()A.5 B.6 C.10 D.12(2)如图,点P是△ABC的重心,点D是边AC的中点,PE∥AC交BC于点E,DF∥BC交EP于点F.若四边形CDFE的面积为6,则△ABC的面积为()A.12 B.14 C.18 D.242.如图,已知△ABC内接于⊙O,∠BAC=θ(0°<θ<60°),BC=6,点P为△ABC的重心,当点A到BC 的距离最大时,线段PO的长为()A.B.C.tanθ﹣2sinθD.2tanθ﹣sinθ*3.如图,在△ABC中,分别以AB,AC为斜边在同侧作两个等腰直角△ADB与△AEC,若点D是△AEC的重心,则tan∠BAC=.*4.若抛物线经过原点和点A(6,6)及点B(﹣6,6),点C是x轴上一点,当△ABC的重心G落在抛物线上时,则点G的坐标是例2、(1)如图,在平面直角坐标系xOy中,点A的坐标为(0,7),点B的坐标为(0,3),点C的坐标为(3,0),那么△ABC的外接圆的圆心坐标为.(2)如图,O为锐角三角形ABC的外心,四边形OCDE为正方形,其中E点在△ABC的外部,判断下列叙述不正确的是()A.O是△AEB的外心,O不是△AED的外心B.O是△BEC的外心,O不是△BCD的外心C.O是△AEC的外心,O不是△BCD的外心D.O是△ADB的外心,O不是△ADC的外心举一反三1.如图,锐角三角形ABC中,点O为AB中点.甲、乙二人想在AC上找一点P,使得△ABP的外心为点O,其作法分别如下.对于甲、乙二人的作法,下列判断正确的是()甲的作法过点B作与AC垂直的直线,交AC于点P,则P即为所求乙的作法以O为圆心,OA长为半径画弧,交AC于点P,则P即为所求A.两人都正确B.两人都错误C.甲正确,乙错误D.甲错误,乙正确2.小明家的房前有一块矩形的空地,空地上有三棵树A、B、C,小明想建一个圆形花坛,使三棵树都在花坛的边上.请你帮小明把花坛的位置画出来(尺规作图,不写作法,保留作图痕迹).3.联想三角形外心的概念,我们可引入如下概念:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.例:已知PA=PB,则点P为△ABC的准外心(如图1).(1)如图2,CD为正三角形ABC的高,准外心P在高CD上,且PD=,求∠APB的度数.*(2)如图3,若△ABC为直角三角形,∠C=90°,AB=13,BC=5,准外心P在AC边上,试探究PA的长.*4.已知,线段,点C为平面上一点,若∠ACB=45°,则线段AC的最大值是()A.4 B.C.8 D.例3、如图是△ABC的内心,过I的直线EF∥BC与AB、AC分别交于点E、F.若∠A=70°,那么∠BIC的度数为()A.100°B.110°C.125°D.135°举一反三1.如图,点I为△ABC的内心,AB=4cm,AC=3cm,BC=2cm,将∠ACB平移,使其顶点与点I重合,则图中阴影部分的周长为()A.1cm B.2cm C.3cm D.4cm2.如图,△ABC中,AC=BC,I为△ABC的内心,O为BC上一点,过B、I两点的⊙O交BC于D点,tan∠CBI=,AB=6(1)求线段BD的长;(2)求线段BC的长.*3.如图,在扇形OAB中,点C是弧AB上任意一点(不与点A,B重合),CD∥OA交OB于点D,点I是△OCD的内心,连接OI,BI,∠AOB=β,则∠OIB等于()A.B.180°﹣βC.D.90°+β例4、如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数为()A.56°B.62°C.68°D.78°举一反三1.如图为5×5的网格图,A,B,C,D,O均在格点上,则点O是()A.△ACD的外心B.△ABC的外心C.△ACD的内心D.△ABC的内心2.如图,在6×6的正方形网格中,有部分网格线被擦去.点A,B,C在格点(正方形网格的交点)上.(1)请用无刻度的直尺在图1中找到三角形ABC的外心P;*(2)请用无刻度的直尺在图2中找到三角形ABC的内心Q.*3.点O是△ABC的外心,点I是△ABC的内心,若∠BIC=145°,则∠BOC的度数为()A.110°B.125°C.130°D.140°作业1、如图,在△ABC中,∠ACB=90°,AC=5cm,BC=7cm,点I为三角形的重心,HI⊥BC于点H,则HI=cm.2.如图,G是△ABC的重心,延长BG交AC于点D,延长CG交AB于点E,P、Q分别是△BCE和△BCD 的重心,BC长为6,则PQ的长为.3、(1)请借助网格和一把无刻度直尺找出△ABC的外心点O;(2)设每个小方格的边长为1,求出外接圆⊙O的面积.4、如图,在半径为6,圆心角为90°的扇形OAB的上,有一个动点P,PH⊥OA,垂足为H,△OPH的重心为G.(1)当点P在上运动时,线段GO、GP、GH中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度;*(2)如果△PGH是直角三角形,试求OG:PG:HG的值.*5、已知,线段AB=4,点C为平面上一点,若∠ACB=30°,则线段AC的最大值是()A.4 B.C.8 D.。
2023年中考数学一轮复习:解直角三角形及其应用一、单选题1.如图,在平面直角坐标系中,直线AB与x轴交于点A(﹣2,0),与x轴夹角为30°,将△ABO沿直线AB翻折,点O的对应点C恰好落在双曲线kyx=(k≠0)上,则k的值为()A.4B.﹣2C D.2.如图,平行四边形ABCD中,对角线AC、BD相交于点O,AE平分△BAD,分别交BC,BD于点E,P,连接OE,△ADC=60°,122AB BC==,则下列结论:①△CAD=30°;②14OE AD=;③S平行四边形ABCD=AB·AC;④27BD=⑤S△BEP=S△APO;其中正确的个数是()A.2B.3C.4D.5 3.如图,为了保证道路交通安全,某段高速公路在A处设立观测点,与高速公路的距离AC为20米.现测得一辆小轿车从B处行驶到C处所用的时间为4秒。
若△BAC=α,则此车的速度为()A.5tanα米/秒B.80tanα米/秒C.5tanα米/秒D.80tanα米/秒二、填空题4.如图,在 ABC 中,AD 是BC 上的高, cos tanB DAC =∠ ,若 1213sinC =, 12BC = ,则AD 的长 .5.某人沿着坡角为α的斜坡前进80m ,则他上升的最大高度是 m . 6.如图,建筑物BC 上有一旗杆AB ,点D 到BC 的距离为20m ,在点D 处观察旗杆顶部A 的仰角为52°,观察底部B 的仰角为45°,则旗杆的高度为 m .(精确到0.1m ,参考数据:520.79sin ︒≈,52 1.28tan ︒≈ 1.41≈ 1.73≈.)三、综合题7.在Rt△ACB 中,△C=90°,点O 在AB 上,以O 为圆心,OA 长为半径的圆与AB 、AC 分别交于点D 、E ,且△CBE=△A.(1)求证:BE 是△O 的切线; (2)连接DE ,求证:△AEB△△EDB ;(3)若点F 为 AE 的中点,连接OF 交AD 于点G ,若AO=5,3sin 5CBE ∠= ,求OG 的长.8.如图(1)放置两个全等的含有30°角的直角三角板 ABC 与(30)DEF B E ∠=∠=︒ ,若将三角板 ABC 向右以每秒1个单位长度的速度移动(点C 与点E 重合时移动终止),移动过程中始终保持点B 、F 、C 、E 在同一条直线上,如图(2), AB 与 DF 、 DE 分别交于点P 、M , AC 与 DE 交于点Q ,其中 AC DF ==,设三角板 ABC 移动时间为x 秒.(1)在移动过程中,试用含x 的代数式表示AMQ 的面积;(2)计算x 等于多少时,两个三角板重叠部分的面积有最大值?最大值是多少?9.已知AB 是△O 的切线,切点为B 点,AO 交△O 于点C ,点D 在AB 上且DB=DC .(1)求证:DC 为△O 的切线;(2)当AD=2BD ,CD=2时,求AO 的长.10.脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高 AB 所在的直线.为了测量房屋的高度,在地面上C 点测得屋顶 A 的仰角为 35︒ ,此时地面上C 点、屋檐上 E 点、屋顶上A 点三点恰好共线,继续向房屋方向走 8m 到达点D 时,又测得屋檐 E 点的仰角为 60︒ ,房屋的顶层横梁 12EF m = ,//EF CB , AB 交 EF 于点G (点C ,D , B 在同一水平线上).(参考数据:sin350.6︒≈ , cos350.8︒≈ , tan350.7︒≈ ,1.7≈ )(1)求屋顶到横梁的距离 AG ;(2)求房屋的高 AB (结果精确到 1m ).11.如图,直线 (0)y mx n m =+≠ 与双曲线 (0)ky k x=≠ 交于 A B 、 两点,直线AB 与坐标轴分别交于 C D 、 两点,连接 OA ,若 OA = ,1tan 3AOC ∠= ,点 (3,)B b - .(1)分别求出直线 AB 与双曲线的解析式; (2)连接 OB ,求 AOBS.12.如图,某港口O 位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.(1)若它们离开港口一个半小时后分别位于A 、B 处,且相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?说明理由.(2)若“远航”号沿北偏东60︒方向航行,经过两个小时后位于F 处,此时船上有一名乘客需要紧急回到PE 海岸线上,若他从F 处出发,乘坐的快艇的速度是每小时80海里.他能在半小时内回到海岸线吗?说明理由.13.如图,某人在山坡坡脚A 处测得电视塔尖点 C 的仰角为 60︒ ,沿山坡向上走到p 处再测得点C 的仰角为 45︒ ,已知 100OA = 米,山坡坡度 1:2i = ,且O A B 、、 在同一条直线上,其中测倾器高度忽略不计.(1)求电视塔OC 的高度;(计算结果保留根号形式)(2)求此人所在位置点 P 的铅直高度.(结果精确到0.1米,参考数据:1.41= , 1.73= )14.我国于2019年6月5日首次完成运载火箭海上发射,达到了发射技术的新高度.如图,运载火箭海面发射站点M 与岸边雷达站N 处在同一水平高度。
第十五节三角形【知识点梳理】一、三角形1、三角形中的主要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做。
(2)在三角形中,连接一个顶点和它对边的中点的线段叫做。
(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做(简称)。
2.三角形的中位线三角形的中位线平行于,并且等于.3.三角形的三边关系定理及推论三角形三边关系:任意两边之和第三边;任意两边之差第三边.4、三角形的内角和定理及推论1.三角形内角和:三角形三内角之和等于.2.三角形外角的性质:(1)三角形的一个外角任何一个和它不相邻的内角;(2)三角形的一个外角与它不相邻的两内角之和.1.三角形的分类:(1)按边分:三角形分为和等腰三角形;等腰三角形又分为及 .(2)按角分:三角形和斜三角形;斜三角形又分为:和 .答案:一、三角形1、三角形中的主要线段(1)三角形的角平分线。
(2)三角形的中线。
(3)三角形的高线(简称三角形的高)。
2.三角形的中位线:三角形的第三边,并且等于第三边长的一半.3.三角形的三边关系定理及推论:任意两边之和大于第三边;任意两边之差小于第三边.4、三角形的内角和定理及推论1. 180°.2.三角形外角的性质:(1)大于;(2)等于.1.三角形的分类:(1)按边分:三角形分为不等边三角形和等腰三角形;等腰三角形又分为底和腰不等的三角形及等边三角形.(2)按角分:三角形直角三角形和斜三角形;斜三角形又分为:锐角三角形和钝角三角形.【课堂练习】一.选择题(共9小题)1.三角形的下列线段中能将三角形的面积分成相等两部分的是()A.中线B.角平分线C.高D.中位线【考点】K3:三角形的面积;K2:三角形的角平分线、中线和高.【分析】根据等底等高的三角形的面积相等解答.【解答】解:∵三角形的中线把三角形分成两个等底同高的三角形,∴三角形的中线将三角形的面积分成相等两部分.故选A.2.如图,△ABC中,D,E两点分别在AB,BC上,若AD:DB=CE:EB=2:3,则△DBE与△ADC的面积比为()A.3:5 B.4:5 C.9:10 D.15:16【考点】K3:三角形的面积.【分析】根据三角形面积求法进而得出S△BDC:S△ADC=3:2,S△BDE:S△DCE=3:2,即可得出答案.【解答】解:∵AD:DB=CE:EB=2:3,∴S△BDC:S△ADC=3:2,S△BDE:S△DCE=3:2,∴设S△BDC=3x,则S△ADC=2x,S△BED=1.8x,S△DCE=1.2x,故△DBE与△ADC的面积比为:1.8x:2x=9:10.故选:C.3.如图,已知在Rt△ABC中,∠C=90°,AC=BC,AB=6,点P是Rt△ABC的重心,则点P到AB所在直线的距离等于()A.1 B.3C.32D.2【考点】K5:三角形的重心;KW:等腰直角三角形.【分析】连接CP并延长,交AB于D,根据重心的性质得到CD是△ABC的中线,PD=CD,根据直角三角形的性质求出CD,计算即可.【解答】解:连接CP并延长,交AB于D,∵P是Rt△ABC的重心,∴CD是△ABC的中线,PD=CD,∵∠C=90°,∴CD=AB=3,∵AC=BC,CD是△ABC的中线,∴CD⊥AB,∴PD=1,即点P到AB所在直线的距离等于1,故选:A.4.三角形的重心是()A.三角形三条边上中线的交点B.三角形三条边上高线的交点C.三角形三条边垂直平分线的交点D.三角形三条内角平行线的交点【考点】K5:三角形的重心.【分析】根据三角形的重心是三条中线的交点解答.【解答】解:三角形的重心是三条中线的交点,故选:A.5.如图,直角△ABC中,∠B=30°,点O是△ABC的重心,连接CO并延长交AB于点E,过点E作EF⊥AB交BC于点F,连接AF交CE于点M,则MOMF的值为()A.12B.54C.23D.33【考点】K5:三角形的重心;S9:相似三角形的判定与性质.【分析】根据三角形的重心性质可得OC=CE,根据直角三角形的性质可得CE=AE,根据等边三角形的判定和性质得到CM=CE,进一步得到OM=CE,即OM=AE,根据垂直平分线的性质和含30°的直角三角形的性质可得EF=AE,MF=EF,依此得到MF=AE,从而得到的值.【解答】解:∵点O是△ABC的重心,∴OC=CE,∵△ABC是直角三角形,∴CE=BE=AE,∵∠B=30°,∴∠FAE=∠B=30°,∠BAC=60°,∴∠FAE=∠CAF=30°,△ACE是等边三角形,∴CM=CE,∴OM=CE﹣CE=CE,即OM=AE,∵BE=AE,∴EF=AE,∵EF⊥AB,∴∠AFE=60°,∴∠FEM=30°,∴MF=EF,∴MF=AE,∴==.故选:D.6.长度分别为2,7,x的三条线段能组成一个三角形,x的值可以是()A.4 B.5 C.6 D.9【考点】K6:三角形三边关系.【分析】已知三角形的两边长分别为2和7,根据在三角形中任意两边之和>第三边,任意两边之差<第三边;即可求第三边长的范围,再结合选项选择符合条件的.【解答】解:由三角形三边关系定理得7﹣2<x<7+2,即5<x<9.因此,本题的第三边应满足5<x<9,把各项代入不等式符合的即为答案.4,5,9都不符合不等式5<x<9,只有6符合不等式,故选:C.7.已知a,b,c是△ABC的三条边长,化简|a+b﹣c|﹣|c﹣a﹣b|的结果为()A.2a+2b﹣2c B.2a+2b C.2c D.0【考点】K6:三角形三边关系.【分析】先根据三角形的三边关系判断出a﹣b﹣c与c﹣b+a的符号,再去绝对值符号,合并同类项即可.【解答】解:∵a、b、c为△ABC的三条边长,∴a+b﹣c>0,c﹣a﹣b<0,∴原式=a+b﹣c+(c﹣a﹣b)=0.故选D.8.若一个三角形的两边长分别为2和4,则该三角形的周长可能是()A.6 B.7 C.11 D.12【考点】K6:三角形三边关系.【分析】首先求出三角形第三边的取值范围,进而求出三角形的周长取值范围,据此求出答案.【解答】解:设第三边的长为x,∵三角形两边的长分别是2和4,∴4﹣2<x<2+4,即2<x<6.则三角形的周长:8<C<12,C选项11符合题意,故选C.9.如图,在△ABC中,点D在AB上,点E在AC上,DE∥BC.若∠A=62°,∠AED=54°,则∠B的大小为()A.54°B.62°C.64°D.74°【考点】K7:三角形内角和定理;JA:平行线的性质.【分析】根据平行线的性质得到∠C=∠AED=54°,根据三角形的内角和即可得到结论.【解答】解:∵DE∥BC,∴∠C=∠AED=54°,∵∠A=62°,∴∠B=180°﹣∠A﹣∠C=64°,故选C.二.填空题(共5小题)10.在△ABC中,已知BD和CE分别是边AC、AB上的中线,且BD⊥CE,垂足为O.若OD=2cm,OE=4cm,则线段AO的长度为cm.【考点】K5:三角形的重心;KQ:勾股定理.【分析】连接AO并延长,交BC于H,根据勾股定理求出DE,根据三角形中位线定理求出BC,根据直角三角形的性质求出OH,根据重心的性质解答.【解答】解:连接AO并延长,交BC于H,由勾股定理得,DE==2,∵BD和CE分别是边AC、AB上的中线,∴BC=2DE=4,O是△ABC的重心,∴AH是中线,又BD⊥CE,∴OH=BC=2,∵O是△ABC的重心,∴AO=2OH=4,故答案为:4.11.在△ABC中,∠A:∠B:∠C=2:3:4,则∠A的度数为.【考点】K7:三角形内角和定理.【分析】直接用一个未知数表示出∠A,∠B,∠C的度数,再利用三角形内角和定理得出答案.【解答】解:∵∠A:∠B:∠C=2:3:4,∵∠A+∠B+∠C=180°,∴2x+3x+4x=180°,解得:x=20°,∴∠A的度数为:40°.故答案为:40°.12.如图,BC∥EF,AC∥DF,添加一个条件,使得△ABC≌△DEF.【考点】KB:全等三角形的判定.【分析】本题要判定△ABC≌△DEF,易证∠A=∠EDF,∠ABC=∠E,故添加AB=DE、BC=EF或AC=DF根据ASA、AAS即可解题.【解答】解:∵BC∥EF,∴∠ABC=∠E,∵AC∥DF,∴∠A=∠EDF,∵在△ABC和△DEF中,,∴△ABC≌△DEF,同理,BC=EF或AC=DF也可证△ABC≌△DEF.故答案为AB=DE或BC=EF或AC=DF或AD=BE(只需添加一个即可).13.如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:①∠ABC=∠ADC;②AC与BD相互平分;③AC,BD分别平分四边形ABCD的两组对角;④四边形ABCD的面积S=12 AC•BD.正确的是(填写所有正确结论的序号)【考点】KD:全等三角形的判定与性质;KG:线段垂直平分线的性质.【分析】①证明△ABC≌△ADC,可作判断;②③由于AB与BC不一定相等,则可知此两个选项不一定正确;④根据面积和求四边形的面积即可.【解答】解:①在△ABC和△ADC中,∵,∴△ABC≌△ADC(SSS),∴∠ABC=∠ADC,故①结论正确;②∵△ABC≌△ADC,∴∠BAC=∠DAC,∵AB=AD,∴OB=OD,AC⊥BD,而AB与BC不一定相等,所以AO与OC不一定相等,故②结论不正确;而AB与BC不一定相等,所以BD不一定平分四边形ABCD的对角;故③结论不正确;④∵AC⊥BD,∴四边形ABCD的面积S=S△ABD+S△BCD=BD•AO+BD•CO=BD•(AO+CO)=AC•BD.故④结论正确;所以正确的有:①④;故答案为:①④.14.如图,∠AOB=45°,点M,N在边OA上,OM=x,ON=x+4,点P是边OB上的点,若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是.【考点】KI:等腰三角形的判定.【分析】分三种情况讨论:先确定特殊位置时成立的x值,①如图1,当M与O重合时,即x=0时,点P恰好有三个;②如图2,构建腰长为4的等腰直角△OMC,和半径为4的⊙M,发现M在点D的位置时,满足条件;③如图3,根据等腰三角形三种情况的画法:分别以M、N为圆心,以MN为半径画弧,与OB的交点就是满足条件的点P,再以MN为底边的等腰三角形,通过画图发现,无论x取何值,以MN为底边的等腰三角形都存在一个,所以只要满足以MN为腰的三角形有两个即可.【解答】解:分三种情况:①如图1,当M与O重合时,即x=0时,点P恰好有三个;②如图2,以M为圆心,以4为半径画圆,当⊙M与OB相切时,设切点为C,⊙M与OA交于D,∴MC⊥OB,∵∠AOB=45°,∴△MCO是等腰直角三角形,∴MC=OC=4,∴OM=4,当M与D重合时,即x=OM﹣DM=4﹣4时,同理可知:点P恰好有三个;③如图3,取OM=4,以M为圆心,以OM为半径画圆,则⊙M与OB除了O外只有一个交点,此时x=4,即以∠PMN为顶角,MN为腰,符合条件的点P有一个,以N圆心,以MN为半径画圆,与直线OB相离,说明此时以∠PNM为顶角,以MN为腰,符合条件的点P不存在,还有一个是以NM为底边的符合条件的点P;点M沿OA运动,到M1时,发现⊙M1与直线OB有一个交点;综上所述,若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是:x=0或x=4﹣4或4.故答案为:x=0或x=4﹣4或4.三.解答题(共9小题)15.如图,点E,F在AB上,AD=BC,∠A=∠B,AE=BF.求证:△ADF≌△BCE.【考点】KB:全等三角形的判定.【分析】根据全等三角形的判定即可求证:△ADF≌△BCE【解答】解:∵AE=BF,∴AE+EF=BF+EF,在△ADF与△BCE中,∴△ADF≌△BCE(SAS)16.如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.【考点】KD:全等三角形的判定与性质.【分析】可通过证△ABF≌△DCE,来得出∠A=∠D的结论.【解答】证明:∵BE=FC,∴BE+EF=CF+EF,即BF=CE;又∵AB=DC,∠B=∠C,∴△ABF≌△DCE;(SAS)17.如图,已知AB∥DE,AB=DE,BE=CF,求证:AC∥DF.【考点】KD:全等三角形的判定与性质.【分析】首先由BE=CF可以得到BC=EF,然后利用边角边证明△ABC≌△DEF,最后利用全等三角形的性质和平行线的判定即可解决问题.【解答】证明:∵AB∥CD,∴∠ABC=∠DEF,又∵BE=CF,∴BE+EC=CF+EC,即:BC=EF,在△ABC和△DEF中∴△ABC≌△DEF(SAS),∴∠ACB=∠DFE,∴AC∥DF.18.已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD交于点O,AE与DC交于点M,BD与AC交于点N.(1)如图1,求证:AE=BD;(2)如图2,若AC=DC,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.【考点】KD:全等三角形的判定与性质;KW:等腰直角三角形.【分析】(1)根据全等三角形的性质即可求证△ACE≌△BCD,从而可知AE=BD;(2)根据条件即可判断图中的全等直角三角形;【解答】解:(1)∵△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,DC=EC,∴∠ACB+∠ACD=∠DCE+∠ACD,∴∠BCD=∠ACE,在△ACE与△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,(2)∵AC=DC,∴AC=CD=EC=CB,△ACB≌△DCE(SAS);由(1)可知:∠AEC=∠BDC,∠EAC=∠DBC∴∠DOM=90°,∵∠AEC=∠CAE=∠CBD,∴△EMC≌△BCN(ASA),∴CM=CN,∴DM=AN,△AON≌△DOM(AAS),∵DE=AB,AO=DO,∴△AOB≌△DOE(HL)19.如图,△ABC中,∠ACB=90°,AC=BC,点E是AC上一点,连接BE.(1)如图1,若AB=4,BE=5,求AE的长;(2)如图2,点D是线段BE延长线上一点,过点A作AF⊥BD于点F,连接CD、CF,当AF=DF时,求证:DC=BC.【考点】KD:全等三角形的判定与性质;KQ:勾股定理.【分析】(1)根据等腰直角三角形的性质得到AC=BC=AB=4,根据勾股定理得到CE==3,于是得到结论;(2)根据等腰直角三角形的性质得到∠CAB=45°,由于∠AFB=∠ACB=90°,推出A,F,C,B四点共圆,根据圆周角定理得到∠CFB=∠CAB=45°,求得∠DFC=∠AFC=135°,根据全等三角形的性质即可得到结论.【解答】解:(1)∵∠ACB=90°,AC=BC,∴AC=BC=AB=4,∵BE=5,∴CE==3,∴AE=4﹣3=1;(2)∵∠ACB=90°,AC=BC,∴∠CAB=45°,∵AF⊥BD,∴∠AFB=∠ACB=90°,∴A,F,C,B四点共圆,∴∠CFB=∠CAB=45°,∴∠DFC=∠AFC=135°,在△ACF与△DCF中,,∴△ACF≌△DCF,∴CD=AC,∵AC=BC,∴AC=BC.20.在等腰直角△ABC中,∠ACB=90°,P是线段BC上一动点(与点B、C不重合),连接AP,延长BC至点Q,使得CQ=CP,过点Q作QH⊥AP于点H,交AB于点M.(1)若∠PAC=α,求∠AMQ的大小(用含α的式子表示).(2)用等式表示线段MB与PQ之间的数量关系,并证明.【考点】KD:全等三角形的判定与性质;KW:等腰直角三角形.【分析】(1)由等腰直角三角形的性质得出∠BAC=∠B=45°,∠PAB=45°﹣α,由直角三角形的性质即可得出结论;(2)连接AQ,作ME⊥QB,由AAS证明△APC≌△QME,得出PC=ME,△MEB是等腰直角三角形,由等腰直角三角形的性质即可得出结论.【解答】解:(1)∠AMQ=45°+α;理由如下:∵∠PAC=α,△ACB是等腰直角三角形,∴∠BAC=∠B=45°,∠PAB=45°﹣α,∵QH⊥AP,∴∠AHM=90°,∴∠AMQ=180°﹣∠AHM﹣∠PAB=45°+α;(2)PQ=MB;理由如下:连接AQ,作ME⊥QB,如图所示:∵AC⊥QP,CQ=CP,∴∠QAC=∠PAC=α,∴∠QAM=45°+α=∠AMQ,∴AP=AQ=QM,在△APC和△QME中,,∴△APC≌△QME(AAS),∴PC=ME,∴△MEB是等腰直角三角形,∴PQ=MB,∴PQ=MB.21.如图,已知等腰三角形ABC中,AB=AC,点D、E分别在边AB、AC上,且AD=AE,连接BE、CD,交于点F.(1)判断∠ABE与∠ACD的数量关系,并说明理由;(2)求证:过点A、F的直线垂直平分线段BC.【考点】KH:等腰三角形的性质;KG:线段垂直平分线的性质.【分析】(1)证得△ABE≌△ACD后利用全等三角形的对应角相等即可证得结论;(2)利用垂直平分线段的性质即可证得结论.【解答】解:(1)∠ABE=∠ACD;在△ABE和△ACD中,,∴△ABE≌△ACD,∴∠ABE=∠ACD;(2)∵AB=AC,∴∠ABC=∠ACB,由(1)可知∠ABE=∠ACD,∴∠FBC=∠FCB,∴FB=FC,∵AB=AC,∴点A、F均在线段BC的垂直平分线上,即直线AF垂直平分线段BC.22.如图,直角△ABC中,∠A为直角,AB=6,AC=8.点P,Q,R分别在AB,BC,CA边上同时开始作匀速运动,2秒后三个点同时停止运动,点P由点A出发以每秒3个单位的速度向点B运动,点Q由点B出发以每秒5个单位的速度向点C运动,点R由点C出发以每秒4个单位的速度向点A运动,在运动过程中:(1)求证:△APR,△BPQ,△CQR的面积相等;(2)求△PQR面积的最小值;(3)用t(秒)(0≤t≤2)表示运动时间,是否存在t,使∠PQR=90°?若存在,请直接写出t的值;若不存在,请说明理由.【考点】KY:三角形综合题.【分析】(1)先利用锐角三角函数表示出QE=4t,QD=3(2﹣t),再由运动得出AP=3t,CR=4t,BP=3(2﹣t),AR=4(2﹣t),最后用三角形的面积公式即可得出结论;(2)借助(1)得出的结论,利用面积差得出S△PQR=18(t﹣1)2+6,即可得出结论;(3)先判断出∠DQR=∠EQP,用此两角的正切值建立方程求解即可.【解答】解:(1)如图,在Rt△ABC中,AB=6,AC=8,根据勾股定理得,BC=10,sin∠B===,sin∠C=,过点Q作QE⊥AB于E,在Rt△BQE中,BQ=5t,∴sin∠B==,∴QE=4t,过点Q作QD⊥AC于D,在Rt△CDQ中,CQ=BC﹣BQ=10﹣5t,∴QD=CQ•sin∠C=(10﹣5t)=3(2﹣t),由运动知,AP=3t,CR=4t,∴BP=AB﹣AP=6﹣3t=3(2﹣t),AR=AC﹣CR=8﹣4t=4(2﹣t),∴S△APR=AP•AR=×3t×4(2﹣t)=6t(2﹣t),S△BPQ=BP•QE=×3(2﹣t)×4t=6t(2﹣t),S△CQR=CR•QD=×4t×3(2﹣t)=6t(2﹣t),∴S△APR=S△BPQ=S△CQR,∴△APR,△BPQ,△CQR的面积相等;(2)由(1)知,S△APR=S△BPQ=S△CQR=6t(2﹣t),∵AB=6,AC=8,∴S△PQR=S△ABC﹣(S△APR+S△BPQ+S△CQR)=×6×8﹣3×6t(2﹣t)=24﹣18(2t﹣t2)=18(t﹣1)2+6,∵0≤t≤2,∴当t=1时,S△PQR最小=6;(3)存在,由(1)知,QE=4t,QD=3(2﹣t),AP=3t,CR=4t,AR=4(2﹣t),∴BP=AB﹣AP=6﹣3t=3(2﹣t),AR=AC﹣CR=8﹣4t=4(2﹣t),过点Q作QD⊥AC于D,作QE⊥AB于E,∵∠A=90°,∴四边形APQD是矩形,∴AE=DQ=3(2﹣t),AD=QE=4t,∴DR=|AD﹣AR|=|4t﹣4(2﹣t)|=|4(2t﹣2)|,PE=|AP﹣AE|=|3t﹣3(2﹣t)|=|3(2t﹣2)|∵∠DQE=90°,∠PQR=90°,∴∠DQR=∠EQP,∴tan∠DQR=tan∠EQP,在Rt△DQR中,tan∠DQR==,在Rt△EQP中,tan∠EQP==,∴,∴16t=9(2﹣t),∴t=.23.如图1,在△ABC中,设∠A、∠B、∠C的对边分别为a,b,c,过点A作AD⊥BC,垂足为D,会有sin∠C=,则S△ABC=BC×AD=×BC×ACsin∠C=absin∠C,即S△ABC=absin∠C同理S△ABC=bcsin∠AS△ABC=acsin∠B通过推理还可以得到另一个表达三角形边角关系的定理﹣余弦定理:如图2,在△ABC中,若∠A、∠B、∠C的对边分别为a,b,c,则a2=b2+c2﹣2bccos∠Ab2=a2+c2﹣2accos∠Bc2=a2+b2﹣2abcos∠C用上面的三角形面积公式和余弦定理解决问题:(1)如图3,在△DEF中,∠F=60°,∠D、∠E的对边分别是3和8.求S△DEF和DE2.解:S△DEF=EF×DFsin∠F=;DE2=EF2+DF2﹣2EF×DFcos∠F=.(2)如图4,在△ABC中,已知AC>BC,∠C=60°,△ABC'、△BCA'、△ACB'分别是以AB、BC、AC为边长的等边三角形,设△ABC、△ABC'、△BCA'、△ACB'的面积分别为S1、S2、S3、S4,求证:S1+S2=S3+S4.【考点】KY:三角形综合题.【分析】(1)直接利用正弦定理和余弦定理即可得出结论;(2)方法1、利用正弦定理得出三角形的面积公式,再利用等边三角形的性质即可得出结论;方法2、先用正弦定理得出S1,S2,S3,S4,最后用余弦定理即可得出结论.【解答】解:(1)在△DEF中,∠F=60°,∠D、∠E的对边分别是3和8,∴EF=3,DF=8,∴S△DEF=EF×DFsin∠F=×3×8×sin60°=6,DE2=EF2+DF2﹣2EF×DFcos∠F=32+82﹣2×3×8×cos60°=49,故答案为:6,49;(2)证明:方法1,∵∠ACB=60°,∴AB2=AC2+BC2﹣2AC•BCcos60°=AC2+BC2﹣AC•BC,两边同时乘以sin60°得,AB2sin60°=AC2sin60°+BC2sin60°﹣AC•BCsin60°,∵△ABC',△BCA',△ACB'是等边三角形,∴S1=AC•BCsin60°,S2=AB2sin60°,S3=BC2sin60°,S4=AC2sin60°,∴S2=S4+S3﹣S1,∴S1+S2=S3+S4,方法2、令∠A,∠B,∠C的对边分别为a,b,c,∴S1=absin∠C=absin60°=ab∵△ABC',△BCA',△ACB'是等边三角形,∴S2=c•c•sin60°=c2,S3=a•a•sin60°=a2,S4=b•b•sin60°=b2,∴S1+S2=(ab+c2),S3+S4=(a2+b2),∵c2=a2+b2﹣2ab•cos∠C=a2+b2﹣2ab•cos60°,∴a2+b2=c2+ab,∴S1+S2=S3+S4.。
2024成都中考数学第一轮专题复习之第四章第四节解直角三角形的实际应用知识精练基础题1.(2023天津)sin 45°+22的值等于()A.1B.2C.3D.22.(2023河北)淇淇一家要到革命圣地西柏坡参观,如图,西柏坡位于淇淇家南偏西70°的方向,则淇淇家位于西柏坡的()第2题图A.南偏西70°方向B.南偏东20°方向C.北偏西20°方向D.北偏东70°方向3.(2023南充)如图,小兵同学从A 处出发向正东方向走x 米到达B 处,再向正北方向走到C 处,已知∠BAC =α,则A ,C 两点相距()A.x sin α米B.x cos α米C.x ·sin α米D.x ·cos α米第3题图4.如图所示的网格是边长为1的正方形网格,则cos ∠CAB 的值为()第4题图A.55B.255C.22D.255.(2023包头)如图源于我国汉代数学家赵爽的弦图,它是由四个全等直角三角形与一个小正方形拼成的一个大正方形,若小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为α,则cosα的值为()A.34B.43C.35D.45第5题图6.(2023十堰)如图所示,有一天桥高AB为5米,BC是通向天桥的斜坡,∠ACB=45°,市政部门启动“陡改缓”工程,决定将斜坡的底端C延伸到D处,使∠D=30°,则CD的长度约为(参考数据:2≈1.414,3≈1.732)()第6题图A.1.59米B.2.07米C.3.55米D.3.66米7.(北师九下P20第2题改编)如图是某水库大坝的横截面示意图,已知AD∥BC,且AD,BC之间的距离为15米,背水坡CD的坡度i=1∶0.6,为提高大坝的防洪能力,需对大坝进行加固,加固后大坝顶端AE比原来的顶端AD加宽了2米,背水坡EF的坡度i=3∶4,则大坝底端增加的长度CF为()第7题图A.7米B.11米C.13米D.20米8.(2023武汉)如图,将45°的∠AOB按下面的方式放置在一把刻度尺上:顶点O与尺下沿的端点重合,OA与尺下沿重合,OB尺上沿的交点B在尺上的读数为2cm.若按相同的方式将37°的∠AOC放置在该刻度尺上,则OC与尺上沿的交点C在尺上的读数是________cm.(结果精确到0.1cm,参考数据sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)第8题图9.[新考法—跨学科](2022凉山州)如图,CD是平面镜,光线从A点出发经CD上点O反射后照射到B点,若入射角为α,反射角为β(反射角等于入射角),AC⊥CD于点C,BD⊥CD于点D,且AC=3,BD=6,CD=12,则tanα的值为________.第9题图10.[新考法—数学文化](2023枣庄改编)桔槔是一种原始的汲水工具,它是在一根竖立的架子上加上一根细长的杠杆,末端悬挂一重物,前端悬挂水桶.当人把水桶放入水中打满水以后,由于杠杆末端的重力作用,便能轻易把水提升至所需处.如图所示是桔槔汲水的简单示意图,若已知杠杆AB=6米,AO∶OB=2∶1,支架OM⊥EF,OM=3米,AB可以绕着点O自由旋转,当点A旋转到如图所示位置时∠AOM=45°,此时点B到水平地面EF的距离为________米.(结果保留根号)第10题图11.成都第31届世界大学生夏季运动会代表建筑主火炬塔,其构造设计理念为“大运之光”,塔身整体采用钢结构制作,造型呈细腰型,底座为直径约13米的内外同心圆环,内环延伸出4根主管呈螺旋上升型,外环12根副管与主管反向螺旋上升,象征着十二条太阳光芒螺旋升腾聚集于阳燧,寓意“东进兴川之光”.某数学活动小组利用课余时间测量主火炬塔的高度,在点A 处放置高为1米的测角仪AB ,在B 处测得塔顶F 的仰角为30°,沿AC 方向继续向前行38米至点C ,在CD 处测得塔顶F 的仰角为65°(点A ,C ,E 在同一条直线上),依据上述测量数据,求出主火炬塔EF 的高度.(结果保留整数,参考数据:3≈1.73,sin 25°≈0.42,cos 25°≈0.91,tan 25°≈0.47)第11题图拔高题12.[新考法—跨学科](2023甘肃省卷)如图①,某人的一器官后面A 处长了一个新生物,现需检测其到皮肤的距离.为避免伤害器官,可利用一种新型检测技术,检测射线可避开器官从侧面测量.某医疗小组制定方案,通过医疗仪器的测量获得相关数据,并利用数据计算出新生物到皮肤的距离方案如下:课题检测新生物到皮肤的距离工具医疗仪器等示意图第12题图①第12题图②说明如图②,新生物在A 处,先在皮肤上选择最大限度地避开器官的B 处照射新生物,检测射线与皮肤MN 的夹角为∠DBN ;再在皮肤上选择距离B 处9cm 的C 处照射新生物,检测射线与皮肤MN 的夹角为∠ECN .测量数据∠DBN =35°,∠ECN =22°,BC =9cm请你根据上表中的测量数据,计算新生物A 处到皮肤的距离.(结果精确到0.1cm ,参考数据:sin 35°≈0.57,cos 35°≈0.82,tan 35°≈0.70,sin 22°≈0.37,cos 22°≈0.93,tan 22°≈0.40)13.雨量监测站是一款以物联网为基础的现代型雨量站,通过这款设备,人们能远程获得降雨量的数据,并能根据当地环境气象判断出未来雨量情况,从而安排合理的农业作业.如图①是雨量监测站的实物图,如图②是该监测站的简化示意图,其中支杆AB,CD与支架MN 的夹角分别为∠BAM=45°,∠DCM=30°,支杆AB与太阳能供电板的夹角∠ABD=85°,且支杆AB,CD的端点A,C的距离为14cm,支杆CD的端点D到支架MN的水平距离为16cm,求支杆AB,CD的端点B,D之间的距离.(结果精确到0.1cm.参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,3≈1.73)图①图②第13题图参考答案与解析1.B【解析】原式=22+22=2.2.D【解析】∵南北方向是平行的,∴淇淇家位于西柏坡的北偏东70°方向.3.B 【解析】∵在Rt △ABC 中,cos α=AB AC ,∴AC =AB cos α.∵AB =x ,∴AC =x cos α.4.B 【解析】如解图,连接BD ,在△ABD 中,AB =32+12=10,AD =22+22=22,BD =12+12=2,∴AD 2+BD 2=AB 2,∴△ABD 是直角三角形,∴cos ∠CAB =AD AB=255.第4题解图5.D 【解析】如解图,∵两个正方形的面积分别为1,25,∴两个正方形的边长分别为CD =1,AB =5,设Rt △ABC 的AC 边为x ,则x 2+(x +1)2=52,解得x 1=3,x 2=-4(舍去),∴BC =4,∴cos α=BC AB =45.第5题解图6.D 【解析】根据题意可知,∠BAD =90°,∠BCA =45°,AB =5,∴AC =AB =5,在Rt △ABD中,∠D =30°,∴tan 30°=AB AD ,∴AD =AB tan 30°=5tan 30°=53,∴CD =AD -AC =53-5≈3.66(米).7.C 【解析】如解图,过点D 作DM ⊥BC 于点M ,过点E 作EN ⊥BC 于点N .由题意可知DM =EN =15,∵背水坡CD 的坡度i =1∶0.6,∴DM CM =53,∴CM =9.∵DE =MN =2,∴CN =7.∵背水坡EF 的坡度i =3∶4,∴EN NF =157+CF=34,解得CF =13.第7题解图8.2.7【解析】如解图,过点B 作BD ⊥OA 于点D ,过点C 作CE ⊥OA 于点E .在△BOD 中,∠BDO =90°,∠DOB =45°,∴BD =OD =2cm ,∴CE =BD =2cm.在△COE 中,∠CEO =90°,∠COE =37°,∵tan 37°=CE OE≈0.75,∴OE ≈2.7cm.∴OC 与尺上沿的交点C 在尺上的读数约为2.7cm.第8题解图9.43【解析】由平面镜反射知识可知α=∠A =β=∠B ,∴tan α=tan B =OD BD.易知△ACO ∽△BDO ,∴AC BD =OC OD =36=12.∵CD =12,∴OD =8,∴tan α=tan B =43.10.(3+2)【解析】如解图,过点O 作OC ⊥BT ,垂足为C ,由题意得BC ∥OM ,∴∠AOM =∠OBC =45°,∵AB =6米,AO ∶OB =2∶1,∴AO =4米,OB =2米,在Rt △OBC 中,BC =OB ·cos 45°=2×22=2(米).∵OM =3米,∴此时点B 到水平地面EF 的距离=BC +OM =(3+2)米.第10题解图11.解:如解图,设BD 的延长线与EF 交于点G ,由题意可得∠FDG =65°,∠FGD =90°,∴∠DFG =25°.AB =CD =EG =1米,AC =BD =38米,设FG =x 米,在Rt △BFG 中,∠FBG =30°,tan 30°=FG BG =x BG =33,解得BG =3x ,在Rt △DFG 中,∠DFG =25°,tan 25°=DG FG =DG x≈0.47,解得DG =0.47x ,∴BD =BG -DG =3x -0.47x =38,解得x ≈30,∴EF =FG +EG =30+1=31(米).∴主火炬塔EF 的高度约为31米.第11题解图12.解:如解图,过点A 作AF ⊥MN ,垂足为点F ,设BF =x cm ,∵BC =9cm ,∴CF =BC +BF =(x +9)cm.在Rt △ABF 中,∠ABF =∠DBN =35°,∴AF =BF ·tan 35°≈0.7x cm.在Rt △ACF 中,∠ACF =∠ECN =22°,∴AF =CF ·tan 22°≈0.4(x +9)cm ,∴0.7x =0.4(x +9),解得x =12,∴AF =0.7x =8.4cm ,∴新生物A 处到皮肤的距离约为8.4cm.第12题解图13.解:如解图,过点B 作BE ⊥MN 于点E ,过点D 分别作DF ⊥MN 于点F ,作DG ⊥BE 于点G ,则易得四边形DGEF 是矩形,DF =16cm ,∴EF =DG ,DF =GE .在Rt △CDF 中,∠CFD =90°,tan ∠DCF =DF CF ,∴CF =DF tan ∠DCF =16tan 30°=1633=163cm.∵∠BAE=45°,∴∠ABE=45°,AE=BE.∵∠ABD=85°,∴∠DBG=∠ABD-∠ABE=85°-45°=40°.在Rt△DBG中,∠BGD=90°,sin∠DBG=DGBD,cos∠DBG=BGBD,∴DG=BD·sin∠DBG=BD·sin40°≈0.64BD,BG=BD·cos∠DBG=BD·cos40°≈0.77BD,∴AE=BE=BG+GE=(0.77BD+16)cm.∵AF=AE+EF=AC+CF,∴0.77BD+16+0.64BD=14+163,解得BD≈18.2cm.答:支杆AB,CD的端点B,D之间的距离约为18.2cm.第13题解图。
中考一轮复习九年级数学《三角形》压轴题备考专题练习1、如图,在ABC 中,120ACB ∠=︒,BC AC >,点E 在BC 上,点D 在AB 上,CE CA =,连接DE ,180ACB ADE ∠+∠=︒,CH AB ⊥,垂足为H .证明:DE AD +=.2、如图,在△ABC 中,∠B=60°,△ABC 的角平分线AD 、CE 相交于点O,求证:AE+CD=AC.3、如图,在ABC ∆中,AD 是BAC ∠的平分线,G 为AD 上一动点,GH AD ⊥,交BC 的延长线于点H .(1)若30B ∠=︒,40BAC ∠=︒,求H ∠的度数;(2)当点G 在AD 上运动时,探求H ∠与B 、ACB ∠之间的数量关系,并证明.4、如图,在△ABC 中,AD 是BC 边上的高,AE 是∠BAC 的平分线,∠EAD=15°,∠B=40°. (1)求∠C 的度数.(2)若:∠EAD=α,∠B=β,其余条件不变,直接写出用含α,β的式子表示∠C 的度数.5、在△ABC 中,已知△A =α.(1)如图1,△ABC 、△ACB 的平分线相交于点D .求△BDC 的大小(用含α的代数式表示);(2)如图2,若△ABC 的平分线与△ACE 的平分线交于点F ,求△BFC 的大小(用含α的代数式表示);(3)在(2)的条件下,将△FBC 以直线BC 为对称轴翻折得到△GBC ,△GBC 的平分线与△GCB 的平分线交于点M (如图3),求△BMC 的度数(用含α的代数式表示).6、图,ABC 中,AC BC =,DCE 中,DC EC =,且DCE ACB ∠=∠,当把两个三角形如图△放置时,有AD BE =.(不需证明)(1)当把DCE 绕点C 旋转到图△△△的情况,其他条件不变,AD 和BE 还相等吗?请在图△△中选择一种情况进行证明;(2)若图△中AD 和BE 交于点P ,连接PC ,求证:PC 平分BPD ∠.7、已知在Rt ABC ∆中,90ACB ∠=︒,AC BC =,CD AB ⊥于D .(1)如图1,将线段CD 绕点C 顺时针旋转90︒得到CF ,连接AF 交CD 于点G . 求证:AG GF =;(2)如图2,点E 是线段CB 上一点(12CE CB <),连接ED ,将线段ED 绕点E 顺时针旋转90︒得到EF ,连接AF 交CD 于点G . △求证:AG GF =;△若7AC BC ==,2CE =,求DG 的长.8、在ABC 中,AB AC =,D 是直线BC 上一点(不与点B 、C 重合),以AD 为一边在AD 的右侧作ADE ,AD AE =,DAE BAC ∠=∠,连接CE .(1)如图,当 D 在线段BC 上时,求证:BD CE =.(2)如图,若点D 在线段CB 的延长线上,BCE α∠=,BAC β∠=.则α、β之间有怎样的数量关系?写出你的理由.(3)如图,当点D 在线段BC 上,90BAC ∠=︒,4BC =,求DCES 最大值.9、如图,已知 B (-1, 0) , C (1, 0) , A 为 y 轴正半轴上一点, AB = AC ,点 D 为第二象限一动点,E 在 BD 的延长线上, CD 交 AB 于 F ,且∠BDC = ∠BAC . (1)求证: ∠ABD = ∠ACD ; (2)求证: AD 平分∠CDE ;(3)若在 D 点运动的过程中,始终有 DC = DA + DB ,在此过程中,∠BAC 的度数是否变化?如果变化,请说明理由;如果不变,请求出∠BAC的度数?10、如图,ABC 是边长为2的等边三角形,BDC 是顶角为120°的等腰三角形,以点D 为顶点作60MDN ∠=︒,点M 、N 分别在AB 、AC 上. (1)如图①,当//MN BC 时,则AMN 的周长为______; (2)如图②,求证:BM NC MN +=.11、已知Rt△OAB和Rt△OCD的直角顶点O重合,∠AOB=∠COD=90°,且OA=OB,OC=OD.(1)如图1,当C、D分别在OA、OB上时,AC与BD的数量关系是AC BD(填“>”,“<”或“=”)AC与BD的位置关系是AC BD(填“∥”或“⊥”);(2)将Rt△OCD绕点O顺时针旋转,使点D在OA上,如图2,连接AC,BD,求证:AC=BD;(3)现将Rt△OCD绕点O顺时针继续旋转,如图3,连接AC,BD,猜想AC与BD的数量关系和位置关系,并给出证明.12、在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE.(1)连接EC,如图△,试探索线段BC,CD,CE之间满足的等量关系,并证明你的结论;(2)连接DE,如图△,求证:BD2+CD2=2AD2(3)如图△,在四边形ABCD中,△ABC=△ACB=△ADC=45°,若则AD的长为 .(直接写出答案)13、(1)问题发现与探究:如图1,,ACB DCE ∆∆都是等腰直角三角形,90ACB DCE ︒∠=∠=,点A,D,E 在同一直线上,CM AE ⊥于点M,连接BD,则:(1)线段AE,BD 之间的大小关系是_________________; ADB =∠ ; (2)求证:AD=2CM+BD ;如图2,3,在等腰直角三角形ABC 中,90ACB ︒∠=,过点A 作直线,在直线上取点D,45ADB ︒∠=,连接BD,BD=1,AC= ,则点C 到直线的距离是多少.14、在△ABC中,若存在一个内角角度是另外一个内角角度的n倍(n为大于1的正整数),则称△ABC为n倍角三角形.例如,在△ABC中,∠A=80°,∠B=75°,∠C=25°,可知∠B=3∠C,所以△ABC为3倍角三角形.(1)在△ABC中,∠A=80°,∠B=60°,则△ABC为倍角三角形;(2)若锐角三角形MNP是3倍角三角形,且最小内角为α,请直接写出α的取值范围为.(3)如图,直线MN与直线PQ垂直相交于点O,点A在射线OP上运动(点A不与点O重合),点B在射线OM上运动(点B不与点O重合).延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线所在的直线分别相交于E、F,若△AEF为4倍角三角形,求∠ABO的度数.15、(1)操作发现:将等腰Rt ABC与等腰Rt ADE按如图1方式叠放,其中ACB ADE,点D,E分别在AB,AC边上,M为BE的中点,连结CM,DM.小∠=∠=90︒=,你认为正确吗?请说明理由.明发现CM DM(2)思考探究:小明想:若将图1中的等腰Rt ADE绕点A沿逆时针方向旋转一定的角度,上述结论会如何呢?为此进行以下探究:探究一:将图1中的等腰Rt ADE绕点A沿逆时针方向旋转45︒(如图2),其他条件不变, =依然成立.请你给出证明.发现结论CM DM探究二:将图1中的等腰Rt ADE绕点A沿逆时针方向旋转135︒(如图3),其他条件不变, =还成立吗?请说明理由.则结论CM DM=,点P在平面内,连接AP,并将线段AP绕A顺时针方向旋转与16、在ABC中,AB AC∠相等的角度,得到线段AQ,连接BQ.BAC(1)如图,如果点P是BC边上任意一点.则线段BQ和线段PC的数量关系是__________.(2)如图,如果点P为平面内任意一点.前面发现的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.请仅以图所示的位置关系加以证明(或说明);(3)如图,在DEF 中,8DE =,60EDF ∠=︒,75DEF ∠=︒,P 是线段EF 上的任意一点,连接DP ,将线段DP 绕点D 顺时针方向旋转60°,得到线段DQ ,连接EQ .请直接写出线段EQ 长度的最小值.。
专题22相似三角形【专题目录】技巧1:巧用“基本图形”探索相似条件技巧2:巧作平行线构造相似三角形技巧3:证比例式或等积式的技巧【题型】一、相似图形的概念和性质【题型】二、平行线分线段成比例定理【题型】三、相似三角形的判定【题型】四、相似三角形的性质【题型】五、利用相似三角形解决实际问题【题型】六、位似图形的概念与性质【题型】七、平面直角坐标系与位似图形【考纲要求】1、了解比例线段的有关概念及其性质,并会用比例的性质解决简单的问题.2、了解相似多边形,相似三角形的概念,掌握其性质和判定并会运用.3、了解位似变换和位似图形的概念,掌握并运用其性质.【考点总结】一、相似图形及比例线段解直相似图形在数学上,我们把形状相同的图形称为相似图形.相似多边形若两个边数相同的多边形,它们的对应角相等、对应边成比例,则这两个多边形叫做相似多边形。
特征:对应角相等,对应边成比例。
比例线段的定义在四条线段a,b,c,d中,如果其中两条线段的比等于另外两条线段的比,即a cb d(或a∶b=c∶d),那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.【考点总结】二、相似三角形【技巧归纳】技巧1:巧用“基本图形”探索相似条件相似三角形的四类结构图:1.平行线型.2.相交线型.角三角形的应用比例线段的性质(1)基本性质:a b =c d ad =bc ;(2)合比性质:a b =c d a +b b =c +d d ;(3)等比性质:若a b =c d =…=m n (b +d +…+n ≠0),那么a +c +…+m b +d +…+n =a b.黄金分割点C 把线段AB 分成两条线段AC 和BC ,如果AC AB =BC AC ,则线段AB 被点C 黄金分割,点C 叫线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.3.子母型.4.旋转型.【类型】一、平行线型1.如图,在△ABC 中,BE 平分∠ABC 交AC 于点E ,过点E 作ED ∥BC 交AB 于点D.(1)求证:AE·BC =BD·AC ;(2)如果S △ADE =3,S △BDE =2,DE =6,求BC 的长.【类型】二、相交线型2.如图,点D ,E 分别为△ABC 的边AC ,AB 上的点,BD ,CE 交于点O ,且EO BO =DO CO,试问△ADE 与△ABC 相似吗?请说明理由.【类型】三、子母型3.如图,在△ABC 中,∠BAC =90°,AD ⊥BC 于点D ,E 为AC 的中点,ED 的延长线交AB 的延长线于点F.求证:AB AC =DF AF .【类型】四、旋转型4.如图,已知∠DAB =∠EAC ,∠ADE =∠ABC.求证:(1)△ADE ∽△ABC ;(2)AD AE =BD CE .参考答案1.(1)证明:∵ED ∥BC ,∴∠ADE =∠ABC.又∵∠A =∠A ,∴△ADE ∽△ABC.∴AE AC =DE BC.∵BE 平分∠ABC ,∴∠DBE =∠EBC.∵ED ∥BC ,∴∠DE B =∠EBC.∴∠DBE =∠DEB.∴DE =BD.∴AE AC =BD BC.即AE·BC =BD·AC.(2)解:设h △ADE 表示△ADE 中DE 边上的高,h △BDE 表示△BDE 中DE 边上的高,h △ABC 表示△ABC 中BC 边上的高.∵S △ADE =3,S △BDE =2,∴S △ADE S △BDE =12·DE·h △ADE 12·DE·h △BDE =h △ADE h △BDE =32.∴h △ADE h △ABC =35.∵△ADE ∽△ABC ,∴DE BC =h △ADE h △ABC =35.∵DE =6,∴BC =10.2.解:相似.理由如下:因为EO BO =DO CO,∠BO E =∠COD ,∠DOE =∠COB ,所以△BOE ∽△COD ,△DOE ∽△COB.所以∠EBO =∠DCO ,∠DEO =∠CBO.因为∠ADE =∠DCO +∠DEO ,∠ABC =∠EBO +∠CBO ,所以∠ADE =∠ABC.又因为∠A =∠A ,所以△ADE ∽△ABC.3.证明:∵∠BAC =90°,AD ⊥BC 于点D ,∴∠BAC =∠A DB =90°.又∵∠CBA =∠ABD(公共角),∴△ABC ∽△DBA.∴AB AC =DB DA,∠BAD =∠C.∵AD ⊥BC 于点D ,E 为AC 的中点,∴DE =EC.∴∠BDF =∠CDE =∠C.∴∠BDF =∠BAD.又∵∠F =∠F ,∴△DBF ∽△ADF.∴DB AD =DF AF .∴AB AC =DF AF.(第3题)点拨:当所证等积式或比例式运用“三点定型法”不能定型或能定型而不相似,条件又不具备成比例线段时,可考虑用中间比“搭桥”,称为“等比替换法”,有时还可用“等积替换法”,例如:如图,在△ABC 中,AD ⊥BC 于点D ,D E ⊥AB 于点E ,DF ⊥AC 于点F ,求证:AE·AB =AF·AC.可由两组“射影图”得AE·AB=AD 2,AF·AC =AD 2,∴AE·AB =AF·AC.4.证明:(1)∵∠DAB =∠EAC ,∴∠DAE =∠BAC.又∵∠ADE =∠ABC ,∴△ADE ∽△ABC.(2)∵△ADE ∽△ABC ,∴AD AE =AB AC.∵∠DAB =∠EAC ,∴△ADB ∽△AEC.∴AD AE =BD CE.技巧2:巧作平行线构造相似三角形【类型】一、巧连线段的中点构造相似三角形1.如图,在△ABC 中,E ,F 是边BC 上的两个三等分点,D 是AC 的中点,BD 分别交AE ,AF 于点P ,Q ,求BP PQ QD.【类型】二、过顶点作平行线构造相似三角形2.如图,在△ABC 中,AC =BC ,F 为底边AB 上一点,BFAF =32,取CF 的中点D ,连接AD 并延长交BC 于点E ,求BE EC 的值.【类型】三、过一边上的点作平行线构造相似三角形3.如图,在△ABC 中,AB >AC ,在边AB 上取一点D ,在AC 上取一点E ,使AD =AE ,直线DE 和BC的延长线交于点P.求证:BP CP =BD EC .【类型】四、过一点作平行线构造相似三角形4.如图,在△ABC 中,点M 为AC 边的中点,点E 为AB 上一点,且AE =14AB ,连接EM 并延长交BC 的延长线于点D.求证:BC =2CD.参考答案1.解:如图,连接DF ,∵E ,F 是边BC 上的两个三等分点,∴BE =EF =FC.∵D 是AC 的中点,∴AD =CD.∴DF 是△ACE 的中位线.∴DF ∥AE ,且DF =12AE.∴DF ∥PE.∴∠BEP =∠BFD.又∵∠EBP 为公共角,∴△BEP ∽△BFD.∴BE BF =BP BD.∵BF =2BE ,∴BD =2BP.∴BP =PD.∴DF =2PE.∵DF ∥AE ,∴∠APQ =∠FDQ ,∠PAQ =∠DFQ.∴△APQ ∽△FDQ.∴PQ QD =AP DF.设PE =a ,则DF =2a ,AP =3a.∴PQQD =AP DF =3 2.∴BP PQ QD =53 2.2.解:如图,过点C 作CG ∥AB 交AE 的延长线于点G.∵CG ∥AB ,∴∠DAF =∠G.又∵D 为C F 的中点,∴CD =DF.在△ADF 和△GDC DAF =∠G ,ADF =∠CDG ,=CD ,∴△ADF ≌△GDC(AAS ).∴AF =CG.∵BF AF =32,∴AB AF =5 2.∵AB ∥CG ,∴∠CGE =∠BAE ,∠BCE =∠ABE.∴△ABE ∽△GCE.∴BE EC =AB CG =AB AF =52.3.证明:如图,过点C 作CF ∥AB 交DP 于点F ,∴∠PFC =∠PDB ,∠PCF =∠PBD.∴△PCF ∽△PBD.∴BP CP =BD CF.∵AD ∥CF ,∴∠ADE =∠EFC.∵AD =AE ,∴∠ADE =∠AED.∵∠AED =∠CEP ,∴∠EFC =∠CEP.∴EC =CF.∴BP CP =BD EC.4.证明:(方法一)如图①,过点C 作CF ∥A B ,交DE 于点F ,(第4题①)∴∠FCD =∠B.又∵∠D 为公共角,∴△CDF ∽△BDE.∴CF BE =CD BD.∵点M 为AC 边的中点,∴AM =CM.∵CF ∥AB ,∴∠A =∠MCF.又∵∠AME =∠CM F ,∴△AME ≌△CMF.∴AE =CF.∵AE =14AB ,BE =AB -AE ,∴BE =3AE.∴AE BE =13.∵CF BE =CD BD,∴AE BE =CD BD =13,即BD =又∵BD =BC +CD ,∴BC =2CD.(第4题②)(方法二)如图②,过点C 作CF ∥DE ,交AB 于点F ,∴AE AF =AM AC.又∵点M 为AC 边的中点,∴AC =2AM.∴2AE =AF.∴AE =EF.又∵AE AB =14,∴BF EF=2.又∵CF ∥DE ,∴BF FE =BC CD =2.∴BC =2CD.(第4题③)(方法三)如图③,过点E 作EF ∥BC ,交AC 于点F ,∴∠AEF =∠B.又∵∠A 为公共角,∴△AEF ∽△ABC.∴EF BC =AE AB =AF AC.由AE =14AB ,知EF BC =AE AB =AF AC =14,∴EF =14BC ,AF =14AC.由EF ∥CD ,易证得△EFM ∽△DCM ,∴EF CD =MF MC.又∵AM =MC ,∴MF =12MC ,∴EF =12CD.∴BC =2CD.(第4题④)(方法四)如图④,过点A 作AF ∥BD ,交DE 的延长线于点F ,∴∠F =∠D ,∠FAE =∠B.∴△AEF ∽△BED.∴AE BE =AF BD.∵AE =14AB ,∴AE =13BE.∴AF =13BD.由AF ∥CD ,易证得△AFM ∽△CDM.又∵AM =MC ,∴AF =CD.∴CD =13BD.∴BC =2CD.点拨:由已知线段的比,求证另外两线段的比,通常添加平行线,构造相似三角形来求解.技巧3:证比例式或等积式的技巧【类型】一、构造平行线法1.如图,在△ABC 中,D 为AB 的中点,DF 交AC 于点E ,交BC 的延长线于点F ,求证:AE·CF =BF·EC.2.如图,已知△ABC 的边AB 上有一点D ,边BC 的延长线上有一点E ,且AD =CE ,DE 交AC 于点F ,求证:AB·DF =BC·EF.【类型】二、三点定型法3.如图,在▱ABCD 中,E 是AB 延长线上的一点,DE 交BC 于F.求证:DC AE =CF AD .4.如图,在△ABC 中,∠BAC =90°,M 为BC 的中点,DM ⊥BC 交CA 的延长线于D ,交AB 于E.求证:AM 2=MD·ME.【类型】三、构造相似三角形法5.如图,在等边三角形ABC中,点P是BC边上任意一点,AP的垂直平分线分别交AB,AC于点M,N.求证:BP·CP=BM·CN.【类型】四、等比过渡法6.如图,在△ABC中,AB=AC,DE∥BC,点F在边AC上,DF与BE相交于点G,且∠EDF=∠ABE.求证:(1)△DEF∽△BDE;(2)DG·DF=DB·EF.7.如图,CE是Rt△ABC斜边上的高,在EC的延长线上任取一点P,连接AP,作BG⊥AP于点G,交CE于点D.求证:CE2=DE·PE.【类型】五、两次相似法8.如图,在Rt△ABC中,AD是斜边BC上的高,∠ABC的平分线BE交AC于E,交AD于F.求证:BF BE =AB BC .9.如图,在▱ABCD 中,AM ⊥BC ,AN ⊥CD ,垂足分别为M ,N.求证:(1)△AMB ∽△AND ;(2)AM AB =MN AC .【类型】六、等积代换法10.如图,在△ABC 中,AD ⊥BC 于D ,DE ⊥AB 于E ,DF ⊥AC 于F.求证:AE AF =AC AB .【类型】七、等线段代换法11.如图,在等腰三角形ABC 中,AB =AC ,AD ⊥BC 于点D ,点P 是AD 上一点,CF ∥AB ,延长BP 交AC 于点E ,交CF 于点F ,求证:BP 2=PE·PF.12.如图,已知AD 平分∠BAC ,AD 的垂直平分线EP 交BC 的延长线于点P.求证:PD 2=PB·PC.参考答案1.证明:如图,过点C 作CM ∥AB 交DF 于点M.∵CM ∥AB ,∴∠FCM =∠B ,∠FMC =∠FDB.∴△CMF ∽△BDF.∴BF CF =BD CM.又∵CM ∥AD ,∴∠A =∠ECM ,∠ADE =∠CME.∴△ADE ∽△CME.∴AE EC =AD CM.∵D 为AB 的中点,∴BD =AD.∴BD CM =AD CM .∴BF CF =AE EC.即AE·CF =BF·EC.2.证明:过点D 作DG ∥BC ,交AC 于点G ,易知△DGF ∽△ECF ,△ADG ∽△ABC.∴EF DF =CE DG ,AB BC =AD DG.∵AD =CE ,∴CE DG =AD DG .∴AB BC =EF DF.即AB·DF =BC·EF.点拨:过某一点作平行线,构造出“A ”型或“X ”型的基本图形,通过相似三角形转化线段的比,从而解决问题.3.证明:∵四边形ABCD 是平行四边形,∴A E ∥D C ,∠A =∠C.∴∠CDF =∠E.∴△FCD ∽△DAE.∴DC AE =CF AD.4.证明:∵DM ⊥BC ,∠BAC =90°,∴∠B +∠BEM =90°,∠D +∠DEA =90°.∵∠BEM =∠DEA ,∴∠B =∠D.又∵M 为BC 的中点,∠BAC =90°,∴BM =AM.∴∠B =∠BAM.∴∠BAM =∠D.即∠EAM =∠D.又∵∠AME =∠DMA.∴△AME ∽△DMA.∴AM MD =ME AM.即AM 2=MD·ME.5.证明:如图,连接PM ,PN.∵MN 是AP 的垂直平分线,∴MA =MP ,NA =NP.∴∠1=∠2,∠3=∠4.又∵△ABC 是等边三角形,∴∠B =∠C =∠1+∠3=60°.∴∠2+∠4=60°.∴∠5+∠6=120°.又∵∠6+∠7=180°-∠C =120°,∴∠5=∠7.∴△BPM ∽△CNP.∴BP CN =BM CP.即BP·CP =BM·CN.6.证明:(1)∵AB =AC ,∴∠ABC =∠ACB.∵DE ∥BC ,∴∠ABC +∠EDB =180°,∠ACB +∠FED =180°.∴∠FED =∠EDB.又∵∠EDF =∠DBE ,∴△DEF ∽△BDE.(2)由△DEF ∽△BDE 得DE BD =EF DE.即DE 2=DB·EF.又由△DEF ∽△BDE ,得∠GED =∠EFD.∵∠GDE =∠EDF ,∴△GDE ∽△EDF.∴DG DE =DE DF.即DE 2=DG·DF.∴DG·DF =DB·EF.7.证明:∵BG ⊥AP ,PE ⊥AB ,∴∠AEP =∠DEB =∠AGB =90°.∴∠P +∠PAB =90°,∠PAB +∠AB G =90°.∴∠P =∠ABG.∴△AEP ∽△DEB.∴AE DE =PE BE.即AE·BE =PE·DE.又∵∠CEA =∠BEC =90°,∴∠CAB +∠ACE =90°.又∵∠ACB =90°,∴∠CAB +∠CBE =90°.∴∠ACE =∠CBE.∴△AEC CEB.∴AE CE =CE BE.即CE 2=AE·BE.∴CE 2=DE·PE.8.证明:由题意得∠BDF =∠BAE =90°.∵BE 平分∠ABC ,∴∠DBF =∠ABE.∴△BDF ∽△BAE.∴BD AB =BF BE.∵∠BAC =∠BDA =90°,∠ABC =∠DBA.∴△ABC ∽△DBA.∴AB BC =BD AB.∴BF BE =AB BC.9.证明:(1)∵四边形ABCD 为平行四边形,∴∠B =∠D.∵AM ⊥BC ,AN ⊥CD ,∴∠AMB =∠AND =90°.∴△AMB ∽△AND.(2)由△AMB ∽△AND 得AM AN =AB AD,∠BAM =∠DAN.又AD =BC ,∴AM AN =AB BC.∵AM ⊥BC ,AD ∥BC ,∴∠MAD =∠AMB =90°.∴∠B +∠BAM =∠MAN +∠NAD =90°.∴∠B =∠MAN.∴△AMN ∽△BAC.∴AM AB =MN AC.10.证明:∵AD ⊥BC ,DE ⊥AB ,∴∠ADB =∠AED =90°.又∵∠BAD =∠DAE ,∴△ABD ∽△ADE.∴AD AB =AE AD.即AD 2=AE·AB.同理可得AD 2=AF·AC.∴AE·AB =AF·AC.∴AE AF =AC .11.证明:连接PC ,如图所示.∵AB =AC ,AD ⊥BC ,∴AD 垂直平分BC ,∠ABC =∠ACB.∴BP =CP.∴∠1=∠2∴∠ABC -∠1=∠ACB -∠2,即∠3=∠4.∵CF ∥AB ,∴∠3=∠F.∴∠4=∠F.又∵∠CPF =∠CPE ,∴△CPF ∽△EPC.∴CP PE =PF CP,即CP 2=PF·PE.∵BP =CP ,∴BP 2=PE·PF.12.证明:如图,连接PA ,∵EP 是AD 的垂直平分线,∴PA =PD.∴∠PD A =∠PAD.∴∠B +∠BAD =∠DAC +∠CAP.又∵AD 平分∠BAC ,∴∠BAD =∠DAC.∴∠B =∠CAP.又∵∠APC =∠BPA ,∴△PAC ∽△PBA.∴PA PB =PC PA.即PA 2=PB·PC.∵PA =PD ,∴PD 2=PB·PC.【题型讲解】【题型】一、相似图形的概念和性质例1、如图,在△ABC 中,DE ∥AB ,且CD BD =32,则CE CA 的值为()A .35B .23C .45D .32【答案】A【提示】根据平行线分线段成比例定理得到比例式即可解答.【详解】解:∵DE //AB ,∴32CE CD AE BD ==∴CE CA 的值为35.故答案为A .【题型】二、平行线分线段成比例定理例2、如图,在ABC ∆中,//DE BC ,9AD =,3DB =,2CE =,则AC 的长为()A .6B .7C .8D .9【答案】C 【提示】根据平行线分线段成比例定理,由DE ∥BC 得AD AE DB EC =,然后利用比例性质求EC 和AE 的值即可【详解】∵//DE BC ,∴AD AE DB EC =,即932AE =,∴6AE =,∴628AC AE EC =+=+=.故选C .【题型】三、相似三角形的判定例3、如图,已知DAB CAE ∠=∠,那么添加下列一个条件后,仍然无法判定A ABC DE ∽△△的是()A .AB AC AD AE =B .AB BC AD DE =C .B D ∠=∠D .C AED∠=∠【答案】B【提示】利用相似三角形的判定依次判断可求解.【详解】解:∵∠DAB=∠CAE ,∴∠DAE=∠BAC ,A 、若AB AC AD AE =,且∠DAE=∠BAC ,可判定△ABC ∽△ADE ,故选项A 不符合题意;B 、若AB BC AD DE =,且∠DAE=∠BAC ,无法判定△ABC ∽△ADE ,故选项B 符合题意;C 、若∠B=∠D ,且∠DAE=∠BAC ,可判定△ABC ∽△ADE ,故选项C 不符合题意;D 、若∠C=∠AED ,且∠DAE=∠BAC ,可判定△ABC ∽△ADE ,故选项D 不符合题意;故选:B .【题型】四、相似三角形的性质例4、如图,在ABC ∆中,D 、E 分别是AB 和AC 的中点,15BCED S =四边形,则ABC S ∆=()A .30B .25C .22.5D .20【答案】D【提示】首先判断出△ADE ∽△ABC ,然后根据相似三角形的面积比等于相似比的平方即可求出△ABC 的面积.【详解】解:根据题意,点D 和点E 分别是AB 和AC 的中点,则DE ∥BC 且DE=12BC ,故可以判断出△ADE ∽△ABC,根据相似三角形的面积比等于相似比的平方,可知ADE S ∆:ABC S ∆=1:4,则BCED S 四边形:ABC S ∆=3:4,题中已知15BCED S =四边形,故可得ADE S ∆=5,ABC S ∆=20故本题选择D【题型】五、利用相似三角形解决实际问题例5、为测量某河的宽度,小军在河对岸选定一个目标点A ,再在他所在的这一侧选点B ,C ,D ,使得AB ⊥BC ,CD ⊥BC ,然后找出AD 与BC 的交点E ,如图所示.若测得BE =90m ,EC =45m ,CD =60m ,则这条河的宽AB 等于()A .120mB .67.5mC .40mD .30m【答案】A 【解析】∵∠ABE=∠DCE,∠AEB=∠CED,∴△ABE ∽△DCE,∴AB BE CD CE=.∵BE =90m ,EC =45m ,CD =60m ,∴()906012045AB m ⨯==故选A.【物高问题】【题型】六、位似图形的概念与性质例6、如图,△ABC 与△DEF 位似,点O 为位似中心.已知OA ∶OD =1∶2,则△ABC 与△DEF 的面积比为()A .1∶2B .1∶3C .1∶4D .1∶5【答案】C【提示】根据位似图形的性质即可得出答案.【详解】由位似变换的性质可知,//,//AB DE AC DF∴12OA OB OD OE ==12AC OA DF OD ∴==∴△ABC 与△DEF 的相似比为:1∶2∴△ABC 与△DEF 的面积比为:1∶4故选C .【题型】七、平面直角坐标系与位似图形例7、如图,三角板在灯光照射下形成投影,三角板与其投影的相似比为2:5,且三角板的一边长为8cm .则投影三角板的对应边长为()A .20cmB .10cmC .8cmD .3.2cm【答案】A【提示】根据对应边的比等于相似比列式进行计算即可得解.【详解】解:设投影三角尺的对应边长为xcm ,∵三角尺与投影三角尺相似,∴8:x =2:5,解得x =20.故选:A .相似三角形(达标训练)一、单选题1.如图,已知∥DE BC ,12AD BD =,则ADE V 与ABC 的周长之比为()A .1:2B .1:4C .1:9D .1:3【答案】D 【分析】根据平行线的性质及相似三角形的判定定理可得:ABC ADE ∽,相似三角形的对应边成比例,且周长比等于相似比,据此即可解答.【详解】解:∵∥DE BC ,∴ADE B ∠=∠,∵A A ∠=∠,∴ABC ADE ∽,∵AD :DB =1:2,∴AD :AB =1:3,∴13ADE ABC C C ∆∆=::,即ADE 与ABC 的周长比为1:3.故选:D .【点睛】题目主要考查相似三角形的判定与性质,平行线的性质,熟练掌握相似三角形的判定定理及其性质是解题关键.2.如图,在ABC 中,高BD 、CE 相交于点.F 图中与AEC △一定相似的三角形有()A .1个B .2个C .3个D .4个【答案】C 【分析】利用相似三角形的判定方法可得AEC △∽ADB ,AEC △∽FEB ,AEC △∽FDC △,可求解.【详解】解:A A ∠=∠ ,90AEC ADB ∠=∠=︒,AEC ∴ ∽ADB ,ACE ABD ∴∠=∠,又90AEC BEC ∠=∠=︒ ,AEC ∴ ∽FEB ,ACE ACE ∠=∠ ,90AEC ADB ∠=∠=︒,AEC ∴ ∽FDC △,故选C【点睛】本题考查了相似三角形的判定,掌握相似三角形的判定方法是解题的关键.3.在△ABC 中,D 、E 分别是AB 、AC 的中点,则△ADE 与△ABC 的面积之比为()A .16B .14C .13D .12【答案】B【分析】容易证明两个三角形相似,求出相似比,相似三角形的周长之比等于相似比,面积比等于相似比的平方.【详解】解:由题意得DE 为△ABC 的中位线,那么DE ∥BC ,DE :BC =1:2.∴△ADE ∽△ABC ,∴△ADE 与△ABC 的周长之比为1:2,∴△ADE 与△ABC 的面积之比为:4,即14.故选:B .【点睛】此题考查的是相似三角形的性质,三角形中位线定理,掌握相似三角形的周长之比等于相似比,面积比等于相似比的平方是解决此题关键.4.如图,D 是ABC 的边BC 上的一点,那么下列四个条件中,不能够判定△ABC 与△DBA 相似的是()A .C BAD∠=∠B .BAC BDA ∠=∠C .AC AD BC AB =D .2AB BD BC=⋅【答案】C【分析】由相似三角形的判定定理即可得到答案.【详解】解:C BAD ∠=∠,B B ∠=∠,ABC ∽DBA ,故选项A 不符合题意;BAC BDA ∠=∠,B B ∠=∠,ABC ∽DBA ,故选项B 不符合题意;AC AD BC AB=,但无法确定ACB ∠与BAD ∠是否相等,所以无法判定两三角形相似,故选项C 符合题意;2AB BD BC =⨯即AB BC BD AB=,B B ∠=∠,ABC ∽DBA ,故选项D 不符合题意.故选:C .【点睛】本题考查相似三角形的判定定理,熟练掌握相关定理是解题的关键.5.已知ABC ∽A B C ''' ,AD 和A D ''是它们的对应角平分线,若8AD =,12A D ''=,则ABC 与A B C ''' 的面积比是()A .2:3B .4:9C .3:2D .9;4【答案】B【分析】根据相似三角形的性质:对应角平分线的比等于相似比,面积的比等于相似比的平方求解即可.【详解】ABC ∽A B C ''' ,AD 和A D ''是它们的对应角平分线,8AD =,12A D ''=,∴两三角形的相似比为::8:122:3AD A D '==',则ABC 与'''A B C 的面积比是:4:9.故选:B【点睛】本题考查的是相似三角形的性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.二、填空题6.如图所示,某校数学兴趣小组利用标杆BE 测量建筑物的高度,已知标杆BE 高为1.5m ,测得AB =3m ,AC =10m ,则建筑物CD 的高是_____m .【答案】5【分析】根据题意和图形,利用三角形相似的性质,可以计算出CD 的长,从而可以解答本题.【详解】∵EB ⊥AC ,DC ⊥AC ,∴EB ∥DC ,∴AEB ADC ∠=∠,ABE ACD ∠=∠,又∵A A ∠=∠,∴△ABE ∽△ACD ,∴AB AC =BE CD,∵BE =1.5m ,AB =3m ,AC =10m ,∴3 1.510CD=,解得,5CD =,即建筑物CD 的高是5m ,故答案为:5.【点睛】本题考查了相似三角形的应用、相似比等知识,正确得出相似三角形是解题的关键.7.如图所示,要使ABC ADE ~,需要添加一个条件__________(填写一个正确的即可)【答案】ADE B∠=∠【分析】根据已有条件,加上一对角相等就可以证明ABC 与ADE V 相似,依据是:两角对应相等的两个三角形相似.【详解】解:添加ADE B ∠=∠,A A∠=∠ ABC ADE∴ ~故答案为:ADE B ∠=∠.【点睛】本题主要考查了三角形相似的判定方法,牢记三角形相似的判定方法是做出本题的关键.三、解答题8.如图,在△ABC 中,D ,E 分别是AB ,AC 边上的点,且AD :AB =AE :AC =2:3.(1)求证:△ADE∽△ABC;(2)若DE=4,求BC的长.【答案】(1)见解析(2)BC=6.【分析】(1)直接根据相似三角形的判定方法判定即可;(2)利用相似三角形的性质即可求解.(1)证明:∵∠A=∠A,AD:AB=AE:EC=2:3,即23 AD AEAB EC==,∴△ADE∽△ABC;(2)解:∵△ADE∽△ABC,∴AD DEAB BC=,243BC=,∴BC=6.【点睛】本题考查了三角形的判定和性质,熟记各图形的性质并准确识图是解题的关键.相似三角形(提升测评)一、单选题1.如图,在菱形ABCD中,点E在AD边上,EF∥CD,交对角线BD于点F,则下列结论中错误的是()A .DE DF AE BF =B .EF DF AD DB =C .EF DF CD BF =D .EF DF CD DB=【答案】C【分析】根据已知及平行线分线段成比例定理进行分析,可得CD ∥BF ,依据平行线成比例的性质和相似三角形的性质即可得到答案.【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,∵EF ∥CD ,∴EF ∥AB ,∴DE DF AE BF =,△DEF ∽△DAB ,∴EF DF AB DB=,∵AB =AD =CD ,∴EF DF AD DB =,EF DF CD DB=,∴选项A 、B 、D 正确;选项C 错误;故选:C .【点睛】此题考查平行四边形的性质、相似三角形的判定与性质以及平行线分线段成比例定理;熟练掌握平行四边形的性质,证明三角形相似是解决问题的关键.2.如图1为一张正三角形纸片ABC ,其中D 点在AB 上,E 点在BC 上.今以DE 为折线将B 点往右折后,BD 、BE 分别与AC 相交于F 点、G 点,如图2所示.若10AD =,16AF =,14DF =,8BF =,则CG 的长度为多少?()A .7B .8C .9D .10【答案】C 【分析】根据三角形ABC 是正三角形,可得∠A =∠B =60°,△AFD ∽△BFG ,即可求出FG =7,而AD =10,DF =14,BF =8,可得AB =32=AC ,故CG =AC -AF -FG =9.【详解】解: 三角形ABC 是正三角形,60A B ∴∠=∠=︒,AFD BFG ∠=∠ ,AFD BFG ∴∆∆∽,∴DF AF FG BF =,即14168FG =,7FG ∴=,10AD = ,14DF =,8BF =,32AB ∴=,32AC ∴=,321679CG AC AF FG ∴=--=--=;故选:C .【点睛】本题考查等边三角形中的翻折问题,解题的关键是掌握翻折的性质,证明AFD BFG ∆∆∽,从而求出FG 的长度.3.如图,在平面直角坐标系中有A ,B 两点,其中点A 的坐标是(-2,1),点B 的横坐标是2,连接AO ,BO .已知90AOB ∠=︒,则点B 的纵坐标是()A .B .4CD .2【答案】B 【分析】先过点A 作AC x ⊥轴于点C ,过点B 作BD x ⊥轴于点D ,构造相似三角形,再利用相似三角形的性质列出比例式,计算求解即可.【详解】解:过点A 作AC x ⊥轴于点C ,过点B 作BD x ⊥轴于点D ,则90ACO ODB ∠=∠=︒,90B BOD ∠+∠=︒,90AOB ∠=︒Q ,90AOC BOD ∴∠+∠=︒,B AOC ∴∠=∠,ACO ∴ ∽ODB △,AC CO OD DB∴=,又A 的坐标是()2,1-,点B 的横坐标是2,∴AC =1,CO =2,OD =2,122DB∴=,即4DB =,∴:B 的纵坐标是4.故选:B .【点睛】本题主要考查了相似三角形的判定与性质,通过作垂线构造相似三角形是解决问题的关键.4.如图,D 是ABC △的边上的一点,过点D 作BC 的平行线交AC 于点E ,连接BE ,过点D 作BE 的平行线交AC 于点F ,则下列结论错误的是()A .AD AF BD EF =B .AF DF AE EB =C .=AD AE AB AC D .CAF FE DE B =【答案】D【分析】根据DF BE ∥,DE BC ∥找到对应线段成比例或相似三角形对应线段的比相等,判断即可.【详解】解:DF BE ∥,AD AF BD EF∴=,故A 选项比例式正确,不符合题意;DF BE ∥,ADF ABE ∴△∽△,DF AF EB AE∴=,故B 选项比例式正确,不符合题意;DE BC ∥,AD AE AB AC∴=,故C 选项比例式正确,不符合题意;DE BC ∥,DE AF BC FEAF AC =≠∴故D 选项比例式不正确,符合题意.故选D .【点睛】本题主要考查了平行线分线段成比例,相似三角形的判定和性质,解题的关键是找准对应线段.二、填空题5.如图,小明想测量一棵树的高度,他发现树的影子落在了地上和墙上,此时测得地面上的影长BD 为4m ,墙上的影子CD 长为1m ,同一时刻一根长为1m 的垂直于地面上的标杆的影长为0.5m ,则树的高度为______m .【答案】9【分析】设地面影长对应的树高为m x ,根据同时同地物高与影长成正比列出比例式求出x ,然后加上墙上的影长CD 即为树的高度.【详解】解:设地面影长对应的树高为m x ,由题意得,140.5x =,解得8x =,墙上的影子CD 长为1m ,∴树的高度为()819m +=.故答案为:9.【点睛】本题考查利用投影求物高.熟练掌握同时同地物高与影长成正比是解题的关键.6.如图,梯形ABCD 中,AD BC ∥,2BC AD =,点F 在BC 的延长线上,AF 与BD 相交于点E ,与CD 边相交于点G .如果2AD CF =,那么DEG ∆与CFG ∆的面积之比等于______.【答案】16:7##167【分析】根据ADG FCG ∆∆∽和ADE FBE ∆∆∽,根据相似三角形对应边成比例和相似三角形的面积比等于相似比的平方,即可求解.【详解】解:AD BC ,ADG FCG ∴∆∆∽,2AD AG CF GF∴==,∴ADG ∆与CFG ∆的面积之比4:1,AD BC ,ADE FBE ∴∆∆∽,25AD AE BF EF ∴==,令GF a =,则2AG a =,设,2AE x EG a x ==-,:(2)2:5x a a x ∴+-=,67x a ∴=,68,77AE a EG a ∴==,:3:4AE EG =,∴DEG ∆与ADE ∆的面积之比是4:3,∴DEG ∆与CFG ∆的面积之比是16:7.故答案为:16:7.【点睛】此题考查了相似三角形的判定与性质,熟练掌握并运用:相似三角形对应边成比例、相似三角形三、解答题7.如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC =1,CE =3,连接AF 交CG 于点K ,H 是AF 的中点,连接CH .(1)求tan ∠GFK 的值;(2)求CH 的长.【答案】(1)12(2)CH =【分析】(1)由正方形的性质得出AD =CD =BC =1,CG =FG =CE =3,,AD BC GF BE ∥∥,∠G =90°,证出ADK FGK V :V ,得出比例式求出3342GK DG ==,即可得出结果;(2)由正方形的性质求出AB =BC =1,CE =EF =3,∠E =90°,延长AD 交EF 于M ,连接AC 、CF ,求出AM =4,FM =2,∠AMF =90°,根据正方形性质求出∠ACF =90°,根据直角三角形斜边上的中线性质求出12CH AF =,根据勾股定理求出AF ,即可得出结果.(1)解:∵四边形ABCD 和四边形CEFG 是正方形,∴AD =CD =BC =1,CG =FG =CE =3,,AD BC GF BE ∥∥,∠G =90°,∴DG =CG -CD =2,AD GF ∥,∴ADK FGK V :V ,∴DK :GK =AD :GF =1:3,∴3342GK DG ==,∴312tan 32GK GFK FG ∠===;(2)解:∵正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC =1,CE =3,∴AB =BC =1,CE =EF =3,∠E =90°,延长AD 交EF 于M ,连接AC 、CF ,如图所示:则AM =BC +CE =1+3=4,FM =EF-AB =3-1=2,∠AMF =90°,∵四边形ABCD 和四边形GCEF 是正方形,∴∠ACD =∠GCF =45°,∴∠ACF =90°,∵H 为AF 的中点,∴12CH AF =,在Rt △AMF 中,由勾股定理得:22224225AF AM FM =+=+=,∴152CH AF ==.【点睛】本题考查了相似三角形的判定与性质、三角函数、勾股定理,正方形的性质,直角三角形斜边上的中线性质;本题有一定难度,特别是(2)中,需要通过作出辅助线运用直角三角形斜边上的中线性质才能得出结果.8.如图所示,BEF 的顶点E 在矩形ABCD 对角线AC 的延长线上,13BC AB AE ==,,与FB 交于点G ,连接AF ,满足ABF ∽CEB ,其中A 对应C B ,对应E F ,对应B(1)求证:30FAD ∠=︒.(2)若13CE =,求tan FEA ∠的值.【答案】(1)见解析937【分析】(1)由相似可得FAB BCE ∠∠=,再由矩形的性质得AD BC ∥90DAB ABC ∠∠==︒,,从而可求得180FAD DAB DAC ∠∠∠++=︒,则有FAD BAC ∠∠=,即可求得FAD ∠的度数;(2)结合(1)可求得73AE =,再由相似的性质求得33AF =tan FEA ∠的值.(1)ABF ∽CEB ,FAB BCE ∠∠∴=,四边形ABCD 是矩形,∴90AD BC DAB ABC ∠=∠=︒∥,,DAC ACB ∴∠=∠,180BCE ACB ∠∠+=︒ ,180FAB DAC ∠∠∴+=︒,即180FAD DAB DAC ∠∠∠++=︒,90180FAD DAC ∠∠∴+︒+=︒,90FAD DAC ∠∠∴+=︒,90DAB ∠=︒ ,90BAC DAC ∠∠∴+=︒,FAD BAC ∠∠∴=,在Rt ABC中,tan 3BC BAC AB ∠== ,30BAC ∴∠=︒,30FAD ∠∴=︒;(2)由(1)得9030ABC BAC ∠∠=︒=︒,,2212AC BC ∴==⨯=,17233AE AC CE ∴=+=+=,ABF ∽CEB ,AF AB BC CE∴=,即113AF =,∴=AF 由(1)得:90FAD DAC ∠∠+=︒,则90FAE ∠=︒,在Rt FAE中,tan 3AF FEA AE ∠==【点睛】本题主要考查相似三角形的性质,矩形的性质,解直角三角形,解答的关键是结合图形及相应的性质求得FAD BAC ∠∠=.。
三角形考点解读1、了解三角形的有关概念,并探索其性质。
会证三角形全等2、能运用有关三角形的知识解决问题。
3、重点、易错点分析:4、通过证明线段或角相等来考虑三角形的性质和判定;运用勾股定理解决实际问题,三角形中重要线段的性质和判定。
确定边长的取值范围时,容易忽略是不是能构成三角形;等腰三角形注意解的不唯一性。
考题解析1.如图,已知△ABC,AB=AC,∠A=90°,直角∠EPF的顶点P是BC的中点,两边PE,PF分别交AB,AC于点E、F.给出以下四个结论:①AE=CF;②EF=AP;③△EPF是等腰直角三角形;=S△ABC④S四边形AEPF上述结论始终正确的有()A.①②③B.①③C.①③④D.①②③④【考点】KY:三角形综合题.【分析】连接AP,判断出△APE≌△CPF,可得①③结论正确,同理证明△APF ≌△BPE,即可得到④正确;【解答】解:连接AP,EF,∵AB=AC,∠A=90°,∴AP⊥BC,∴∠APC=90°,∴∠APF +∠CPF=90°,∵∠EPF=∠APE +∠APF=90°,∴∠APE=∠CPF ,在等腰直角三角形ABC 中,AP ⊥BC ,∴∠BAP=∠CAP=∠C=45°,AP=CP ,在△APE 和△CPF 中, ∴△APE ≌△CPF ,∴S △APE =S △CPF ,AE=CF ,PE=PF ,∵∠EPF=90°,∴△EPF 是等腰直角三角形;即:①③正确;同理:△APF ≌△BPE ,∴S △APF =S △BPE ,∴S 四边形AEPF =S △APE +S △APF =S △ABC ,即:④正确;∵△△EPF 是等腰直角三角形,∴EF=PE ,当PE ⊥AB 时,AP=EF ,而PE 不一定垂直于AB , ∴AP 不一定等于EF ,∴②错误;故选C .2.如图,在△ABC 中,∠C=90°,AC=BC=4,D 是AB 的中点,点E 、F 分别在AC 、BC 边上运动(点E 不与点A 、C 重合),且保持AE=CF ,连接DE 、DF 、EF .在此运动变化的过程中,有下列结论:①△DFE是等腰直角三角形;②四边形CEDF 不可能为正方形;③四边形CEDF的面积随点E位置的改变而发生变化;④点C、E、D、F四点在同一个圆上,且该圆的面积最小为4π.其中错误结论的个数是()个.A.1 B.2 C.3 D.4【考点】KY:三角形综合题.【分析】①正确.连接CD.只要证明△ADE≌△CDF(SAS),即可解决问题.②错误.当E、F分别为AC、BC中点时,四边形CEDF为正方形.=××4×4=4,为定值.③错误.四边形CEDF的面积=S△ABC④错误.以EF为直径的圆的面积的最小值=π•(•2)2=2π.【解答】解:连接CD,如图1,∵∠C=90°,AC=BC=4,∵△ABC是等腰直角三角形,∴∠A=∠B=45°,∵D为AB的中点,∴CD⊥AB,CD=AD=BD,∴∠DCB=∠B=45°,∴∠A=∠DCF,在△ADE和△CDF中,∴△ADE≌△CDF(SAS),∴ED=DF,∠CDF=∠ADE,∵∠ADE+∠EDC=90°,∴∠EDC+∠CDF=90°,即∠EDF=90°,∴△DFE是等腰直角三角形,所以①正确;当E、F分别为AC、BC中点时,如图2,则AE=CE=CF=BF,DE=AE=CE,∴CE=CF=DE=DF,而∠ECF=90°,∴四边形CDFE是正方形,所以②错误;∵△ADE≌△CDF,∴S△ADE=S△CDF,∴S四边形CEDF =S△CDE+S△CDF=S△CDE+S△ADE=S△ADC=S△ABC=××4×4=4,所以③错误;∵△CEF和△DEF都为直角三角形,∴点C、D在以EF为直径的圆上,即点C、E、D、F四点在同一个圆上,∵△DEF是等腰直角三角形,∴EF=DE,当DE⊥AC时,DE最短,此时DE=AC=2,∴EF的最小值为2,∴以EF为直径的圆的面积的最小值=π•(•2)2=2π,所以④错误;故选C.3.在正方形网格中,△ABC的位置如图所示,则cosB的值为()A.B.C.D.【考点】KQ:勾股定理;T1:锐角三角函数的定义.【分析】先设小正方形的边长为1,然后找个与∠B有关的RT△ABD,算出AB 的长,再求出BD的长,即可求出余弦值.【解答】解:设小正方形的边长为1,则AB=4,BD=4,∴cos∠B==.故选B.4.如图,△ABC、△ADE中,C、E两点分别在AD、AB上,且BC与DE相交于F点,若∠A=90°,∠B=∠D=30°,AC=AE=1,则四边形AEFC的周长为何()A.2 B.2 C.2+D.2+【考点】KQ:勾股定理;KJ:等腰三角形的判定与性质;KO:含30度角的直角三角形.【分析】根据三角形的内角和得到∠AED=∠ACB=60°,根据三角形的外角的性质得到∠B=∠EFB=∠CFD=∠D,根据等腰三角形的判定得到BE=EF=CF=CD,于是得到四边形AEFC的周长=AB+AC.【解答】解:∵∠A=90°,∠B=∠D=30°,∴∠AED=∠ACB=60°,∵∠AED=∠B+∠EFB=∠ACD=∠∠CFD+∠D=60°,∴∠EFB=∠CFD=30°,∴∠B=∠EFB=∠CFD=∠D,∴BE=EF=CF=CD,∴四边形AEFC的周长=AB+AC,∵∠A=90°,AE=AC=1,∴AB=AB=,∴四边形AEFC的周长=2.故选B.5.如图,四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,以AB、BC、DC为边向外作正方形,其面积分别为S1、S2、S3,若S1=3,S3=9,则S2的值为()A.12 B.18 C.24 D.48【考点】KQ:勾股定理.【分析】根据已知条件得到AB=,CD=3,过A作AE∥CD交BC于E,则∠AEB=∠DCB,根据平行四边形的性质得到CE=AD,AE=CD=3,由已知条件得到∠BAE=90°,根据勾股定理得到BE==2,于是得到结论.【解答】解:∵S1=3,S3=9,∴AB=,CD=3,过A作AE∥CD交BC于E,则∠AEB=∠DCB,∵AD∥BC,∴四边形AECD是平行四边形,∴CE=AD,AE=CD=3,∵∠ABC+∠DCB=90°,∴∠AEB+∠ABC=90°,∴∠BAE=90°,∴BE==2,∵BC=2AD,∴BC=2BE=4,∴S2=(4)2=48,故选D.6.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为()A.3 B.4 C.5 D.6【考点】KR:勾股定理的证明.【分析】观察图形可知,小正方形的面积=大正方形的面积﹣4个直角三角形的面积,利用已知(a+b)2=21,大正方形的面积为13,可以得出直角三角形的面积,进而求出答案.【解答】解:如图所示:∵(a+b)2=21,∴a2+2ab+b2=21,∵大正方形的面积为13,2ab=21﹣13=8,∴小正方形的面积为13﹣8=5.故选:C.7.如图,要测定被池塘隔开的A,B两点的距离.可以在AB外选一点C,连接AC,BC,并分别找出它们的中点D,E,连接ED.现测得AC=30m,BC=40m,DE=24m,则AB=()A.50m B.48m C.45m D.35m【考点】KX:三角形中位线定理.【分析】根据中位线定理可得:AB=2DE=48m.【解答】解:∵D是AC的中点,E是BC的中点,∴DE是△ABC的中位线,∴DE=AB,∵DE=24m,∴AB=2DE=48m,故选B.8.如图,E是△ABC中BC边上的一点,且BE=BC;点D是AC上一点,且AD= AC,S△ABC=24,则S△BEF﹣S△ADF=()A.1 B.2 C.3 D.4【考点】K3:三角形的面积.【分析】过D作DG∥AE交CE于G,根据已知条件得到CG=3EG,求得AE=DG,CE=CG,求出S△ABD=S△ABC=6.由EC=2BE,S△ABC=24,得到S△ABE=S△ABC=8,于是得到结论.【解答】解:过D作DG∥AE交CE于G,∵AD=AC,∴CG=3EG,∴AE=DG,CE=CG,∵EC=2BE,∴BE=2EG,∴EF=DG,∴AF=DG,∴EF=AF,=24,∵S△ABC∴S △ABD =S △ABC =6.∵EC=2BE ,S △ABC =24,∴S △ABE =S △ABC =8,∵S △ABE ﹣S △ABD =(S △ABF +S △BEF )﹣(S △ADF +S △ABF )=S △BEF ﹣S △ADF ,即S △BEF ﹣S △ADF =S △ABE ﹣S △ABD =8﹣6=2.故选B .9.如图,在Rt △ABC 中,BC=2,∠BAC=30°,斜边AB 的两个端点分别在相互垂直的射线OM 、ON 上滑动,下列结论:①若C 、O 两点关于AB 对称,则OA=2;②C 、O 两点距离的最大值为4;③若AB 平分CO ,则AB ⊥CO ;④斜边AB 的中点D 运动路径的长为; 其中正确的是 ①② (把你认为正确结论的序号都填上).【考点】KY :三角形综合题.【分析】①先根据直角三角形30°的性质和勾股定理分别求AC 和AB ,由对称的性质可知:AB 是OC 的垂直平分线,所以OA=AC ;②当OC 经过AB 的中点E 时,OC 最大,则C 、O 两点距离的最大值为4;③如图2,当∠ABO=30°时,易证四边形OACB 是矩形,此时AB 与CO 互相平分,但所夹锐角为60°,明显不垂直,或者根据四点共圆可知:A、C、B、O四点共圆,则AB为直径,由垂径定理相关推论:平分弦(不是直径)的直径垂直于这条弦,但当这条弦也是直径时,即OC是直径时,AB与OC互相平分,但AB与OC不一定垂直;④如图3,半径为2,圆心角为90°,根据弧长公式进行计算即可.【解答】解:在Rt△ABC中,∵BC=2,∠BAC=30°,∴AB=4,AC==2,①若C、O两点关于AB对称,如图1,∴AB是OC的垂直平分线,则OA=AC=2;所以①正确;②如图1,取AB的中点为E,连接OE、CE,∵∠AOB=∠ACB=90°,∴OE=CE=AB=2,当OC经过点E时,OC最大,则C、O两点距离的最大值为4;所以②正确;③如图2,当∠ABO=30°时,∠OBC=∠AOB=∠ACB=90°,∴四边形AOBC是矩形,∴AB与OC互相平分,但AB与OC的夹角为60°、120°,不垂直,所以③不正确;④如图3,斜边AB的中点D运动路径是:以O为圆心,以2为半径的圆周的,则:=π,所以④不正确;综上所述,本题正确的有:①②;故答案为:①②.10.如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=6,则四边形ABCD的面积为18.【考点】KD:全等三角形的判定与性质.【分析】作辅助线;证明△ABM≌△ADN,得到AM=AN,△ABM与△ADN的面积相等;求出正方形AMCN的面积即可解决问题.【解答】解:如图,作AM⊥BC、AN⊥CD,交CD的延长线于点N;∵∠BAD=∠BCD=90°∴四边形AMCN为矩形,∠MAN=90°;∵∠BAD=90°,∴∠BAM=∠DAN;在△ABM与△ADN中,,∴△ABM≌△ADN(AAS),∴AM=AN(设为λ);△ABM与△ADN的面积相等;∴四边形ABCD的面积=正方形AMCN的面积;由勾股定理得:AC2=AM2+MC2,而AC=6;∴2λ2=36,λ2=18,故答案为:18.11.如图,已知在△ABC中,DE是BC的垂直平分线,垂足为E,交AC于点D,若AB=6,AC=9,则△ABD的周长是15.【考点】KG:线段垂直平分线的性质.【分析】根据线段的垂直平分线的性质得到DB=DC ,根据三角形的周长公式计算即可.【解答】解:∵DE 是BC 的垂直平分线,∴DB=DC ,∴△ABD 的周长=AB +AD +BD=AB +AD +DC=AB +AC=15,故答案为:15.12.在边长为4的等边三角形ABC 中,D 为BC 边上的任意一点,过点D 分别作DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F ,则DE +DF= 2 . 【考点】KK :等边三角形的性质.【分析】作AG ⊥BC 于G ,根据等边三角形的性质得出∠B=60°,解直角三角形求得AG=2,根据S △ABD +S △ACD =S △ABC 即可得出DE +DF=AG=2. 【解答】解:如图,作AG ⊥BC 于G ,∵△ABC 是等边三角形,∴∠B=60°,∴AG=AB=2,连接AD ,则S △ABD +S △ACD =S △ABC ,∴AB•DE +AC•DF=BC•AG ,∵AB=AC=BC=4,∴DE +DF=AG=2, 故答案为:2.三.解答题(共7小题)13.已知△ABC ,AB=AC ,D 为直线BC 上一点,E 为直线AC 上一点,AD=AE ,设∠BAD=α,∠CDE=β.(1)如图,若点D在线段BC上,点E在线段AC上.①如果∠ABC=60°,∠ADE=70°,那么α=20°,β=10°,②求α,β之间的关系式.(2)是否存在不同于以上②中的α,β之间的关系式?若存在,求出这个关系式(求出一个即可);若不存在,说明理由.【考点】KY:三角形综合题.【分析】(1)①先利用等腰三角形的性质求出∠DAE,进而求出∠BAD,即可得出结论;②利用等腰三角形的性质和三角形的内角和即可得出结论;(2)①当点E在CA的延长线上,点D在线段BC上,同(1)的方法即可得出结论;②当点E在CA的延长线上,点D在CB的延长线上,同(1)的方法即可得出结论.【解答】解:(1)①∵AB=AC,∠ABC=60°,∴∠BAC=60°,∵AD=AE,∠ADE=70°,∴∠DAE=180°﹣2∠ADE=40°,∴α=∠BAD=60°﹣40°=20°,∴∠ADC=∠BAD+∠ABD=60°+20°=80°,∴β=∠CDE=∠ADC﹣∠ADE=10°,故答案为:20,10;②设∠ABC=x,∠AED=y,∴∠ACB=x,∠AED=y,在△DEC中,y=β+x,在△ABD中,α+x=y+β=β+x+β,∴α=2β;(2)①当点E在CA的延长线上,点D在线段BC上,如图1设∠ABC=x,∠ADE=y,∴∠ACB=x,∠AED=y,在△ABD中,x+α=β﹣y,在△DEC中,x+y+β=180°,∴α=2β﹣180°,②当点E在CA的延长线上,点D在CB的延长线上,如图2,同①的方法可得α=180°﹣2β.14.问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.【考点】KY:三角形综合题;KD:全等三角形的判定与性质.【分析】迁移应用:①如图②中,只要证明∠DAB=∠CAE,即可根据SAS解决问题;②结论:CD=AD+BD.由△DAB≌△EAC,可知BD=CE,在Rt△ADH中,DH=AD•cos30°=AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD= AD+BD,即可解决问题;拓展延伸:①如图3中,作BH⊥AE于H,连接BE.由BC=BE=BD=BA,FE=FC,推出A、D、E、C四点共圆,推出∠ADC=∠AEC=120°,推出∠FEC=60°,推出△EFC是等边三角形;②由AE=5,EC=EF=2,推出AH=HE=2.5,FH=4.5,在Rt△BHF中,由∠BFH=30°,可得=cos30°,由此即可解决问题.【解答】迁移应用:①证明:如图②∵∠BAC=∠DAE=120°,∴∠DAB=∠CAE,在△DAE和△EAC中,,∴△DAB≌△EAC,②解:结论:CD=AD+BD.理由:如图2﹣1中,作AH⊥CD于H.∵△DAB≌△EAC,∴BD=CE,在Rt△ADH中,DH=AD•cos30°=AD,∵AD=AE,AH⊥DE,∴DH=HE,∵CD=DE+EC=2DH+BD=AD+BD.拓展延伸:①证明:如图3中,作BH⊥AE于H,连接BE.∵四边形ABCD是菱形,∠ABC=120°,∴△ABD,△BDC是等边三角形,∴BA=BD=BC,∵E、C关于BM对称,∴BC=BE=BD=BA,FE=FC,∴A、D、E、C四点共圆,∴∠ADC=∠AEC=120°,∴∠FEC=60°,∴△EFC是等边三角形,②解:∵AE=5,EC=EF=2,∴AH=HE=2.5,FH=4.5,在Rt△BHF中,∵∠BFH=30°,∴=cos30°,∴BF==3.15.已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD交于点O,AE与DC交于点M,BD与AC交于点N.(1)如图1,求证:AE=BD;(2)如图2,若AC=DC,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.【考点】KD:全等三角形的判定与性质;KW:等腰直角三角形.【分析】(1)根据全等三角形的性质即可求证△ACE≌△BCD,从而可知AE=BD;(2)根据条件即可判断图中的全等直角三角形;【解答】解:(1)∵△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,DC=EC,∴∠ACB+∠ACD=∠DCE+∠ACD,∴∠BCD=∠ACE,在△ACE与△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,(2)∵AC=DC,∴AC=CD=EC=CB,△ACB≌△DCE(SAS);由(1)可知:∠AEC=∠BDC,∠EAC=∠DBC∴∠DOM=90°,∵∠AEC=∠CAE=∠CBD,∴△EMC≌△BCN(ASA),∴CM=CN,∴DM=AN,△AON≌△DOM(AAS),∵DE=AB,AO=DO,∴△AOB≌△DOE(HL)16.在△ABC中,∠ABM=45°,AM⊥BM,垂足为M,点C是BM延长线上一点,连接AC.(1)如图1,若AB=3,BC=5,求AC的长;(2)如图2,点D是线段AM上一点,MD=MC,点E是△ABC外一点,EC=AC,连接ED并延长交BC于点F,且点F是线段BC的中点,求证:∠BDF=∠CEF.【考点】KD:全等三角形的判定与性质;KQ:勾股定理.【分析】(1)先由AM=BM=ABcos45°=3可得CM=2,再由勾股定理可得AC的长;(2)延长EF到点G,使得FG=EF,证△BMD≌△AMC得AC=BD,再证△BFG≌△CFE可得BG=CE,∠G=∠E,从而得BD=BG=CE,即可得∠BDG=∠G=∠E.【解答】解:(1)∵∠ABM=45°,AM⊥BM,∴AM=BM=ABcos45°=3×=3,则CM=BC﹣BM=5﹣3=2,∴AC===;(2)延长EF到点G,使得FG=EF,连接BG.由DM=MC,∠BMD=∠AMC,BM=AM,∴△BMD≌△AMC(SAS),∴AC=BD,又CE=AC,因此BD=CE,由BF=FC,∠BFG=∠EFC,FG=FE,∴△BFG≌△CFE,故BG=CE,∠G=∠E,所以BD=CE=BG,因此∠BDG=∠G=∠E.17.如图,DE⊥AB,CF⊥AB,垂足分别是点E、F,DE=CF,AE=BF,求证:AC∥BD.【考点】KD:全等三角形的判定与性质.【分析】欲证明AC∥BD,只要证明∠A=∠B,只要证明△DEB≌△CFA即可.【解答】证明:∵DE⊥AB,CF⊥AB,∴∠DEB=∠AFC=90°,∵AE=BF,∴AF=BE,在△DEB和△CFA中,,△DEB≌△CFA,∴∠A=∠B,∴AC∥DB.18.如图,直角△ABC中,∠A为直角,AB=6,AC=8.点P,Q,R分别在AB,BC,CA边上同时开始作匀速运动,2秒后三个点同时停止运动,点P由点A出发以每秒3个单位的速度向点B运动,点Q由点B出发以每秒5个单位的速度向点C运动,点R由点C出发以每秒4个单位的速度向点A运动,在运动过程中:(1)求证:△APR,△BPQ,△CQR的面积相等;(2)求△PQR面积的最小值;(3)用t(秒)(0≤t≤2)表示运动时间,是否存在t,使∠PQR=90°?若存在,请直接写出t的值;若不存在,请说明理由.【考点】KY :三角形综合题.【分析】(1)先利用锐角三角函数表示出QE=4t ,QD=3(2﹣t ),再由运动得出AP=3t ,CR=4t ,BP=3(2﹣t ),AR=4(2﹣t ),最后用三角形的面积公式即可得出结论;(2)借助(1)得出的结论,利用面积差得出S △PQR =18(t ﹣1)2+6,即可得出结论;(3)先判断出∠DQR=∠EQP ,用此两角的正切值建立方程求解即可.【解答】解:(1)如图,在Rt △ABC 中,AB=6,AC=8,根据勾股定理得,BC=10,sin ∠B===,sin ∠C=,过点Q 作QE ⊥AB 于E ,在Rt △BQE 中,BQ=5t ,∴sin ∠B==,∴QE=4t ,过点Q 作QD ⊥AC 于D ,在Rt △CDQ 中,CQ=BC ﹣BQ=10﹣5t ,∴QD=CQ•sin ∠C=(10﹣5t )=3(2﹣t ),由运动知,AP=3t ,CR=4t ,∴BP=AB ﹣AP=6﹣3t=3(2﹣t ),AR=AC ﹣CR=8﹣4t=4(2﹣t ),∴S △APR =AP•AR=×3t ×4(2﹣t )=6t (2﹣t ),S △BPQ =BP•QE=×3(2﹣t )×4t=6t (2﹣t ),S △CQR =CR•QD=×4t ×3(2﹣t )=6t (2﹣t ),∴S △APR =S △BPQ =S △CQR ,∴△APR ,△BPQ ,△CQR 的面积相等;(2)由(1)知,S △APR =S △BPQ =S △CQR =6t (2﹣t ),∵AB=6,AC=8,∴S △PQR =S △ABC ﹣(S △APR +S △BPQ +S △CQR )=×6×8﹣3×6t (2﹣t )=24﹣18(2t ﹣t 2)=18(t ﹣1)2+6,∵0≤t ≤2,∴当t=1时,S △PQR 最小=6;(3)存在,由(1)知,QE=4t ,QD=3(2﹣t ),AP=3t ,CR=4t ,AR=4(2﹣t ), ∴BP=AB ﹣AP=6﹣3t=3(2﹣t ),AR=AC ﹣CR=8﹣4t=4(2﹣t ),过点Q 作QD ⊥AC 于D ,作QE ⊥AB 于E ,∵∠A=90°,∴四边形APQD 是矩形,∴AE=DQ=3(2﹣t ),AD=QE=4t ,∴DR=|AD ﹣AR |=|4t ﹣4(2﹣t )|=|4(2t ﹣2)|,PE=|AP ﹣AE |=|3t ﹣3(2﹣t )|=|3(2t ﹣2)|∵∠DQE=90°,∠PQR=90°,∴∠DQR=∠EQP ,∴tan ∠DQR=tan ∠EQP ,在Rt △DQR 中,tan ∠DQR==, 在Rt △EQP 中,tan ∠EQP==,∴, ∴16t=9(2﹣t ),∴t=.19.问题原型:如图①,在等腰直角三角形ABC中,∠ACB=90°,BC=a.将边AB 绕点B顺时针旋转90°得到线段BD,连结CD.过点D作△BCD的BC边上的高DE,易证△ABC≌△BDE,从而得到△BCD的面积为.初步探究:如图②,在Rt△ABC中,∠ACB=90°,BC=a.将边AB绕点B顺时针旋转90°得到线段BD,连结CD.用含a的代数式表示△BCD的面积,并说明理由.简单应用:如图③,在等腰三角形ABC中,AB=AC,BC=a.将边AB绕点B顺时针旋转90°得到线段BD,连结CD.直接写出△BCD的面积.(用含a的代数式表示)【考点】KD:全等三角形的判定与性质;R2:旋转的性质.【分析】初步探究:如图②,过点D作BC的垂线,与BC的延长线交于点E,由垂直的性质就可以得出△ABC≌△BDE,就有DE=BC=a.进而由三角形的面积公式得出结论;简单运用:如图③,过点A作AF⊥BC与F,过点D作DE⊥BC的延长线于点E,由等腰三角形的性质可以得出BF=BC,由条件可以得出△AFB≌△BED就可以得出BF=DE,由三角形的面积公式就可以得出结论.【解答】解:初步探究:△BCD的面积为.理由:如图②,过点D作BC的垂线,与BC的延长线交于点E.∴∠BED=∠ACB=90°.∵线段AB绕点B顺时针旋转90°得到线段BE,∴AB=BD,∠ABD=90°.∴∠ABC+∠DBE=90°.∵∠A+∠ABC=90°.∴∠A=∠DBE.在△ABC和△BDE中,,∴△ABC≌△BDE(AAS)∴BC=DE=a.=BC•DE∵S△BCD=;∴S△BCD简单应用:如图③,过点A作AF⊥BC与F,过点D作DE⊥BC的延长线于点E,∴∠AFB=∠E=90°,BF=BC=a.∴∠FAB+∠ABF=90°.∵∠ABD=90°,∴∠ABF+∠DBE=90°,∴∠FAB=∠EBD.∵线段BD是由线段AB旋转得到的,∴AB=BD.在△AFB和△BED中,,∴△AFB≌△BED(AAS),∴BF=DE=a.=BC•DE,∵S△BCD=•a•a=a2.∴S△BCD∴△BCD的面积为.。
第17讲全等三角形【考点总汇】一、全等三角形的性质及判定定理 1•性质(1) _________________________ 全等三角形的对应边,对应角 。
(2) ________________________________ 全等三角形的对应边的中线 _______________________ ,对应角平分线 _____________________________________ ,对应边上的高 __________ ,全等三角 形的周长 _________ ,面积 _________ 。
2•判定定理(1)三边分别 _________ 的两个三角形全等(简写“边边边”或“ _______ ”)。
微拨炉:已知两边和一角判定三角形全等时,没有“ SSA ”定理,即不能错用成“两边及一边对角相等的两个三角形全等”。
二、角的平分线1•性质:角的平分线上的点到角的两边的距离 ___________ 。
2•判定:角的内部到角的两边的距离相等的点在 ____________ 。
3•三角形的三条角平分线相交于一点,并且这一点到三条边的距离 微拨炉: 1•三角形的角平分线是一条线段,不是射线。
2•角的平分线的性质定理和判定定理互为逆定理。
注意分清题设和结论。
高频考点1、全等三角形的判定与性质 【范例】如图,在△ ABC 中,AB=CB ,■ ABC =90,D 为AB 延长线上一点,点 E 在BC 边上, 且 BE 二 BD ,连接 AE 、DE 、DC 。
(2)两边和它们的夹角分别________ 的两个三角形全等(简写“边角边”或 ”) (3)两角和它们的夹边分别________ 的两个三角形全等(简写“角边角”或”)(4)斜边和一条直角边分别 的两个直角三角形全等(简写“斜边、直角边”或 ”)(1)求证:△ ABE ◎△ CBD(2)若• CAE =30 [求• BDC 的度数D得分要领:判定全等三角形的基本思路1•已知两边:(1)找夹角(SAS) ; (2)找直角(HL或SAS) ; (3)找第三边(SSS)。
2024成都中考数学第一轮专题复习之第四章第三节全等与相似三角形的性质与判定(含位似) 知识精练基础题1. (2023长春)如图,工人师傅设计了一种测零件内径AB的卡钳,卡钳交叉点O为AA′、BB′的中点,只要量出A′B′的长度,就可以知道该零件内径AB的长度.依据的数学基本事实是()第1题图A. 两边及其夹角分别相等的两个三角形全等B. 两角及其夹边分别相等的两个三角形全等C. 两条直线被一组平行线所截,所得的对应线段成比例D. 两点之间线段最短2. 已知图中的两个三角形全等,则∠1的度数是()第2题图A. 76°B. 60°C. 54°D. 50°3. (2022云南)如图,OB平分∠AOC,D,E,F分别是射线OA,射线OB,射线OC上的点,D,E,F与O点都不重合,连接ED,EF.若添加下列条件中的某一个,就能使△DOE≌△FOE.你认为要添加的那个条件是()A. OD=OEB. OE=OFC. ∠ODE=∠OEDD. ∠ODE=∠OFE第3题图4. 如图,在菱形ABCD 中,E 是CD 边上一点,连接AE ,点F ,G 均在AE 上,连接BF ,DG ,且∠BFE =∠BAD ,只添加一个条件,能判定△ABF ≌△DAG 的是( )第4题图A. ∠DGE =∠BADB. BF =EFC. AF =DGD. ∠EDG =∠BAD5. (2023重庆A 卷)若两个相似三角形周长的比为1∶4,则这两个三角形对应边的比是( ) A. 1∶2 B. 1∶4 C. 1∶8 D. 1∶166. 如图,已知△ABC ∽△EDC ,AC ∶EC =2∶3,若AB 的长度为6,则DE 的长度为( ) A. 4 B. 9 C. 12 D. 13.5第6题图7. (2023恩施州)如图,在△ABC 中,DE ∥BC 分别交AC ,AB 于点D ,E ,EF ∥AC 交BC 于点F ,若AE BE =25,BF =8,则DE 的长为( )第7题图A.165 B. 167C. 2D. 3 8. (2023陕西)如图,DE 是△ABC 的中位线,点F 在DB 上,DF =2BF ,连接EF 并延长,与CB的延长线相交于点M.若BC=6,则线段CM的长为()A. 132 B. 7 C.152 D. 8第8题图9. 如图,在四边形ABCD中,对角线AC,BD相交于点O,OA=OC,添加一个条件使△AOB≌△COD,则这个条件可以是______________.(写出一个即可)第9题图10. (2023江西)《周髀算经》中记载了“偃矩以望高”的方法.“矩”在古代指两条边呈直角的曲尺(即图中的ABC).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度.如图,点A,B,Q在同一水平线上,∠ABC和∠AQP均为直角,AP与BC相交于点D.测得AB=40 cm,BD=20 cm,AQ=12 m,则树高PQ=________m.第10题图11. 如图,△ABC≌△ADE,BC的延长线交AD于点F,交DE于点G.若∠D=28°,∠E=115°,∠DAC=50°,则∠DGB的度数为________.第11题图12. (2023鄂州)如图,在平面直角坐标系中,△ABC与△A1B1C1位似,原点O是位似中心,且ABA1B1=3.若A(9,3),则点A1的坐标是________.第12题图13. (2023乐山)如图,在平行四边形ABCD 中,E 是线段AB 上一点,连接AC ,DE 交于点F .若AE EB =23,则S △ADF S △AEF=________.第13题图14. (2023江西)如图,AB =AD ,AC 平分∠BA D.求证:△ABC ≌△ADC .第14题图15. (2023陕西)如图,在△ABC 中,∠B =50°,∠C =20°.过点A 作AE ⊥BC ,垂足为E ,延长EA 至点D ,使AD =AC ,在边AC 上截取AF =AB ,连接DF .求证:DF =CB .第15题图16. (2022盐城)如图,在△ABC与△A′B′C′中,点D,D′分别在边BC,B′C′上,且△ACD∽△A′C′D′,若________,则△ABD∽△A′B′D′.请从①BDCD=B′D′C′D′;②ABCD=A′B′C′D′;③∠BAD=∠B′A′D′这3个选项中选择一个作为条件(写序号),并加以证明.第16题图17. (2023舟山)如图,在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,连接EF.(1)求证:AE=AF;(2)若∠B=60°,求∠AEF的度数.第17题图拔高题18. (2023绥化)如图,在平面直角坐标系中,△ABC 与△AB ′C ′的相似比为1∶2,点A 是位似中心,已知点A (2,0),点C (a ,b ),∠C =90°,则点C ′的坐标为________.(结果用含a ,b 的式子表示)第18题图19. (2023杭州)如图,在△ABC 中,AB =AC ,∠A <90°,点D ,E ,F 分别在边AB ,BC ,CA 上,连接DE ,EF ,FD ,已知点B 和点F 关于直线DE 对称.设BC AB =k ,若AD =DF ,则CFF A =________(结果用含k 的代数式表示).第19题图20. (2023温州)如图,已知矩形ABCD ,点E 在CB 延长线上,点F 在BC 延长线上,过点F 作FH ⊥EF 交ED 的延长线于点H ,连接AF 交EH 于点G ,GE =GH . (1)求证:BE =CF ; (2)当AB FH =56,AD =4时,求EF 的长.第20题图参考答案与解析1. A 【解析】∵点O 为AA ′、BB ′的中点,∴OA =OA ′,OB =OB ′,由对顶角相等得∠AOB =∠A ′OB ′,在△AOB 和△A ′OB ′中,⎩⎪⎨⎪⎧OA =OA ′,∠AOB =∠A ′OB ′,OB =OB ′,∴△AOB ≌△A ′OB ′(SAS),∴AB =A ′B ′,即只要量出A ′B ′的长度,就可以知道该零件内径AB 的长度.2. D 【解析】第一个三角形中b ,c 之间的夹角为180°-76°-54°=50°,∠1是b ,c 之间的夹角.∵两个三角形全等,∴∠1=50°.3. D 【解析】由题意得∠AOB =∠BOC ,OE =OE ,若要使△DOE ≌△FOE ,则需OD =OF 或除已知外的一组对应角相等即可.根据选项可知∠ODE =∠OFE 满足条件.4. A 【解析】∵四边形ABCD 是菱形,∴AB =DA .∵∠BFE =∠BAD ,∴∠ABF +∠BAF =∠DAG +∠BAF ,∴∠ABF =∠DAG .当∠DGE =∠BAD 时,∠ADG +∠DAG =∠DAG +∠BAF ,∴∠BAF =∠ADG ,∴△ABF ≌△DAG (ASA).5. B6. B 【解析】∵△ABC ∽△EDC ,AC ∶EC =2∶3.∴AB ED =AC EC =BC DC =23,∴当AB =6时,DE =9.7. A 【解析】∵DE ∥BC ,EF ∥AC ,∴∠B =∠AED ,∠BEF =∠A ,∴△BEF ∽△EAD ,∴BF ED =BE EA =52 .∵BF =8,∴DE =165. 8. C 【解析】∵DE 是△ABC 的中位线,∴DE ∥BC ,DE =12 BC =12 ×6=3,∴△DEF ∽△BMF ,∴DE BM =DF BF =2BF BF =2,∴BM =32 ,CM =BC +BM =152.9. OB =OD (答案不唯一) 【解析】∵OA =OC ,∠AOB =∠COD ,OB =OD ,∴△AOB ≌△COD (SAS).10. 6 【解析】∵∠ABC 和∠AQP 均为直角,∴BC ∥PQ ,∴△ABD ∽△AQP ,∴BD AB =PQAQ ,∴2040 =PQ12,∴PQ =6 m. 11. 87° 【解析】∵△ABC ≌△ADE ,∴∠B =∠D =28°,∠ACB =∠E =115°,∴∠ACG =65°.∵∠DAC =50°,∴∠AFC =∠GFD =65°,∴∠DGF =180°-∠D -∠DFG =87°.12. (3,1) 【解析】∵△ABC 与△A 1B 1C 1位似,且原点O 为位似中心,ABA 1B 1 =3,点A (9,3),∴13 ×9=3,13×3=1,即点A 1的坐标是(3,1).13. 52 【解析】如题图,∵AE EB =23 ,∴AE AB =25 .∵四边形ABCD 为平行四边形,∴DC=AB ,DC ∥AB ,∴DF EF =DC AE .∵AE AB =25 ,DC =AB ,∴AE DC =25 ,∴DC AE =52 ,∴DF EF =52 ,∴S △ADF S △AEF =DF EF =52 . 14. 证明:∵ AC 平分∠BAD , ∴∠BAC =∠DAC . 在△ABC 和△ADC 中, ⎩⎪⎨⎪⎧AB =AD ,∠BAC =∠DAC ,AC =AC ,∴△ABC ≌△ADC (SAS).15. 证明:∵在△ABC 中,∠B =50°,∠C =20°, ∴∠CAB =180°-∠B -∠C =110°. ∵AE ⊥BC , ∴∠AEC =90°,∴∠DAF =∠AEC +∠C =110°, ∴∠DAF =∠CAB . 又∵AD =AC ,AF =AB , ∴△DAF ≌△CAB , ∴DF =CB . 16. 解:选择①BD CD =B ′D ′C ′D ′, 证明:∵△ACD ∽△A ′C ′D ′, ∴∠ADC =∠A ′D ′C ′,AD A ′D ′ =CDC ′D ′, ∴∠ADB =∠A ′D ′B ′. 又∵BD CD =B ′D ′C ′D ′ ,∴BD B ′D ′ =CDC ′D ′,∴BD B ′D ′ =CD C ′D ′ =ADA ′D ′, ∴△ABD ∽△A ′B ′D ′. 选择③∠BAD =∠B ′A ′D ′. 证明:∵△ACD ∽△A ′C ′D ′, ∴∠ADC =∠A ′D ′C ′, ∴∠ADB =∠A ′D ′B ′. ∵∠BAD =∠B ′A ′D ′, ∴△ABD ∽△A ′B ′D ′.17. (1)证明:∵四边形ABCD 是菱形,∴AB =AD ,∠B =∠D . 又∵AE ⊥BC ,AF ⊥CD , ∴∠AEB =∠AFD =90°.在△ABE 和△AFD 中,⎩⎪⎨⎪⎧∠AEB =∠AFD ,∠B =∠D ,AB =AD ,∴△ABE ≌△ADF (AAS), ∴AE =AF ;(2)∵四边形ABCD 是菱形, ∴∠B +∠BAD =180°. ∵∠B =60°, ∴∠BAD =120°.又∵∠AEB =90°,∠B =60°, ∴∠BAE =180°-∠AEB -∠B =30°. 由(1)知△ABE ≌△ADF , ∴∠DAF =∠BAE =30°,∴∠EAF =120°-∠DAF -∠BAE =60°. ∵AE =AF ,∴△AEF 是等边三角形, ∴∠AEF =60°.18. (6-2a ,-2b ) 【解析】如解图,过点C 作CM ⊥AB 于点M ,过C ′作C ′N ⊥AB ′于点N ,则∠ANC ′=∠AMC =90°,∵△ABC 与△AB ′C ′的相似比为1∶2,∴AC AC ′ =12.∵∠NAC ′=∠MAC ,∴△ACM ∽△AC ′N ,∴AM AN =CM C ′N =AC AC ′.∵点A (2,0),点C (a ,b ),∴OA =2,OM =a ,CM =b ,∴AM =a -2,∴a -2AN =b C ′N =12 ,∴AN =2a -4,C ′N =2b ,∴ON =AN-OA =2a -6,∴点C ′的坐标为(6-2a ,-2b ).第18题解图19. k 22-k 2 【解析】设∠B =α,BE =x ,∵AB =AC ,∴∠C =α,∠A =180°-2α.∵点B 和点F 关于直线DE 对称,∴△DBE ≌△DFE ,∴∠DFE =∠B =α,EF =BE =x .∵AD =DF ,∴∠DF A =∠A =180°-2α,∴∠CFE =180°-∠AFD -∠DFE =180°-(180°-2α)-α=α,∴∠CFE =∠C ,∴CE =EF =x ,∴BC =2x ,∴∠CFE =∠C =∠B =α,∴△CEF ∽△CAB ,∴EF AB =CF CB ,即x AB =CF 2x ,∴AB ·CF =2x 2.∵BC AB =k ,∴AB =BC k =2x k ,∴CF =2x 2AB =2x 2·k 2x =kx ,∴F A =AC -CF =AB -CF =2x k -kx =2-k 2k x ,∴CF F A =kx 2-k 2kx =k 22-k 2. 20. (1)证明:∵FH ⊥EF ,GE =GH ,∴GE =GF =GH , ∴∠GFE =∠E .∵四边形ABCD 是矩形,∴AB =CD ,∠ABC =∠DCB =90°, ∴△ABF ≌△DCE (AAS), ∴BF =CE ,∴CE -BC =BF -BC ,即BE =CF ; (2)解:∵CD ∥FH , ∴△DCE ∽△HFE , ∴EC EF =CD FH . ∵CD =AB , ∴CD FH =AB FH =56 . 设BE =CF =x ,∵BC=AD=4,∴CE=x+4,EF=2x+4.∴x+42x+4=5 6,解得x=1,∴EF=6.。
三角形认识综合复习一选择题:1.有5根小木棒,长度分别为2cm、3cm、4cm、5cm、6cm,任意取其中的3根小木棒首尾相接搭三角形,可搭出不同的三角形的个数为()A.5个 B.6个 C.7个 D.8个2.在△ABC中,画出边AC上的高,下面4幅图中画法正确的是()A.B. C. D.3.如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,若S△DEF=2,则S△ABC等于( )A.16 B.14 C.12 D.104.三角形两边长为6与8,那么周长的取值范围()A.2<<14 B.16<<28 C.14<<28 D.20<<245.如图,已知点D是△ABC的重心,连接BD并延长,交AC于点E,若AE=4,则AC的长度为()A.6 B.8 C.10 D.126.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=( )A.40° B.30° C.20° D.10°7.在△ABC中,AB=8,AC=6,则BC边上的中线AD的取值范围是()A.6<AD<8 B.2<AD<14 C.1<AD<7 D.无法确定8.在△ABC中,三边长分别为、、,且>>,若=8,=3,则的取值范围是()A.3<<8B.5<<11C.6<<10D.8<<119.一个多边形的外角和是内角和的,这个多边形的边数为( )A.5 B.6 C.7 D.810.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等A.10 B.7 C.5 D.411.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处,若∠A=25°,则∠BDC 等于()A.60° B.60° C.70° D.75°12.已知如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.315° B.270° C.180° D.135°13.如图,∠1,∠2,∠3,∠4恒满足的关系是( )A.∠1+∠2=∠3+∠4 B.∠1+∠2=∠4-∠3C.∠1+∠4=∠2+∠3 D.∠1+∠4=∠2-∠314.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE的外部时,则与和之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是( )A. B.C. D.15.一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=()A.90° B.100° C.130° D.180°16.如图所示,分别以边形的顶点为圆心,以1cm为半径画圆,则图中阴影部分的面积之和为()A. B. C.D.17.如图,已知在正方形网格中,每个小方格都是边长为1的正方形,A,B两点在小方格的顶点上,位置如图所示,点C也在小方格的顶点上,且以A,B,C为顶点的三角形面积为1,则点C的个数为()A.3个 B.4个C.5个D.6个18.一个六边形的六个内角都是120o,连续四条边的长依次为 1,3,3,2,则这个六边形的周长是( )A. 13B. 14C. 15D. 1619.如图,P为边长为2的正三角形内任意一点,过P点分别做三边的垂线,垂足分别为D,E,F,则PD+PE+PF 的值为( )A.B. C.2 D.20.图1为一张三角形ABC纸片,点P在BC上,将A折至P时,出现折痕BD,其中点D在AC上,如图2所示,若△ABC的面积为80,△ABD的面积为30,则AB与PC的长度之比为()A.3:2 B.5:3 C.8:5 D.13:821.已知三角形的边长分别为4、a、8,则a的取值范围是;如果这个三角形中有两条边相等,那么它的周长为.22.一个等腰三角形的底边长为5cm,一腰上的中线把这个三角形的周长分成的两部分之差是3cm,则它的腰长是23.一个多边形的每一个内角为108°,则这个多边形是边形,它的内角和是 .24.如图在△ABC中,∠A=50°,∠ABC的角平分线与∠ACB的外角平分线交于点D,则∠D的度数为.25.如图,在△ABC中,∠ABC、∠ACB的平分线BE、CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=______.26.如图,在四边形ABCD中,∠DAB的角平分线与∠ABC的外角平分线相交于点P,且∠D+∠C=240°,则∠P=_________°.27.如图,在四边形ABCD中,∠ɑ,∠β分别是∠BAD、∠BCD相邻的补角,∠B+∠CDA=140°,则∠ɑ+∠β等于________________.28.如图所示,求∠A+∠B+∠C+∠D+∠E+∠F= .29.如图,已知∠A=ɑ,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线相交于点A1,得∠A1;若∠A1BC 的平分线与∠A1CD的平分线相交于点A2,得∠A2……∠A2015BC的平分线与∠A2015CD的平分线相交于点A2016,得∠A2016,则∠A2016= .(用含ɑ的式子表示)30.如图,在四边形ABDC中,∠BAC=90°,AB=2,AC=4,E、F分别是BD、CD的三等分点,连接AE、AF、EF.若四边形ABDC的面积为7,则△AEF的面积为.三简答题:31.若是的三边的长,化简.32.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面积是28,AB=20cm,AC=8cm,求DE的长.33.如图,在直角三角形ABC中,∠ACB=90°,CD是AB边上的高,AB=10cm,BC=8cm,AC=6cm.(1)求△ABC的面积;(2)求CD的长;(3)作出△ABC的中线BE,并求△ABE的面积.34.如图,若AE是△ABC边上的高,∠EAC的角平分线AD交BC于D,∠ACB=40°,求∠ADE.35.一个凸多边形,除了一个内角外,其余各内角的和为2 750°,求这个多边形的边数.36.如图所示,已知BD为△ABC的角平分线,CD为△ABC外角∠ACE的平分线,且与BD交于点D;(1)若∠ABC=60°,∠DCE=70°,则∠D= °;(2)若∠ABC=70°,∠A=80°,则∠D= °;(3)当∠ABC和∠ACB在变化,而∠A始终保持不变,则∠D是否发生变化?为什么?由此你能得出什么结论?(用含∠A的式子表示∠D)37.我们知道三角形一边上的中线将这个三角形分成两个面积相等的三角形.如图,AD是△ABC边BC上的中线,则S△ABD=S△ACD.(1)如图2,△ABC的中线AD、BE相交于点F,△ABF与四边形CEFD的面积有怎样的数量关系?为什么?(2)如图,在△ABC中,已知点D、E、F分别是线段BC、AD、CE的中点,且S△ABC=8,求△BEF的面积S△BEF。
三角形专题复习
【知识点一】 三角形的有关概念: 1、三角形的分类: 1. 按角分:
3、钝角三角形
2、直角三角形
1、锐角三角形
B
A
A
A
2. 按边分:
1、不等边三角形
2、等腰三角形
等边三角形
底边和腰不相等
B
B
B
B
2、三角形的三线:
A A
A
【知识点二】
三角形的有关定理回顾:
1、三角形的内角和定理、外角定理:
A
2、三角形的三边关系定理及推论:
两边之差< 第三边< 两边之和
3、三角形的中位线定理:
4、特殊三角形的性质、定理:
(1).直角三角形:
a、勾股定理:
b、有一个角为30°
c、斜边上中线
d、斜边上的高
a A
A
A
(2)等腰三角形:
B
B
三线合一
等边三角形:
B
【知识点三】
三角形全等的证明:
SAS、SSS、ASA、AAS
【知识点四】
知识运用:
考题展现:
1、(2012厦门中考第14题)如图,点D是等边△ABC内的一点,如果△ABD绕点A逆时针旋转后能与△ACE重
合,那么旋转了度.
2、(2012厦门中考第18题(3)小题)已知:如图,点B 、F 、C 、E 在一条直线上,∠A =∠D ,AC =DF ,且AC ∥DF .
求证:△ABC ≌△DEF .
3、已知:如图2,在△ABC 中,∠C =90°,点D 、E 分别在边AB 、AC 上,DE ∥BC ,DE =3,BC =9. (1)求
AD
AB
的值; (2)若BD =10,求sin A 的值.
4、(2011厦门中考第16题)如图,正方形网格中,A 、D 、B 、C 都在格点上,点E 是线段AC 上的任意一点,若AD =1,那么AE = 时,以点A 、D 、E 为顶点的三角形与△ABC 相似。
B
图
1
E
图2
5、(2011厦门中考第25题)已知:如图,四边形ABCD中,∠BAC=∠ACD=90°,∠B =∠D。
(1)求证:四边形ABCD是平行四边形;
(2)若AB=3厘米,BC=5厘米,AE=1
3
AB,点P从B点出发,以1厘米/秒的速度沿边BC→CD→DA运动至A
点停止。
从运动开始,经过多少时间,以点E、B、P为顶点的三角形成为等腰三角形
D
B
6、(2010厦门中考第11题)如图,在△ABC中,DE是△ABC的中位线,若DE=2,则BC=_________.
7、(2010厦门中考第
16题)如图3,以第①个等腰直角三角形的斜边长作为第②个等腰直角三角形的腰,以第②个等腰直角三角形的斜边长做为第③个等腰直角三角形的腰,依次类推,若第⑨个等腰直角三角形的斜边长为
_________厘米.
③
②
①
8、(2010厦门中考第22题)如图6,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,∠EFB=60°,DC=EF.
(1) 求证:四边形EFCD是平行四边形
(2) 若BF=EF,求证AE=AD.
E
厦门一模有关三角形类的题型:
1、(外国语湖里分校一模)如图,在□ABCD中,点E、F是对角线BD上的两点,且BE=DF.
求证:(1)△ABE≌△CDF
(2)AE∥CF
B
2、(外国语湖里分校一模)如图,在矩形ABCD中,AB=3,BC=4,P是AB上的一个动点,且与A、D不重合,过
点C作CQ⊥PB,垂足为Q,设CQ为y,BP=x,
(1)求证:△ABP∽△QCB;
(2)求y关于x的函数关系式并画出函数图象
3、(思明一模)如图,AD与BC相交于点O,∠A=∠C,添加一个条件_________________________,使得△ABO
≌△CDO.(只需写出一个答案
)
4、(海沧一模)如图,在等腰直角三角形ABC中,AC=BC=2,D为AB上的动点(不与A、B重合),过D作
DE⊥AC于E,DF⊥BC于F,设AD的长为x,DE与DF的长度和为y,则能表示y与x之间的函数关系的图象大致是()
A.B.C.D.
【提高训练】
1、(海沧一模)如图,在△ABC 中,点D 是BC 的中点,作射线AD ,在线段AD 及其延长线上分别取点E 、F ,连接CE 、BF .
(1)请你添加一个条件 使得△BDF ≌△CDE .(不添加辅助线),并证明:△BDF ≌△CDE . (2)满足(1)的条件下,若△ABC 是等腰三角形,∠BAC =90°,点E 为AD 的中点,连结BE ,CF ,已知BC =4,则四边形BECF 是什么图形?其周长是多少?
F
E
D
C
B
A
2、(海沧一模)给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.
(1)在你学过的特殊四边形中,写出一种勾股四边形的名称: .
(2)如图1,已知格点(小正方形的定点)0(0,0),A (3,0),B (0,4).请画出以格点为顶点,OA ,OB 为勾股边,且对角线相等的勾股四边形OAMB .
(3)如图2,将△ABC 绕顶点B 按顺时针方向旋转60°,得到△DBE ,连接AD ,DC ,已知∠DCB =30°, 求证:DC 2+BC 2=AC 2,即四边形ABCD 为勾股四边形.
E
D
C
B
A
3、(思明一模)如图,在△ABC中,∠ACB=90°,CB=CA=2,点E、F在线段AB上(不与端点A、B重合),
且∠ECF=45°.
(1)求证:BF·AE=2;
(2)判断BE、EF、FA三条线段所组成的三角形的形状,并说明理由.
4、(2012广州中考)如图,在平行四边形ABCD中,AB=5,BC=10,F为AD中点,CE⊥AB于点E,设∠ABC =α(60°≤α<90°)
(1)当α=60°时,求CE的长;
(2)当60°<α<90°时,求证:∠EFD=3∠AEF
5、(2012成都中考)如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF 与射线CA相交于点Q.
(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;
(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=a,CQ=9
2
a时,P、Q
两点间的距离(用含a的代数式表示).
B
6、(哈尔滨2012)已知:在△ABC中,∠ACB=900,点P是线段AC上一点,过点A作AB的垂线,交BP的延长线于点M,MN⊥AC于点N,PQ⊥AB于点Q,AQ=MN.求证:PC=AN;
M
B。