2019-2020年七年级数学试卷 (I)
- 格式:doc
- 大小:142.00 KB
- 文档页数:5
xx 学年度宜兴市周铁学区期中考试试卷 2019-2020年七年级下学期期中考试数学试题 Word 版含答案(II) 一、选择题:(本大题共有10小题,每小题3分,共30分.)1.下列计算正确的是 ( )A .a 2+a 2=2a 4B .a 2 • a 3=a 6C .(-3x) 3÷(-3x)=9x 2D .(-ab 2) 2=-a 2b 42. 如果一个多边形的内角和是外角和的3倍,那么这个多边形是 ( )A.八边形B.九边形C.十边形D.十二边形3.下列等式由左边到右边的变形中,属于因式分解的是 ( )A .(a +1)(a -1)=a 2-1B .a 2-6a +9=(a -3) 2C .x 2+2x +1=x(x +2)+1D .-18x 4y 3=-6x 2y 2•3x 2y4.如图,已知AB ∥CD ,BC 平分∠ABE ,∠C =35°,则∠BED 的度数是( )A .70°B .68°C . 60°D .72°5. 若x 、y 满足0)2(12=++++-y x y x ,则 ( )A .1B .2C .–1D .–26.如图,有以下四个条件:①∠B +∠BCD =180°,②∠1=∠2,③∠3=∠4,④∠B =∠5.其中能判定AB ∥CD 的条件的个数有… ( )A .1B .2C .3D .47. 如果a =(-xx) 0、b =(-110)-1、c =(-53)2,那么a 、b 、c 的大小关系为( )A .a >b >cB .a >c >bC .c >b >aD .c >a >b8.如图,∠1,∠2,∠3,∠4是五边形ABCDE 的外角,且∠1=∠2=∠3=∠4=68°,则∠AED 的度数 ( )A .88°B .92°C .98°D .112°9. 若a m =2,a n =3,则a 2m-n 的值是 ( )A .1B .12C .34D .4310.为求1+2+22+23+…+2xx 的值,可令S =1+2+22+23+…+2xx ,则2S=2+22+23+24+…+2xx ,因此2S -S =2xx -1,所以1+2+22+23+…+2xx=2xx -1.仿照以上推理计算出1+3+32+33+…+3xx 的值是( )A .3xx -1B . 3xx -1C .D .二、填空题:(本大题共8小题,每空2分,共18分.)(第4题) (第8题)(第6题)第16题 第15题11.甲型H7N9流感病毒的直径大约为0.000 000 08米,用科学记数法表示 米.12. 因式分解:m 2-16= ;2x 2-8xy +8y 2= .13.一个三角形的两边长分别为3 cm 、5 cm ,且第三边为偶数,则这个三角形的周长为______________ cm .14.若,,则15. 如图,BC ⊥ED 于O ,∠A =45°,∠D =20°,则∠B =________°.16.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=23度,那么∠2= 度.17. 如图,将一个长方形纸条折成如图所示的形状,若已知∠2=65°,则∠1=__________。
……内………………外………… 学校:__山东省2019-2020学年上学期期末原创卷七年级数学(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:人教版七上全册。
第Ⅰ卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.比–1小2的数是 A .3B .1C .–2D .–32.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为 A .2.18×106B .2.18×105C .21.8×106D .21.8×1053.我市冬季里某一天的最低气温是–10℃,最高气温是5℃,这一天的温差为 A .–5℃B .5℃C .10℃D .15℃4.下列各组中的两项属于同类项的是A .2a b 与2abB .2a 与3a -C .3a 与3xD .23与2a5.下列图形中__________可以折成正方体.A .B .C .D .6.如果x y =,那么下列各式中正确的是 A .11ax ay -=+B .x ya a=C .a x a y -=-D .x a y a -=+7.如图,AO ⊥BO 于点O ,∠AOC =∠BOD ,则∠COD 等于A .80︒B .90︒C .95︒D .100︒8.已知x =2是2x +a =5的解,则a 的值为 A .1B .32C .–1D .239.角5218︒'的补角等于 A .3742︒'B .3818︒'C .12742︒'D .12842︒'10.如图,点C 是线段AB 上一点,点D 是线段AC 的中点,则下列等式不成立的是A .AD +BD =ABB .BD –CD =CBC .AB =2ACD .AD =12AC 11.如图为一无盖长方体盒子的展开图(重叠部分不计),可知该无盖长方体的容积为A .4B .6C .12D .812.某工程甲单独完成要45天,乙单独完成要30天.若乙先单独干22天,剩下的由甲单独完成,则甲、乙一共用几天可以完成全部工作?设甲、乙一共用x 天完成,则符合题意的方程是A .222214530x -+= B .222213045x ++=C .222214530x ++=D .2213045x x -+= 第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)13.如图,将长方形ABCD 绕AB 边旋转一周,得到的几何体是__________.………内………………此………外………………14.点A在数轴上的位置如图所示,则点A表示的数的相反数是__________.15.如图,O为直线AB上一点,∠COB=29°30′,则∠1=__________.16.某品牌手机的进价为1200元,按定价的八折出售可获利14%,则该手机的定价为__________.17.已知a2+2a=1,则3a2+6a+2的值为__________.18.如图,A点的初始位置位于数轴上表示1的点,现对A点做如下移动:第1次向左移动3个单位长度至B点,第2次从B点向右移动6个单位长度至C点,第3次从C点向左移动9个单位长度至D点,第4次从D点向右移动12个单位长度至E点,…,依此类推.这样第__________次移动到的点到原点的距离为2018.三、解答题(本大题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤)19.(本小题满分6分)(1)2+(–1)2019+(2+1)(–2–1)–|–3×13|;(2)777(5)98222222⎛⎫⨯-+-⨯-⨯⎪⎝⎭.20.(本小题满分6分)解方程:(1)–2x+9=3(x–2);(2)12x–2=926x-.21.(本小题满分6分)先化简再求值:2(x3–2y2)–(x–2y)–(x–3y2+2x3),其中x=–3,y=–2.22.(本小题满分8分)如图,在平面内有A,B,C三点.(1)画直线AC,线段BC,射线AB;(2)在线段BC上任取一点D(不同于B,C),连接线段AD;(3)数数看,此时图中线段的条数.23.(本小题满分8分)某车间28名工人生产螺栓和螺母,每人每天平均生产螺栓12个或螺母18个,一个螺栓需要配两个螺母,要想每天生产的螺栓和螺母刚好配套,应安排生产螺栓和螺母的工人各多少名?24.(本小题满分10分)若“△”表示一种新运算,规定a△b=a×b–(a+b).(1)计算:–3△5;(2)计算:2△[(–4)△(–5)];(3)(–2)△(1+x)=–x+6,求x的值.25.(本小题满分10分)如图,O为直线AB上一点,OD平分AOC∠,90DOE∠=︒.(1)若50AOC∠=︒,求COE∠和∠BOE的度数;(2)猜想:OE是否平分BOC∠?请直接写出你猜想的结论.26.(本小题满分12分)2018年9月7日,财政部和国税总局发布了《关于2018年第四季度个人所得税减除费用和税率适用问题的通知》,通知规定:我国自2018年10月1日起,个人所得税起征点从3500元提高到5000元.月收入不超过5000元的部分不收税;月收入超过5000元但不超过8000元的部分征收3%的个人所得税……,例如:某人月收入6000元,他应缴纳个人所得税为(6000–5000)×3%=30(元).按此通知精神完成下面问题:(1)某人2018年10月月收入为5860元,他应缴纳个人所得税多少元?(2)当月收入超过5000元而又不超过8000元时,写出应缴纳个人所得税y(元)与月收入x(元)之间的关系式;(3)如果某人2019年1月缴纳个人所得税81元,那么此人本月收入是多少元?27.(本小题满分12分)观察下列等式:第1个等式:a1=114⨯=13×(11–14);第2个等式:a2=147⨯=13×(14–17);第3个等式:a3=1710⨯=13×(17–110);第4个等式:a4=11013⨯=13×(110–113);…请解答下列问题:(1)按以上规律列出第5个等式:a5=__________=__________;第n(n为正整数)个等式:a n=__________=__________;(2)求a1+a2+a3+a4+…+a2019的值.2019-2020学年上学期期末原创卷七年级数学·全解全析1.【答案】D【解析】–1–2=–3,故选D . 2.【答案】A【解析】2180000的小数点向左移动6位得到2.18,所以2180000用科学记数法表示为2.18×106,故选A . 3.【答案】D【解析】5−(−10)=5+10=15(℃).故选D . 4.【答案】B【解析】A .a 2b 与ab 2中所含字母的指数不同,不是同类项,故A 错误; B .2a 与–3a 中所含字母相同,相同字母的指数也相同,是同类项,故B 正确; C .a 3与x 3中所含字母不同,不是同类项,故C 错误; D .32与a 2中所含字母不同,不是同类项,故D 错误. 故选B . 5.【答案】B【解析】A ,C ,D 围成几何体时,有两个面重合,故不能围成正方体;只有B 能围成正方体.故选B . 6.【答案】C【解析】此题考查等式的性质;在等式的两边同时加上或减去同一个数仍是等式;在等式的两边同时乘以或除以(一个不为零)同一个数仍是等式;所以此题中A 错误:应该为11ax ay -=-或11ax ay +=+才正确;B 错误,因为等式两边同时除的数a 不知是否为零,所以错误;C 正确,同时乘以–1然后在同时加上a ;D 错误,应该为x a y a -=-或x a y a +=+才正确,故选C . 7.【答案】B【解析】∵∠AOC =∠BOD ,∴∠AOB =∠COD ,∵AO ⊥BO ,∴∠AOB =∠COD =90°.故选B . 8.【答案】A【解析】将x =2代入方程得:4+a =5,解得:a =1,故选A .9.【答案】C【解析】5218︒'的补角等于:180°–5218︒'=12742︒'.故选C . 10.【答案】C【解析】由图可得,AD +BD =AB ,故选项A 中的结论成立,BD –CD =CB ,故选项B 中的结论成立,∵点C 是线段AB 上一点,∴AB 不一定时AC 的二倍,故选项C 中的结论不成立, ∵D 是线段AC 的中点,∴12AD AC =,故选项D 中的结论成立, 故选C . 11.【答案】D【解析】长方体的高是1,宽是3–1=2,长是6–2=4,长方体的容积是4×2×1=8.故选D . 12.【答案】A【解析】设甲、乙共用x 天完成,则甲单独干了(x –22)天,本题中把总的工作量看成整体1,则甲每天完成全部工作的145,乙每天完成全部工作的130.根据等量关系列方程得:2245x -+2230=1,故选A .13.【答案】圆柱【解析】将长方形ABCD 绕AB 边旋转一周,得到的几何体是圆柱体,故答案为:圆柱. 14.【答案】–2【解析】∵点A 在数轴上表示的数是2,∴点A 表示的数的相反数是–2.故答案为:–2. 15.【答案】150.5°【解析】∵1180BOC ∠+∠=,∴180293018029.51118050.5BOC ︒︒'︒︒∠-=︒=∠﹣=﹣=. 故答案为:150.5°. 16.【答案】1710元【解析】设手机的定价为x 元,由题意得,0.8x –1200=1200×14%,解得:x =1710. 该手机的售价为1710元.故答案为:1710元. 17.【答案】5【解析】当a 2+2a =1时,原式=3(a 2+2a )+2=3+2=5,故答案为:5. 18.【答案】1345【解析】第1次点A 向左移动3个单位长度至点B ,则B 表示的数,1–3=–2; 第2次从点B 向右移动6个单位长度至点C ,则C 表示的数为–2+6=4;………内……………… 此………外………………第3次从点C 向左移动9个单位长度至点D ,则D 表示的数为4–9=–5; 第4次从点D 向右移动12个单位长度至点E ,则点E 表示的数为–5+12=7; 第5次从点E 向左移动15个单位长度至点F ,则F 表示的数为7–15=–8; …;由以上数据可知,当移动次数为奇数时,点在数轴上所表示的数满足:–12(3n +1),当移动次数为偶数时,点在数轴上所表示的数满足:322n +. 故当移动次数为奇数时,–12(3n +1)=–2018,解得:n =1345, 当移动次数为偶数时,32=20182n +,n =40343(不合题意). 故答案为:1345.19.【解析】(1)()()()2019121212||133+-++-⨯---()()21331=+-+⨯-- ()()2191=+-+--=2+(–1)+(–9)–19=-;(3分)(2)()777598222222⎛⎫⨯-+⨯-⨯ ⎪⎝⎭- ()()()759822=⨯-+-+-⎡⎤⎣⎦ ()72222=⨯- 7=-.(6分)20.【解析】(1)去括号得:–2x +9=3x –6,移项合并得:–5x =–15,解得:x =3;(3分)(2)去分母得:3x –12=9x –2, 移项合并得:–6x =10, 解得:x =–53.(6分) 21.【解析】2(x 3–2y 2)–(x –2y )–(x –3y 2+2x 3)=2x 3–4y 2–x +2y –x +3y 2–2x 3=–y 2–2x +2y ,(3分)当x =–3,y =–2时,原式=–(–2)2–2×(–3)+2×(–2)=–4+6–4=–2.(6分) 22.【解析】(1)如图,直线AC ,线段BC ,射线AB 即为所求;(3分)(2)如图,线段AD 即为所求;(4分)(3)由题可得,图中线段有AC 、AB 、AD 、BD 、DC 、BC 共6条.(8分) 23.【解析】设生产螺栓的工人有x 名,则生产螺母的工人有(28–x )名,根据题意得:12x ×2=18(28–x ),(3分) 解得:x =12.(5分)当x =12时,28–x =16.答:生产螺栓的工人有12名,则生产螺母的工人有16名,才能使当天生产的螺栓和螺母与第一天生产的刚好配套.(8分)24.【解析】()()()135353515217-=-⨯--+=--=-;(3分)()()()2245⎡⎤--⎣⎦()()()24545⎡⎤=-⨯----⎣⎦229=()229229=⨯-+ 27.=(7分)(3)根据题意可得()()21216x x x -+--++=-+, 解得:72x =-(10分)25.【解析】(1)∵OD 平分∠AOC ,∴∠COD =∠AOD =11502522AOC ∠=⨯︒=︒. ∵∠DOE =90°,∴∠COE =∠DOE –∠COD =90°–25°=65°,∴∠BOE =180°–∠AOD –∠DOE =180°–25°–90°=65°;(5分)(2)结论:OE 平分∠BOC .理由如下: 设2AOC α∠=.∵OD 平分AOC ∠,2AOC α∠=,∴12AOD COD AOC α∠=∠=∠=. 又∵90DOE ∠=︒,∴90COE DOE COD α∠=∠-∠=︒-. 又∵1801809090BOE DOE AOD αα∠=︒-∠-∠=︒-︒-=︒-, ∴COE BOE ∠=∠,即OE 平分BOC ∠.(10分) 26.【解析】(1)(5860–5000)×3%=25.8(元).应缴纳个人所得税=25.8(元);(4分) (2)y =(x –5000)×3%=0.03x –150, 即y =0.03x –150(5000≤x ≤8000);(8分)(3)把y =81代入y =0.03x –150,得0.03x –150=81,解答x =7700, 此人本月收入是7700元.(12分) 27.【解析】(1)按以上规律知第5个等式为a 5=11316⨯=13×(111316-), 第n 个等式a n =1(32)(31)n n -+=13×(113231n n --+),故答案为:11316⨯,13×(111316-),1(32)(31)n n -+,13×(113231n n --+).(8分)(2)a 1+a 2+a 3+a 4+…+a 2019 =111447+⨯⨯+1710⨯+…+1(320192)(320191)⨯-⨯⨯+=13×(1–14)+13×(1147-)+13×(11710-)+…+13×(1160556058-)=13×(1–14+14–11710-+…+16055–16058) =13×(1–16058) =13×60576058 =20196058.(12分)。
北京市旭日区 2019-2020 年七年级上期末考试数学试题含答案~学年度第一学期期末检测七年级数学试卷(采用) .1(时间: 90 分钟满分: 100 分)一、 选择题(此题共 24 分,每题 3 分)下边各题均有四个选项,此中只有一个..是切合题意的.请将正确选项前的字母填在表格中相应的地点. 题号 12345678答案1. 京津冀一体化共同发展是党中央的一项重要战略决议,它波及到的领土面积约为120 000平方公里,人口总数约为90 000 000 人 .将 90 000 000 用科学记数法表示结果为A . 9× 106B . 90 × 10 6C. 9× 107D.0.9 10 8 ×2. 有理数 m , n ,e , f 在数轴上的对应点的地点以下图,这四个数中,绝对值最小的是A . mB . nm n e fC. eD . f-4 -3 -2 -1 0 12 3 43. 计算2(5) 的正确结果是773 3 A .B .C. 1D.- 1774. 若 a , b 互为倒数,则 1的值为ab1 A. - 1B. 0C.D. 125. 若 x=2 是对于 x 的方程 ax+6=2 ax 的解,则 a 的值为1 A. 3B. 2C. 1D.26. 如图,左面的平面图形绕轴旋转一周,能够获得的立体图形是A BCD7. 如图,一副三角尺按不一样的地点摆放,摆放地点中=的图形个数共有αααα ββββA. 4 个B. 3 个C. 2 个D. 1 个8. 用火柴棍按以下图的方式摆大小不一样的“H ”,依此规律,摆出第 n 个“ H ”需要火柴棍的根数是⋯第 1 个 第 2 个第 3 个A. 2 n +3B. 3n + 2C. 3 n + 5D. 4 n + 1二、填空题(此题共24 分,每题3 分)9. 每袋大米以 50kg 为标准,此中超出标准的千克数记为正数,不足的千克数记为负数,则图中第 3 袋大米的实质重量是kg .+- - ++10. 计算 (11 2) ( 12) = .4 2 311. 2 a 2b 的一个同类项 :.写出312.a尺规作图:如图,已知线段a , b.( 1)用直尺画直线 l ;b( 2)用圆规在直线 l 上按序截取Al线段 AB=a ,线段 BC=b.BC(用含 a , b 的式子表示) .则线段 AC= __________________13. 若一个多项式与2m 3n 的和等于n,则这个多项式是.14.下边的框图表示认识这个方程的流程:45x2x3移项432x5x归并同类项77 x系数化为 1x1.此中,“移项”这一步骤的依照是15.若式子4x1与x 2的值相等,则x=.5 216.阅读下边资料:在数学课上,教师出示了一个如图 1 所示的六角星,并给出了获得与之形状完整同样(大小忽视不计)的六角星的两种方法.方法一如图2,随意画一个圆,并以圆心为极点,连续画相等的角,与圆订交于 6 点,连结每隔一点的两个点,擦去剩余的线即可获得符图 1合要求的六角星.α图 2方法二依照图3所示折一个六角星.60°β图 3请回答:∠ α与∠ β之间的数目关系为.三、解答题(此题共52 分,第 17-21 题每题 4 分,第 22-25 题每题 5 分,第 26-27 题每题 6 分)17.计算( 2)3(11) (2 5) .18. 计算2 xy 1 (3 xy 1) . 47x 1x 219. 解方程 2+ x=2x+5.20. 解方程1.32621. 如图,货轮 O 航行过程中,在它的北偏东60°方向上,(北)N 与之相距 30 海里处发现灯塔 A,同时在它的南偏东A60°30°方向上,与之相距 20 海里处发现货轮B,在它的W O E西南方向上发现客轮 C.按以下要求绘图并回答以下问题:S (1)画出线段 OB;(2)画出射线 OC;(3)连结 AB 交 OE 于点 D ;( 4)写出图中∠AOD 的所有余角:.22. 已知a21 b ,求 3(a2b) a22(a21b) 的值. 223.一个角的补角比它的余角的 2 倍大 20゜,求这个角的度数.24.填空,达成以下说理过程如图,点 A,O, B 在同一条直线上,OD , OE 分别均分∠ AOC 和∠ BOC.(1)求∠ DOE 的度数;(2)假如∠ COD =65°,求∠ AOE 的度数 .解:( 1)如图,由于OD 是∠ AOC 的均分线,DC1∠ AOC.因此∠COD =2E 由于 OE 是∠ BOC 的均分线,A O B1因此=∠ BOC.211因此∠ DOE =∠ COD +=(∠ AOC+∠ BOC)=∠ AOB=.°22( 2)由( 1)可知∠BOE=∠ COE =-∠COD =.°因此∠ AOE=-∠BOE=.°25.列方程解应用题 .在一次假期公益活动的 5 天中,小明和小洁共植树110 棵,小明均匀每日小洁比小明多种20%,求小明和小洁均匀每日各样树多少棵?26.一家游泳馆的游泳收费标准为40 元 /次,若购置会员年卡,可享受以下优惠:会员年卡种类办卡花费( 元)每次游泳收费 ( 元)A 类10030B 类20025C 类50015( 1)若购置 A 类会员年卡,一年内游泳11 次,则共花费元;( 2)一年内游泳的次数为多少时,购置 B 类会员年卡最划算?经过计算考证你的说法.27. 如图 1,长方形 OABC 的边 OA 在数轴上, O 为原点,长方形 OABC 的面积为 12, OC 边长为 3.(1)数轴上点 A 表示的数为.( 2)将长方形OABC 沿数轴水平挪动,挪动后的长方形记为O'A'B'C',挪动后的长方形 O'A'B'C'与原长方形 OABC 重叠部分(如图 2 中暗影部分)的面积记为S.①当 S 恰巧等于原长方形OABC 面积的一半时,数轴上点A'表示的数为.②设点 A 的挪动距离AA'=x.ⅰ. 当 S=4 时, x=;ⅱ. D 为线段 AA '的中点,点 E 在线段OO '上,且OE= 1OO ',当点D, E3所表示的数互为相反数时,求x 的值 .C B C C' B B'O 1A O1O' AA'图 1图 2C BO 1A备用图~学年度第一学期期末七年级数学试卷参照答案及评分标准一、(本共24 分,每小 3 分)号12345678答案C C D D A C B B二、填空(本共24 分,每小 3 分)9.10. - 511.答案不唯一,比如a2b 12.a+ b13. 4n- 2m14.等式的性115.416.2三、解答(本共52 分,第17-21 每小 4 分,第 22-25 每小 5 分,第 26-27 每小 6 分)17. 解:原式833)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分(463⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分3 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分182xy 1 3xy1xy.解:原式⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分.⋯⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 4 分19.解:7x2x 5 2 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分31x 3 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯33分x9 .⋯⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯4分20. 解:63( x 1)x 2 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分63x3x 2 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分2x 1 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分x 1 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 2分21. 解:(北)NA(1)如⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分W O E2 分( 2)如⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯D( 3)如⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分C B( 4)∠ AON,∠ BOD (所有答 1 分,答或少答不分) 4 分S22. 解:3( a2b)a22(a21 b) 23a23b a22a2 b ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分2a22b .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分∵a2 1 b,∴a2b 1 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分原式2(a2b) =2.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分23.解:个角的度数是x °. ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 1分由意,得(180 x) 2(90 x) 20 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分解得x 20 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分答:个角的度数是20°.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分24. 解:( 1)∠ COE ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分∠COE90 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分( 2)∠DOE(或许 90°)25⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分∠ AOB(或许 180°)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分155⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分25.解:小平均每天种x 棵. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分由意,得5 x 1 20% x110 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分x10 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分∴(120%)x =12.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分答:小明平均每天种12 棵,小平均每天种10棵.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分26.解:(1)430. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1分(2)一年内游泳x 次,有A会年卡,一年游泳共消(100+30x)元,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分B会年卡,一年游泳共消(200+25x)元,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分C会年卡,一年游泳共消(500+15x)元. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分因当200+25x= 100+30 x,解得x=20 ;当200+25 x= 500+15 x ,解得x=30.⋯⋯⋯⋯5分所以一年的游泳次数大于20 次且小于30 次,B会年卡最划北京市旭日区2019七年级上期末考试数学试题含11 / 11算. ⋯⋯⋯⋯⋯⋯6 分27. 解:( 1) 4. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1 分 ( 2)① 6 或 2. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分②ⅰ .8;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分3ⅱ . 当原 方形 OABC 向左移 ,点D 表示的数 41x ,点 E 表示的2数1x ,3由 意可得方程 4 1 x 1 x 0 ,2 3解得24 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 分x5当原 方形OABC 向右移 ,点D ,E 表示的数都是正数,不切合意 .11 / 11。
北京市朝阳区2019~2020学年度第一学期期末检测七年级数学试卷(选用)2020.1一、选择题(本题共24分,每小题3分)下面1—8题均有四个选项,其中符合题意的选项只有一个.1.2019年10月1日上午,庆祝中华人民共和国成立70周年大会在北京天安门广场隆重举行,超过200000军民以盛大的阅兵仪式和群众游行欢庆共和国70华诞.将200000用科学记数法表示为( ) A.5210⨯B.5210⨯C.50.210⨯D.60.210⨯2.如图,数轴上有A ,B ,C ,D 四个点,所对应的数分别是a ,b ,c ,d ,下列各式的值最小的为( )A.a −B.d a −C.b c +D.a b +3.若5317A ∠=︒',则A ∠的补角的度数为( ) A.3643︒'B.12643︒'C.12783︒'D.12683︒'4.明代数学家程大位的《算法统宗》中有这样一个问题:“隔墙听得客分银,不知人数不知银,七两分之多四两,九两分之少半斤.”其大意为:有一群人分银子,如果每人分七两,则剩余四两,如果每人分九两,则还差半斤(注:明代时1斤=16两,故有“半斤八两”这个成语).设有x 人分银子,根据题意所列方程正确的是( ) A.7498x x +=− B.()()7498x x +=− C.7498x x −=+D.()()7498x x −=+5.如图,O 是直线AB 上一点,OP 平分AOC ∠,OQ 平分BOC ∠,则图中互余的角共有( )A.1对B.2对C.3对D.4对6.α,β都是钝角,有四名同学分别计算()16αβ+,却得到了四个不同的结果,分别为26︒,50︒,72︒,90︒,老师判作业时发现其中确有正确的结果,那么计算正确的结果是( )A.26︒B.50︒C.72︒D.90︒7.如图,已知BC 是圆柱底面的直径,AB 是圆柱的高,在圆柱的侧面上,过点A ,C 嵌有一圈路径最短的金属丝,现将圆柱侧面沿AB 剪开,所得的圆柱侧面展开图是( )A. B. C. D.8.若4个有理数a ,b ,c ,d 满足0a b >>,0c d <<,则下列大小关系一定成立的是( ) A.a b c dB.a b c d< C.a b d cD.a b d c< 二、填空题(本题共24分,每小题3分)9.计算:11112643⎛⎫−⨯+−=⎪⎝⎭______. 10.写出一个单项式,使得它与多项式2m n +的和为单项式:______. 11.若2x =是关于x 的方程2x a x +=的解,则a 的值为______. 12.如图,在ABC ∆中,最长的边是______.13.如图,剪去四边形的“一角”,得到一个五边形,这个五边形的周长一定______这个四边形的周长(填“大于”,“小于”或“等于”),依据是______.14.如图,B 是线段AC 上一点,D ,E 分别是线段AB ,AC 的中点,若1AB =,3BC =,则DE =______.15.螺旋测微器又称千分尺,用它测长度可以准确到0.01mm .它的读数方法是先读固定刻度,再读半刻度,若半刻度线已露出,记作0.5mm ,若半刻度线未露出,记作0.0mm ,再读可动刻度n ,记作0.01mm n ⨯,最终读数结果为固定刻度+半刻度+可动刻度+估读.例如图1的读数为2.586mm ,其中最后一位“6”为估读.则图2的读数为______mm .16.鞋号是指鞋子的大小,中国于60年代后期,在全国测量脚长的基础上制定了“中国鞋号”,1998年政府发布了基于Mondopoint 系统,用毫米做单位的中华人民共和国国家标准GB /T32941998−,被称为“新鞋号”,之前以厘米为单位的鞋号从此被称为“旧鞋号”.新旧鞋号部分对应表如下: 新鞋号 220 225 230 235 (270)旧鞋号 34353637…a(1)a 的值为______;(2)若新鞋号为m ,旧鞋号为n ,则把旧鞋号转换为新鞋号的公式为______三、解答题(本题共52分第17-25题每小题5分,第26题7分)17.计算:()2283|9|3⎛⎫+−⨯−−− ⎪⎝⎭. 18.计算:()()16.5(2)53⎛⎫−⨯−÷−÷− ⎪⎝⎭. 19.计算:()221129233a ab a ab ⎛⎫−−− ⎪⎝⎭. 20.解方程:0.50.7 6.5 1.3x x −=−. 21.解方程:11123x x −+=−. 22.若222M a b ab =+,22N a b ab =−,当3a =,13b =−时,计算2M N −的值. 23.如图,A ,B 表示笔直的海岸边的两个观测点,从A 地发现它的北偏东75︒方向有一艘船,同时,从B 地发现这艘船在它的北偏东60︒方向.(1)在图中画出这艘船的位置,并用点C 表示;(2)若此图的比例尺为1:100000,请你通过画图、测量,计算出这艘船到海岸线AB 的实际距离(精确到1千米).24.判断一个正整数能被3整除的方法是:把这个正整数各个数位上的数字相加,如果所得的和能够被3整除,则这个正整数就能被3整除.请证明对于任意两位正整数,这个判断方法都是正确的.25.小希准备在6年后考上大学时,用15000元给父母买一份礼物表示感谢,决定现在把零花钱存入银行下面有两种储蓄方案:①直接存一个6年期.(6年期年利率为2.88%)②先存一个3年期,3年后本金与利息的和再自动转存一个3年期.(3年期年利率为2.70%)你认为按哪种储蓄方案开始存入的本金比较少?请通过计算说明理由.26.阅读材料,并回答问题钟表中蕴含着有趣的数学运算,不用负数也可以作减法,例如现在是10点钟,4小时以后是几点钟?虽然10414⊕=.若问2点钟+=,但在表盘上看到的是2点钟.如果用符号“⊕”表示钟表上的加法,则1042之前4小时是几点钟,就得到钟表上的减法概念,,用符号“㊀”表示钟表上的减法.(注:我们用0点钟代替12点钟)由上述材料可知:⊕=______,24=______;(1)96(2)在有理数运算中,相加得零的两个数互为相反数,如果在钟表运算中沿用这个概念,则5的相反数是______,举例说明有理数减法法则:减去一个数等于加上这个数的相反数,在钟表运算中是否仍然成立;<<<<<<<<<<<,对于钟表上的任意数字a,b,(3)规定在钟表运算中也有01234567891011c,若a b⊕<⊕是否一定成立,若一定成立,说明理由;若不一定成立,写出一组反例,<,判断a c b c并结合反例加以说明.北京市朝阳区2019—2020学年度第一学期期末检测七年级数学试卷参考答案及评分标准一、选择题(本题共24分,每小题3分)二、填空题(本题共24分,每小题3分)三、解答题(本题共52分,如17-25题每小题5分,第26题7分)17.解:原式28993⎛⎫=+⨯−− ⎪⎝⎭869=−− 7=−.18.解:原式16.5235=⨯⨯⨯395=. 19.解:原式22222333a ab a ab =−−+ 2a =−.20.解:0.5 1.3 6.50.7x x +=+1.87.2x = 4x =21.解:()()31621x x −=−+33622x x −=−−3243x x −+=− 1x −= 1x =−.22.解:()2222222M N a b ab a b ab −=+−−2222222a b ab a b ab =+−+ 23ab =.当3a =,13b =−时, 原式21333⎛⎫=⨯⨯− ⎪⎝⎭1=.23.解:(1)图略.(2)在图中正确作出点C 到直线AB 的垂线段CD . 量得2cm CD =.由比例尺可得,这艘船到海岸线AB 的实际距离为2千米.24.解:设一个两位正整数十位上的数字为a ,个位上的数字为b (a ,b 为整数,且19a ,09b ),则这个两位正整数为10a b +. 由题意可知a 与b 的和能被3整除, 所以可设3a b k +=,其中k 为正整数.所以()()1099333a b a a b a k a k +=++=+=+. 因为a ,k 均为整数, 所以10a b +能够被3整除.即对于任意两位正整数,这个判断方法都是正确的.25.解:设方案①开始存入的本金为x 元,方案②开始存入的本金为y 元. 由题意可得()1 2.88%615000x +⨯=,()21 2.70%315000y +=⨯. 因为()21 2.88%61 2.70%3+⨯>+⨯. 所以x y <.答:按照方案①开始存入的本金比较少. 26.解:(1)3,10 (2)7有理数减法法则在钟表运算中仍然成立. 举例如下: 因为5710=,5510⊕=, 所以5755=⊕.即减去一个数等于加上这个数的相反数. (3)不一定成立, 一组反例如下: 取3a =,5b =,7c =.因为3710⊕=,570⊕=,100>, 所以当35<时,3757⊕>⊕.。
湖北省2019-2020学年上学期期末原创卷七年级数学(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:人教版七上全册。
第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.比-1小2的数是 A .3B .1C .–2D .–32.下列各组代数式中,属于同类项的是A .3x 和3yB .2m n 和2m p C .212a b 和212abD .3p q -和32p q3.下列方程的解为0x =的是 A .11+=-x B .23=x x C .22x =D .1452++=x x 4.如图,是一个正方体纸盒展开图,按虚线折成正方体后,若使相对面上的两数互为相反数,则A 、B 、C 表示的数依次是A .35,π,2-- B .3π,5,2- C .35,,π2-D .35π2-,,5.下列语句中,正确的个数是①一个数与它的相反数的商为–1;②两个有理数之和大于其中任意一个加数;③若两数之和为正数,则这两个数一定都是正数;④若0m n <<,则mn n m <-. A .0B .1C .2D .36.已知关于x 的方程()232kx k x -=+的解是正整数,则正整数k 的值为 A .3或5B .5C .1或3D .37.如图,已知10AB =cm ,M 是AB 中点,N 在AB 的延长线上,若12NB MB =,则MN 的长为A .7.5cmB .10 cmC .5 cmD .6 cm8.已知关于x ,y 的多项式22232(1)x y x mx ---+的值与x 无关,则m 的值为 A .0B .3-C .5-D .19.如图,∠AOB =∠COD ,若∠AOD =110°,∠BOC =70°,则以下结论正确的有①∠AOC =∠BOD =90°;②∠AOB =20°;③∠AOB =∠AOD –∠AOC ;④∠AOB =211∠BOD . A .1个B .2个C .3个D .4个10.某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该商贩 A .不赔不赚B .赚9元C .赔18元D .赚18元第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)11.已知|m |=5,|n |=2,|m -n |=n -m ,则m +n 的值是__________. 12.一个角的余角比它的补角的29多1°,则这个角的度数为__________度.13.钟面上的时刻是8时30分,此时时针和分针所成的角度是__________. 14.已知代数式53x -的值与17的值与互为倒数,则x =__________. 15.已知点P 是数轴上的一个点,把点P 向左移动4个单位后,再向右移动2个单位,这时表示的数是-5,那么点P 表示的数是__________. 16.观察算式:111111315356399143++++++⋅⋅⋅,计算该算式前20项的和为__________. 三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分8分)解方程:(1)7+2x =12-2x ;(2)x -3=-12x -4. 18.(本小题满分8分)(1)先化简,再求值:已知A =2a 2–a ,B =–5a +1,求当a =12时,3A –2B +1的值. (2)已知x =3是方程4x –a (2–x )=2(x –a )的解,求3a 2–2a –1的值.19.(本小题满分8分)先化简,再求值:(1)22222()3(1)2(1)a b ab a b ab +---+,其中1,2a b =-=;(2)已知:A =234a ab -,B =22a ab +.①求A -2B ;②若1a -+2(2)b +=0,求A -2B 的值.20.(本小题满分8分)一条东西走向的商业街上,依次有书店(记为A )、冷饮店(记为B )、鞋店(记为C ),冷饮店位于鞋店西边50 m 处,鞋店位于书店东边60 m处,王平先去书店,然后沿着这条街向东走了30 m 至D 处,接着向西走50 m 到达E 处.(1)以A 为原点、向东为正方向画数轴,在数轴上表示出上述A ,B ,C ,D ,E 的位置;(2)若在这条街上建一家超市,使超市与鞋店C 分居E 点两侧,且到E 点的距离相等,问超市在冷饮店的什么方向?距离多远?21.(本小题满分8分)如图,已知直线AB 与CD 相交于点O ,OP 是∠BOC 的平分线,∠AOE =90°,∠DOF =90°.(1)图中除直角外,请写出两对相等的角并说明理由. (2)如果∠AOD =40°,求∠BOF 的度数.22.(本小题满分10分)已知数轴上,点O为原点,点A 表示的数为9,动点B ,C 在数轴上移动,且总保持BC =2(点C 在点B 右侧),设点B 表示的数为m . (1)如图1,当B ,C 在线段OA 上移动时, ①若B 为OA 中点,则AC =__________;②若B ,C 移动到某一位置时,恰好满足AC =OB,求此时m 的值;(2)当线段BC 沿射线AO 方向移动时,若存在AC -OB =13AB ,求满足条件的m 值.23.(本小题满分10分)如图,点O 是直线AB 上的一点,∠COD 是直角,OE 平分∠BOC .(1)如图1,若∠AOC =40︒,求∠DOE 的度数;(2)如图2,将∠COD 绕顶点O 旋转,且保持射线OC 在直线AB 上方,在整个旋转过程中,当∠AOC 的度数是多少时,∠COE =2∠DOB .24.(本小题满分10分)现有A 、B 两家粮食种植基地往甲、乙两个粮食配送中心运送粮食,A 地可运出粮食50吨,B 地可运出粮食40吨,其中甲地需要粮食30吨,乙地需要粮食60吨,每吨粮食运费如下:从A 基地运往甲、乙两中心的运费分别为每吨300元和200元,从B 基地运往甲、乙两中心的运费分别为每吨200元和400元.设A 地运送到甲中心粮食为x 吨.(1)请根据题意填写下表(填写表中所有空格):(2)若某次运送总运费共花去29000元,请指出当时的调运方案;(3)按照题(2)的调运方案,从A 基地往甲中心运送粮食,在运输途中的E 地接到F 地商家的一个电话,该商家需要5吨.已知A 基地与E 地之间的运费为每吨320元,甲中心与F 地之间的运费为每吨240元.现A 基地有两种方案运送到甲中心和F 地商家:方案一:从E 地直接运送到F 地商家,运到后把剩下的粮食运到甲中心;方案二:先把粮食运到甲中心,再运5吨到F 地商家.若方案一比方案二的总运费多12300元,则从E 地到F 地商家的运费是每吨多少元?2019-2020学年上学期期末原创卷七年级数学·全解全析1.【答案】D【解析】比–1小2的数是就是–1与2的差,即–1–2=–3.故选D . 2.【答案】D【解析】A .3x 和3y 所含字母不同,不是同类项; B .2m n 和2m p 所含字母不同,不是同类项;C .212a b 和212ab 所含字母的指数不同,不是同类项; D .3p q -和32p q ,所含字母及字母的指数相同,是同类项,故选D .3.【答案】B【解析】A .11+=-x ,解得x =–2,故错误;B .23=x x ,解得x =0,正确; C .22x =,解得x =1,故错误;D .1452++=x x ,x +1+8=10x ,解得x =1,故错误,故选B . 4.【答案】A【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,“A ”与“5”是相对面,“B ”与“π”是相对面,“C ”与“32-”是相对面, ∵相对面上的两数互为相反数,∴A 、B 、C 表示的数依次是–5,–π,32.故选A .5.【答案】B【解析】①当这个数为零时,一个数与它的相反数的商无意义,故①错误; ②当有个加数是负数时,两个有理数之和小于其中的任一个加数,故②错误; ③若两数之和为正数,则这两个数绝对值大的数是正数,故③错误; ④若m <0<n ,则n –m >0>mn ,故④正确.故选B . 6.【答案】A【解析】()232kx k x -=+,移项得:()223kx k x -+=,()23k x -=,32x k =-, ∵方程的解是正整数,k 也是正整数,而3的因数只有1和3,∴213k -=或,解得k =3或5.故选A . 7.【答案】A【解析】∵AB =10 cm ,M 为AB 的中点,∴AM =MB =12AB =5 cm , 又∵NB =12MB ,∴NB =2.5 cm ,则MN =MB +BN =5+2.5=7.5(cm ),故选A . 8.【答案】C【解析】原式=22232+2+2x y x mx -+=()2522m x y +-+,∵该多项式的值与x 无关,∴5+m =0,解得:m =–5,故选C . 9.【答案】C【解析】如图,∵∠AOB =∠COD ,∠AOD =110°,∠BOC =70°,∴∠AOD =∠BOC +2∠COD =70°+2∠COD =110°,则∠AOB =∠COD =20°.∵∠AOB =∠COD ,∴∠BOC +∠AOB =∠BOC +∠COD =90°,即∠AOC =∠BOD =90°,故①正确; ∠AOB =∠COD =20°.故②正确;由①知,∠AOC =∠BOD =90°,∴∠AOB =∠AOD –∠BOD =∠AOD –∠AOC ,故③正确; ∵∠AOB =20°,∠BOD =90°,∴∠AOB =29∠BOD ,故④错误. 综上所述,正确的结论有3个.故选C . 10.【答案】C【解析】设盈利上衣成本x 元,亏本上衣成本y 元, 由题意得135–x =25%x ,y –135=25%y , 解方程组,得x =108元,y =180元,135+135–108–180=–18,亏本18元,故选C .11.【答案】–7或–3【解析】∵|m |=5,|n |=2,∴m =±5,n =±2. ∵|m –n |=n –m ,∴n ≥m ,∴m =–5,n =±2.∴m +n =–7或–3.故答案为:–7或–3. 12.【答案】63【解析】设此角的度数为x °,则它的补角为(180–x )°,它的余角为(90–x )°, 根据题目关系列方程:29(180–x )+1=90–x ,解得:x =63.故答案为:63. 13.【答案】75°【解析】根据题意得,8点30分,钟表的时针在8点与9点的中间,分针在6点处,钟表的时针与分针所夹的角度为:2.5×30°=75°,故答案为:75°. 14.【答案】2【解析】∵代数式53x -的值与17的值与互为倒数,∴1(53)17x -⨯=,解得:2x =,故答案为:2.15.【答案】–3【解析】设点P 表示的数为x .根据题意得:x –4+2=–5.解得:x =–3.故答案为:–3. 16.【答案】2041【解析】原式=1111133557(21)(21)n n ++++⨯⨯⨯-+=11111111111(1)(()()2323525722121n n ⨯-+⨯-+⨯-++⨯--+ =11111111(12335572121n n ⨯-+-+-++--+ =11(1)221n ⨯-+ =21n n +, 当20n =时,原式=2020=220141⨯+,故答案为:2041.17.【解析】(1)移项,得:2x +2x =12-7,合并同类项,得:4x =5,系数化为1,得:x =54.(4分)(2)移项得:x +12x =-4+3,合并得:32x =-1, 解得:x =-23.(8分)18.【解析】(1)将A =2a 2–a ,B =–5a +1代入3A –2B +1得:3A –2B +1=3(2a 2–a )–2(–5a +1)+1=6a 2–3a +10a –2+1=6a 2+7a –1, 将a =12代入得:原式=6×1()22+7×12–1=32+72–1=4.(4分)(2)将x =3代入方程得:4×3–a (2–3)=2(3–a ), 解得:a =-2,将a =-2代入得:3a 2–2a –1=3×(-2)2–2×(-2)–1=15.(8分) 19.【解析】(1)原式=222222233221a b ab a b ab a b +-+--=-+,当a =-1,b =2时,原式=2(1)211--⨯+=-.(3分)(2)①A -2B =22222(34)2(2)34248a ab a ab a ab a ab a ab --+=---=-,(5分) ②由题意得:10,20a b -=+=, 解得:1a =,2b =-,原式=2181(2)-⨯⨯-=1+16=17.(8分)20.【解析】(1)以A 为原点,向东为正方向,画数轴如图所示,图中的A ,B ,C ,D ,E 即为所求作.(4分) (2)鞋店C 到E 的距离为:60-(-20)=80 m , 超市在数轴上所表示的数为:-20-80=-100 m , 超市到冷饮店的距离为10-(-100)=110 m , 答:超市在冷饮店的西边110 m 的地方.(8分) 21.【解析】(1)∵OP 是∠BOC 的平分线,∴∠BOP =∠COP , ∠AOD =∠BOC .(4分) (2)∠DOF =90°, ∴∠AOD +∠BOF =90°,∴∠BOF=90°-∠AOD=90°-40°=50°.(8分)22.【解析】(1)①2.5.(3分)∵B为OA中点,OA=9,∴AB=4.5,又∵BC=2,∴AC=AB–BC=4.5–2=2.5.②由题意可知:点C表示的数为m+2,则AC=9–(m+2),OB=m–0,∵AC=OB,∴m–0=9–(m+2),解得:m=3.5.(6分)(2)由题意可知,①当点B位于原点右侧时,AC=9–(m+2),OB=m,AB=9–m,由AC-OB=13 AB,得9–(m+2)–m=13(9–m),解得m=125.(8分)②当点B位于原点左侧时,AC=9–(m+2),OB=–m,AB=9–m,由AC-OB=13 AB,得9–(m+2)–(–m)=13(9–m),解得m=-12.综上,若AC-OB=13AB,则满足条件的m值是125或-12.(10分)23.【解析】(1)∵∠AOC=40°,∴∠BOC=140°,又∵OE平分∠BOC,∴∠COE=12×140°=70°,(2分)∵∠COD=90°,∴∠DOE=90°–70°=20°.(4分)(2)设∠AOC=α,则∠BOC=180°–α,∵OE平分∠BOC,∴∠COE=12×(180°–α)=90°–12α,分两种情况:当OD在直线AB上方时,如图,∠BOD=90°–α,∵∠COE=2∠DOB,∴90°–12α=2(90°–α),解得α=60°.(7分)当OD在直线AB下方时,如图,∠BOD=90°–(180°–α)=α–90°,∵∠COE=2∠DOB,∴90°–12α=2(α–90°),解得α=108°.综上所述,当∠AOC的度数是60°或108°时,∠COE=2∠DOB.(10分)24.【解析】(1)50x-,30x-,10x+.(3分)设A地运送到甲地为x吨,∴A地运送到乙地为:(50)x-吨,∴B地运送到甲地为:(30)x-吨,∴B 地运送带乙地为:40(30)(10)x x --=+吨,故答案为:50x -,30x -,10x +. (2)根据题意,得:300200(50)200(30)400(10)29000x x x x +-+-++=,(5分) 解得:30x =,∴方案为:A 粮食基地运往甲地30吨,A 粮食基地运往乙地20吨,B 粮食基地运往甲地0吨,B 粮食基地运往乙地40吨.(7分)(3)设从E 地到F 地商家的运费是每吨x 元,根据题意得30320302524030300524012300x ⨯++⨯=⨯+⨯+,(8分)∴306900x =, 解得:230=x (元).∴从E 地到F 地商家的运费是每吨230元.(10分)。
2019-2020学年新人教版七年级上学期期末考试数学试卷及答案2019-2020学年七年级上学期期末考试数学试卷一、正确选择(每一题所给的四个选项中,只有一个是正确的。
本大题有8小题,每题2分,共16分)1.-6的倒数是()A。
6 B。
-6 C。
1/6 D。
-1/62.作为“一带一路”倡议的重大先行项目,中国、巴基斯坦经济走廊建设进展快、成效显著。
两年来,已有18个项目在建或建成,总投资额达185亿美元。
185亿用科学记数法表示为()A。
1.85×109 B。
1.85×1010 C。
1.85×1011 D。
1.85×10123.下列运算正确的是()A。
(-3) - (-2) = -1 B。
4 ÷ (-2) = -2 C。
-6 = -6 D。
(-3) × (-2) = 64.下列方程中,以-2为解的方程是()A。
3x+1=2x-1 B。
3x-2=2x C。
5x-3=6x-2 D。
4x-1=2x+35.图中的立体图形与平面展开图不相符的是()A。
B。
C。
D。
6.如图,∠AOB=∠COD,则()A。
∠1>∠2 B。
∠1=∠2 C。
∠1<∠2 D。
∠1与∠2的大小无法比较7.钟表4点30分时,时针与分针所成的角的度数为()A。
45° B。
30° C。
60° D。
75°8.按照___所示的计算机程序计算,若开始输入的x值为2.第一次得到的结果为1,第二次得到的结果为4, (2019)得到的结果为()A。
1 B。
2 C。
3 D。
4二、合理填空(本大题有8小题,每题2分,共16分)9.在体育课的跳远比赛中,以4.00米为标准,若___跳出了4.23米,可记做+0.23米,那么___跳出了3.75米,记作-0.25米。
10.已知两个有理数相加,和小于每一个加数,请写出满足上述条件的一个算式:-1+2=-1/2.11.若∠α的余角是48°,则∠α的补角为42°。
人教版2019-2020学年七年级(下)开学考试数学试卷姓名座号题号一二三总分得分考后反思(我思我进步):一、精心选一选(每小题3分,共30分)1.(3分)下列说法正确的是()A.非负数包括零和整数B.正整数包括自然数和零C.零是最小的整数D.整数和分数统称为有理数2.(3分)下列各组数中,相等的是()A.(﹣5)2与﹣52B.|﹣5|2与﹣52C.(﹣7)3与﹣73D.|﹣7|3与﹣733.(3分)已知2x3y2和﹣x3m y2是同类项,则式子4m﹣24的值是()A.20B.﹣20C.28D.﹣284.(3分)轮船航行到C处观测小岛A的方向是北偏西54°,那么从A同时观测轮船在C 处的方向是()A.南偏东54°B.东偏北36°C.东偏南54°D.南偏东36°5.(3分)∠A的补角为125°12′,则它的余角为()A.54°18′B.35°12′C.35°48′D.以上都不对6.(3分)下列叙述中正确的是()A.若ac=bc,则a=b B.若=,则a=bC.若a2=b2,则a=b D.若﹣,则x=﹣27.(3分)若多项式2x3﹣8x2+x﹣1与多项式3x3+2mx2﹣5x+3的差不含二次项,则m等于()A.2B.﹣2C.4D.﹣48.(3分)图的展开图是()A.B.C.D.9.(3分)如图所示,a,b是有理数,则式子|a|+|b|+|a+b|+|b﹣a|化简的结果为()A.3a+b B.3a﹣b C.3b+a D.3b﹣a10.(3分)某车间原计划13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成任务,而且还多生产60件,设原计划每小时生产x个零件,则所列方程为()A.13x=12(x+10)+60B.12(x+10)=13x+60C.D.二、耐心填一填(每小题3分,共21分)11.(3分)南偏东15°和北偏东25°的两条射线组成的角等于度.12.(3分)已知x=3是方程11﹣2x=ax﹣1的解,则a=.13.(3分)若(a﹣3)2+|b+2|=0,则﹣b a=.14.(3分)八点三十分,时针与分针夹角的度数是.15.(3分)已知nx|n﹣1|+5=0为一元一次方程,则n=.16.(3分)P为线段AB上一点,且AP=AB,M是AB的中点,若PM=2cm,则AB=cm.17.(3分)图形表示运算a﹣b+c,图形表示运算x+n﹣y﹣m,则×=(直接写出答案).三、用心做一做(本大题共49分)18.(5分)计算:﹣8×(﹣2)4﹣(﹣)2×(﹣2)4+×(﹣3)219.(6分)解方程:(1);(2)20.(6分)已知A=x3﹣5x2,B=x2﹣11x+6,当x=﹣1时,求:﹣(A+3B)+2(A﹣B)的值.21.(5分)如图,平面上有四个点A、B、C、D,根据下列语句画图.(1)画直线AB;(2)作射线BC;(3)画线段CD;(4)连接AD,并将其反向延长至E,使DE=2AD;(5)找到一点F,使点F到A、B、C、D四点距离和最短.22.(6分)已知线段AB=CD.且彼此重合各自的,M、N分别为AB、CD的中点,若MN=14,求AB的长.23.(6分)在课间活动中,小英、小丽和小华在操场上画出A、B两个区域,一起玩投沙包游戏,沙包落在A区域所得分值与落在B区域所得分值不同,当每人各投沙包四次时,其落点和四次总分如图所示,请求出小华的四次总分.24.(7分)下列各小题中,都有OE平分∠AOC,OF平分∠BOC.(1)如图,若点A、O、B在一条直线上,则∠AOB与∠EOF的数量关系是:∠AOB=∠EOF.(2)如图,若点A、O、B不在一条直线上,则题(1)中的数量关系是否成立?请说明理由.(3)如图,若OA在∠BOC的内部,则题(1)中的数量关系是否仍成立?请说明理由25.(8分)李云是某农村中学的在校住宿生,开学初父母通过估算为他预存了一个学期的伙食费600元,学校的学生食堂规定一天的伙食标准:早餐每人1元,中餐、晚餐只能各选一份价格如表中的饭菜.价格1(单位:元/份)价格2(单位:元/份)中餐23晚餐23(1)请问该校每位住宿生一天的伙食费有几种可能的价格?其金额各是多少元?(2)若李云只选择(1)中的两种价格,并计划用餐108天,且刚好用完预存款,那么他应该选择哪两种价格?两种价格各用餐多少天?参考答案与试题解析一、精心选一选(每小题3分,共30分)1.(3分)下列说法正确的是()A.非负数包括零和整数B.正整数包括自然数和零C.零是最小的整数D.整数和分数统称为有理数【解答】解:非负数包括零和正数,A错误;正整数指大于0的整数,B错误;没有最小的整数,C错误;整数和分数统称为有理数,这是概念,D正确.故选:D.2.(3分)下列各组数中,相等的是()A.(﹣5)2与﹣52B.|﹣5|2与﹣52C.(﹣7)3与﹣73D.|﹣7|3与﹣73【解答】解:A、(﹣5)2=25,﹣52=﹣25,25≠﹣25,故本选项错误;B、|﹣5|2=25,﹣52=﹣25,25≠﹣25,故本选项错误;C、(﹣7)3=﹣343,﹣73=﹣343,故本选项正确;D、|﹣7|3=343,﹣73=﹣343,故本选项错误.故选:C.3.(3分)已知2x3y2和﹣x3m y2是同类项,则式子4m﹣24的值是()A.20B.﹣20C.28D.﹣28【解答】解:由题意得:3m=3,解得m=1,∴4m﹣24=﹣20.故选:B.4.(3分)轮船航行到C处观测小岛A的方向是北偏西54°,那么从A同时观测轮船在C 处的方向是()A.南偏东54°B.东偏北36°C.东偏南54°D.南偏东36°【解答】解:轮船航行到C处观测小岛A的方向是北偏西54°,那么从A同时观测轮船在C处的方向是南偏东54°,故选:A.5.(3分)∠A的补角为125°12′,则它的余角为()A.54°18′B.35°12′C.35°48′D.以上都不对【解答】解:∵∠A=180°﹣125°12′,∴∠A的余角为90°﹣∠A=90°﹣(180°﹣125°12′)=125°12′﹣90°=35°12′.故选:B.6.(3分)下列叙述中正确的是()A.若ac=bc,则a=b B.若=,则a=bC.若a2=b2,则a=b D.若﹣,则x=﹣2【解答】解:A、因为c=0时式子不成立,所以A错误;B、根据等式性质2,两边都乘以c,即可得到a=b,所以B正确;C、若a2=b2,则a=b或a=﹣b,所以C错误;D、根据等式性质2,两边都乘﹣3,得到x=﹣18,所以D错误;故选:B.7.(3分)若多项式2x3﹣8x2+x﹣1与多项式3x3+2mx2﹣5x+3的差不含二次项,则m等于()A.2B.﹣2C.4D.﹣4【解答】解:∵多项式2x3﹣8x2+x﹣1与多项式3x3+2mx2﹣5x+3的差不含二次项,∴2x3﹣8x2+x﹣1﹣(3x3+2mx2﹣5x+3)=﹣x3﹣(8+2m)x2+6x﹣4,∴8+2m=0,解得:m=﹣4.故选:D.8.(3分)图的展开图是()A.B.C.D.【解答】解:A、三角符号、圆圈和感叹号不在一条直线上,故本选项错误;B、感叹号应在圆圈的右面,故本选项错误;C、所给的图形不能折叠成正方体,故本选项错误;D、所给的图形经过折叠符合图的展开图,故本选项正确.故选:D.9.(3分)如图所示,a,b是有理数,则式子|a|+|b|+|a+b|+|b﹣a|化简的结果为()A.3a+b B.3a﹣b C.3b+a D.3b﹣a【解答】解:由数轴得,﹣1<a<0,b>1,∴a+b>0,b﹣a>0,∴|a|+|b|+|a+b|+|b﹣a|=﹣a+b+a+b+b﹣a=3b﹣a.故选:D.10.(3分)某车间原计划13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成任务,而且还多生产60件,设原计划每小时生产x个零件,则所列方程为()A.13x=12(x+10)+60B.12(x+10)=13x+60C.D.【解答】解:设原计划每小时生产x个零件,则实际每小时生产(x+10)个零件.根据等量关系列方程得:12(x+10)=13x+60.二、耐心填一填(每小题3分,共21分)11.(3分)南偏东15°和北偏东25°的两条射线组成的角等于140度.【解答】解:南偏东15°和北偏东25°的两条射线组成的角=180°﹣15°﹣25°=140°.12.(3分)已知x=3是方程11﹣2x=ax﹣1的解,则a=2.【解答】解:将x=3代入方程中得:11﹣6=3a﹣1解得:a=2.故填:2.13.(3分)若(a﹣3)2+|b+2|=0,则﹣b a=8.【解答】解:根据题意得:a﹣3=0,b+2=0,解得:a=3,b=﹣2,则﹣b3=﹣(﹣2)3 =8.故答案是:8.14.(3分)八点三十分,时针与分针夹角的度数是75°.【解答】解:∵八点三十分,时针指在8与9中间,分针指在数字6上,∴时针与分针夹角是(2+0.5)×30°=75°.故答案为:75°.15.(3分)已知nx|n﹣1|+5=0为一元一次方程,则n=2.【解答】解:∵nx|n﹣1|+5=0为一元一次方程,∴n﹣1=1,且n≠0,故答案为:216.(3分)P为线段AB上一点,且AP=AB,M是AB的中点,若PM=2cm,则AB=20cm.【解答】解:∵M是AB的中点,∴AM=AB,∵P为线段AB上一点,且AP=AB,∴PM=AM﹣AP=AB﹣AB=AB=2cm,∴AB=20cm.故答案为AB=20cm.17.(3分)图形表示运算a﹣b+c,图形表示运算x+n﹣y﹣m,则×=0(直接写出答案).【解答】解:根据题意得:×=[1﹣2+(﹣3)]×[4+7﹣6﹣5]=0.答案:0.三、用心做一做(本大题共49分)18.(5分)计算:﹣8×(﹣2)4﹣(﹣)2×(﹣2)4+×(﹣3)2【解答】解:﹣8×(﹣2)4﹣(﹣)2×(﹣2)4+×(﹣3)2=﹣8×16﹣×16+×9=﹣128﹣4+4=﹣128.19.(6分)解方程:(1);(2)【解答】解:(1)去分母得:3﹣(x﹣7)=12(x﹣10),去括号得:3﹣x+7=12x﹣120,移项合并得:13x=130,解得:x=10;(2)去分母得:4(2x﹣1)﹣2(10x+1)=3(2x+1)﹣12,去括号得:8x﹣4﹣20x﹣2=6x+3﹣12,移项合并得:﹣18x=﹣3,解得:x=.20.(6分)已知A=x3﹣5x2,B=x2﹣11x+6,当x=﹣1时,求:﹣(A+3B)+2(A﹣B)的值.【解答】解:∵A=x3﹣5x2,B=x2﹣11x+6,∴﹣(A+3B)+2(A﹣B),=﹣A﹣3B+2A﹣2B,=A﹣5B,=x3﹣5x2﹣5(x2﹣11x+6),=x3﹣5x2﹣5x2+55x﹣30,=x3﹣10x2+55x﹣30,当x=﹣1时,原式=(﹣1)3﹣10×(﹣1)2+55×(﹣1)﹣30=﹣96.21.(5分)如图,平面上有四个点A、B、C、D,根据下列语句画图.(1)画直线AB;(2)作射线BC;(3)画线段CD;(4)连接AD,并将其反向延长至E,使DE=2AD;(5)找到一点F,使点F到A、B、C、D四点距离和最短.【解答】解:22.(6分)已知线段AB=CD.且彼此重合各自的,M、N分别为AB、CD的中点,若MN=14,求AB的长.【解答】解:设BC=x,则AC=BD=2x,BM=x=DN,BN=x,则x+x=14,解得:x=7,则AB=3x=21.23.(6分)在课间活动中,小英、小丽和小华在操场上画出A、B两个区域,一起玩投沙包游戏,沙包落在A区域所得分值与落在B区域所得分值不同,当每人各投沙包四次时,其落点和四次总分如图所示,请求出小华的四次总分.【解答】解:设沙包落在A区域得x分,落在B区域得y分,根据题意,得解得∴x+3y=9+3×7=30分答:小华的四次总分为30分.24.(7分)下列各小题中,都有OE平分∠AOC,OF平分∠BOC.(1)如图,若点A、O、B在一条直线上,则∠AOB与∠EOF的数量关系是:∠AOB=2∠EOF.(2)如图,若点A、O、B不在一条直线上,则题(1)中的数量关系是否成立?请说明理由.(3)如图,若OA在∠BOC的内部,则题(1)中的数量关系是否仍成立?请说明理由【解答】解:(1)∠AOB=2∠EOF.(2分)(2)成立,理由是:(1分)因为OE平分∠AOC,所以∠EOC=∠AOC因为OF平分∠BOC,所以∠COF=∠BOC所以∠EOF=∠EOC+∠COF=∠AOC+∠BOC=(∠AOC+∠BOC)=∠AOB(4分)(3)成立(1分)理由是:因为OE平分∠AOC,所以∠EOC=∠AOC因为OF平分∠BOC,所以∠COF=∠BOC所以∠EOF=∠COF﹣∠EOC=∠BOC﹣∠AOC=(∠BOC﹣∠AOC)=∠AOB所以∠AOB=2∠EOF(4分)25.(8分)李云是某农村中学的在校住宿生,开学初父母通过估算为他预存了一个学期的伙食费600元,学校的学生食堂规定一天的伙食标准:早餐每人1元,中餐、晚餐只能各选一份价格如表中的饭菜.价格1(单位:元/份)价格2(单位:元/份)中餐23晚餐23(1)请问该校每位住宿生一天的伙食费有几种可能的价格?其金额各是多少元?(2)若李云只选择(1)中的两种价格,并计划用餐108天,且刚好用完预存款,那么他应该选择哪两种价格?两种价格各用餐多少天?【解答】解:(1)该校每位住宿生一天的伙食费有3种可能价格,其金额分别是:1+2+2=5(元),1+2+3=1+3+2=6(元),1+3+3=7(元).(2)因为600÷108≈5.56所以他不可能选择6元和7元这两种价格.若他选择5元和6元两种价格,设选择5元的x天,则选择6元的(108﹣x)天,则5x+6(108﹣x)=600解得x=48,所以108﹣x=60.即选择每天5元的48天,每天6元的60天;若他选择5元和7元两种价格,设选择5元的y天,则选择7元的(108﹣y)天,则5y+7(108﹣y)=600解得y=78,所以108﹣x=30.即选择每天5元的78天,每天7元的30天.。
(人教版)2019—(人教版)2019—2020年七年级上册期末数学试卷(含解析)一、选择题:每小题3分;共计30分.请将答案写在题后面的表格中1.下列方程中;是一元一次方程的是()A.x2﹣4x=3 B.C.x+2y=1 D.xy﹣3=52.下列说法正确的是()A.在同一平面内;a;b;c是直线;且a∥b;b∥c;则a∥cB.在同一平面内;a;b;c是直线;且a⊥b;b⊥c;则a⊥cC.在同一平面内;a;b;c是直线;且a∥b;b⊥c;则a∥cD.在同一平面内;a;b;c是直线;且a∥b;b∥c;则a⊥c3.下列四个实数中;是无理数的为()A.B.C.D.4.若关于x的方程2x+a﹣4=0的解是x=﹣2;则a的值等于()A.﹣8 B.0 C.8 D.25.在平面直角坐标系中;将点A(﹣1;4)向右平移2个单位长度;再向上平移3个单位长度;则平移后对应点的坐标是()A.C.6.如图所示;点E在AC的延长线上;下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠1=∠2 C.∠D=∠DCE D.∠D+∠ACD=180°7.一个长方形在平面直角坐标系中三个顶点的坐标为(﹣1;﹣1);(﹣1;2);(3;﹣1);则第四个顶点的坐标为()A.C.8.某村原有林地108公顷;旱地54公顷;为保护环境;需把一部分旱地改造为林地;使旱地面积占林地面积的20%.设把x公顷旱地改为林地;则可列方程()A.54﹣x=20%×108 B.54﹣x=20%(108+x)C.54+x=20%×162 D.108﹣x=20%(54+x)9.如图;a∥b;c;d是截线;∠1=70°;∠2﹣∠3=30°;则∠4的大小是()A.100°B.105°C.110°D.120°10.下列四个式子:①;②<8;③<1;④>0.5.其中大小关系正确的式子的个数是()A.1个B.2个C.3个D.4个二、填空题:每小题3分;共计30分.请将答案写在题后面的表格中11.点A(a;b)在x轴上;则ab= .12.实数27的立方根是.13.列等式表示“比a的3倍大5的数等于a的4倍”为.14.把命题“对顶角相等”改写成“如果…那么…”的形式:.15.已知(x﹣1)2=4;则负数x的值为.16.如图;a∥b;∠1=∠2;∠3=40°;则∠4等于度.17.有一列数;按一定规律排成1;﹣3;9;﹣27;81;﹣243;…;其中某三个相邻数的和是5103;则这三个数中最小的数是.18.如图;直线AB.CD相交于点O;OE⊥AB;O为垂足;如果∠EOD=38°;则∠AOC= 度.19.以下四个命题:①在同一平面内;过一点有且只有一条直线与已知直线垂直;②两条直线被第三条直线所截;同旁内角互补;③数轴上的每一个点都表示一个实数;④如果点P(x;y)的坐标满足xy<0;那么点P一定在第二象限.其中正确命题的序号为.20.在风速为24千米/时的条件下;一架飞机顺风从A机场飞到B机场要用2.8小时;它逆风飞行同样的航线要用3小时;则A;B两机场之间的航程为千米.三、解答题:其中21-22题各8分;23题6分;24题8分;25-27题各10分;共计60分21.计算:(1)﹣(2)|﹣1.7|+|﹣1.8|22.解下列方程(1)2(x+8)=3(x﹣1)(2)3x+=.23.完成下面的证明:如图;∠1+∠3=180°;∠CDE+∠B=180°;求证:∠A=∠4.证明;∵∠1=∠2()又∠1+∠3=180°;∴∠2+∠3=180°;∴AB∥DE()∴∠CDE+ =180°()又∠CDE+∠B=180°;∴∠B=∠C∴AB∥CD()∴∠A=∠4()24.阅读下面“将无限循环小数化为分数”材料;并解决相应问题:我们知道分数写成小数形式即0.;反过来;无限循环小数0.写成分数形式即.一般地;任何一个无限循环小数都可以写成分数形式吗?如果可以;应怎样写呢?先以无限循环小数0.为例进行讨论.设0.=x;由0.=0.777…可知;10x=7.777…;所以10x﹣x=7;解方程;得x=.于是;得0.=.再以无限循环小数0.为例;做进一步的讨论.无限循环小数0.=0.737373…;它的循环节有两位;类比上面的讨论可以想到如下的做法.设0.=x;由0.=0.737373…可知;100x=73.7373…;所以100x﹣x=73.解方程;得x=;于是;得0.=.请仿照材料中的做法;将无限循环小数0.化为分数;并写出转化过程.25.如图;直线AB;CD相交于点O;OA平分∠EOC;且∠EOC:∠EOD=2:3.(1)求∠BOD的度数;(2)如图2;点F在OC上;直线GH经过点F;FM平分∠OFG;且∠MFH﹣∠BOD=90°;求证:OE∥GH.26.元旦期间;某玩具店从玩具批发市场批发玩具进行零售;部分玩具批发价格与零售价格如下表:玩具型号 A B C批发价(元/个)20 24 28零售价(元/个)25 30 40请解答下列问题:(1)第一天;该玩具店批发A;B两种型号玩具共59个;用去了1344元钱;这两种型号玩具当天全部售完后一共能赚多少元钱?(2)第二天;该玩具店用第一天全部售完后的总零售价钱批发A;B;C三种型号玩具中的两种玩具共68个;且当天全部售完;请通过计算说明该玩具店第二天应如何进货才能使全部售完后赚的钱最多?27.如图;在平面直角坐标系中;点O为坐标系原点;点A(3a;2a)在第一象限;过点A向x轴作垂线;垂足为点B;连接OA;S△AOB=12.点M从点O出发;沿y轴的正半轴以每秒2个单位长度的速度运动;点N从点B出发;沿射线BO以每秒3个单位长度的速度运动;点M与点N同时出发;设点M的运动时间为t秒;连接AM ;AN;MN.(1)求a的值;(2)当0<t<2时;①请探究∠ANM;∠OMN;∠BAN之间的数量关系;并说明理由;②试判断四边形AMON的面积是否变化?若不变化;请求出;若变化;请说明理由.(3)当OM=ON时;请求出t的值及△AMN的面积.2015-2016学年黑龙江省哈尔滨市南岗区七年级(上)期末数学试卷参考答案与试题解析一、选择题:每小题3分;共计30分.请将答案写在题后面的表格中1.下列方程中;是一元一次方程的是()A.x2﹣4x=3 B.C.x+2y=1 D.xy﹣3=5【考点】一元一次方程的定义.【分析】根据一元一次方程的定义:只含有一个未知数(元);且未知数的次数是1;这样的方程叫一元一次方程可得答案.【解答】解:A、是一元二次方程;故此选项错误;B、是一元一次方程;故此选项正确;C、是二元一次方程;故此选项错误;D、是二元二次方程;故此选项错误;故选:B.【点评】此题主要考查了一元一次方程的定义;关键是掌握只含有一个未知数;未知数的指数是1;一次项系数不是0.2.下列说法正确的是()A.在同一平面内;a;b;c是直线;且a∥b;b∥c;则a∥cB.在同一平面内;a;b;c是直线;且a⊥b;b⊥c;则a⊥cC.在同一平面内;a;b;c是直线;且a∥b;b⊥c;则a∥cD.在同一平面内;a;b;c是直线;且a∥b;b∥c;则a⊥c【考点】平行线;垂线.【分析】根据题意画出图形;从而可做出判断.【解答】解:先根据要求画出图形;图形如下图所示:根据所画图形可知:A正确.故选:A.【点评】本题主要考查的是平行线;根据题意画出符合题意的图形是解题的关键.3.下列四个实数中;是无理数的为()A.B.C.D.【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念;一定要同时理解有理数的概念;有理数是整数与分数的统称.即有限小数和无限循环小数是有理数;而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、是有理数;故A错误;B、是有理数;故B错误;C、是有理数;故C错误;D、是无理数;故D正确;故选:D.【点评】此题主要考查了无理数的定义;其中初中范围内学习的无理数有:π;2π等;开方开不尽的数;以及像0.1010010001…;等有这样规律的数.4.若关于x的方程2x+a﹣4=0的解是x=﹣2;则a的值等于()A.﹣8 B.0 C.8 D.2【考点】一元一次方程的解.【分析】把x=﹣2代入原方程;得到关于a的一元一次方程;解方程得到答案.【解答】解:由题意得;2×(﹣2)+a﹣4=0;解得:a=8;故选:C.【点评】本题考查的是方程的解的定义;使方程两边的值相等的未知数的值是方程的解.5.在平面直角坐标系中;将点A(﹣1;4)向右平移2个单位长度;再向上平移3个单位长度;则平移后对应点的坐标是()A.C.【考点】坐标与图形变化-平移.【分析】根据横坐标;右移加;左移减;纵坐标;上移加;下移减可得平移后对应点的坐标是(﹣1+2;4+3);再计算即可.【解答】解:点A(﹣1;4)向右平移2个单位长度;再向上平移3个单位长度;平移后对应点的坐标是(﹣1+2;4+3);即(1;7);故选:A.【点评】此题主要考查了坐标与图形的变化﹣﹣平移;关键是掌握点的坐标的变化规律.6.如图所示;点E在AC的延长线上;下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠1=∠2 C.∠D=∠DCE D.∠D+∠ACD=180°【考点】平行线的判定.【分析】根据平行线的判定分别进行分析可得答案.【解答】解:A、根据内错角相等;两直线平行可得BD∥AC;故此选项错误;B、根据内错角相等;两直线平行可得AB∥CD;故此选项正确;C、根据内错角相等;两直线平行可得BD∥AC;故此选项错误;D、根据同旁内角互补;两直线平行可得BD∥AC;故此选项错误;故选:B.【点评】此题主要考查了平行线的判定;关键是掌握平行线的判定定理.7.一个长方形在平面直角坐标系中三个顶点的坐标为(﹣1;﹣1);(﹣1;2);(3;﹣1);则第四个顶点的坐标为()A.C.【考点】坐标与图形性质;矩形的性质.【分析】本题可在画出图后;根据矩形的性质;得知第四个顶点的横坐标应为3;纵坐标应为2.【解答】解:如图可知第四个顶点为:即:(3;2).故选:B.【点评】本题考查学生的动手能力;画出图后可很快得到答案.8.某村原有林地108公顷;旱地54公顷;为保护环境;需把一部分旱地改造为林地;使旱地面积占林地面积的20%.设把x公顷旱地改为林地;则可列方程()A.54﹣x=20%×108 B.54﹣x=20%(108+x)C.54+x=20%×162 D.108﹣x=20%(54+x)【考点】由实际问题抽象出一元一次方程.【分析】设把x公顷旱地改为林地;根据旱地面积占林地面积的20%列出方程即可.【解答】解:设把x公顷旱地改为林地;根据题意可得方程:54﹣x=20%(108+x).故选B.【点评】本题考查一元一次方程的应用;关键是设出未知数以以改造后的旱地与林地的关系为等量关系列出方程.9.如图;a∥b;c;d是截线;∠1=70°;∠2﹣∠3=30°;则∠4的大小是()A.100°B.105°C.110°D.120°【考点】平行线的性质.【分析】首先根据邻补角的定义求得∠2的度数;则∠3即可求得;然后根据平行线的性质求得∠5;进而求得∠4.【解答】解:∠2=180°﹣∠1=180°﹣70°=110°;∵∠2﹣∠3=30°;∴∠3=∠2﹣30°=110°﹣30°=80°;∵a∥b;∴∠5=∠3=80°;∴∠4=180°﹣∠5=180°﹣80°=100°.故选A.【点评】本题考查了邻补角的定义和平行线的性质;两直线平行;同位角相等;理解角之间的位置关系是关键.10.下列四个式子:①;②<8;③<1;④>0.5.其中大小关系正确的式子的个数是()A.1个B.2个C.3个D.4个【考点】实数大小比较.【专题】推理填空题;实数.【分析】①两个正数;哪个数的越大;则它的算术平方根就越大;据此判断即可.②首先分别求出、8的平方各是多少;然后根据两个正数;哪个数的平方越大;则这个数就越大;判断出、8的大小关系即可.③根据﹣1所得的差的正负;判断出、1的大小关系即可.④根据﹣0.5所得的差的正负;判断出、0.5的大小关系即可.【解答】解:∵8<10;∴<;∴①正确;=65;82=64;∵65>64;∴>8;∴②不正确;∵﹣1=<=0;∴<1;∴③正确;∵﹣0.5=>=0;∴>0.5;∴④正确.综上;可得大小关系正确的式子的个数是3个:①③④.故选:C.【点评】(1)此题主要考查了实数大小比较的方法;要熟练掌握;解答此题的关键是要明确:正实数>0>负实数;两个负实数绝对值大的反而小.(2)解答此题的关键还要明确:两个正数;哪个数的平方越大;则这个数就越大.二、填空题:每小题3分;共计30分.请将答案写在题后面的表格中11.点A(a;b)在x轴上;则ab= 0 .【考点】点的坐标.【分析】根据x轴上点的纵坐标等于零;可得b的值;根据有理数的乘法;可得答案.【解答】解:由点A(a;b)在x轴上;得b=0.则ab=0;故答案为:0.【点评】本题考查了点的坐标;利用x轴上点的纵坐标等于零得出b的值是解题关键.12.实数27的立方根是 3 .【考点】立方根.【专题】计算题.【分析】如果一个数x的立方等于a;那么x是a的立方根;根据此定义求解即可.【解答】解:∵3的立方等于27;∴27的立方根等于3.故答案为3.【点评】此题主要考查了求一个数的立方根;解题时先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算;用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.13.列等式表示“比a的3倍大5的数等于a的4倍”为3a+5=4a .【考点】等式的性质.【分析】根据等量关系;可得方程.【解答】解:由题意;得3a+5=4a;故答案为:3a+5=4a.【点评】本题主要考查了等式的基本性质;理解题意是解题关键.14.把命题“对顶角相等”改写成“如果…那么…”的形式:如果两个角是对顶角;那么它们相等.【考点】命题与定理.【分析】命题中的条件是两个角相等;放在“如果”的后面;结论是这两个角的补角相等;应放在“那么”的后面.【解答】解:题设为:对顶角;结论为:相等;故写成“如果…那么…”的形式是:如果两个角是对顶角;那么它们相等;故答案为:如果两个角是对顶角;那么它们相等.【点评】本题主要考查了将原命题写成条件与结论的形式;“如果”后面是命题的条件;“那么”后面是条件的结论;解决本题的关键是找到相应的条件和结论;比较简单.15.已知(x﹣1)2=4;则负数x的值为﹣1 .【考点】有理数的乘方.【专题】计算题;实数.【分析】方程利用平方根定义求出解;即可确定出负数x的值.【解答】解:方程(x﹣1)2=4;开方得:x﹣1=2或x﹣1=﹣2;解得:x=3或x=﹣1;则负数x的值为﹣1.故答案为:﹣1.【点评】此题考查了有理数的乘方;熟练掌握运算法则是解本题的关键.16.如图;a∥b;∠1=∠2;∠3=40°;则∠4等于70 度.【考点】平行线的性质.【分析】根据两条直线平行;同旁内角互补可以得∠1+∠2=140°;求出∠2;再利用平行线的性质得出∠4.【解答】解:∵a∥b;∴∠2+∠1+∠3=180°;∵∠1=∠2;∠3=40°;∴∠2=70°;∴∠4=70°;故答案为:70【点评】此题考查平行线的性质;关键是主要运用了平行线的性质解答.17.有一列数;按一定规律排成1;﹣3;9;﹣27;81;﹣243;…;其中某三个相邻数的和是5103;则这三个数中最小的数是﹣2187 .【考点】规律型:数字的变化类.【专题】计算题;推理填空题.【分析】观察所给的数发现:它们的一般式为(﹣3)n﹣1;而其中某三个相邻数的和是5103;设第一个的数为x;由此即可得到关于x的方程;解方程即可求解.【解答】解:设第一个的数为x;依题意得x﹣3x+9x=5103;∴x=729;∴﹣3x=﹣2187.∴最小的数为﹣2187.故答案为:﹣2187.【点评】此题主要考查了数字的变化规律;解题的关键是首先认真观察所给数字;然后找出隐含的规律即可解决问题.18.如图;直线AB.CD相交于点O;OE⊥AB;O为垂足;如果∠EOD=38°;则∠AOC= 52 度.【考点】垂线;对顶角、邻补角.【分析】根据垂线的定义;可得∠AOE=90°;根据角的和差;可得∠AOD的度数;根据邻补角的定义;可得答案.【解答】解:∵OE⊥AB;∴∠AOE=90°;∴∠AOD=∠AOE+∠EOD=90°+38°=128°;∴∠AOC=180°﹣∠AOD=180°﹣128°=52°;故答案为:52.【点评】本题考查了垂线的定义;对顶角相等;邻补角的和等于180°;要注意领会由垂直得直角这一要点.19.以下四个命题:①在同一平面内;过一点有且只有一条直线与已知直线垂直;②两条直线被第三条直线所截;同旁内角互补;③数轴上的每一个点都表示一个实数;④如果点P(x;y)的坐标满足xy<0;那么点P一定在第二象限.其中正确命题的序号为①③.【考点】命题与定理.【分析】根据在同一平面内;过一点有且只有一条直线与已知直线垂直;两条平行的直线被第三条直线所截;同旁内角互补;数轴上的点与实数是一一对应关系;点P(x;y)的坐标满足xy<0;则点P的横纵坐标符号相反;可得P在二、四象限进行分析.【解答】解:①在同一平面内;过一点有且只有一条直线与已知直线垂直;说法正确;②两条直线被第三条直线所截;同旁内角互补;说法错误;③数轴上的每一个点都表示一个实数;说法正确;④如果点P(x;y)的坐标满足xy<0;那么点P一定在第二象限;说法错误;正确的命题有①③;故答案为:①③.【点评】此题主要考查了命题与定理;关键是熟练掌握课本上所学的定理.20.在风速为24千米/时的条件下;一架飞机顺风从A机场飞到B机场要用2.8小时;它逆风飞行同样的航线要用3小时;则A;B两机场之间的航程为2016 千米.【考点】一元一次方程的应用.【分析】设无风时飞机的航速是x千米/时;根据顺风速度×顺风时间=逆风速度×逆风时间;列出方程求出x的值;进而求解即可.【解答】解:设无风时飞机的航速是x千米/时;依题意得:2.8×(x+24)=3×(x﹣24);解得:x=696;则3×(696﹣24)=2016(千米).答:A;B两机场之间的航程是2016千米.故答案为2016.【点评】此题考查了一元一次方程的应用;用到的知识点是顺风速度=无风时的速度+风速;逆风速度=无风时的速度﹣风速;关键是根据顺风飞行的路程等于逆风飞行的路程列出方程.三、解答题:其中21-22题各8分;23题6分;24题8分;25-27题各10分;共计60分21.计算:(1)﹣(2)|﹣1.7|+|﹣1.8|【考点】实数的运算.【专题】计算题;实数.【分析】(1)原式利用立方根及算术平方根定义计算即可得到结果;(2)原式利用绝对值的代数意义化简;合并即可得到结果.【解答】解:(1)原式=4﹣9=﹣5;(2)原式=﹣1.7+1.8﹣=0.1.【点评】此题考查了实数的运算;熟练掌握运算法则是解本题的关键.22.解下列方程(1)2(x+8)=3(x﹣1)(2)3x+=.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)根据解方程的一般步骤:去括号、移项、合并同类项、系数化为1;可得方程的解;(2)两边都乘以分母的最小公倍数6去分母后;去括号、移项、合并同类项、系数化为1后可得方程的解.【解答】解:(1)去括号;得:2x+16=3x﹣3;移项;得:2x﹣3x=﹣3﹣16;合并同类项;得:﹣x=﹣19;系数化为1;得:x=19;(2)去分母;得:18x+3(x﹣1)=2(2x﹣1);去括号;得:18x+3x﹣3=4x﹣2;移项;得:18x+3x﹣4x=﹣2+3;合并同类项;得:17x=1;系数化为1;得:x=.【点评】本题主要考查解一元一次方程的基本技能;熟练掌握去分母、去括号、移项、合并同类项、系数化为1是关键.23.完成下面的证明:如图;∠1+∠3=180°;∠CDE+∠B=180°;求证:∠A=∠4.证明;∵∠1=∠2(对顶角相等)又∠1+∠3=180°;∴∠2+∠3=180°;∴AB∥DE(同旁内角互补;两直线平行)∴∠CDE+ ∠C =180°(两直线平行;同旁内角互补)又∠CDE+∠B=180°;∴∠B=∠C∴AB∥CD(内错角相等;两直线平行)∴∠A=∠4(两直线平行;内错角相等)【考点】平行线的判定与性质.【专题】推理填空题.【分析】欲证明∠A=∠4;只需推知AB∥CD;利用平行线的性质即可证得结论.【解答】证明:∵∠1=∠2(对顶角相等);又∠1+∠3=180°;∴∠2+∠3=180°;∴AB∥DE(同旁内角互补;两直线平行);∴∠CDE+∠C=180°(两直线平行;同旁内角互补);又∠CDE+∠B=180°;∴∠B=∠C.∴AB∥CD(内错角相等;两直线平行);∴∠A=∠4(两直线平行;内错角相等).故答案是:对顶角相等;同旁内角互补;两直线平行;∠C;两直线平行;同旁内角互补;错角相等;两直线平行;两直线平行;内错角相等.【点评】本题考查了平行线的判定与性质.平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.24.阅读下面“将无限循环小数化为分数”材料;并解决相应问题:我们知道分数写成小数形式即0.;反过来;无限循环小数0.写成分数形式即.一般地;任何一个无限循环小数都可以写成分数形式吗?如果可以;应怎样写呢?先以无限循环小数0.为例进行讨论.设0.=x;由0.=0.777…可知;10x=7.777…;所以10x﹣x=7;解方程;得x=.于是;得0.=.再以无限循环小数0.为例;做进一步的讨论.无限循环小数0.=0.737373…;它的循环节有两位;类比上面的讨论可以想到如下的做法.设0.=x;由0.=0.737373…可知;100x=73.7373…;所以100x﹣x=73.解方程;得x=;于是;得0.=.请仿照材料中的做法;将无限循环小数0.化为分数;并写出转化过程.【考点】一元一次方程的应用.【专题】阅读型.【分析】先设0.=x;由0.=0.9898…;得100x=98.9898…;100x﹣x=98;再解方程即可.【解答】解:设0.=x;由0.=0.9898…;得100x=98.9898…;所以100x﹣x=98;解方程得:x=.于是0.=.【点评】此题主要考查了一元一次方程的应用;解答本题的关键是找出其中的规律;即通过方程形式;把无限小数化成整数形式.25.如图;直线AB;CD相交于点O;OA平分∠EOC;且∠EOC:∠EOD=2:3.(1)求∠BOD的度数;(2)如图2;点F在OC上;直线GH经过点F;FM平分∠OFG;且∠MFH﹣∠BOD=90°;求证:OE∥GH.【考点】平行线的判定;角的计算.【分析】(1)根据邻补角的定义求出∠EOC;再根据角平分线的定义求出∠AOC;然后根据对顶角相等解答.(2)由已知条件和对顶角相等得出∠MFC=∠MFH=∠BOD+90°=126°;得出∠ONF=90°;求出∠OFM=54°;延长∠OFG=2∠OFM=108°;证出∠OFG+∠EOC=180°;即可得出结论.【解答】解:∵∠EOC:∠EOD=2:3;∴∠EOC=180°×=72°;∵OA平分∠EOC;∴∠AOC=∠EOC=×72°=36°;∴∠BOD=∠AOC=36°.(2)延长FM交AB于N;如图所示:∵∠MFH﹣∠BOD=90°;FM平分∠OFG;∴∠MFC=∠MFH=∠BOD+90°=126°;∴∠ONF=126°﹣36°=90°;∴∠OFM=90°﹣36°=54°;∴∠OFG=2∠OFM=108°;∴∠OFG+∠EOC=180°;∴OE∥GH.【点评】本题考查了平行线的判定、角平分线定义、角的互余关系等知识;熟练掌握平行线的判定、角平分线定义是解决问题的关键;(2)有一定难度.26.元旦期间;某玩具店从玩具批发市场批发玩具进行零售;部分玩具批发价格与零售价格如下表:玩具型号 A B C批发价(元/个)20 24 28零售价(元/个)25 30 40请解答下列问题:(1)第一天;该玩具店批发A;B两种型号玩具共59个;用去了1344元钱;这两种型号玩具当天全部售完后一共能赚多少元钱?(2)第二天;该玩具店用第一天全部售完后的总零售价钱批发A;B;C三种型号玩具中的两种玩具共68个;且当天全部售完;请通过计算说明该玩具店第二天应如何进货才能使全部售完后赚的钱最多?【考点】一元一次方程的应用.【分析】(1)设A种型号玩具批发了x个;则B种型号玩具批发了(59﹣x)个;题中的等量关系为:A种型号玩具的个数×A种型号玩具的批发价+B种型号玩具的个数×B种型号玩具的批发价=1344元;依此列出方程;解方程求出x的值;则当天赚的钱=(A种型号玩具的零售价﹣批发价)×A种型号玩具的个数+(B种型号玩具的零售价﹣批发价)×B种型号玩具的个数;(2)分三种情况:①购买A;B两种型号玩具;②购买A;C两种型号玩具;③购买B;C两种型号玩具.分别求出每一种情况下全部售完后赚的钱;比较即可.【解答】解:(1)设A种型号玩具批发了x个;则B种型号玩具批发了(59﹣x)个;由题意得:20x+24(59﹣x)=1344;解得x=18;所以59﹣x=41.则18×(25﹣20)+41×(30﹣24)=336(元).答:这两种型号玩具当天全部售完后一共能赚336元钱;(2)该玩具店用第一天全部售完后的总零售价为:1344+336=1680(元).分三种情况:①购买A;B两种型号玩具.设A种型号玩具批发了a个;则B种型号玩具批发了(68﹣a)个;由题意得:20a+24(68﹣a)=1680;解得a=12;所以68﹣a=56.则12×(25﹣20)+56×(30﹣24)=396(元);②购买A;C两种型号玩具.设A种型号玩具批发了b个;则B种型号玩具批发了(68﹣b)个;由题意得:20b+28(68﹣a)=1680;解得b=28;。
2019-2020学年七年级上学期期末考试数学试卷一、选择题(下列各题的备选答案中,只有一个是正确的,每小题3分,共30分)1.﹣7的倒数是()A.B.7C.D.﹣72.下列说法不正确的是()A.近似数1.8与1.80表示的意义不同B.0.0200精确到万分位C.2.0万精确到万位D.1.0×104精确到千位3.下列各图中,可以是一个正方体的平面展开图的是()A.B.C.D.4.绝对值大于2且小于5的所有的整数的和是()A.7B.﹣7C.0D.55.已知x=0是关于x的方程5x﹣4m=8的解,则m的值是()A.B.﹣C.2D.﹣26.用一副三角板拼成的图形如图所示,其中B、C、D三点在同一条直线上.则图中∠ACE的大小为()A.45°B.60°C.75°D.105°7.如图,已知点C是线段AD的中点,AB=10cm,BD=4cm,则BC的长为()A.5cm B.6cm C.7cm D.8cm8.某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是()A.350元B.400元C.450元D.500元9.如果有4个不同的正整数a、b、c、d满足(2019﹣a)(2019﹣b)(2019﹣c)(2019﹣d)=9,那么a+b+c+d的值为()A.0B.9C.8048D.807610.观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,…,按此规律,图形⑦中星星的颗数是()A.24B.32C.41D.51二、填空题(每题3分,共24分)11.一天早晨的气温是﹣7℃,中午的气温3℃,则中午的气温比早晨的气温高℃.12.单项式﹣的次数是.13.如图,点A位于点O的方向上.14.一个角的余角是54°38′,则这个角的补角是.15.若方程:(m﹣1)x|m|﹣2=0是一元一次方程,则m的值为.16.长方形的长是3a,它的周长是10a﹣2b,则宽是.17.在学校的一次劳动中,在甲处劳动的有27人,在乙处劳动的有19人,后因劳动任务需要,需要另外调20人来支援,使在甲处的人数是在乙处人数的2倍,问应调往乙处人.18.按下面的程序计算:若输入x=100,则输出结果是501;若输入x=25,则输出结果是631;若开始输入的数x为正整数,最后输出结果为781,则开始输入的数x的所有可能的值为.三、解答题(共66分)19.(10分)计算(1)(2).20.(10分)解方程:(1)2x﹣9=5x+3(2).21.(6分)先化简,再求值:2xy2﹣[6x﹣4(2x﹣1)﹣2xy2]+9,其中(x﹣3)2+|y+|=0 22.(6分)从甲地到乙地,公共汽车原需行驶7个小时,开通高速公路后,车速平均每小时增加了20千米,只需5个小时即可到达,求甲、乙两地的路程.23.(10分)如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.24.(12分)如图①,∠AOB=90°,∠AOC为∠AOB外的一个角,且∠AOC=30°,射线OM 平分∠BOC,ON平分∠AOC.(1)求∠MON的度数;(2)如果(1)中∠AOB=α,∠AOC=β.(α,β为锐角),其它条件不变,求出∠MON的度数;(3)其实线段的计算与角的计算存在着紧密的联系,如图②线段AB=m,延长线段AB到C,使得BC=n,点M,N分别为AC,BC的中点,求MN的长(直接写出结果).25.(12分)某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)(1)该超市购进甲、乙两种商品各多少件?(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙商品是按原价打几折销售?参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个是正确的,每小题3分,共30分)1.【分析】此题根据倒数的含义解答,乘积为1的两个数互为倒数,所以﹣7的倒数为1÷(﹣7).【解答】解:﹣7的倒数为:1÷(﹣7)=﹣.故选:C.【点评】此题考查的知识点是倒数.解答此题的关键是要知道乘积为1的两个数互为倒数,所以﹣7的倒数为1÷(﹣7).2.【分析】分别分析各数的有效数字与精确数位,再作答.一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.精确到了某一位,即应看这个数字最后一位实际在哪一位.【解答】解:根据近似数有效数字的确定方法和意义可知A、B、D正确,而近似数2.0万精确到千位,故C错误.故选:C.【点评】本题考查了有效数字和近似数的确定.精确到哪一位,即对下一位的数字进行四舍五入.从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字;注意后面的单位不算入有效数字.3.【分析】正方体的展开图有“1+4+1”型,“2+3+1”型、“3+3”型三种类型,其中“1”可以左右移动.注意“一”、“7”、“田”、“凹”字型的都不是正方体的展开图.【解答】解:A、属于“田”字型,不是正方体的展开图,故选项错误;B、属于“7”字型,不是正方体的展开图,故选项错误;C、属于“1+4+1”字型,是正方体的展开图,故选项正确;D、属于“凹”字型,不是正方体的展开图,故选项错误.故选:C.【点评】考查了几何体的展开图,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.4.【分析】绝对值大于2且小于5的整数绝对值有3,4.因为±3的绝对值是3,±4的绝对值是4,又因为互为相反数的两个数的和是0,所以,绝对值大于2而小于5的整数的和是0.【解答】解:因为绝对值大于2而小于5的整数为±3,±4,故其和为﹣3+3+(﹣4)+4=0.故选:C.【点评】考查了有理数的加法和绝对值,注意掌握互为相反数的两个数的绝对值相等,互为相反数的两个数的和是0.5.【分析】已知x=0是方程5x﹣4m=8的解,代入可求出m的值.【解答】解:把x=0代入5x﹣4m=8得,0﹣4m=8,解得:m=﹣2.故选:D.【点评】本题是知道一个字母的值求另一个字母的值,解决此题常用代入的方法.6.【分析】利用平角的定义计算∠ACE的度数.【解答】解:∵B、C、D三点在同一条直线上.∴∠ACE=180°﹣60°﹣45°=75°.故选:C.【点评】本题考查了角的计算:利用互余或互补计算角的度数.7.【分析】先求出AD,然后可得出CD,继而根据BC=BD+CD即可得出答案.【解答】解:∵AB=10cm,BD=4cm,∴AD=AB﹣BD=10﹣4=6(cm),∵点C是AD中点,∴CD=AD=3cm,则BC=CD+BD=7cm,故选:C.【点评】本题考查了两点之间的距离,关键是掌握中点的性质.8.【分析】设该服装标价为x元,根据售价﹣进价=利润列出方程,解出即可.【解答】解:设该服装标价为x元,由题意,得0.6x﹣200=200×20%,解得:x=400.故选:B.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.9.【分析】根据a、b、c、d是四个不同的正整数可知四个括号内的值分别是:±1,±3,据此可得出结论.【解答】解:∵a、b、c、d是四个不同的正整数,∴四个括号内的值分别是:±1,±3,∴2019+1=2020,2019﹣1=2018,2019+3=2022,2019﹣3=2016,∴a+b+c+d=2020+2018+2022+2016=8076.故选:D.【点评】本题考查的是有理数的混合运算,根据题意得出四个括号中的数是解答此题的关键.10.【分析】设图形n中星星的颗数是a n(n为正整数),列出部分图形中星星的个数,根据数据的变化找出变化规律“+n﹣1”,依此规律即可得出结论.【解答】解:设图形n中星星的颗数是a n(n为正整数),∵a1=2=1+1,a2=6=(1+2)+3,a3=11=(1+2+3)+5,a4=17=(1+2+3+4)+7,∴a n=1+2+…+n+(2n﹣1)=+(2n﹣1)=+n﹣1,∴a7=×72+×7﹣1=41.故选:C.【点评】本题考查了规律型中的图形的变化类,根据图形中数的变化找出变化规律是解题的关键.二、填空题(每题3分,共24分)11.【分析】根据有理数减法的运算方法,用这天中午的气温减去早晨的气温,求出中午的气温比早晨的气温高多少即可.【解答】解:3﹣(﹣7)=10(℃)∴中午的气温比早晨的气温高10℃.故答案为:10.【点评】此题主要考查了有理数的减法,要熟练掌握.12.【分析】直接利用一个单项式中所有字母的指数的和叫做单项式的次数,进而得出答案.【解答】解:单项式﹣的次数是:3+2+1=6.故答案为:6.【点评】此题主要考查了单项式,正确把握单项式的次数确定方法是解题关键.13.【分析】根据方位角的概念直接解答即可.【解答】解:点A位于点O的北偏西30°方向上.【点评】规律总结:方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)多少度.14.【分析】根据余角是两个角的和为90°,这两个角互为余角,两个角的和为180°,这两个角互为补角,可得答案.【解答】解:∵一个角的余角是54°38′∴这个角为:90°﹣54°38′=35°22′,∴这个角的补角为:180°﹣35°22′=144°38′.故答案为:144°38′.【点评】本题考查余角和补角,通过它们的定义来解答即可.15.【分析】根据一元二次方程的定义解答即可.【解答】解:∵(m﹣1)x|m|﹣2=0是一元一次方程,∴,∴m=﹣1;故答案为:﹣1.【点评】本题考查了一元一次方程的概念,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.16.【分析】根据长方形的周长=2(长+宽),表示出宽即可.【解答】解:根据题意得:(10a﹣2b)﹣3a=5a﹣b﹣3a=2a﹣b,故答案为:2a﹣b【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.17.【分析】设调往甲处的人数为x,则调往乙处的人数为(20﹣x),根据甲处的人数是在乙处人数的2倍列方程求解.【解答】解:设应调往甲处x人,依题意得:27+x=2(19+20﹣x),解得:x=17,∴20﹣x=3,答:应调往甲处17人,调往乙处3人.故答案是:3.【点评】考查了一元一次方程的应用.根据题目给出的条件,找出合适的等量关系,列出方程,再求解.18.【分析】根据输出的结果确定出x的所有可能值即可.【解答】解:若5x+1=781,解得:x=156;若5x+1=156,解得:x=31;若5x+1=31,解得:x=6;若5x+1=6,解得:x=1,故答案为:1或6或31或156【点评】此题考查了代数式求值,弄清程序中的运算过程是解本题的关键.三、解答题(共66分)19.【分析】(1)先把除法运算转化为乘法运算,然后利用乘法的分配律进行计算;(2)先算乘方和乘法运算,然后加减运算.【解答】解:(1)原式=(﹣+)×(﹣36)=×(﹣36)﹣×(﹣36)+×(﹣36)=﹣8+9﹣2=1﹣2=﹣1;(2)原式=﹣1+6+2+1=8.【点评】本题考查了有理数的混合运算:先算乘方,再算乘除,然后进行加减运算;有括号先算括号.20.【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)方程移项合并得:﹣3x=12,解得:x=﹣4;(2)去分母得:2(x﹣1)﹣3(3﹣x)=6,去括号得:2x﹣2﹣9+3x=6,移项合并得:5x=17,解得:x=3.4.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.【分析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【解答】解:原式=2xy2﹣6x+4(2x﹣1)+2xy2+9=2xy2﹣6x+8x﹣4+2xy2+9=4xy2+2x+5,∵(x﹣3)2+|y+|=0,∴x=3,y=﹣,则原式=4×3×(﹣)2+2×3+5=3+6+5=14.【点评】此题考查了整式的加减﹣化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.22.【分析】设甲乙两地的路程是x千米,则公共汽车原来的车速是km/h,开通高速公路后的车速是(+20)km/h,根据两地的路程这个相等关系列方程得(+20)×5=x,借这个方程即可求出甲乙两地的路程.【解答】解:设:甲乙两地的路程是x千米.根据题意列方程得:(+20)×5=x,解得:x=350.答:甲乙两地的路程是350千米.【点评】本题主要考查了列一元一次方程解应用题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.23.【分析】先根据角平分线定义求出∠COB的度数,再求出∠BOD的度数,求出∠BOE的度数,即可得出答案.【解答】解:∵∠AOB=90°,OC平分∠AOB,∴∠COB=∠AOB=45°,∵∠COD=90°,∴∠BOD=45°,∵∠BOD=3∠DOE,∴∠DOE=15°,∴∠BOE=30°,∴∠COE=∠COB+∠BOE=45°+30°=75°.【点评】本题考查了角平分线定义和角的有关计算,能求出∠DOE的度数是解此题的关键.24.【分析】(1)根据角的平分线的特点,可以得知所分两角相等,等于原角的一半,根据角与角之间的数量关系即可得出结论;(2)根据角的平分线的特点,可以得知所分两角相等,等于原角的一半,根据角与角之间的数量关系即可得出结论;(3)根据(2)的原理,可直接得出结论.【解答】解:(1)∵∠BOC=∠AOB+∠AOC=90°+30°=120°,射线OM平分∠BOC,∴∠COM=∠BOC=×120°=60°,∵ON平分∠AOC,∴∠CON=∠AOC=×30°=15°,∴∠MON=∠COM﹣∠CON=60°﹣15°=45°.(2)∵∠BOC=∠AOB+∠AOC=α+β,∵射线OM平分∠BOC,∴∠COM=∠BOC=(α+β),∵ON平分∠AOC,∴∠CON=∠AOC=β,∴∠MON=∠COM﹣∠CON=(α+β)﹣β=α.(3)MN=m.【点评】本题考查的是角的计算,解题的关键是明白角平分线的特点,根据此特点结合角与角间的数量关系即可得出结论.25.【分析】(1)设第一次购进甲种商品x件,则购进乙种商品(x+15)件,根据单价×数量=总价,即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=单件利润×销售数量,列式计算即可求出结论;(3)设第二次乙种商品是按原价打y折销售,根据总利润=单件利润×销售数量,即可得出关于y的一元一次方程,解之即可得出结论.【解答】解:(1)设第一次购进甲种商品x件,则购进乙种商品(x+15)件,根据题意得:22x+30(x+15)=6000,解得:x=150,∴x+15=90.答:该超市第一次购进甲种商品150件、乙种商品90件.(2)(29﹣22)×150+(40﹣30)×90=1950(元).答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得利润1950元.(3)设第二次乙种商品是按原价打y折销售,根据题意得:(29﹣22)×150+(40×﹣30)×90×3=1950+180,解得:y=8.5.答:第二次乙商品是按原价打8.5折销售.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据总利润=单件利润×销售数量列式计算;(3)找准等量关系,正确列出一元一次方程.。
南海区2019~2020学年度第一学期期末考试七年级数学试卷试卷说明:本试卷共4页,满分120分,考试时间90分钟.答题前,考生务必将自己的姓名等信息按要求填写在答题..卡.交回...卡.上;答案必须写在答题..卡.各题目指定区域内;考试结束后,只需将答题一、选择题(本大题共10小题,每小题3分,共30分,在每小题的四个选项中,只有一项正确)1.2的相反数是()A.2 B.-2 C.1D.±222.下列图形中,圆锥的侧面展开图是()A B C D3.下列调查中,最适合...采用抽样调查的是()A.乘坐飞机时对旅客行李的检查B.了解小明一家三口对端午节来历的了解程度C.了解某批灯泡的使用寿命D.通过体检了解我校初一级全体同学的健康状况4.一条弯曲的公路改为直道,可以缩短路程,其道理用几何知识解释应是()A.两点之间线段最短B.两点确定一条直线C.线段可以比较大小D.线段有两个端点5.单项式-5ab的系数与次数分别是()A.5,1 B.-5,1 C.5,2 D.-5,26.1.5°=()A.9′B.15′C.90′D.150′7.根据等式的基本性质,下列结论正确的是()A.若x=y,则xz =yzB.若2x=y,则6x=yC.若ax=2,则x=a2D.若x=y,则x-z=y-z8.某商场将一种商品以每件60元的价格售出,盈利20%,那么该商品的进货价是()A.36元B.48元C.50元D.54元9.若代数式x-2y+8的值为18,则代数式3x-6y+4的值为()A.30 B.-26 C.-30 D.3410.若m是有理数,则|m|-m一定是()A.零B.非负数C.正数D.负数二、填空题(本大题共7小题,每小题4分,共28分)11.用科学记数法表示:6400000=.12.在(−38)4中,底数是.13.方程2+▲=3x,▲处被墨水盖住了,已知方程的解是x=2,那么▲处的数字是.14. 如图,点A在点O的北偏西15°方向,点B在点O的北偏东30°方向,若∠1=∠AOB,则点C在点O的方向.15.一般地,将连续的正整数1,2,…,n2填入n×n个方格中,使得每行、每列、每条对角线上的数的和相等,就形成了一个n阶幻方(如图是3阶幻方的一种情况).记n阶幻方每行的数的和为N n,易知N3=15,那么N4=.16.如图1,将一个边长为a的正方形纸片剪去两个小长方形,得到一个“”的图案,如图2所示,则这个“”图案的周长可表示为.17.已知线段AC ,点D 为AC 的中点,B 是直线AC 上的一点,且 BC =12AB ,BD =1,则AC = .三、解答题(一)(本大题共3小题,每小题6分,共18分) 18.计算:-23-(1-0.5)÷13×(-2)319.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.20.两个圆柱体容器如图所示,容器1的半径是4cm ,高是20cm ;容器2的半径是6cm, 高是8cm ,我们先在容器2中倒满水,然后将里面的水全部倒入容器1中,问:倒完以后,容器1中的水面离容器口有多少厘米?第14题图第16题图第15题图四、解答题(二)(本大题共3小题,每小题8分,共24分)21.若(x+2)2+|y -1|=0,求4xy -2(2x2+5xy -y2)+2(x2+3xy)的值.22.某中学从学生入学开始就积极开展环保教育,半学期后随机对部分学生的环保习惯养成情况进行了问卷调查,问卷中的环保习惯有:①随手关灯;②充电后及时拔充电器插头;③生活用水合理重复利用;④不用或少用一次性餐具;⑤少用塑料袋多用环保袋;⑥绿色出行,同学勾选出自己已经养成的环保习惯,学校将结果绘成了如图所示的不完整的条形统计图和扇形统计图.(1)求在这次调查中,一共抽查了多少名学生?(2)通过计算....补全条形统计图.(3)已知全校共有学生1200人,请估计全校所有学生中已经养成3个或3个以上环保习惯的同学共有多少人?23.一天早晨,乐乐以80米/分的速度上学,5分钟后乐乐的爸爸发现他忘了带数学书,爸爸立即骑自行车以280米/分的速度去追乐乐,并且在途中追上了他,请解决以下问题:(1)爸爸追上乐乐用了多长时间?(2)爸爸追上乐乐后,乐乐搭爸爸的自行车回到学校,结果提前了10分钟到校,若爸爸搭上乐乐后的骑行速度为240米/分,求乐乐家离学校有多远.五、解答题(三)(本大题共2小题,每小题10分,共20分)24.如图所示,有若干边长为1的正方形卡片,第1次并排摆2张黑色卡片,铺成一个长方形;第2次在黑色卡片上方和右侧摆白色卡片,所有卡片铺成了一个较大的长方形;第3次继续在白色卡片上方和右侧摆黑色卡片,所有卡片铺成了一个更大的长方形;以此类推,请解决以下问题:(1)仅第..用去_______张卡片...10..次.要用去______张卡片,摆完第10次后,总共(2)你知道 2+4+6+8+……+2n的结果是多少吗?写出结果,结合图形规律说明你的理由.(3)求出从第51次至第100次所摆卡片的数量之和.25.已知:∠AOB=90°,∠COD=20°,OM平分∠AOC,ON平分∠BOD(1)如图1,∠COD在∠AOB内部,且∠AOC=30°.则∠MON的大小为.(2)如图1,∠COD在∠AOB内部,若∠AOC的度数未知,是否能求出∠MON的大小,若能,写出你的解答过程;若不能,说明理由.(3)如图2,∠COD在∠AOB外部(OM在OD上方,∠BOC<180°),试求出∠MON的大小.南海区2019~2020学年第一学期期末考试七年级数学参考答案与评分标准一. 选择题(本大题10小题,每小题3分,共30分)题号12345678910答案B A C A D C D C D B 二. 填空题(本大题共6小题,每小题4分,共24分)11.6.4×106 . 12.−38. 13.4 . 14.南偏东45°(或东南方向).15.34 . 16. 8a-4b .17.6或2 3.以下评分细则仅供参考三. 解答题(一)(本大题共3小题,每小题6分,共18分)18.解:原式=﹣23﹣(1﹣0.5)÷13×(﹣2)3=﹣8−12×3×(﹣8)………………………3分=﹣8+12 ………………………5分=4 ………………………6分19.解:…………………6分(每个2分,没有文字说明不扣分)从正面看从左面看从上面看20.解:设倒完以后,第一个容器中的水面离容器口有x cm,………………………1分则:π×42×(20−x)=π×62×8………………………4分解得:x=2………………………5分答:第一个容器中的水面离容器口有2 cm . ………………………6分四. 解答题(二)(本大题共3小题,每小题8分,共24分)21.解:∵(x+2)2+|y﹣1|=0,∴x=﹣2,y=1 ………………………2分原式=4xy﹣4x2﹣10xy+2y2+2x2+6xy………………………4分=2y2﹣2x2 ………………………6分把x=﹣2,y=1代入,得………………………7分原式=2﹣8=﹣6 ………………………8分22.解:(1)24÷30%=80(人).答:在这次调查中,一共抽查了80名学生.……2分(2)80-12-24-10-4=30 (人) ………………4分补全条形统计图如图所示:……5分(无计算过程扣1分)(3)1200×12+30+24+1080=1140人…………7分答:估计全校所有学生中已经养成3个或3个以上环保习惯的同学有1140人. …………8分23.解:(1)设爸爸追上乐乐用了x分钟,………………………1分依题意有280x=80x+80×5,………………………3分解得x=2.故爸爸追上乐乐用了2分钟. ………………………4分(2)设爸爸搭上乐乐到学校共骑行了s米,则………………………5分s 80−s240=10 ………………………6分解得s=1200 ………………………7分1200+280×2=1760(米)答:乐乐家离学校共1760米. ……………8分(本题两个小题均可用算术方法完成)五. 解答题(三)(本大题共2小题,每小题10分,共20分)24.解:(1)20,110 …………………4分(每空2分)(2)2+4+6+8+……+2n= n(n+1) …………………5分因为2+4+6+8+……+2n表示摆完第n次后共用去的卡片数………………………6分根据图形可知:这些卡片共有n(n+1)张,所以2+4+6+8+……+2n= n(n+1). ………………………7分(结果可以保留括号)(3)方法一:摆完第50次共用去50×(50+1)块卡片;摆完第100次共用去100×(100+1)块卡片;…………………8分从第51次至第100次所摆卡片的数量之和为:100×(100+1)-50×(50+1)…………9分=7550答:从第51次至第100次所摆卡片的数量之和7550. ………………………10分方法二:从第51次至第100次所摆卡片的数量之和为102+104+……+200 ………………8分102+104++……+200=(2+4+6+8+……+200)-(2+4+6+8+100)= 100×(100+1)-50×(50+1)………………………9分=7550答:从第51次至第100次所摆卡片的数量之和7550. ………………………10分25.解:(1)55°. ………………………2分(2)能. ………………………3分(不回答也不扣分)因为OM平分∠AOC,ON平分∠BOD,所以∠MOC=12∠AOC,∠NOD=12∠BOD,所以∠MON=∠NOD+∠DOC+∠MOC ………………………4分=12∠BOD+12∠AOC+20°=12(∠BOD+∠AOC)+20° ………………………5分=12(90°-20°)+20°=55°故答案为:55°. ………………………6分(3)因为OM平分∠AOC,ON平分∠BOD,所以∠MOC=12∠AOC,∠NOD=12∠BOD,所以∠MON=∠NOD+∠DOC-∠MOC ………………………7分=12∠BOD+20°−12∠AOC=12(90°+∠AOD)+20°−12(∠AOD+20°)………………………9分=45°+12∠AOD+20°−12∠AOD-10°=55°故答案为:55°. ………………………10分(猜测出结果给1分)。
七年级数学试题 第1页 共4页2019—2020学年度第二学期期末考试七年级数学试题注意事项:1.本试卷考试时间为100分钟,试卷满分120分.考试形式闭卷. 2.本试卷中所有试题必须作答在答题纸上规定的位置,否则不给分.3. 答题前,务必将自己的学校、班级、姓名、准考证号填写在答题纸上相应位置. 一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在答题纸相应位置上) 1.四边形的内角和为A .180°B .360°C .540°D .720°2.下列图形中,可以由其中一个图形通过平移得到的是A. B .CD .3.下列由左到右的变形中,因式分解正确的是A .21(1)(1)x x x -=+-B .22(1)21x x x +=++C .221(2)1x x x x -+=-+D .2(1)(1)1x x x +-=-4.满足不等式10x +>的最小整数解是A .1-B .0C .1D .25.已知24x x k ++是一个完全平方式,则常数k 为A .2B .-2C .4D .-46.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底16个,一个盒身与两个盒底配成一套罐头盒.现有18张白铁皮,设用x 张制作盒身、y 张制作盒底,可以使盒身和盒底正好配套,则所列方程组正确的是A .181016x y x y +=⎧⎨=⎩B .1821016x y x y +=⎧⎨⨯=⎩C .1810216x y x y +=⎧⎨=⨯⎩D .181610x y x y +=⎧⎨=⎩7.已知01()2a =-,22b -=-,2(2)c -=-,则a 、b 、c 的大小关系为A .c b a <<B .a b c <<C .b a c <<D .b c a <<七年级数学试题 第2页 共4页8. 对于有理数x ,我们规定{}x 表示不小于x 的最小整数,如{}2.23=,{}22=,{}2.52-=-,若4310x +⎧⎫=⎨⎬⎩⎭,则x 的取值可以是A .10B .20C .30D .40二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题纸相应位置上)9. 如图,直线a 、b 被直线c 所截,a ∥b ,∠1=70°,则∠2= ▲ °.10.命题“若a b =,则a b -=-”的逆命题是 ▲ . 11.太阳的半径约为700 000 000米,数据700 000 000用科学记数法表示为 ▲ . 12.计算:23()b b ÷= ▲ .13.如图,△ABC 中,∠1=∠2,∠BAC =60°,则∠APB = ▲ °.14.已知方程组123a b b c c a +=-⎧⎪+=⎨⎪+=⎩,则a b c ++= ▲ .15.计算:100920181(9)()3-⨯= ▲ .16.计算:2416(21)(21)(21)(21)1+++⋅⋅⋅++= ▲ .三、解答题(本大题共有10小题,共72分.请在答题纸指定区域内作答,解答时应写出文字说明、推理过程或演算步骤) 17.(本题满分6分)分解因式:(1)23x x -;(2)2242a a -+. 18.(本题满分6分)解方程组:2351x y x y +=⎧⎨=-⎩19.(本题满分6分)化简并求值:2(2)(21)2n n n +--,其中13n =.20.(本题满分6分)利用数轴确定不等式组2413122x x ≥-⎧⎪⎨+<⎪⎩的解集.第9题图a b1c2第13题图ABP12七年级数学试题 第3页 共4页21.(本题满分6分)如图,在方格纸上,以格点为顶点的三角形叫做格点三角形,请按要求完成下列操作: (1)将△ABC 先向右平移2个单位,再向上平移4个单位,画出平移后的△A 1B 1C 1; (2)连接AA 1、BB 1,则线段AA 1、BB 1的位置关系为 ▲ 、数量关系为 ▲ ; (3)画出△ABC 的AB 边上的中线CD 以及BC 边上的高AE .22.(本题满分6分)已知:如图,是一个形如“5”字的图形,AC ∥DE ,AB ∥CD ,∠D +∠E =180°.求证:∠A =∠E . 证明:∵ ▲( 已知 ) ∴∠A +∠C =180° ( ▲ ) ∵AC ∥DE( ▲ )∴∠ ▲ =∠D ( ▲ ) 又∠D +∠E =180° ( 已知 ) ∴∠A =∠E( ▲ )23.(本题满分8分)已知关于x 、y 的二元一次方程组23,2 6.x y m x y -=⎧⎨-=⎩(1)若方程组的解满足4x y -=,求m 的值; (2)若方程组的解满足0x y +<,求m 的取值范围.24.(本题满分8分)一家公司加工蔬菜,有粗加工和精加工两种方式.如果进行粗加工,每天可加工15吨;如果进行精加工,每天可加工5吨.该公司从市场上收购蔬菜150吨,并用14天加工完这批蔬菜.请问粗加工蔬菜和精加工蔬菜各多少吨?ABC AB C EDF七年级数学试题 第4页 共4页25.(本题满分8分)小军、小华、小峰三人身上各有一些1元和5角的硬币.小军:我有1元和5角的硬币共13枚,总币值为9元. 小华:我有1元和5角的硬币共13枚,总币值小于8.5元. 小峰:我有1元和5角的硬币若干,这些硬币的总币值为4元. 这三人身上哪一个的5角硬币最多呢?请写出解答过程.26.(本题满分12分)三角形内角和定理告诉我们:三角形三个内角的和等于180°.如何证明这个定理呢?我们知道,平角是180°,要证明这个定理就是把三角形的三个内角转移到一个平角中去.请根据如下条件,证明定理. 【定理证明】已知:△ABC (如图①). 求证:∠A +∠B +∠C =180°. 【定理推论】如图②,在△ABC 中,有∠A +∠B +∠ACB =180°,点D 是BC 延长线上一点,由平角的定义可得∠ACD +∠ACB =180°,所以∠ACD = ▲ .从而得到三角形内角和定理的推论:三角形的外角等于与它不相邻的两个内角的和.【初步运用】如图③,点D 、E 分别是△ABC 的边AB 、AC 延长线上一点. (1)若∠A =80°,∠DBC =150°,则∠ACB = ▲ °; (2)若∠A =80°,则∠DBC +∠ECB = ▲ °. 【拓展延伸】如图④,点D 、E 分别是四边形ABPC 的边AB 、AC 延长线上一点. (1)若∠A =80°,∠P =150°,则∠DBP +∠ECP = ▲ °;(2)分别作∠DBP 和∠ECP 的平分线,交于点O ,如图⑤,若∠O =50°,则∠A 和∠P的数量关系为 ▲ ; (3)分别作∠DBP 和∠ECP 的平分线BM 、CN ,如图⑥,若∠A =∠P ,求证:BM ∥CN .图④B ACDE P 图⑤B ACDE P O图⑥B ACD EP MN B A C D 图② 图③B A CD EA C 图①七年级数学试题 第5页 共4页七年级数学参考答案与评分细则一、选择题(每小题3分,共24分)1.B 2.C 3.A 4.B 5.C6.B7.D8.B二、填空题(每小题3分,共24分)9. 7010.若a b -=-,则a b = 11.8710⨯12.5b 13.120 14.2 15.1-16.322三、解答题 17.解:(1)23x x -=(3)x x -······································································ 3分(2)2242a a -+=22(1a -) ······························································ 6分18.解:23x y =-⎧⎨=⎩······················································································· 6分(x 、y 的值作对一个得3分)19.解:原式=32n - ················································································· 4分当13n =时,原式=1- ··········································································· 6分20.解: 2413122x x ≥-⎧⎪⎨+<⎪⎩①② 由①得2x ≥- ················································································ 1分 由②得1x < ·················································································· 2分 在数轴上表示不等式①、②的解集·························4分所以,不等式组的解集是21x -≤< ··············6分21.解:(1)如图 ·················································2分(2)AA 1∥BB 1、AA 1=BB 1·········································· 4分 (3)如图·················································6分ABC A 1B 1C 1D┐E七年级数学试题 第6页 共4页22.解: AB ∥CD ················································································································· 1分(两直线平行,同旁内角互补) ········································ 2分 (已知) ······································································ 3分∠C (两直线平行,内错角相等) ··········································· 5分(等角的补角相等) ······················································· 6分23.解:2326x y m x y -=⎧⎨-=⎩①②(1)方法一:由题得4x y -=③③-②得 2y =- ··········································································· 1分 把2y =-代人②得 2x = ·································································· 2分把22x y =⎧⎨=-⎩代入①解得 2m = ··············································································· 4分方法二:①+②得 3336x y m -=+即2x y m -=+ ··············································································· 2分 由③得 24m +=解得 2m = ··············································································································· 4分 (2)①-②得 36x y m +=- ··································································· 6分又0x y +< 所以360m -<解得2m < ···················································································· 8分24.解:设粗加工蔬菜为x 吨,精加工蔬菜为y 吨 ············································ 1分得15014155x y x y +=⎧⎪⎨+=⎪⎩ ············································································· 4分解得12030x y =⎧⎨=⎩················································································ 7分答:粗加工蔬菜为120吨,精加工蔬菜为30吨 ···································· 8分25.解:设小军身上有1元硬币x 枚,5角硬币y 枚得 130.59x y x y +=⎧⎨+=⎩解得 58x y =⎧⎨=⎩·················································································· 2分所以,小军身上有5角硬币8枚设小华身上有5角硬币m 枚七年级数学试题 第7页 共4页得 130.58.5m m -+<, 解得 9m >所以,小军身上有5角硬币至少10枚 ················································· 4分 设小峰身上有1元硬币a 枚,5角硬币b 枚 得 0.54a b +=82b a =- 所以,小峰身上有5角硬币不超过8枚(写出不超过6或不超过8的正整数解也可以) ··································· 6分 综上所述,可得小华身上5角硬币最多 ··············································· 8分26.【定理证明】证明:方法一:过点A 作直线MN ∥BC ,如图所示∴∠MAB =∠B ,∠NAC =∠C ∵∠MAB +∠BAC +∠NAC =180°∴∠BAC +∠B +∠C =180° ······························································ 3分 方法二:延长BC 到点D ,过点C 作CE ∥AB ,如图所示 ∴∠A =∠ACE ,∠B =∠ECD ∵∠ACB +∠ACE +∠ECD =180° ∴∠A +∠B +∠ACB =180° ······························································ 3分【定理推论】∠A +∠B ·················································································································· 4分 【初步运用】(1)70° ························································································ 5分 (2)260° ······················································································ 6分 【拓展延伸】(1)230° ······················································································ 7分 (2)∠P =∠A +100° ······································································· 9分 (3)证明:延长BP 交CN 于点Q ∵BM 平分∠DBP ,CN 平分∠ECP ∴2DBP MBP ∠=∠2ECP NCP ∠=∠∵DBP ECP A BPC ∠+∠=∠+∠A BPC ∠=∠∴222MBP NCP A BPC BPC ∠+∠=∠+∠=∠ ∴BPC MBP NCP ∠=∠+∠ ∵BPC PQC NCP ∠=∠+∠ ∴MBP PQC ∠=∠∴BM ∥CN ············································································································· 12分BACMNA CDEB AC DE PMNQ。
2019-2020学年七年级数学上期末复习试卷(第1-3章)含答案【年12月4日】初一( )班 学号: 姓名: 成绩: 一、选择题(每小题3分,共30分,请将唯一正确答案的序号填在下面相应的表格中) 1. 我国以年11月1日零时为标准时点,进行了第六次全国人口普查. 查得常住人口约为12700000人,将12700000用科学记数法可表示为( * )A. 127510⨯B. 12.7610⨯C. 1.27710⨯D. 1.27810⨯2. 9442y x π的系数与次数分别为( * )A. 94,7B. π94,6C. π4,6D. π94,43. 对方程13122=--x x 去分母正确的是( * )A. ()61223=--x xB. ()11223=--x xC. 6143=--x xD. ()112=--x x4. 有理数3.645精确到百分位的近似数为( * )A. 3.6B. 3.64C. 3.7D. 3.65 5. 已知一个多项式与x x 932+的和等于1432-+x x ,则这个多项式是( * )A. 15--xB. 15+xC. -x 13 1D.11362-+x x6. 若4=x 是关于x 的方程42=-a x的解,则a 的值为( * )A. -6B. 2C. 16D. -27. 一个长方形的周长是26cm ,若这个长方形的长减少1cm ,宽增加2cm ,就可以成为一个正方形,则长方形的长是( * )A. 5cmB. 7cmC.8cmD. 9cm 8.甲比乙大15岁,5年前甲的年龄是乙的两倍,乙现在的年龄是( * )A.10岁B.15岁C.20岁D.30岁9.关于x 的方程(2k -1)x 2-(2k +1)x +3=0是一元一次方程,则k 值为( * )A.12 B.21- C.0 D.110.正方形ABCD 在数轴上的位置如图所示,点A 、D 对应的数分别为0和-1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为1;则连续翻转次后,数轴上数所对应的点是( * ) A.点A B.点B C.点C D.点D二、填空题(每小题3分,共18分) 11.代数式2245--x x 的值为6,则2522--x x 的值为 .12.x 的三倍减去7,等于它的两倍加上5,用方程表示为 .13.若b a x 325-与5453+-y b a 是同类项,则=x __________,=y __________.14. 一个两位数,十位上的数字是m ,个位上的数字比十位上的数字多1,则这个两位数是(用m 表示). 15. 若34+x 与53互为倒数,则x = . 16. 下列图形都是由同样大小的平行四边形按一定的规律组成。
阶段综合测试一(月考一)(第一章)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷30分,第Ⅱ卷70分,共100分,考试时间100分钟.第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1. -的倒数是()A.-B.C.7D.-72.下列各数中:3,0,-5,0.48,-(-7),-|-8|,(-4)2,-2.9,(-3.1)3,负数有()A.1个B.2个C.3个D.4个3.在-4,2,-1,3这四个数中,比-2小的数是()A.-4B.2C.-1D.34.冬季某天我国三个城市的最高气温分别是-10 ℃,1 ℃,-7 ℃,它们任意两城市中最大的温差是()A.11 ℃B.17 ℃C.8 ℃D.3 ℃5.不改变原式的值,将6-(+3)-(-7)+(-2)写成省略加号的形式是()A.-6-3+7-2B.6-3-7-2C.6-3+7-2D.6+3-7-26.把数38490按四舍五入法取近似值并精确到千位的结果是()A.38B.380000C.3.8×104D.3.9×1047.计算÷-×(-5)的结果为()A.1B.5C.D.8.如图QZ1-1,在生产图纸上通常用φ30来表示轴的加工要求,这里300表示直径是300 mm,+0.2和--0.5是指直径在(300-0.5)mm到(300+0.2)mm之间的产品都属于合格产品.现加工一批轴,尺寸要求是,请依次检验直径为44.97 mm和45.04 mm的两根轴是否合格()φ4-图QZ1-1A.合格,合格B.不合格,不合格C.合格,不合格D.不合格,合格9.实数a,b在数轴上对应的点的位置如图QZ1-2所示,计算|a-b|的结果为()图QZ1-2A.a+bB.a-bC.b-aD.-a-b10.一个纸环链,纸环按红、黄、绿、蓝、紫的顺序重复排列,截去其中的一部分,剩下部分如图QZ1-3所示,则被截去部分纸环的个数可能是()图QZ1-3A.2016B.2017C.2018D.2019请将选择题答案填入下表:第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11.-2017的相反数是.12.A,B两地相距6980000 m,用科学记数法表示为m.13.已知一个数的绝对值是4,则这个数是.14.在数轴上,点A所表示的数为2,那么到点A的距离等于3的点所表示的数是.15.若(a-1)2+|b+2|=0,则a+b=.16.定义一种新运算:x*y=,如:2*1==2,则(4*2)*(-1)=.三、解答题(共52分)17.(4分)在数轴上表示下列各数:0,-4.2,3,-2,+7,1,并用“<”号连接.图QZ1-418.(6分)计算:(1)(-22)×(-3)2+(-32)÷4;(2)-×12;(3)360÷4-(-6)2×[2-(-3)].19.(4分)小强有5张写着不同数字的卡片:-1-80-3+4他想从中取出2张卡片,使这2张卡片上的数字乘积最大.小强应该如何抽取?最大的乘积是多少?20.(6分)某个体服装店老板以每件32元的价格购进30件连衣裙,针对不同的顾客,30件连衣裙的售价不完全相同,若以每件47元为标准,将超过的钱数记为正,不足的钱数记为负,记录结果如下表所示:该服装店在售完这30件连衣裙后,赚了多少钱?21.(6分)计算6÷-时,方方同学的计算过程如下:原式=6÷-+6÷=-12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.22.(6分)若|a|=2,b=-5,c是最大的负整数,求a+b-c的值.23.(10分)一只小虫从某点A出发在一直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬行的各段路程依次为(单位:cm):+5,-3,+10,-8,-6,+12,-10.(1)小虫最后是否回到出发点A?(2)小虫离开出发点最远是多少厘米?(3)在爬行过程中,如果每爬行1 cm奖励一粒芝麻,则小虫一共得到多少粒芝麻?24.(10分)(1)计算1+2-3-4,5+6-7-8,9+10-11-12的值;(2)观察上面三个式子的结果,用你观察出的规律计算:1+2-3-4+5+6-7-8+9+10-11-12+…+2017+2018-2019-2020.阶段综合测试一(月考一)1.D2.D3.A4.A5.C6.C7.A8.C9.C10.C11.201712.6.98×10613.±414.-1或515.-116.017.解:在数轴上表示各数如图所示.用“<”号连接为:-4.2<-2<0<1<3<+7.18.解:(1)原式=-4×9-8=-36-8=-44.(2)-×12=6+10-7=9.(3)360÷4-(-6)2×[2-(-3)]=90-36×(2+3)=90-36×5=90-180=-90.19.解:(1)小强应该取-8,-3.-8×(-3)=24.答:小强应该取-8,-3,最大的乘积是24.20解:∵30-7-6-3-4-5=5(件),∴7×(47+3)+6×(47+2)+3×(47+1)+5×47+4×(47-1)+5×(47-2) =350+294+144+235+184+225=1432(元).∵30×32=960(元),∴1432-960=472(元),∴该服装店售完这30件连衣裙后,赚了472元.21.解:方方的计算过程不正确.正确的计算过程如下:原式=6÷-=6÷-=6×(-6)=-36.22解:∵|a|=2,c是最大的负整数,∴a=±2,c=-1.(1)当a=2,b=-5,c=-1时,a+b-c=2+(-5)-(-1)=-2.(2)当a=-2,b=-5,c=-1时,a+b-c=-2+(-5)-(-1)=-6.23.解:(1)因为+5-3+10-8-6+12-10=0,所以小虫最后回到出发点A.(2)第一次爬行距离出发点是5 cm,第二次爬行距离出发点是5-3=2(cm),第三次爬行距离出发点是2+10=12(cm),第四次爬行距离出发点是12-8=4(cm),第五次爬行距离出发点是|4-6|=|-2|=2(cm),第六次爬行距离出发点是-2+12=10(cm),第七次爬行距离出发点是10-10=0(cm),从上面可以看出小虫离开出发点最远是12 cm.(3)小虫爬行的总路程为:|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=5+3+10+8+6+12+10=54(cm).所以小虫一共得到54粒芝麻.24.解:(1)1+2-3-4=-4,5+6-7-8=-4,9+10-11-12=-4.(2)1+2-3-4+5+6-7-8+9+10-11-12+…+2017+2018-2019-2020=(1+2-3-4)+(5+6-7-8)+(9+10-11-12)+…+(2017+2018-2019-2020)=-4+(-4)+…+(-4)=-4×505 =-2020.。
2019-2020学年七年级(上)期末数学试卷一.选择题(共10小题)1.某年,四个国家的服务出口额比上年的增长率如下:美国中国英国意大利﹣3.4%2.8%﹣1.3%5.0%这一年服务出口额增长率最低的是()A.美国B.中国C.英国D.意大利2.﹣2的倒数为()A.B.C.﹣2D.23.下列运算正确的是()A.3x 2﹣2x 2=x 2B.2m ﹣3m =﹣1C.a 2b ﹣ab 2=0D.3a +2a =5a 24.如图,把一个蛋糕分成n 等份,要使每份中的角度是40°,则n的值为()A.5B.6C.8D.95.将式子(﹣20)+(+3)﹣(﹣5)﹣(+7)省略括号和加号后变形正确的是()A.20﹣3+5﹣7B.﹣20﹣3+5+7C.﹣20+3+5﹣7D.﹣20﹣3+5﹣76.下列图形中,不是正方体展开图的是()A.B.C.D.7.已知等式3x =2y +1,则下列变形不一定成立的是()A.3x ﹣2y =1B.3x ﹣m=2y +1﹣m C.3mx =2my +1D.x =y +8.某人工作一年的报酬是年终给他一件衣服和10枚银币,但他干满8个月就决定不再继续干了,结账时,老板给了他一件衣服和2枚银币.设这件衣服值x 枚银币,依题意列方程为()A.12(x +2)=x +10B.8(x +2)=x +10C.D.9.观察下面的三行数:﹣2,4,﹣8,16,﹣32,64,…,a n,…;0,6,﹣6,18,﹣30,66,…,b n,…;﹣3,3,﹣9,15,﹣33,63,…,c n,…;根据以上规律,若某一列三个数分别为a n,b n,c n,则a n,b n,c n之间满足的数量关系正确的是()A.a n=b n+c n+1B.2a n+1=b n+c nC.2a n﹣3=b n+c n D.a n﹣1=b n﹣c n10.如图,把一长方形纸片ABCD的一角沿AE折叠,点D的对应点D'落在∠BAC内部.若∠CAE=∠BAD'=α,则∠DAE的度数为()A.2αB.90°﹣3αC.30°+D.45°﹣二.填空题(共6小题)11.化简(计算)﹣(+3)=,|﹣2|=,28°56′+8°24′=.12.请写出一个系数是﹣2,次数是3的单项式..13.代数式3a﹣2与6﹣a互为相反数,则a的值为.14.如图,货轮O在航行过程中,发现灯塔A在它的南偏西50°的方向上,若客轮B所处的位置与货轮O的连线OB恰好平分∠AOM,则客轮B相对货轮O的方位是(填方位角).15.如果一个数的实际值为m,测量值为n,我们把|m﹣n|称为绝对误差,把称为相对误差.例如,某个零件的实际长度为10cm,测量得9.8cm,那么测量的绝对误差为0.2cm,相对误差为0.02.若某个零件测量所产生的相对误差为0.05,则该零件的测量值与实际值的比=16.已知A,B,C,D四个点在直线l上依次排列,C为AD的中点,BC﹣AB=AD,则的值为.三.解答题(共8小题)17.计算.(1)3×(﹣2)+(﹣10)+5(2)(﹣)×|﹣6|+×(﹣4)218.解方程.(1)2(x+1)=6(2)﹣1=19.先化简,再求值:﹣3x2y+[4xy﹣2(3xy﹣2x2y)+xy],其中x=﹣3,y=2.20.如图,已知平面内有A,B,C,D四点,请按要求完成下列问题.(1)连接AB,作射线CD,交AB于点E,射线EF平分∠CEB;(2)在(1)的条件下,若∠AEC=100°,求∠CEF的补角的度数.21.已知线段AB,反向延长线段AB到C,使BC=AB,D为BC的中点,E为BD的中点.(1)①补全图形;②若AB=4,则AE=(直接写出结果).(2)若AE=2,求AC的长.22.某商店销售A,B两种商品,每件A商品的售价比B商品少10元.购买5件A商品比购买3件B商品多10元.设每件A商品的售价为x元.(1)每件B商品的售价为元(用含x的式子表示);(2)求A,B商品每件的售价各多少元?(3)元旦期间,该商店决定对A,B两种商品进行促销活动,具体办法是:方案一:购买A商品超出15件后,超出部分五折销售,不超出部分不享受任何折扣;B 商品无论多少一律九折.方案二:无论买多少,A,B商品一律八折.若小红打算到该商店购买m件A商品和20件B商品,选择哪种方案购买更实惠(两种优惠方案不能同时享受)?23.已知∠AOB=100°,∠COD=40°,OE,OF分别平分∠AOD,∠BOD.(1)如图1,当OA,OC重合时,求∠EOF的度数;(2)若将∠COD的从图1的位置绕点O顺时针旋转,旋转角∠AOC=α,且0°<α<90°.①如图2,试判断∠BOF与∠COE之间满足的数量关系并说明理由.②在∠COD旋转过程中,请直接写出∠BOE,∠COF,∠AOC之间的数量关系.24.数轴上A,B,C三点对应的数a,b,c满足(a+40)2+|b+10|=0,B为线段AC的中点.(1)直接写出A,B,C对应的数a,b,c的值.(2)如图1,点D表示的数为10,点P,Q分别从A,D同时出发匀速相向运动,点P 的速度为6个单位/秒,点Q的速度为1个单位/秒.当点P运动到C后迅速以原速返回到A又折返向C点运动;点Q运动至B点后停止运动,同时P点也停止运动.求在此运动过程中P,Q两点相遇点在数轴上对应的数.(3)如图2,M,N为A,C之间两点(点M在N左边,且它们不与A,C重合),E,F 分别为AN,CM的中点,求的值.参考答案与试题解析一.选择题(共10小题)1.某年,四个国家的服务出口额比上年的增长率如下:美国中国英国意大利﹣3.4%2.8%﹣1.3%5.0%这一年服务出口额增长率最低的是()A.美国B.中国C.英国D.意大利【分析】比较各国出口额比上年的增长率得结论.【解答】解:因为﹣3.4%<﹣1.3%<2.8%<5.0%,所以增长率最低的国家是美国.故选:A .2.﹣2的倒数为()A.B.C.﹣2D.2【分析】乘积是1的两数互为倒数.【解答】解:﹣2的倒数是﹣.故选:B .3.下列运算正确的是()A.3x 2﹣2x 2=x 2B.2m ﹣3m =﹣1C.a 2b ﹣ab 2=0D.3a +2a =5a 2【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变分别进行计算即可.【解答】解:A 、3x 2﹣2x 2=x 2,故原题计算正确;B 、2m ﹣3m =﹣m ,故原题计算错误;C 、a 2b 和ab 2不是同类项,不能合并,故此选项错误;D 、3a +2a =5a ,故原题计算错误;故选:A .4.如图,把一个蛋糕分成n 等份,要使每份中的角度是40°,则n 的值为()A.5B.6C.8D.9【分析】根据周角等于360度除以每份的度数即可求出n的值.【解答】解:根据题意,得n=360°÷40°=9.故选:D.5.将式子(﹣20)+(+3)﹣(﹣5)﹣(+7)省略括号和加号后变形正确的是()A.20﹣3+5﹣7B.﹣20﹣3+5+7C.﹣20+3+5﹣7D.﹣20﹣3+5﹣7【分析】先把加减法统一成加法,再省略括号和加号.【解答】解:(﹣20)+(+3)﹣(﹣5)﹣(+7)=﹣20+3+5﹣7.故选:C.6.下列图形中,不是正方体展开图的是()A.B.C.D.【分析】根据正方体展开图的11种形式对各小题分析判断即可得解.【解答】解:A、C、D可组成正方体;B不能组成正方体.故选:B.7.已知等式3x=2y+1,则下列变形不一定成立的是()A.3x﹣2y=1B.3x﹣m=2y+1﹣mC.3mx=2my+1D.x=y+【分析】利用等式的性质对每个式子进行变形即可找出答案.【解答】解:A、等式3x=2y+1移项,得3x﹣2y=1,等式仍然成立;故本选项不符合题意;B、等式3x=2y+1的两边同时减去m,得3x﹣m=2y+1﹣m,该等式仍然成立;故本选项不符合题意;C、等式3x=2y+1的两边同时乘以m,得3mx=2my+m,该等式不成立;故本选项符合题意;D、等式3x=2y+1的两边同时除以3,得x=y+,该等式仍然成立;故本选项不符合题意;故选:C.8.某人工作一年的报酬是年终给他一件衣服和10枚银币,但他干满8个月就决定不再继续干了,结账时,老板给了他一件衣服和2枚银币.设这件衣服值x枚银币,依题意列方程为()A.12(x+2)=x+10B.8(x+2)=x+10C.D.【分析】设这件衣服值x枚银币,根据每个月的薪水相同,即可得出关于x的一元一次方程,此题得解.【解答】解:设这件衣服值x枚银币,依题意,得:=.故选:D.9.观察下面的三行数:﹣2,4,﹣8,16,﹣32,64,…,a n,…;0,6,﹣6,18,﹣30,66,…,b n,…;﹣3,3,﹣9,15,﹣33,63,…,c n,…;根据以上规律,若某一列三个数分别为a n,b n,c n,则a n,b n,c n之间满足的数量关系正确的是()A.a n=b n+c n+1B.2a n+1=b n+c nC.2a n﹣3=b n+c n D.a n﹣1=b n﹣c n【分析】根据题目中的数字,可以发现数字的变化特点,从而可以写出a n,b n,c n,从而可以得到a n,b n,c n之间满足的数量关系.【解答】解:由题目中的数字可知,a n=(﹣2)n+1,b n=(﹣2)n+1+2,c n=(﹣2)n+1﹣1,则2a n+1=b n+c n,故选:B.10.如图,把一长方形纸片ABCD的一角沿AE折叠,点D的对应点D'落在∠BAC内部.若∠CAE=∠BAD'=α,则∠DAE的度数为()A.2αB.90°﹣3αC.30°+D.45°﹣【分析】由矩形的性质和折叠的性质即可得出答案.【解答】解:∵四边形ABCD是矩形,∴∠BAD=90°,由折叠的性质得:∠DAE=∠D'AE=(90°﹣∠BAD')=45°﹣;故选:D.二.填空题(共6小题)11.化简(计算)﹣(+3)=﹣3,|﹣2|=2,28°56′+8°24′=37°20′.【分析】根据绝对值的意义,度分秒的换算:1度=60分,即1°=60′,1分=60秒,1′=60″.即可求解.【解答】解:﹣(+3)=﹣3,|﹣2|=2,28°56′+8°24′=36°80′=37°20′.故答案为﹣3、2、37°20′.12.请写出一个系数是﹣2,次数是3的单项式.﹣2a3.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.依此写出一个系数是﹣2,次数是3的单项式.【解答】解:系数是﹣2,次数是3的单项式有:﹣2a3.(答案不唯一)故答案为:﹣2a3.13.代数式3a﹣2与6﹣a互为相反数,则a的值为﹣2.【分析】利用相反数的性质列出方程,求出方程的解即可得到a的值.【解答】解:因为代数式3a﹣2与6﹣a互为相反数,所以3a﹣2+6﹣a=0,解得:a=﹣2,故答案为:﹣2.14.如图,货轮O在航行过程中,发现灯塔A在它的南偏西50°的方向上,若客轮B所处的位置与货轮O的连线OB恰好平分∠AOM,则客轮B相对货轮O的方位是北偏西65°(填方位角).【分析】由∠AON=50°知∠AOM=130°,再由OB平分∠AOM知∠BOM=∠AOM=65°,继而根据方位角概念即可得出答案.【解答】解:∵∠AON=50°,∴∠AOM=180°﹣∠AON=130°,∵OB平分∠AOM,∴∠BOM=∠AOM=65°,∴客轮B相对货轮O的方位是北偏西65°,故答案为:北偏西65°.15.如果一个数的实际值为m,测量值为n,我们把|m﹣n|称为绝对误差,把称为相对误差.例如,某个零件的实际长度为10cm,测量得9.8cm,那么测量的绝对误差为0.2cm,相对误差为0.02.若某个零件测量所产生的相对误差为0.05,则该零件的测量值与实际值的比=0.95或1.05【分析】由相对误差的定义得出=0.05,再根据绝对值的化简法则及分式的除法运算法则计算即可.【解答】解:∵相对误差为0.05∴=0.05∴=0.05或=﹣0.05∴1﹣=0.05或1﹣=﹣0.05∴=0.95或1.05故答案为:0.95或1.05.16.已知A,B,C,D四个点在直线l上依次排列,C为AD的中点,BC﹣AB=AD,则的值为3.【分析】在一条直线或线段上的线段的加减运算和倍数运算,首先明确线段间的相互关系,最好结合几何图形,再根据题意计算即可.【解答】解:∵C为AD的中点,∴AC=AD,即AB+BC=AD,∴2AB+2BC=AD,又∵BC﹣AB=AD,∴6BC﹣6AB=AD.∴2AB+2BC=6BC﹣6AB,即BC=2AB,∴AD=6AB,∴=3,故答案为:3.三.解答题(共8小题)17.计算.(1)3×(﹣2)+(﹣10)+5(2)(﹣)×|﹣6|+×(﹣4)2【分析】(1)先算乘法,后算加法;同级运算,应按从左到右的顺序进行计算;(2)先算乘方,再算乘法,最后算加减;如果有括号和绝对值,要先做括号和绝对值内的运算.注意乘法分配律的运用.【解答】解:(1)3×(﹣2)+(﹣10)+5=﹣6﹣10+5=﹣11;(2)(﹣)×|﹣6|+×(﹣4)2=(﹣)×6+×16=4﹣1+8=11.18.解方程.(1)2(x+1)=6(2)﹣1=【分析】(1)根据一元一次方程的解法即可求出答案;(2)根据一元一次方程的解法即可求出答案.【解答】解:(1)∵2(x+1)=6,∴2x+2=6,∴x=2;(2)∵﹣1=,∴3(3x+1)﹣6=2(x﹣5),∴9x+3﹣6=2x﹣10,∴9x﹣3=2x﹣10,∴9x﹣2x=3﹣10,∴7x=﹣7,∴x=﹣1;19.先化简,再求值:﹣3x2y+[4xy﹣2(3xy﹣2x2y)+xy],其中x=﹣3,y=2.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=﹣3x2y+4xy﹣6xy+4x2y+xy=x2y﹣xy,当x=﹣3,y=2时,原式=18+6=24.20.如图,已知平面内有A,B,C,D四点,请按要求完成下列问题.(1)连接AB,作射线CD,交AB于点E,射线EF平分∠CEB;(2)在(1)的条件下,若∠AEC=100°,求∠CEF的补角的度数.【分析】(1)根据直线、射线、线段的特点以及线段的延长线,角平分线的定义回答即可.(2)根据补角的定义,角平分线的定义解答即可.【解答】解:(1)如图所示:(2)∵∠AEC=100°,射线EF平分∠CEB,∴∠CEF==,∴∠CEF的补角的度数为:180°﹣40°=140°.21.已知线段AB,反向延长线段AB到C,使BC=AB,D为BC的中点,E为BD的中点.(1)①补全图形;②若AB=4,则AE=(直接写出结果).(2)若AE=2,求AC的长.【分析】(1)由尺规作图画出符合题意的图,线段的中点,线段的和差倍分计算出AE 的长为;(2)由线段的中点,线段的和差倍分,方程计算出AC的长为8.【解答】解:(1)依题意得:①如图所示:②∵AB=4,BC=AB,∴BC=10,又∵D为BC的中点,∴DB===5,又∵E为BD的中点,∴BE===,又∵AE=AB﹣BE,∴AE=4﹣=,故答案为;(2)设BE=x,则BD=2x,BC=4x,∵BC=AB,∴4x=,解得:x=,又∵AD=DE﹣AE∴AD=﹣2=,又∵AC=AD+CD,∴AC=2×+=8,22.某商店销售A,B两种商品,每件A商品的售价比B商品少10元.购买5件A商品比购买3件B商品多10元.设每件A商品的售价为x元.(1)每件B商品的售价为(x+10)元(用含x的式子表示);(2)求A,B商品每件的售价各多少元?(3)元旦期间,该商店决定对A,B两种商品进行促销活动,具体办法是:方案一:购买A商品超出15件后,超出部分五折销售,不超出部分不享受任何折扣;B 商品无论多少一律九折.方案二:无论买多少,A,B商品一律八折.若小红打算到该商店购买m件A商品和20件B商品,选择哪种方案购买更实惠(两种优惠方案不能同时享受)?【分析】(1)根据每件A商品的售价比B商品少10元,可得答案;(2)根据购买5件A商品比购买3件B商品多10元,列方程求解即可;(3)先分m≤15和m>15,表示出两种购买方案所需要的费用,可得当m≤15时,应该按方案二购买,选择方案二购买更实惠;当m>15时,分别列不等式和方程,得出m 的值即可作出判断.【解答】解:(1)每件B商品的售价为(x+10)元;故答案为:(x+10);(2)根据题意得,5x=3(x+10)+10,解得x=20,∴x+10=30;答:A,B商品每件的售价分别为20元,30元;(3)当m≤15时,方案一:20m+30×20×90%=20m+540;当m>15时,方案一:15×20+(m﹣15)×20×50%+30×20×90%=10m+690;方案二:(20m+30×20)×80%=16m+480,当m≤15时,20m+540>16m+480∴应该按方案二购买,选择方案二购买更实惠;当m>15时,10m+690>16m+480时,解得m<35;10m+690<16m+480时,解得m>35;10m+690=16m+480时,解得m=35,∴当m<35时,按方案二购买;当m=35时,两种方案都一样;当m>35时,按方案一购买.23.已知∠AOB=100°,∠COD=40°,OE,OF分别平分∠AOD,∠BOD.(1)如图1,当OA,OC重合时,求∠EOF的度数;(2)若将∠COD的从图1的位置绕点O顺时针旋转,旋转角∠AOC=α,且0°<α<90°.①如图2,试判断∠BOF与∠COE之间满足的数量关系并说明理由.②在∠COD旋转过程中,请直接写出∠BOE,∠COF,∠AOC之间的数量关系.【分析】(1)由题意得出∠AOD=∠COD=40°,∠BOD=∠AOB+∠COD=140°,由角平分线定义得出∠EOD=∠AOD=20°,∠DOF=∠BOD=70°,即可得出答案;(2)①由角平分线定义得出∠EOD=∠AOE=∠AOD=20°+α,∠BOF=∠BOD =70°+α,求出∠COE=∠AOE﹣∠AOC=20°﹣α,即可得出答案;②由①得∠EOD=∠AOE=20°+α,∠DOF=∠BOF=70°+α,当∠AOC<40°时,求出∠COF=∠DOF﹣∠COD=30°+α,∠BOE=∠BOD﹣∠EOD=∠AOB+∠COD+α﹣∠EOD=120°+α,即可得出答案;当40°<∠AOC<90°时,求出∠COF=∠DOF+∠DOC=150°﹣α,∠BOE=∠BOD﹣∠DOE=120°+,即可得出答案.【解答】解:(1)∵OA,OC重合,∴∠AOD=∠COD=40°,∠BOD=∠AOB+∠COD=100°+40°=140°,∵OE平分∠AOD,OF平分∠BOD,∴∠EOD=∠AOD=×40°=20°,∠DOF=∠BOD=×140°=70°,∴∠EOF=∠DOF﹣∠EOD=70°﹣20°=50°;(2)①∠BOF+∠COE=90°;理由如下:∵OE平分∠AOD,OF平分∠BOD,∴∠EOD=∠AOE=∠AOD=(40°+α)=20°+α,∠BOF=∠BOD=(∠AOB+∠COD+α)=(100°+40°+α)=70°+α,∴∠COE=∠AOE﹣∠AOC=20°+α﹣α=20°﹣α,∴∠BOF+∠COE=70°+α+20°﹣α=90°;②由①得:∠EOD=∠AOE=20°+α,∠DOF=∠BOF=70°+α,当∠AOC<40°时,如图2所示:∠COF=∠DOF﹣∠COD=70°+α﹣40°=30°+α,∠BOE=∠BOD﹣∠EOD=∠AOB+∠COD+α﹣∠EOD=100°+40°+α﹣(20°+α)=120°+α,∴∠BOE+∠COF﹣∠AOC=120°+α+30°+α﹣α=150°,当40°<∠AOC<90°时,如图3所示:∠COF=∠DOF+∠DOC=(360°﹣140°﹣α)+40°=150°﹣α,∠BOE=∠BOD﹣∠DOE=140°+α﹣(20°+α)=120°+,∴∠COF+∠AOC﹣∠BOE=150°﹣+α﹣(120°+)=30°;综上所述,∠BOE,∠COF,∠AOC之间的数量关系为∠BOE+∠COF﹣∠AOC=150°或∠COF+∠AOC﹣∠BOE=30°.24.数轴上A,B,C三点对应的数a,b,c满足(a+40)2+|b+10|=0,B为线段AC的中点.(1)直接写出A,B,C对应的数a,b,c的值.(2)如图1,点D表示的数为10,点P,Q分别从A,D同时出发匀速相向运动,点P 的速度为6个单位/秒,点Q的速度为1个单位/秒.当点P运动到C后迅速以原速返回到A又折返向C点运动;点Q运动至B点后停止运动,同时P点也停止运动.求在此运动过程中P,Q两点相遇点在数轴上对应的数.(3)如图2,M,N为A,C之间两点(点M在N左边,且它们不与A,C重合),E,F 分别为AN,CM的中点,求的值.【分析】(1)根据(a+40)2+|b+10|=0,可求出a、b的值,B为线段AC的中点.进而可求出c的值;(2)分两种情况进行解答,一种是在A、D之间首次相遇,二是点P到C后返回追及Q 相遇,设运动时间,根据相遇、追及问题数量关系列方程求出时间,进而求出相应时所对应的数;(3)根据线段的中点的意义,用中点线段EF表示AC后即可得出答案.【解答】解:(1)∵(a+40)2+|b+10|=0,∴a=﹣40,b=﹣10,∵B为线段AC的中点,∴=﹣10,∴c=20,即:a=﹣40,b=﹣10,c=20;(2)如图1,设运动的时间为t秒,①当P与Q第一次相遇时,有6t+t=10﹣(﹣40),解得,t=,此时相遇点对应的数为10﹣=;②当点P到C返回追上点Q时,有6t﹣60=t+10,解得,t=14,此时相遇点对应的数为10﹣14=﹣4,答:在此运动过程中P,Q两点相遇点在数轴上对应的数为﹣4或;(3)如图2,∵E,F分别为AN,CM的中点,∴AN=2EN,CM=2MF,∴AC=2EN+2MF﹣MN∴====2,。
2019-2020年七年级数学上第一章丰富的图形世界章末综合检测试卷含答案一、选择题(每小题3分,共30分)1.在铅球、西瓜、铁饼、标枪、易拉罐、课本、暖气管等物体中,形状类似于圆柱的有()A.1个B.2个C.3个D.4个2.下列图形,不是柱体的是()3.下面几何体的截面不可能为圆的是( )A.圆柱B.圆锥 C.棱柱 D.球4.圆锥侧面展开图是()5由两块大小不同的正方体搭成如图1-1的几何体,那么从上面看这个图形时,看到的图形是( )图1-16.用一个平面去截一个几何体,得到的截面是四边形,则这个几何体可能是()A.圆锥B.圆柱C.球体D.以上都有可能7.有三块积木,每一块的各面都涂有不同的颜色,三块的涂法完全相同,现把它们摆放成不同的位置(如图1-2),请你根据图形判断涂成绿色一面的对面的颜色是()图1-2A.白色B.红色 C.黄色 D.黑色8.分别从正面、左面、上面看一个几何体时,看到的图形依次是三角形、三角形、长方形,则这个几何体是()A.三棱柱B.四棱锥C.圆柱D.圆锥9.把如图1-3的三角形绕它的最长边旋转一周,得到的几何体为图中的()图1-310.用一些大小相同的小正方体搭成一个几何体,从上面看这个几何体时看到的图形如图1-4,其中正方形中的数字表示该位置上的小正方体的个数,那么从左面看这个几何体时,看到的图形是()图1-4二、填空题(每小题4分,共32分)11.图1-5是将正方体切去一个角后的几何体,则该几何体有_____个面,_____条棱.图1-5图1-612.由一些大小相同的小正方体搭成的几何体从正面和从左面看到的图形如图1-6,则搭成这个几何体的小正方体的个数最多为___,最少为_____.13.棱柱的侧面展开图是______.14.沿图示的箭头方向用平面去截图1-7中的三个几何体,截面的形状依次为____、_____ 和_____.图1-715.如图1-8,三棱柱的底面边长都为2 cm,侧棱长为5 cm,则这个三棱柱的侧面展开图的面积为_____ .图1-8 图1-9 图1-1016.如图1-9,长方体的底面是边长分别为2和4的一个长方形,从左面看这个长方体时,看到的图形的面积为6,则这个长方体的体积为_____.17.如图1-10,5个棱长为1 cm的正方体摆在桌子上,则裸露在表面的部分的面积为______.18.三棱柱有5个面、6个顶点、9条棱,四棱柱有6个面、8个顶点、12条棱,五棱柱有7个面、10个顶点、15条棱,……由此可推测n 棱柱有____个面、____ 个顶点、____条棱.三、解答题(共58分)19.(8分)如图1-11,在无阴影的方格中选出两个画上阴影,使它们与图中4个有阴影的正方形一起可以构成一个正方体的表面展开图.〔在图1-11(1)和图1-11(2)中任选一个进行解答,只填出一种答案即可〕图1-1120.(8分)是否存在一个由10个面、24条棱和18个顶点构成的棱柱?若存在,请指出是几棱柱;若不存在,请说明理由.21.(10分)如图1-12的几何体放在水平桌面上,请你画出分别从正面、左面、上面看这个几何体时所看到的图形.图1-1222.(10分)用若干个完全相同的小正方体搭成一个几何体,当从正面、上面看这个几何体时,得到的图形如图1-13.问:在这个几何体中,小正方体的个数最多是多少?最少是多少?图1-1323.(10分)一个表面涂满色的正方体,现将棱三等分,再把它切开变成若干个小正方体.问:其中三面都涂色的小正方体有多少个?两面都涂色的小正方体有多少个?只有一面涂色的小正方体有多少个?各面都没有涂色的小正方体有多少个?24.(12分)图1-14是一张铁皮.(1)计算该铁皮的面积.(2)它能否做成一个长方体盒子?若能,画出它的几何图形,并计算它的体积;若不能,说明理由.图1-14答案一、1.B 解析:根据圆柱的特征,可以发现易拉罐、暖气管的形状都类似于圆柱,共2个.故选B.2.D 解析:柱体的主要特征是有两个完全相同的底面,选项A为圆柱,选项B为四棱柱,选项C为三棱柱,均不符合题意.故选D. 3.C 解析:因为棱柱中没有曲面,所以截面不可能为圆.故选C. 4.D 解析:选项A是圆锥的表面展开图,选项B,C不是圆锥的侧面展开图,只有选项D是圆锥的侧面展开图.故选D.5.D 解析:选项A中没有画出小正方形的轮廓线,选项B,C 中小正方形的轮廓线画的位置不对,只有选项D正确.故选D.6.B 解析:用一个平面去截一个圆柱,得到的图形可能是圆、椭圆、四边形.故选B.7.C 解析:因为涂有绿色一面的邻边有白、黑、红、蓝,所以涂成绿色一面的对面的颜色是黄色.故选C.8.B 解析:从正面、左面看一个几何体时,看到的图形都是三角形的几何体为棱锥或圆锥;从上面看一个几何体时,看到的图形是长方形的几何体为四棱锥或四棱柱.因此符合题意的几何体一定是四棱锥.故选B.9.D 解析:三角形绕它的最长边旋转时,另外两条边旋转而成的两个图形都是圆锥.故选D.10.B 解析:先根据已知条件画出这个几何体或用实物摆出这个几何体,再画出从左面看这个几何体时看到的图形.故选B.二、11. 7 14 解析:先计算出原正方体的面数、棱数,再切去一个角后可增加1个面、2条棱,6+1=7(个),12+2=14(条).所以该几何体有7个面,14条棱.12. 9 7 解析:根据从正面看的图形和从左面看的图形可知,这个几何体的底层最少有4个小正方体,最多有6个小正方体,第二层有2个小正方体,第三层有1个小正方体,所以最多有6+2+1=9(个)小正方体,最少有4+2+1=7(个)小正方体.13.长方形14.正方形长方形椭圆15. 30 cm2解析:三棱柱的侧面展开图是一个长方形,且长方形的长为三棱柱的底面周长,长方形的宽为三棱柱的高,则其侧面展开图的面积为2×3×5=30(cm2).16. 24 解析:从左面看这个长方体时,看到的图形是一个长方形,因为这个长方形的面积为6,所以这个长方体的高为3,所以这个长方体的体积为2×4×3=24.17.16 cm2 解析:摆放在桌面上的5个正方体的裸露部分,我们可以从前、后、左、右和上面5个角度去观察,而前、后、左、右4个角度各能观察到3个正方形,加之从上面观察实际可以看到4个正方形的面积,因此几何体的裸露部分的面积是16 cm2 .18.(n+2) 2n3n三、19.解:如图D1-1,从图(1)(2)的所有图中只要画出一种即可.(1)(2)图D1-120.解:不存在.理由:因为有10个面的棱柱一定是八棱柱,而八棱柱有24条棱,但它不是18个顶点,而是16个顶点.21.解:从正面、左面、上面看这个几何体时,所看到的图形如图D1-2.图D1-222.解:根据已知可得,在从上面看到的图形中,各位置上小正方体的个数最多时如图D1-3(1),各位置上小正方体的个数最少时如图D1-3(2).图D1-3由图(1)可知,这个几何体中有5个小正方体;由图(2)可知,这个几何体中有4个小正方体.即在这个几何体中,小正方体的个数最多是5,最少是4.23.解:由题意知,各顶点处的小正方体的三面都涂色,共有8个;有一条边在棱上的小正方体有12个,是两面涂色;每个面的正中间有一个只有一面涂色的,有6个;正方体正中心处有1个小正方体,它的各面都没有涂色.因此三面涂色的小正方体有8个,两面涂色的小正方体有12个,只有一面涂色的小正方体有6个,各面都没有涂色的小正方体有1个.24.解:(1)该铁皮的面积为(1×3)×2+(2×3)×2+(1×2)×2=22(m2). (2)能做成一个长方体盒子,如图D1-4.图D1-4其体积为3×1×2=6(m3).。
江苏省淮安市淮安区2019-2020 学年七年级上学期期末数学试题考试范围: xxx;考试时间:100 分钟;命题人:xxx题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第 I 卷(选择题 )请点击修改第I 卷的文字说明评卷人得分一、单选题1. -3 的相反数为()A .-3B .3C. 0 D .不能确定2.有轨电车深受淮安市民喜爱,客流量逐年递增.2018年,淮安有轨电车客流量再创新高:日最高客流48300 人次,数字48300 用科学计数法表示为()A .4.83 104B .4.83105C.48.3103 D .0.483105 3.如图,数轴的单位长度为 1,如果点 ??表示的数为 -2 ,那么点 ??表示的数是().A .-1B .0C. 3 D . 44.下列各题中,运算结果正确的是()A .3a 2b 5abB .4x2y2xy22xyC.5 y23y2 2 y 2D. 7 a a 7a25.在同一平面内,下列说法中不正确的是()A.两点之间线段最短B.过直线外一点有且只有一条直线与这条直线平行C.过直线外一点有且只有一条直线与这条直线垂直D .若AC BC ,则点 C 是线段 AB 的中点.试卷第 1页,总 5页6.如图是一个正方体的展开图,折好以后与“学 ”相对面上的字是( )A .祝B .同C .快D .乐7.某商品在进价的基础上提价 70 元后出售,之后打七五折促销,获利30 元,则商品进价为( )元 .A .90B .100C . 110D .1208.如图,用一副特制的三角板可以画出一些特殊角 .在下列选项中,不能画出的角度是()A . 81oB . 63oC . 54oD . 55o第 II 卷(非选择题 )请点击修改第 II 卷的文字说明评卷人得分二、填空题9.已知 x1 是方程 2ax a 3的解,则 a __________ .10 22 __________3 ..比较大小:711 .若 ∠132o,则1的余角为 __________ o. 12 .如图, 直线 AB ,CD 相交于点 O ,若∠ AOC +∠ BOD = 100 °,则∠ AOD 等于 __________度.试卷第 2页,总 5页13.小红在某月的日历中任意框出如图所示的四个数,但不小心将墨水滴在上面遮盖了其中的两个数,则b=______.(用含字母 a 的代数式表示)14 .若线段 AB=8cm , BC=3cm ,且 A 、 B 、 C 三点在同一条直线上,则AC=______ cm . 15 .已知 a ﹣ 2b = 3,则 7﹣ 3a+6 b = _____.16 .若规定这样一种运算法则 a ※b=a 2+2ab ,例如 3※ (-2) = 3 2+ 2 ×3 ×(-2) =-3 , 则 (-2) ※ 3的值为 _______________.评卷人 得分三、解答题17.计算:( 1)1 3 6 ( 1)33(2)( 2)3 4 [5 ( 3)2]18 .解方程:( 1) 2( x 2) 6( 2)x1 1 1 x2 319 .( 1)化简:a(5a 3b) 2(a 2b)( 2)先化简,再求值:2( x 2 2xy)2( x 2 2 xy) ,其中 x1 , y1220 .按要求画图:如图,在同一平面内有三点A 、B 、C .( 1)画直线 AB 和射线 BC ;( 2)连接线段 AC ,取线段 AC 的中点 D ;( 3)画出点 D 到直线 AB 的垂线段 DE .21.如图:已知直线 AB 、 CD 相交于点 O , ∠ COE=90°试卷第 3页,总 5页(1)若∠ AOC=36°,求∠ BOE 的度数;(2)若∠ BOD :∠ BOC=1 : 5,求∠ AOE 的度数.22.轮船和汽车都往甲地开往乙地,海路比公路近40千米.轮船上午 7点开出,速度是每小时 24 千米.汽车上午 10 点开出,速度为每小时40 千米,结果同时到达乙地.求甲、乙两地的海路和公路长.23.( 1)根据如图( 1)所示的主视图、左视图、俯视图,这个几何体的名称是.(2)画出如图( 2)所示几何体的主视图、左视图、俯视图.24.已知关于m 的方程115的解也是关于x 的方程2 x 3n 3 的解.2m 6( 1)求m, n的值;( 2)已知线段AB m,在直线 AB 上取一点P,恰好使APm ,点Q为PB的中PB点,求线段AQ 的长.25.(探索新知)如图 1,点C在线段AB上,图中共有 3 条线段:AB 、 AC 和 BC ,若其中有一条线段的长度是另一条线段长度的两倍,则称点 C 是线段 AB 的“二倍点”.( 1)①一条线段的中点这条线段的“二倍点”;(填“是”或“不是”)②若线段 AB 20 , C 是线段 AB 的“二倍点”,则BC(写出所有结果)(深入研究)如图 2,若线段AB20cm ,点 M 从点B的位置开始,以每秒 2 cm的速度向点 A 运试卷第 4页,总 5页动,当点 M 到达点 A 时停止运动,运动的时间为t 秒.(2)问t为何值时,点M是线段AB的“二倍点”;(3)同时点N从点A的位置开始,以每秒 1 cm的速度向点B运动,并与点M同时停止 .请直接写出点M是线段AN的“二倍点”时t的值 .试卷第 5页,总 5页参考答案1. B【解析】【分析】根据相反数的定义,即可得到答案.【详解】解: -3的相反数为 3 ;故选: B.【点睛】本题考查了相反数的定义,解题的关键是熟练掌握相反数的定义进行求解.2. A【解析】【分析】科学记数法的表示形式为 a × 10 n的形式,其中 1 ≤ |a| < 10 , n 为整数.确定n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值> 10时,n是正数;当原数的绝对值< 1 时, n 是负数.【详解】解:48300 4.83104;故选: A.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为 a × 10 n的形式,其中 1 ≤|a|< 10 , n 为整数,表示时关键要正确确定 a 的值以及 n 的值.3. C【解析】【分析】观察数轴根据点 B 与点 A 之间的距离即可求得答案.答案第 1 页,总 14 页【详解】观察数轴可知点 A 与点 B 之间的距离是 5 个单位长度,点 B 在点 A 的右侧,因为点 A 表示的数是 -2, -2+5=3,所以点 B 表示的数是3,故选 C.【点睛】本题考查了数轴上两点间的距离,有理数的加法,准确识图是解题的关键.4. C【解析】【分析】根据合并同类项的运算法则进行计算,即可得到答案.【详解】解: A 、3a2b 无法计算,故 A 错误;B 、4 x2y2xy2无法计算,故 B 错误;C 、5 y23y2 2 y2,故C正确;D 、7a a 8a ,故D错误;故选: C.【点睛】本题考查了合并同类项的运算法则,解题的关键是熟练掌握合并同类项的运算法则. 5. D【解析】【分析】根据线段的概念,以及所学的基本事实,对选项一一分析,选择正确答案.【详解】解: A 、两点之间线段最短,正确;B、过直线外一点有且只有一条直线与这条直线平行,正确;答案第 2 页,总 14 页C、过直线外一点有且只有一条直线与这条直线垂直,正确;D 、若AC BC ,则点C是线段AB的中点,错误;故选: D.【点睛】本题考查线段的概念以及所学的基本事实.解题的关键是熟练运用这些概念.6. D【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“祝”与“快”是相对面,“们”与“同”是相对面,“乐”与“学”是相对面.故选: D.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.7. A【解析】【分析】设该商品进价为x 元,则售价为(x+70 )× 75% ,进一步利用售价- 进价 =利润列出方程解答即可.【详解】解:设该商品进价为x 元,由题意得(x+70 )× 75% -x=30解得: x=90 ,答案第 3 页,总 14 页答:该商品进价为90元.故选: A.【点睛】此题考查一元一次方程的实际运用,掌握销售问题中基本数量关系是解决问题的关键.8. D【解析】【分析】一副三角板中的度数,用三角板画出角,无非是用角度加减,逐一分析即可.【详解】解: A、814536,则 81 角能画出;B、63367245,则63o角能画出;C、549036 ,则54o 可以画出;D 、 55 °不能写成 36 °、 72 °、 45 °、 90 °的和或差的形式,不能画出;故选: D.【点睛】此题考查的知识点是角的计算,关键是用三角板直接画特殊角的步骤:先画一条射线,再把三角板所画角的一边与射线重合,顶点与射线端点重合,最后沿另一边画一条射线,标出角的度数.9. 1【解析】【分析】直接把 x1代入 2ax a3,即可求出 a 的值 .【详解】解:把 x1代入 2ax a 3 ,则2a ( 1)a 3 ,解得: a 1 ;答案第 4 页,总 14 页故答案为: 1.【点睛】本题考查了一元一次方程的解,解题的关键是熟练掌握解一元一次方程. 10.【解析】【分析】比较两个负数的大小,则绝对值大的反而小,即可得到答案.【详解】解:∵223,722∴ 3 ;7故答案为:.【点睛】本题考查了比较两个有理数的大小,解题的关键是掌握有理数比较大小的法则. 11.58o【解析】【分析】根据余角的定义,即可得到答案.【详解】解:∵∠132o,∴ 1的余角为:901=90 32 =58 ;故答案为: 58o.【点睛】本题考查了余角的定义,解题的关键是熟练掌握余角的定义进行解题.12. 130【解析】【分析】根据对顶角相等和邻补角的定义求解.【详解】解:∵∠ AOC=∠BOD,且∠ AOC+∠BOD=100°,∴∠ AOC=50°,∴∠ AOD=180° - ∠AOC=130°.故答案为130.【点睛】本题考查对顶角和邻补角的定义及性质.13. a-5【解析】【分析】设阴影部分上面的数字为x,下面为 x+7 ,根据日历中数字特征确定出 a 与 b 的关系式即可.【详解】设阴影部分上面的数字为x,下面为x+7,根据题意得:x=b-1 ,x+7=a+1 ,即 b-1=a-6,整理得: b=a-5,故答案为: a-5【点睛】此题考查了一元一次方程的应用,以及列代数式,弄清题意是解本题的关键.14. 5 或 11.【解析】试题分析:分为两种情况:①如图 1 ,AC=AB+BC= 8+3 =11 ;②如图 2 ,AC=AB﹣BC= 8﹣3 =5 ;故答案为5或11.点睛:本题考查了线段的和差运算,根据题意分两种情况画出图形是解决此题的关键.15. -2【解析】【分析】直接利用整体思想将原式变形进而得出答案.【详解】解:∵ a﹣2b= 3,∴7﹣ 3a+6b= 7﹣ 3( a﹣ 2b)= 7﹣ 3×3=﹣ 2.故答案为:﹣ 2.【点睛】本题考查的知识点是根据已知条件求代数式的值,此类题目往往先利用整体思想将原式变形,再代入已知条件求值 .16. -8【解析】【分析】将 a=-2, b=3 代入 a※ b=a2+2ab 计算可得结果 .【详解】(-2)※ 3=(-2)2+2×( -2)×3=4-12=-8 ,故答案为: -8【点睛】本题主要考查有理数的混合运算,解题的关键是掌握新定义规定的运算法则,有理数的混合运算顺序与运算法则.17.( 1) -3 ;( 2) 8【解析】【分析】( 1 )先计算乘法,再计算加法,即可得到答案;( 2 )先计算乘方和括号内的运算,然后再计算乘除法即可.【详解】解:(1)13 6 (1)3 3=1 2=3 ;(2)( 2)3 4 [5 ( 3)2]=84(4)=8. 【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握有理数的混合运算的运算法则.181 ) x 5 2.( ;( ) x 1【解析】【分析】( 1 )先去括号,然后移项合并,即可得到答案;( 2 )先去分母,然后去括号,移项合并,即可得到答案.【详解】解:( 1 ) 2( x 2)6 ,∴ 2x 4 6 ,∴ 2x10 ,∴ x 5 ;( 2)x1 1 1 x ,2 3∴ 3(x 1) 6 2(1 x) ,∴ 3x 3 6 22x ,∴ 5x5 ,∴ x 1 .【点睛】本题考查了解一元一次方程,解题的关键是熟练掌握解一元一次方程的方法进行解题. 19.( 1)2a b ;(2)8xy ,4【解析】【分析】( 1 )先去括号,然后合并同类项,即可得到答案;( 2 )先把代数式进行化简,然后把x、 y 的值代入计算,即可得到答案.【详解】解:( 1 )a(5a 3b) 2(a 2b)= a5a 3b 2a 4b=2a b ;( 2 )2( x22xy)2( x22xy)= 2x24xy 2x24xy=8xy ;当 x 11时,, y2原式 =1(1) 4. 82【点睛】本题考查了整式的化简求值,整式的混合运算,解题的关键是熟练掌握整式混合运算的运算法则进行解题.20.( 1 )见详解;( 2 )见详解;( 3 )见详解 .【解析】【分析】(1 )根据直线和射线的概念作图可得;(2 )根据线段的概念和中点的定义作图可得;(3 )过点 D 作 DE ⊥ AB 于点 E,连接 DE 即可.【详解】解:( 1 )如图所示,直线AB和射线BC即为所求;(2 )如图线段 AC 和点 D 即为所求;(3 )线段 DE 为所求垂线段 .【点睛】本题主要考查作图——复杂作图,解题的关键是掌握直线、射线、线段及点到直线的距离的概念是解题的关键.21.( 1)54°;( 2)120 °【解析】试题分析:( 1)根据平角的定义求解即可;( 2)根据平角的定义可求∠ BOD,根据对顶角的定义可求∠ AOC,根据角的和差关系可求∠ AOE 的度数.试题解析:解:( 1)∵∠ AOC=36°,∠ COE=90°,∴∠ BOE=180°﹣∠ AOC﹣∠ COE=54°;1( 2)∵∠ BOD :∠ BOC=1: 5,∴∠ BOD =180°×15=30 °,∴∠ AOC=30 °,∴∠ AOE=30 °+90 °=120 °.22.海路长240千米,公路长280千米.【解析】【分析】根据题意列方程求解即可.【详解】设:汽车行驶x 小时,则轮船行驶(x-3 )小时,根据题意可列方程,24x=40(x-3)-40,解方程得, x=10,∴公路长40 ( x-3 ) =280千米,海路长为24x=240千米.【点睛】本题考查一元一次方程的应用,解题的关键是根据题意找出等量关系.23.( 1)球(体);(2)见解析【解析】【分析】(1 )根据三视图都是圆,可得几何体为球体;(2 )分别画出从正面、左面、上面看所得到的图形即可.【详解】解:(1 )球体的三视图都是圆,则这个几何体为球体;故答案为:球;(2 )如图所示:【点睛】此题主要考查了作图——三视图,关键是掌握从正面、左面、上面看所得到的图形,注意所看到的棱都要表示到图中.24. (1) m 6, n 3;(2) AQ21154或2【解析】【分析】( 1)解出关于m 的方程的解,即m 的值,再将m 值代入关于x 的方程求 n 值;( 2)分两种情况讨论,即P 点在 B 点的左边和右边,根据线段之间的关系求线段长即可.【详解】解 :11m 15,26 m 1610,Q关于 m 的方程1m15的解也是关于x 的方程2 x 3n 3 的解,26x m 6 ,将 x6,代入方程2x 3n 3 得;2 63n3 ,解得 : n 3 ,故 m6, n3;2由1知:AB6,AP 3 ,PB①点 P 在线段AB上时,如图所示:Q AB AP3,6,PBAP 93 , BP,22Q点Q为PB的中点,PQ BQ 1BP3 24AQ AP9321 PQ442②点 P 在线段AB的延长线上时,如图所示:QAB 6,AP3,PBPB 3,Q点Q为PB的中点,PQ BQ 3,2AQ AB315 BQ 6,2122故 AQ15或. 42【点睛】本题考查了同解方程的概念,一元一次方程的解法以及线段的度量,数形结合思想和分类讨论思想是解答此题的关键.25.( 1)①是;② 10 或20或 40;(2)5 或10或20;(3)8或 60或 15333372【解析】【分析】( 1)①可直接根据“二倍点”的定义进行判断;②可分为三种情况进行讨论,分别求出BC 的长度即可;(2)用含 t 的代数式分别表示出线段 AM 、BM 、AB ,然后根据“二倍点”的意义,分类讨论得结果;(3)用含 t 的代数式分别表示出线段 AN 、 NM 、 AM ,然后根据“二倍点”的意义,分类讨论.【详解】解:(1)①因为线段的中点把该线段分成相等的两部分,该线段等于 2 倍的中点一侧的线段长.∴一条线段的中点是这条线段的“二倍点”故答案为:是 .②∵ AB20 , C 是线段 AB 的“二倍点”,当 AB2BC 时, BC 120 10;2当 AC 2BC 当 BC 2AC 时,时,BC1202033BC2204033;;故答案为: 10 或20或40;33(2)当 AM=2BM 时, 20-2t=2 × 2t,解得: t= 10;3当 AB=2AM 时, 20=2×( 20-2t),解得: t=5 ;当 BM=2AM 时, 2t=2 ×( 20-2t),解得: t= 20;3答: t 为10或 5 或20时,点 M 是线段 AB 的“二倍点”;33(3)当 AN=2MN 时, t=2[t- ( 20-2t) ] ,解得: t=8 ;当 AM=2NM时,20-2t=2[t-(20-2t)],解得:t=15;2当 MN=2AM时,t-(20-2t)=2(20-2t),解得:t=60;7答: t 为15或 8 或60时,点 M 是线段 AN 的“二倍点”.27【点睛】本题考查了一元一次方程的解法、线段的和差等知识点,题目需根据“二倍点”的定义分类讨论,理解“二倍点”是解决本题的关键.。
辽阳市第九中学2019-2020学年七年级上学期第一次学情测试数学试卷一、选择题1. 下列数中,与-2的和为0的数是()A. 2B. -2C. 12D.12-2. 如图,是一个正方体的平面展开图,叠成正方体后,在正方体中写有“心”字的对面的字是()A. 祝B. 你C. 事D. 成3. 设a是最小的自然数,b是最小的正整数.c是绝对值最小的数,则a+b+c的值为()A. ﹣1B. 0C. 1D. 24. 下列说法正确的是()A. 两个数的绝对值相等,这两个数也相等B. 一个有理数若不是正数必定是负数C. 两个数不相等,这两个数的绝对值也不相等D. 互为相反数的两个数绝对值相等5. 在﹣(﹣25),95%,﹣|﹣32|,﹣34,0中正数有()A. 1个B. 2个C. 3个D. 4个6. 如图,将正方体沿面AB′C剪下,则截下的几何体为()A. 三棱锥B. 三棱柱C. 四棱锥D. 四棱柱7. 下列说法正确的是( ) A. 一个数的绝对值一定比0大 B. 一个数的相反数一定比它本身小 C. 绝对值等于它本身的数一定是正数D. 最小的正整数是18. 在数轴上,A 点和B 点所表示的数分别为-2和1,若使A 点表示的数是B 点表示的数的3倍,应把A 点( )A. 向左移动5个单位B. 向右移动5个单位C. 向右移动4个单位D. 向左移动1个单位或向右移动5个单位9. 火车票上的车次号有两个意义,一是数字越小表示车速越快,1~98次为特快列车,101~198次为直快列车,301~398次为普快列车,401~498次为普客列车;二是单数与双数表示不同的行驶方向,其中单数表示从北京开出,双数表示开往北京.根据以上规定,杭州开往北京的某一直快列车的车次号可能是( ) A. 200B. 119C. 120D. 31910. (2015秋•南郑县校级月考)如果在数轴上的A 、B 两点所表示的有理数分别是x 、y ,且|x|=2,|y|=3,则A 、B 两点间的距离是( ) A. 5B. 1C. 5或1D. 以上都不对二、填空题11. 如果正午(中午12:00)记作0小时,午后3点钟记作+3小时,那么上午8点钟可表示为______小时. 12. A 市某天的温差为7℃,如果这天的最高气温为5℃,这天的最低气温是______. 13. 比较大小:﹣68__﹣78. 14. 用平面去截一个六棱柱,截面形状最多是________边形.15. 某次数学测验共20道选择题,规则是:选对一道得5分,选错一道得-1分,不选得零分,王明同学的卷面成绩是:选对16道题,选错2道题,有2道题未做,他的得分是_________. 16. 在数轴上,到原点距离小于或等于2的所有整数有____. 17. 如果|a +2|+|1﹣b |=0,那么a +b =__.18. 用小立方块搭一个几何体,如图所示,这样的几何体最少需要____个小立方块,最多需要__个小立方块.三、画图题19. 观察如图中的几何体,画出从左面、上面两个方向看到的形状图.四、计算题20. (1)|﹣213|+|﹣323|(2)8.63﹣(﹣1.37)(3)(﹣25)+34+156+(﹣65)(4)(﹣0.5)﹣234﹣(+214)(5)(﹣52)+24﹣(+74)+12.(6)﹣313﹣(﹣587)+(﹣97)﹣(+323)(7)(+13)+(﹣12)﹣(+34)﹣(﹣23)21. 把下列各数填在相应的大括号内:﹣5,|-34|,﹣12,0,﹣3.14,+1.99,﹣(﹣6),227(1)正数集合:{…}(2)负数集合:{…}(3)整数集合:{…}(4)分数集合:{…}.22. 一辆货车从百货大楼出发负责送货,向东走了 5 千米到达小明家,继续向东走了 1.5 千米到达小红家,然后向西走了 9.5 千米到达小刚家,最后返回百货大楼.(1)以百货大楼为原点,向东为正方向,1 个单位长度表示 1 千米,请你在数轴上标出小明、小红、小刚家的位置.(小明家用点 A 表示,小红家用点 B 表示,小刚家用点 C 表示) (2)小明家与小刚家相距多远?(3)若货车每千米耗油 0.6 升,那么这辆货车此次送货共耗油多少升?23. 若|x -2|+2|y +3|+3|z -5|=0,计算:(1)x ,y ,z 的值.(2)求|x |+|y |-|z |的值. 五、解答题24. 某路公交车从起点经过A ,B ,C ,D 站到达终点,一路上下乘客如下表所示.(用正数表示上车的人数,负数表示下车的人数)起点 A B C D 终点 上车的人数 18 15 12 7 5 0 下车的人数﹣3﹣4﹣10﹣11(1)到终点下车还有多少人,填在表格相应的位置;(2)车行驶在那两站之间车上的乘客最多 站和 站;(3)若每人乘坐﹣站需买票0.5元,问该车出车一次能收入多少钱?写出算式.25. 如图所示,一个点从数轴上的原点开始,先向右移动3单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2,已知点A ,B 是数轴上的点,请参照下图并思考,完成下列各题.(1)如果点A 表示数-3,将A 点向右移动7个单位长度,那么终点B 表示的数是 ,A ,B 两点间的距离为 .(2)如果点A 表示数3,将A 点向左移动7个单位长度,再向右移动5个单位长度,那么终点B 表示的数是 ,A ,B 两点间的距离为 .,将A点向右移动168个单位长度,再向左移动256个单位长度,那么终点B表(3)如果点A表示数4示的数是,A,B两点间的距离是.(4)一般地,如果A点表示数为m,将A点向右移动n个单位长度,再向左移动P个单位长度,那么,请你猜想终点B表示什么数?A,B两点间的距离为多少?。
2019-2020年七年级数学试卷 (I)
一、选择题(共10小题,每小题3分,满分30分) 1.﹣2的相反数是( )
A .
B . ﹣
C .﹣2
D .2 2.在0,﹣1.5,1,-2四个数中,最小的数是( )
A . 0
B . 1
C . ﹣2
D .-1.5
3.太阳与地球的距离大约是150000000千米,其中150000000可用科学记数法表示,下列正确的是( )
A . 15×107
B . 0.15×109
C . 1.5×108
D . 1.5亿 4.下列各组运算中,结果为负数的是( ) 5
)
A . ±3
B . -3
C . 9
D . 3 6.若用a 表示8,则在数轴上与a-1最接近的数所表示的点是( )
A . A
B . B
C . C
D . D 7.下列各组整式中,不是同类项的是( )
A . ﹣7与2.1
B .2xy 与﹣5yx
C . a 2
b 与ab 2
D .mn 2
与3n 2
m 8.下列各式计算正确的是( ) A . 4m 2
n ﹣2mn 2
=2mn B . ﹣2a+5b=3ab C . 4xy ﹣3xy=xy
D . a 2
+a 2
=a 4
9.有下列说法:①无理数是无限不循环小数;②数轴上的点与有理数一一对应;③绝对值等于本身的数是0;④一个数的平方根等于它本身的数是0,1.其中正确的个数是( ) A . 1 B . 2 C . 3 D . 4
A . ﹣(﹣3)
B . ﹣|﹣3|
C . ﹣(﹣2)3
D . (﹣3)×(﹣2)
D C B A
-3
-2
-1
4
3
2
1
O
10.如图,A 、B 两点在数轴上表示的数分别为a 、b ,下列式子成立的是( )
A . ab >0
B . a+b <0
C .(b ﹣1)(a ﹣1)>0
D .(b ﹣1)(a+1)>0
二、填空题(共10小题,每小题3分,满分30分) 11.
的倒数是 .
12.16的算术平方根是 .
13.单项式325xy -的系数是 ,次数是 次;多项式22221a b a b ab -++是 次
多项式.
14.如果代数式x=-1,y=2,则代数式6﹣2x+4xy 的值为 . 15.x 的
倍与y 的平方的和可表示为 .
16.由四舍五入得到的近似数83.52万,精确到 位.
17.已知一个正数的两个平方根分别是3a+1和a+7,这个正数是
18.若m 、n 满足10m ++=,则n m = .
19.若“!”是一种数学运算符号,并且:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则
51!
49!
= 20. 甲、乙、丙三家超市为了促销一种定价为m 元的商品,甲超市连续两次降价20%;乙超市一次性降价40%;丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品,最划算的超市是 . 三、解答题(共6小题,满分40分)
21.(6分)把下列各数填在相应的表示集合的大括号内:
2-,
,0.,,,﹣1.4,2π,﹣30,10%,1.1010010001…(每两个
1之间依次多一个0)
整 数{ …}; 正分数{ …}; 无 理 数{ …}.
22.(6分)把下列各数在数轴上表示出来,并把它们按从小到大的顺序用“<”连接起来:
3,﹣2.5,|﹣2|,0,,(﹣1)2
.
23.(每小题2分,共8分)计算:
(1)(﹣1)﹣(﹣7)+(﹣8) (2)()10.5522⎡⎤--⨯⎢⎥⎣
⎦
(3)
(+﹣)×(﹣60)
(4)﹣22
+
23
÷(1﹣)2
24.(6分)先化简,再求值:22222324x xy y x xy y ++-+-,其中x=2,y=-1
25.(6分)把2012个正整数1,2,3,4,…,2012按如图方式排列成一个表.
(1)用如图方式框住表中任意4个数,记左上角的一个数为x,则另三个数用含x的式子表示出来,从小到大依次是,,.
(2)由(1)中能否框住这样的4个数,它们的和会等于244吗?若能,则求出x的值;若不能,则说明理由
26.(8分)上海股民杨先生上星期五交易结束时买进某公司股票1000股,每股50元,下表为本周内每日该股的涨跌情况(星期六、日股市休市)。
(1)星期三收盘时,每股是多少元?
(2)本周内每股最高价是多少元?最低价是多少元?
(3)已知买进股票还要付成交金额2‰的手续费,卖出时还需要付成交额2‰的手续费和1‰交易税。
如果在星期五按收盘价将全部股票卖出,他的收益情况如何?(‰是千分号)
七年级数学答案
二、选择题(共10小题,每小题3分,满分30分)
二、填空题(共10小题,每小题3分,满分30分)
11. 35- 12. 4 13.2
5-, 4; 4
14. 0 15.23
2
x y + 16. 百
17. 25 18. 1 19. 2550 20. 乙超市
三、解答题(共6小题,满分40分) 21.整 数{ 2- , ,﹣3 , 0 …};2分
正分数{ 0.
, , 10% …};2分
无 理 数{ 2π 1.1010010001…(每两个1之间依次多一个0) …}.2分
22. 数轴略, 3分
﹣2.5<
<0<(﹣1)
2
<|﹣2|<3
3分
23.(每小题2分,共8分)
(1)-2 (2)-12 (3)22
(4)-2.5
24. 22222324x xy y x xy y ++-+-=223x xy y +- 3分
其中x=2,y=-1 原式=-1 3分
25. x+8 , x+16 , x+24 . (每空各1分,共3分)
x+(x+8)+(x+16)+(x+24)=244 (2分) 解得:x=49 (1分) 26. (1) 54.5 (1分)
(2)最高价是56.5元,最低价是53元 (每空2分,共4分) (3)收益是2741元 (3分)。