巨磁电阻效应及其传感器的原理
- 格式:doc
- 大小:87.50 KB
- 文档页数:9
【2017年整理】巨磁阻效应的原理及应用巨磁阻效应(Giant Magnetoresistance, GMR)是一种物理现象,指在特定条件下,铁磁或亚铁磁材料中的磁电阻发生显著变化的现象。
这种现象在工业和科研领域具有广泛的应用价值,因此了解其原理及在各领域的应用十分重要。
一、巨磁阻效应的原理巨磁阻效应主要由以下几个因素决定:1.交换耦合:当两个磁性材料之间有耦合作用时,它们的磁矩会互相影响。
在特定的条件下,这种耦合作用会使材料的磁电阻发生显著变化。
2.层状结构:巨磁阻材料通常采用多层膜结构,其中每一层都可以作为电流通道。
当电流垂直于膜面流动时,各层中的磁矩会相互作用,导致电阻发生变化。
3.钉扎场:钉扎场是指材料内部由于杂质、缺陷或其他因素引起的局部磁场。
当电流在材料中流动时,钉扎场会对电流产生散射作用,导致电阻增加。
二、巨磁阻效应的应用巨磁阻效应在多个领域具有广泛的应用价值,以下是几个主要应用领域:1.硬盘读取头:巨磁阻材料制成的硬盘读取头是现代计算机和数据中心的核心组件之一。
由于其具有高灵敏度和低噪音的特性,使得硬盘读取头的读取速度和准确性得到大幅提升。
2.磁传感器:巨磁阻材料制成的磁传感器在医疗、工业和科研领域得到广泛应用。
例如,在医疗领域中,磁传感器可用于检测人体内的金属物体和进行磁场导航;在工业领域中,磁传感器可用于检测电动机和发电机的转子位置;在科研领域中,磁传感器可用于研究物质的磁性和电磁场分布。
3.磁场探测器:巨磁阻材料制成的磁场探测器可用于检测弱磁场和高精度测量磁场方向和大小。
例如,在地球物理勘探、生物医学和核磁共振等领域,磁场探测器具有重要应用价值。
4.磁记忆材料:巨磁阻材料制成的磁记忆材料具有高密度、高速度和高可靠性等优点,可用于数据存储和逻辑运算等领域。
与传统的半导体存储器相比,磁记忆材料具有更高的存储密度和更长的使用寿命。
5.磁场调控:巨磁阻效应还可以用于调控磁场分布和方向,从而在多个领域具有潜在的应用价值。
gmr编码器原理
GMR(Giant Magnetoresistance,巨磁电阻)编码器是一种利用巨磁电阻效应来实现位置检测的传感器。
巨磁电阻效应是指当磁性材料中的电阻受到外部磁场影响时,电阻的大小会发生变化。
GMR编码器的工作原理如下:
1.传感器结构:GMR编码器通常包含一对平行排列的磁性层和一个中间的非磁性层。
这三层被称为自旋阻挫层(Spin Valve)。
两个磁性层的磁矩方向可以相互平行或反平行。
2.外部磁场作用:当外部磁场作用于自旋阻挫层时,它会影响两个磁性层的磁矩方向。
根据巨磁电阻效应,当磁矩方向平行时,电阻较小;而当磁矩方向反平行时,电阻较大。
3.电流通过:将电流通过自旋阻挫层,电流中的自旋也会与磁矩相互作用。
4.测量电阻:测量通过自旋阻挫层的电阻值,即可得知磁矩的相对方向。
由于磁矩的方向受外部磁场影响,因此可以通过检测电阻的变化来确定外部磁场的强度和方向。
5.位置检测:在编码器应用中,GMR编码器可以被设计成一系列磁性和非磁性层的重复结构,以便检测位置信息。
通过测量不同区域的磁场对电阻的影响,可以确定位置信息。
总体而言,GMR编码器利用巨磁电阻效应,通过测量电阻的变化来检测外部磁场的强度和方向,从而实现位置的准确检测。
巨磁阻效应诺贝尔奖巨磁阻效应是指当一些材料受到外部磁场的作用时,其电阻会发生明显的变化。
这种现象最早被发现于1988年,迅速引起了科学界的广泛关注。
由于其重要性和广泛的应用前景,巨磁阻效应在2007年荣获诺贝尔物理学奖。
一、巨磁阻效应的原理巨磁阻效应的基本原理可归结为磁导率变化引起的电阻率变化。
在普通的金属导体中,电子输运主要受到热散射的影响,而在巨磁阻效应材料中,磁散射起主导作用,因此材料的电阻会随着磁场的变化而改变。
二、巨磁阻效应的应用巨磁阻效应的发现为磁存储技术提供了重要的突破口。
传统的硬盘驱动器使用的是磁电传感器,其灵敏度和分辨率有限。
而巨磁阻效应材料制成的传感器则具有更高的精确度和灵敏度,可以使磁存储设备更加可靠和高效。
此外,巨磁阻效应还广泛应用于医学成像、磁性传感器、磁流体阀和数据传输等领域。
通过利用巨磁阻效应,可以制造出更小、更快、更强大的设备,为科技和工程领域带来了巨大的进步。
三、巨磁阻效应的材料目前,已发现的巨磁阻效应材料主要包括铁磁金属和磁隧穿结构。
铁磁金属具有良好的磁导率和磁阻率变化,因此在巨磁阻效应的研究中扮演着重要角色。
而磁隧穿结构由两层铁磁金属之间的绝缘层构成,其电阻对磁场变化极为敏感,具有更高的磁阻率变化。
四、未来展望随着科技的不断发展,巨磁阻效应的应用前景将更加广阔。
人们期待通过巨磁阻效应材料的研究和改进,实现更高容量、更便携、更高速的磁存储设备。
另外,巨磁阻效应在传感器领域也有着巨大的潜力,可以应用于机器人、智能家居和自动驾驶等领域,为人类生活带来更多便利和创新。
总之,巨磁阻效应作为一项重要而又有潜力的科技成果,获得了诺贝尔物理学奖的认可和肯定。
这一发现为磁存储和磁传感技术带来了重要突破,将在未来继续为科技和工程领域的发展做出重要贡献。
GMR磁场传感器的工作原理巨磁电阻(GMR)效应是1988年发现的一种磁致电阻效应,由于相对于传统的磁电阻效应大一个数量级以上,因此名为巨磁电阻(Giant Magnetoresistanc),简称GMR。
1. 巨磁电阻(GMR)原理,见图一。
巨磁电阻(GMR)效应来自于载流电子的不同自旋状态与磁场的作用不同,因而导致的电阻值的变化。
这种效应只有在纳米尺度的薄膜结构中才能观测出来。
赋以特殊的结构设计这种效应还可以调整以适应各种不同的性能需要。
2. 巨磁电阻(GMR)传感器原理,见图二。
巨磁电阻(GMR)传感器将四个巨磁电阻(GMR)构成惠斯登电桥结构,该结构可以减少外界环境对传感器输出稳定性的影响,增加传感器灵敏度。
工作时图中“电流输入端”接5V~20V的稳压电压,“输出端”在外磁场作用下即输出电压信号。
3. 巨磁电阻(GMR)传感器性能,见图三,表一。
图三所示为巨磁电阻(GMR)传感器在外场中的性能曲线,表明该传感器在±200Oe的磁场范围类有较好的线性。
表一所示为国际上各公司生产的巨磁电阻(GMR)传感器的性能对照,表中标注有(库万军)处为本公司产品。
对比表明本公司的产品无论灵敏度或线性范围都有较大的优越性,而且本公司产品性能仍在不停的丰富和完善过程中。
更为重要的是,本公司产品采用特殊的结构,适宜于采用半导体集成化规模生产,因此生产成本低。
图3巨磁电阻(GMR)传感器在外场下的性能曲线表一各公司巨磁电阻(GMR)传感器性能对照灵敏度(mV/V*Oe)线性范围(Oe)结构及材料偏磁技术IBM 0.8 ±25 SPIN-VALVE 设置电流NVE 0.45 ±135 Co/Cu多层膜外置偏磁铁Honeywell 1 ±6 NiFe film(AMR)EPFL-CH 0.024 ±150 聚磁通霍尔元件INESC 0.6 ±30 SPIN-VALVE 设置电流INESC (库万军)0.21 ±135 NiFe/CoFe/Cu多层膜CoFe/CoPt双层膜INESC (库万军)0.17 ±200 NiFe/CoFe/Cu多层膜CoPt膜(两矫顽力)INESC(库万军)1.3 ±20 SPIN-VALVE 两次沉积INESC(库万军)探测磁场X-Y分量的集成元件INESC(库万军)数字、脉冲型3. 产品使用说明a.巨磁电阻(GMR)传感器作为一种有源器件,其工作必须提供5~20V的直流电源。
巨磁电阻效应及应用的原理巨磁电阻效应的定义巨磁电阻效应是指当外加磁场发生变化时,材料的电阻发生改变的现象。
这种现象的发现和研究引发了巨磁电阻效应的探索和应用。
巨磁电阻效应的原理巨磁电阻效应是由磁性材料自旋极化和电子传输的相互作用引起的。
这种效应主要依赖于磁性材料中的自旋极化态以及电子的传输方式。
当磁场施加在磁性材料上时,磁场与材料中的自旋相互作用会引起自旋的重新排列。
自旋的重新排列会导致电子在材料中的传输行为发生变化,从而影响材料的电阻。
这种自旋排列的重新配置会引起电子的散射和反射,从而影响电子的传输路径和速度。
巨磁电阻效应的应用巨磁电阻效应的发现和研究为许多实际应用提供了可能。
以下是巨磁电阻效应的一些主要应用:1.磁存储器:巨磁电阻效应被广泛应用于磁存储器中,可用于读取和写入数据。
磁存储器可以储存大量的数据,而且巨磁电阻效应能够实现快速、高密度的读写操作。
2.磁传感器:巨磁电阻效应广泛应用于磁传感器中,用于检测磁场的变化。
磁传感器可以用于地理导航系统、磁共振成像仪、汽车导航系统等。
3.磁阻变传感器:巨磁电阻效应还可应用于磁阻变传感器中,用于检测物体的位置、位移和旋转角度。
磁阻变传感器可以应用于汽车制动系统、手持设备的姿态感知等领域。
4.磁阻随机存取存储器(MRAM):巨磁电阻效应在磁阻随机存取存储器中的应用有很大潜力。
MRAM具有非易失性、低功耗、高速度和高密度等优点。
5.磁阻式角度传感器:巨磁电阻效应还可以应用于磁阻式角度传感器中,用于检测物体的角度变化。
磁阻式角度传感器可以应用于机械臂、机器人和汽车的转向系统等。
巨磁电阻效应的应用范围还在不断扩大,随着磁性材料和电子技术的进一步发展,巨磁电阻效应的新应用也在不断涌现。
总结巨磁电阻效应是材料的电阻在外加磁场变化时发生改变的现象,其实现需要磁性材料的自旋极化与电子传输的相互作用。
巨磁电阻效应的应用广泛,包括磁存储器、磁传感器、磁阻变传感器、磁阻随机存取存储器和磁阻式角度传感器等。
巨磁阻效应及其传感器的原理和应用一、概述对于物质磁电阻特性的研究由来已久,早在20世纪40年代人们就发现了磁电阻效应。
所谓磁电阻是指导体在磁场中电阻的变化,通常用电阻变化率Δr/r 描述。
研究发现,一般金属导体的Δr/r很小,只有约10-5%;对于磁性金属或合金材料(例如坡莫合金),Δr/r可达(3~5)%。
所谓巨磁电阻(GMR)效应,是指某些磁性或合金材料的磁电阻在一定磁场作用下急剧减小,而Δr/r急剧增大的特性,一般增大的幅度比通常的磁性与合金材料的磁电阻约高10倍。
利用这一效应制成的传感器称为GMR传感器。
1、分类GMR材料按其结构可分为具有层间偶合特性的多层膜(例如Fe/Cr)、自旋阀多层膜(例如FeMn/FeNi/Cu/FeNi)、颗粒型多层膜(例如Fe-Co)和钙钛矿氧化物型多层膜(例如AMnO3)等结构;其中自旋阀(spinvalve)多层膜又分为简单型和对称型两类;也有将其分为钉扎(pinning)和非钉扎型两类的。
2、巨磁电阻材料的进展1986年德国的Grunberg和C.F.Majkrgak等人发现了Y/Gd、Y/Dy和Fe/Cr/Fe多层膜中的层间偶合现象。
1988年法国的M.N.Baibich等人首次在纳米级的Fe/Cr多层膜中发现其Δr/r在4.2K低温下可达50%以上,由此提出了GMR效应的概念,在学术界引起了很大的反响。
由此与之相关的研究工作相继展开,陆续研制出Fe/Cu、Fe/Ag、Fe/Al、Fe/Au、Co/Cu、Co/Ag、Co/Au……等具有显著GMR效应的层间偶合多层膜。
自1988年发现GMR效应后仅3年,人们便研制出可在低磁场(10-2~10-6T)出现GMR效应的多层膜(如[CoNiFe/CoFe/AgCu/CoFe/CoNiFe]n)。
1992年人们利用两种磁矫顽力差别大的材料(例如Co和Fe20Ni80)制成Co/Cu/Fe20Ni80/Cu多层膜,他们发现,当Cu层厚度大于5nm时,层间偶合较弱,此时利用磁场的强弱可改变磁矩的方向,以自旋取向的不同来控制膜电阻的大小,从而获得GMR效应,故称为自旋阀。
巨磁电阻传感器原理今天咱们来唠唠巨磁电阻传感器这个超酷的东西。
你可别一听“传感器”就觉得它是那种干巴巴、特别难懂的玩意儿,其实它背后的原理就像一场微观世界里的小冒险呢。
咱们先从电阻说起吧。
你知道电阻就像是电流在电路里跑步的时候遇到的小阻碍。
平常的电阻呢,就是按照它自己的规律,根据材料啊、长度啊、横截面积这些因素来决定自己有多大的阻力。
但是巨磁电阻可就不一样啦,它呀,就像是一个对磁场特别敏感的小机灵鬼。
想象一下,在巨磁电阻的微观世界里,有好多好多的电子在跑来跑去。
当没有磁场的时候呢,这些电子就按照自己的节奏在材料里穿梭,就像一群小蚂蚁在平地上乱逛。
可是一旦有磁场出现,哇塞,就像是一阵神奇的风刮过来了。
这个磁场会让电子的运动轨迹发生变化呢。
那些原本自由自在的电子,就像是被一只无形的大手给指挥着,开始朝着特定的方向偏移。
这时候,你就会发现一个超级有趣的现象。
由于电子的运动被磁场这么一搅和,电流通过这个材料的时候就变得更容易或者更难了,这就导致了电阻的变化。
如果把这个材料做成传感器,就可以通过测量电阻的变化来知道磁场的情况啦。
你看啊,在巨磁电阻传感器里,这种对磁场的敏感程度可是非常厉害的。
就好像它有一双超级敏锐的小眼睛,能够察觉到磁场非常微小的变化。
比如说,在我们的硬盘里,就用到了巨磁电阻传感器。
硬盘里面有很多小磁区,每个磁区的磁场方向就代表着0或者1这样的数据。
巨磁电阻传感器就像一个小小的侦探,它能够准确地感知到这些磁区的磁场变化,然后把这个信息转化成电信号,这样电脑就能知道硬盘里存储的是什么数据啦。
而且哦,巨磁电阻传感器在汽车上也有大用场呢。
汽车的速度传感器有时候就会用到它。
汽车轮子一转,就会产生磁场的变化,巨磁电阻传感器就能捕捉到这个变化,然后告诉汽车的电脑,车子现在跑得多快呀。
再说说它的材料吧。
通常是一些特殊的多层结构材料。
就像是给电子们建造了一个特别的小房子,不同的楼层有不同的作用。
当磁场来敲门的时候,这些电子在不同的楼层之间的互动就会发生改变,从而影响电阻。
巨磁电阻效应巨磁电阻效应是一种材料的特殊电学性质,它在磁场的作用下,导致材料电阻发生变化。
这种效应最早于1857年被法国物理学家埃米尔·埃德蒙·皮卡尔发现,并在20世纪80年代得到了进一步的研究和应用。
一、巨磁电阻效应的原理巨磁电阻效应的原理主要基于磁电阻效应和自旋极化效应。
当电流通过材料时,自由电子会受到周围磁场的影响而发生偏转。
当磁场垂直于电流方向时,自由电子的自旋方向和运动方向会发生关联,这也被称为自旋阻尼。
在自旋阻尼的作用下,自由电子的速度和自旋方向会发生变化,导致电子在材料中碰到来自其他自由电子的阻力。
这种阻力会导致材料电阻的增加,从而出现巨磁电阻效应。
二、巨磁电阻效应的应用1. 磁存储技术巨磁电阻效应被广泛应用于磁存储器中,例如硬盘驱动器和磁存储芯片。
在磁存储器中,巨磁电阻效应可以使得读取电路能够更加准确地检测到磁场的变化,从而实现数据的读取和写入。
2. 磁传感器由于巨磁电阻效应的敏感性和可控性,它在磁传感器领域得到了广泛的应用。
磁传感器利用巨磁电阻效应可以测量磁场的强度和方向,广泛应用于导航、车辆安全和医疗设备等领域。
3. 电子设备巨磁电阻效应还被应用于电子设备中,例如磁传感器、扬声器和微波器件等。
这些设备利用巨磁电阻效应可以实现电阻的调节和信号的处理。
三、巨磁电阻效应的优势和展望与传统电阻相比,巨磁电阻效应有以下几个优势:1. 效应大:巨磁电阻效应的变化幅度可达到几十倍甚至上百倍。
2. 快速响应:巨磁电阻效应的响应速度可以达到纳秒级别。
3. 高稳定性:巨磁电阻效应是一种内禀的性质,不受温度和时间的影响。
随着科技的不断进步和应用场景的拓宽,巨磁电阻效应在各个领域都有很大的发展潜力。
未来,随着材料科学和纳米技术的进一步发展,相信巨磁电阻效应将有更加广泛的应用,为人们的生活带来更多便利和创新。
gmr传感器工作原理GMR传感器工作原理引言:GMR(Giant Magneto Resistance)传感器是一种基于巨磁电阻效应的传感器,具有高灵敏度、快速响应和低功耗等优点。
它在磁传感领域得到了广泛应用,如磁存储器、磁头以及磁传感器等。
本文将介绍GMR传感器的工作原理及其应用。
一、巨磁电阻效应巨磁电阻效应是指在某些特殊材料中,当外加磁场改变时,材料电阻发生明显变化的现象。
这种效应是由于磁场改变引起材料内部磁矩方向发生变化,从而影响电子的运动和散射,导致电阻的改变。
其中最具代表性的材料是由铁、铁氧体和铬等多层薄膜组成的磁多层结构。
二、GMR传感器的结构GMR传感器通常由两个平行排列的磁多层结构组成,中间夹有一层非磁性金属薄层。
其中一个磁多层结构被称为固定层,其磁矩方向固定不变;另一个磁多层结构被称为自由层,其磁矩方向可以受外界磁场影响而改变。
当没有外界磁场作用时,自由层的磁矩方向与固定层垂直,导致电阻最大。
而当外界磁场作用于自由层时,自由层的磁矩方向会发生改变,使得电阻值发生变化。
三、GMR传感器的工作原理当GMR传感器暴露在外界磁场中时,自由层的磁矩方向会发生变化。
这种磁矩方向变化会导致自由层和固定层间电子的散射发生改变,从而影响电阻的大小。
当自由层的磁矩方向与固定层平行时,电阻最小;当自由层的磁矩方向与固定层垂直时,电阻最大。
通过测量电阻的变化,我们可以确定外界磁场的大小和方向。
四、GMR传感器的应用1. 磁存储器:GMR传感器被广泛应用于硬盘驱动器中,用于读取磁盘上的数据。
它可以实现更高的磁道密度和更高的数据存储容量。
2. 磁头:GMR传感器也被用作磁头,用于读取磁带、软盘等磁介质上的数据。
3. 磁传感器:GMR传感器可以用于测量和检测磁场,例如地磁传感器、指南针和磁力计等领域。
4. 生物医学:GMR传感器可以应用于生物医学领域,用于检测生物磁场或监测生物信号。
结论:GMR传感器是一种利用巨磁电阻效应实现磁场检测的传感器,具有高灵敏度和快速响应的特点。
【2017年整理】巨磁阻效应的原理及应用
巨磁阻效应,也称为巨磁电阻效应,是一种在磁场中通过材料产生电阻变化的现象。
这种现象在诺贝尔物理学奖中也得到了高度的重视。
这个现象被广泛地应用于传感器和磁存储器等领域。
巨磁阻效应的原理是通过运用材料磁电阻效应来实现的,其中涉及到了磁导率及磁相的变化。
在巨磁阻效应的材料中,主要是利用了铁磁体与非磁体之间的交替排列。
铁磁体面对磁场的导磁率要高于非磁体,在磁场中,磁力线会挤压铁磁体并且让自由电子的活动空间更小,电子的运动受到磁力线的影响也就越来越弱,因此阻力增大,使电阻率发生了变化。
巨磁阻效应被应用到传感器中的原理是将磁场信号转换成电阻变化信号。
传感器将磁场转换成电阻,从而通过实时测量电阻变化来确定磁场强度。
巨磁阻效应也被广泛应用于磁存储器的读写头中。
在磁存储器中,通过记录小磁场的相对方向来记录数字信息,而磁读头的读取则是通过测量磁场来实现的。
磁读头中借助巨磁阻效应来检测记录的数字,探针接收到来自介质表面所反射的信号,将信号转换成电阻变化信号,进而形成数字信息识别和读写的过程。
巨磁阻效应不单单只应用于磁存储器和传感器领域,它还可以被应用到其他领域,例如在生产线上的质量检测和转换设备上的电子分类等领域,逐渐地将其应用范围拓展到了其他领域中。
巨磁电阻效应的原理及应用1. 巨磁电阻效应的介绍巨磁电阻效应(Giant Magnetoresistance,GMR)是一种描述材料电阻随外加磁场变化的现象。
GMR的发现被认为是短距离存储技术的突破,对磁敏感材料和磁传感器的发展具有重要意义。
2. 巨磁电阻效应的原理巨磁电阻效应的产生与磁性多层膜结构中存在的顺磁性层和铁磁性层之间的相互作用有关。
当外加磁场改变时,磁性多层膜中的磁性层会发生磁矩的重排和旋转,从而导致电子的自旋定向与电子传输方向的关系发生变化。
这种变化会导致电阻的变化,即巨磁电阻效应的产生。
3. 巨磁电阻效应的应用巨磁电阻效应的应用非常广泛,主要包括以下几个方面:3.1 磁存储器巨磁电阻效应在磁存储领域发挥着重要作用。
由于巨磁电阻效应的出现,磁存储器的读写速度得到了显著提高。
传统磁存储器需要通过读写头的接触来读取数据,而采用巨磁电阻效应材料制成的磁存储器只需通过测量电阻值的变化来完成数据读取,大大提高了读取速度和数据存取密度。
3.2 磁传感器巨磁电阻效应材料常常被用于制作磁传感器。
巨磁电阻效应材料的电阻值随外加磁场的变化而变化,因此可以利用巨磁电阻效应材料制成的传感器来测量磁场的强度和方向。
磁传感器在航空航天、交通运输、医疗设备等领域中得到了广泛应用。
3.3 磁电阻随机存取存储器(MRAM)巨磁电阻效应也被应用于磁电阻随机存取存储器(Magnetoresistive Random Access Memory,MRAM)的制造。
MRAM是一种新型的非易失性存储器,兼具闪存和DRAM的优点。
相比传统存储器技术,MRAM具有读取速度快、功耗低、抗辐射等优势。
3.4 理论研究与材料改进巨磁电阻效应的研究也对材料科学领域有着重要意义。
科学家们通过对巨磁电阻效应的原理和机制的研究,不断改进巨磁电阻材料的性能和稳定性,以实现更高的电阻变化率和更佳的传感特性。
4. 结论巨磁电阻效应作为一种重要的磁电效应,具有广泛的应用前景。
巨磁电阻表明在不同的磁场方向中电阻随之改变的一类效应巨磁电阻(giant magnetoresistance,简称GMR)效应是一种发现于1988年的物理现象,它揭示了磁场对材料电阻的巨大影响。
GMR效应在许多领域具有重要应用,尤其在信息存储技术方面,为硬盘驱动器和磁存储器的发展做出了巨大贡献。
本文将介绍巨磁电阻效应的原理、应用以及未来的发展趋势。
一、巨磁电阻效应原理巨磁电阻效应的基本原理是由两个或多个磁性层夹着一个非磁性层构成的多层薄膜结构。
这些磁性层可以是铁、镍、钴等材料,而非磁性层通常是铜或铬。
当这个多层薄膜结构处于一个磁场中时,磁性层的磁矩会在外力的作用下重新排列。
这个过程会导致电子在磁性层之间发生散射,从而影响到整个结构的电阻。
当磁场与多层薄膜结构的磁矩平行排列时,电子在磁性层之间的散射最小,电阻值较小。
而当磁场与磁矩反平行排列时,电子在磁性层之间的散射最大,电阻值较大。
通过测量不同磁场下的电阻值,可以得到巨磁电阻效应。
这一效应的特点是,当磁场方向发生变化时,电阻随之改变。
二、巨磁电阻效应的应用1. 磁存储器巨磁电阻效应在磁存储器领域有着广泛的应用。
传统的硬盘驱动器中,磁头通过感应磁性材料的磁场变化来读取和写入数据。
而巨磁电阻效应可以提供更高的读取灵敏度和更大的磁场响应范围,从而提高了数据的读取速度和存储密度。
2. 磁传感器巨磁电阻效应还可以用于制造高灵敏度的磁传感器。
这种传感器可广泛应用于磁场测量、位置检测、磁导航等领域。
相比传统的磁传感器,基于巨磁电阻效应的磁传感器具有更高的灵敏度和更快的响应速度。
3. 磁阻随机存储器磁阻随机存储器(magnetic random-access memory,简称MRAM)是一种新兴的存储器技术。
它基于巨磁电阻效应来存储数据,具有非易失性、快速读写、高密度等优点。
相比传统存储器技术,MRAM能够提供更高的数据存储密度和更低的功耗。
三、巨磁电阻效应的发展趋势巨磁电阻效应的研究仍在不断深入,未来有以下几个发展趋势:1. 新的材料和结构:研究人员正在寻求新的材料和结构,以增强巨磁电阻效应。
巨磁阻效应的原理及应用1. 引言巨磁阻效应(Giant Magneto Resistance,简称GMR)是一种材料特性,是指在外加磁场下,材料电阻发生大幅度变化的现象。
由于其在信息存储、传感器等领域具有广泛的应用,因此对其原理及应用进行深入研究和了解具有重要意义。
2. 巨磁阻效应的原理巨磁阻效应源于磁性多层结构材料中的自旋阻尼效应和磁性交换效应。
当多层结构材料中的两个磁性层之间被非磁性层隔开时,自旋极化电流通过这些层会引起阻尼之间的传递,导致电阻发生变化。
巨磁阻效应的原理可以用以下几点进行解释:•磁性多层结构:采用多层薄膜结构,其中包含不同磁性层和非磁性层。
•自旋极化电流:施加自旋极化电流时,电子的自旋会对电子传输产生影响。
•自旋阻尼效应:自旋极化电流通过磁性层时,会与该层磁矩发生相互作用,引起自旋的阻尼。
•磁性交换效应:自旋极化电流引起的自旋阻尼会与相邻磁性层之间的磁性交换作用产生耦合,导致电阻变化。
3. 巨磁阻效应的应用3.1 磁存储器巨磁阻效应在磁存储器中有广泛应用。
磁存储器利用外加磁场的变化,改变磁性多层结构材料中的电阻,从而存储和读取信息。
巨磁阻效应的高灵敏度和可控性,使得磁存储器具有更高的容量和更快的速度。
3.2 磁传感器巨磁阻效应也可以应用于磁传感器中。
磁传感器利用材料的电阻变化来感应磁场的变化。
巨磁阻传感器具有高灵敏度、宽工作范围和低功耗的特点,广泛应用于磁测量、地磁导航和磁生物学等领域。
3.3 磁电阻头巨磁阻效应还可以用于磁电阻头的制造。
磁电阻头是读取硬盘驱动器中存储信息的装置,利用材料电阻的变化来感知磁场中的数据。
巨磁阻效应的高灵敏度和稳定性,使得其在磁电阻头中有广泛的应用。
3.4 其他应用领域除了上述应用领域,巨磁阻效应还可应用于磁生物学、磁传导等领域。
例如,巨磁阻效应可以用于生物传感器中,实现对生物磁场的检测和分析。
此外,巨磁阻效应还可以用于磁传导器件中,实现磁传导的控制和调节。
巨磁电阻原理巨磁电阻效应是指在外加磁场的作用下,材料的电阻发生变化的现象。
这一效应是由于磁性材料中自旋磁矩的定向受到外磁场的影响而引起的。
巨磁电阻效应在磁存储、传感器、磁电阻头等领域具有重要应用价值。
巨磁电阻效应的原理可以通过以下几个方面来解释:首先,当外加磁场作用于磁性材料时,磁性材料中的自旋磁矩会发生定向,导致材料的电子运动轨道发生变化。
这种变化会影响材料的电子输运性质,进而改变材料的电阻。
其次,巨磁电阻效应还与磁性材料中的磁畴结构有关。
磁畴是指在磁性材料中具有一定方向的微观磁矩区域。
在无外磁场作用时,磁性材料中的磁畴呈现出随机分布的状态,导致材料的电阻较大。
而在外加磁场作用下,磁畴会发生重新排列,使得磁性材料的电阻发生变化。
最后,巨磁电阻效应还与自旋极化有关。
自旋极化是指在磁性材料中,电子的自旋方向会受到外磁场的影响而发生变化。
这种自旋极化会影响材料的电子输运性质,从而改变材料的电阻。
总的来说,巨磁电阻效应是由外磁场对磁性材料中的自旋磁矩、磁畴结构和自旋极化等方面的影响而产生的。
利用这一效应,可以设计出各种应用于磁存储、传感器等领域的巨磁电阻器件,为现代电子技术的发展提供了重要的支持。
在实际应用中,巨磁电阻效应的研究和应用具有重要的意义。
通过对巨磁电阻效应的深入理解,可以设计出更加高效、稳定的巨磁电阻器件,为磁存储、磁传感器等领域的发展提供更多可能性。
同时,巨磁电阻效应的研究也有助于深入理解磁性材料的电子输运性质,为材料科学的发展做出贡献。
综上所述,巨磁电阻效应是一种重要的磁电效应,其原理涉及磁性材料中的自旋磁矩、磁畴结构和自旋极化等方面。
通过对这些方面的研究,可以设计出各种高效、稳定的巨磁电阻器件,为现代电子技术的发展提供重要支持。
巨磁电阻效应的研究和应用具有重要的意义,对于推动磁存储、传感器等领域的发展具有重要的推动作用。
一、实验目的1. 了解巨磁阻效应的基本原理和实验方法;2. 掌握GMR磁阻传感器的磁电转换特性;3. 分析GMR磁阻传感器在不同磁场下的磁阻特性;4. 研究GMR磁阻传感器在实际应用中的性能。
二、实验原理巨磁阻效应(Giant Magneto-Resistance, GMR)是指当一层非磁性金属(如铜)夹在两层磁性金属(如铁和钴)之间时,当磁场方向与磁性金属的易磁化方向一致时,电阻值会显著降低。
这一现象最早由法国科学家Albert Fert和德国科学家Peter Grunberg于1988年发现。
本实验采用GMR磁阻传感器,其原理是在磁性层中存在自旋极化,当外加磁场与磁性层的易磁化方向一致时,自旋极化增强,导致电子传输速率提高,从而降低电阻值。
当外加磁场与磁性层的易磁化方向垂直时,自旋极化减弱,电子传输速率降低,电阻值增加。
三、实验仪器与材料1. 实验仪器:GMR磁阻传感器、信号发生器、示波器、电流表、电压表、电阻箱、电源等;2. 实验材料:铜、铁、钴等磁性金属。
四、实验步骤1. 将GMR磁阻传感器接入电路,确保电路连接正确;2. 设置信号发生器输出正弦波信号,频率为1kHz,幅度为1V;3. 使用电阻箱调整电路中的电阻,使GMR磁阻传感器的输出电压为1V;4. 改变外加磁场方向,分别测量不同磁场强度下的电阻值;5. 记录实验数据,绘制电阻-磁场曲线。
五、实验结果与分析1. 实验数据根据实验步骤,得到以下实验数据:磁场强度(T) | 电阻值(Ω)-------------|-----------0.1 | 2000.2 | 1500.3 | 1000.4 | 500.5 | 202. 结果分析由实验数据可知,当外加磁场强度从0.1T增加到0.5T时,GMR磁阻传感器的电阻值从200Ω降至20Ω,说明巨磁阻效应显著。
在磁场方向与磁性层的易磁化方向一致时,电阻值降低;当磁场方向与磁性层的易磁化方向垂直时,电阻值增加。
巨磁电阻(GMR)磁场传感器的工作原理磁电阻(GMR)效应是1988 年发现的一种磁致电阻效应,由于相对于传统的磁电阻效应大一个数量级以上,因此名为巨磁电阻(Giant Magnetoresistanc),简称GMR。
1. 巨磁电阻(GMR)原理,见图一。
巨磁电阻(GMR)效应来自于载流电子的不同自旋状态与磁场的作用不同,因而导致的电阻值的变化。
这种效应只有在纳米尺度的薄膜结构中才能观测出来。
赋以特殊的结构设计这种效应还可以调整以适应各种不同的性能需要。
反铁磁耦合时(外加磁场为0)处于高阻态的导电输出特性,电阻:R1/2外加磁场使该磁性多层薄膜处于饱和状态时(相邻磁性层磁矩平行分布),而电阻处于低阻态的导电输出特性,电阻:R2*R3/(R2+R3),R2R1R3 图1、利用两流模型来解释GMR 的机制2. 巨磁电阻(GMR)传感器原理,见图二。
巨磁电阻(GMR)传感器将四个巨磁电阻(GMR)构成惠斯登电桥结构,该结构可以减少外界环境对传感器输出稳定性的影响,增加传感器灵敏度。
工作时图中“电流输入端”接5V~20V的稳压电压,“输出端”在外磁场作用下即输出电压信号。
图2(1):惠斯凳电桥在磁场传感器应用中的原理图2(2):惠斯凳电桥中R1 和R2 在外加磁场作用下的变化情况3. 巨磁电阻(GMR)传感器性能,见图三,表一。
图三所示为巨磁电阻(GMR)传感器在外场中的性能曲线,表明该传感器在±200Oe的磁场范围类有较好的线性。
图3:巨磁电阻(GMR)在外加磁场下的性能曲线表一各公司巨磁电阻(GMR)传感器性能对照4.产品使用说明 a . 巨磁电阻(GMR)传感器作为一种有源器件,其工作必须提供5~20V 的直流电源。
而且该电源的稳定性直接影响传感器的测试精度,因此要求以稳压电源提供;使用中也应避免过电压供电; b .巨磁电阻(GMR)传感器作为一种高精度的磁敏传感器,对使用磁环境也有一定的要求,其型号选用应根据使用环境的磁场大小来决定; c. 巨磁电阻(GMR)传感器对磁场的灵敏度与方向有关。
巨磁电阻工作原理初中
巨磁电阻是一种利用材料的磁阻随着外加磁场的变化而变化的性质,实现电流测量的传感器。
其工作原理可以简单概括如下:
1. 密磁电阻变化:巨磁电阻材料由两种不同磁性的层(如铁磁性和非铁磁性)组成。
在没有外加磁场的情况下,材料的磁矩取向随机,形成不同磁性相互穿插的结构,导致磁阻较高。
2. 外加磁场作用:当外加磁场施加在巨磁电阻材料上时,铁磁性层的磁矩受到磁场的影响,取向逐渐发生调整,使磁性相区域更大程度上得到了组织。
这样,非铁磁性层和铁磁性层之间的界面形态发生了变化,磁阻相应地减小。
3. 磁阻测量:由于巨磁电阻材料的磁阻随外加磁场的变化而变化,可以将其用作测量电流的传感器。
通过将巨磁电阻材料作为电路的一部分,随着电流的通过,外加磁场的大小和方向发生变化,从而实现对电流大小的测量。
总结起来,巨磁电阻的工作原理就是利用材料的磁性相区域的变化,使磁阻随着外加磁场的变化而发生变化,从而实现电流的测量。
巨磁阻效应及其传感器的原理和应用一、概述对于物质磁电阻特性的研究由来已久,早在20世纪40年代人们就发现了磁电阻效应。
所谓磁电阻是指导体在磁场中电阻的变化,通常用电阻变化率Δr/r 描述。
研究发现,一般金属导体的Δr/r很小,只有约10-5%;对于磁性金属或合金材料(例如坡莫合金),Δr/r可达(3~5)%。
所谓巨磁电阻(GMR)效应,是指某些磁性或合金材料的磁电阻在一定磁场作用下急剧减小,而Δr/r急剧增大的特性,一般增大的幅度比通常的磁性与合金材料的磁电阻约高10倍。
利用这一效应制成的传感器称为GMR传感器。
1、分类GMR材料按其结构可分为具有层间偶合特性的多层膜(例如Fe/Cr)、自旋阀多层膜(例如FeMn/FeNi/Cu/FeNi)、颗粒型多层膜(例如Fe-Co)和钙钛矿氧化物型多层膜(例如AMnO3)等结构;其中自旋阀(spinvalve)多层膜又分为简单型和对称型两类;也有将其分为钉扎(pinning)和非钉扎型两类的。
2、巨磁电阻材料的进展1986年德国的Grunberg和C.F.Majkrgak等人发现了Y/Gd、Y/Dy和Fe/Cr/Fe多层膜中的层间偶合现象。
1988年法国的M.N.Baibich等人首次在纳米级的Fe/Cr多层膜中发现其Δr/r在4.2K低温下可达50%以上,由此提出了GMR效应的概念,在学术界引起了很大的反响。
由此与之相关的研究工作相继展开,陆续研制出Fe/Cu、Fe/Ag、Fe/Al、Fe/Au、Co/Cu、Co/Ag、Co/Au……等具有显著GMR效应的层间偶合多层膜。
自1988年发现GMR效应后仅3年,人们便研制出可在低磁场(10-2~10-6T)出现GMR效应的多层膜(如[CoNiFe/CoFe/AgCu/CoFe/CoNiFe]n)。
1992年人们利用两种磁矫顽力差别大的材料(例如Co和Fe20Ni80)制成Co/Cu/Fe20Ni80/Cu多层膜,他们发现,当Cu层厚度大于5nm时,层间偶合较弱,此时利用磁场的强弱可改变磁矩的方向,以自旋取向的不同来控制膜电阻的大小,从而获得GMR效应,故称为自旋阀。
与此同时,1992年A.E.Berkowitz和Chien等人首次发现了Fe、Co与Cu、Ag分别形成二元合金颗粒膜中的磁电阻效应,在低温下其Δr/r可达(40~60)%。
随后陆续出现了Fe-Ag、Fe-Cu、CoxAg1-x/Ag等颗粒多层膜。
1993年人们在钙钛矿型稀土锰氧化物中发现了比GMR更大的磁电阻效应,即colossal magneto-resistance(CMR)庞磁电阻效应,开拓了GMR研究的新领域。
GMR效应的理论是复杂的,许多机理至今还不清楚;对于这些理论也分为层间交换偶合(IEC)、磁性多层膜的GMR、隧道磁电阻(TMR)等类型,详情可参阅有关文献。
3、巨磁电阻传感器的进展在发现低磁场GMR效应之后,1994年C.Tsang等研制出全集成化的GMR 器件—自旋阀。
同年,美国的IBM公司研制出利用自旋阀原理的数据读出磁头,它将磁盘记录密度提高了17倍,达5Gbit/6.45cm2(in2),目前已达11Gbit/6.45cm2(in2)。
这种效应也开始用于制造角度、位置传感器;用于数控机床、汽车测速、非接触开关、旋转编码器等领域。
作为传感器它具有功耗小、可靠性高、体积小、价格便宜和更强的输出信号等优点。
最近已研制出利用CMR效应的位置传感器。
2000年7月在德国的德雷斯顿举行的第3届欧洲磁场传感器和驱动器学术会议上,关于GMR传感器的论文占论文总数的1/3以上,可见人们的关注程度。
表1自旋阀GMR代表值特性表二、磁性多层膜的巨磁电阻效应1、磁性层间偶合多层膜图4 Cu-Co合金颗粒膜GMR效应图5钙钛矿氧化物的CMR效应特性曲线图6 La-Y-Ca-Mn-OCMR效应曲线磁性层间偶合多层膜和自旋阀多层膜的主要区别是:前者采用层间偶合方式进行信号传递;后者采用控制磁矩取向方式进行信号传递。
层间偶合多层膜结构通常由铁磁金属(FM)层和非磁性金属(NM)层交替生成,其通式为:CM/FM/NM…/FM/CM(1)式中:CM—上下两侧的覆盖层(或称缓冲层)为金属材料,有无皆可。
1988年法国的M.N.Baibich等人在美国物理学会主办的Physical ReviewLetters上发表了有关Fe/Cr巨磁电阻效应的著名论文,首次报告了采用分子外延生长工艺(MBE)制成Fe(100)/Cr(100)规则型点阵多层膜结构。
在这种(Fe/Cr)n结构中,Fe为强铁磁性金属,Cr为反铁磁性金属,n为Fe和Cr的总层数。
它是采用MBE工艺将Fe(100)/Cr(100)生长在GaAs芯片上,其工艺条件是,保持MBE室内剩余压力为6.7´10-9Pa,芯片温度约20°C,淀积速率:对于Fe为0.06nm/s;对于Cr为0.1nm/s。
它们每层的厚度约(0.9~9)nm,通常为30层。
为获得上述淀积速率,还专门设计了坩埚蒸发器。
经实验发现,当Cr的厚度小于(0.9~3)nm时,它与Fe层之间偶合的一个反向铁磁特性(AF)的磁滞回线斜率逐渐增大。
图1显示了Fe层为3nm,Cr层分别为0.9nm、1.2nm和1.8nm,磁感应强度B在±2T范围内,热力学温度T=4.2K,n=30、35、60时,3个不同样本的特性。
随着Cr厚度的增加和总层数的降低,Δr/r也升高,而且高斯磁场强度HS越弱,Δr/r越高,当HS≈2T时,[Fe(3nm)/Cr0.9nm]60膜的Δr/r可达50%以上。
实验还发现,即使温度升至室温,HS降低了30%,Δr/r 也可达到低温值的一半,这一结论具有十分大的实用价值。
随后人们发现了大量层间偶合多层膜中GMR效,如(Co/Cu)n、(Co/Ru)n、(CoFe/Co)n、(Co/Ag)n、(NiFe/Cu)n、(NiCo/Cr)n、(NiFeCo/Cu/Co)n、(NiFeCo/Cu/Co)n和(NiFeCo/Al+Al2O3/Co)n等材料。
这些材料在室温下的Δr/r也都达到10%以上甚至更高。
2.自旋阀多层膜简单型自旋阀通常是由一层NM(例如Cu)和两层FM组成。
与多层结构不同,具有扎钉磁化取向特性的第一FM层作为参考层,适当的选择Cu层的厚度,使它仅将微弱的磁场信号偶合到作为敏感层的第二FM层。
通常的扎钉功能是指在磁场作用下,向参考层上淀积一层反铁磁性(AFM)材料(例如NiO)获得的,为了改进扎钉结构的性能,在其和AFM层之间可以附加一个三层层间偶合系统,与它的第一层为AFM层的材料偶合。
如果采用FeMn作为AFM层,就会出现如图2所示的磁电阻特性,图中第一条低磁场强度曲线的斜率是因敏感层旋转所致;第二条高磁场强度的斜率曲线是由参考层旋转所致;参考层旋转使得场强通常发生在与交换偏置场(Hex)的相关处。
如果我们将一个磁电阻作为磁场方向的函数,可以获得接近正弦波形的曲线。
在低于Hex一定范围内(图中的工作范围内),该特性与磁场强度无关,Δr/r与旋转角度相关,因此可用于角度传感器。
与霍尔元件和非均质磁电阻(AMR)元件不同,这种磁电阻元件测量角度仅需要几十毫特斯拉的磁感应强度,信号周期为360°。
根据扎钉层(NiO)相对于Si芯片的位置,简单自旋阀可分为“顶结构”和“底结构”两种。
图3是具有不同层数多层膜的各种排列方式。
图3(a)是3层对称自旋阀结构,由3层磁性膜组成,中间的膜为自由层,两侧的NiO为扎钉层。
图3(b)是一个对称多层自旋阀结构,2个扎钉层之间是一个Co/Cu/Co/Cu/Co 多层膜。
图3(d)是一个底结构自旋阀,将一个Co/Cu/Co多层膜放在扎钉层NiO 的上面。
为了在3层或多层磁性膜内获得GMR效应或AFM层间的交换和偶合效应;加工多层膜结构必须采用图3(c)软硬材料相间的方式。
表1是简单和对称自旋阀的GMR特性表。
3. 颗粒多层膜颗粒多层膜通常是由二元金属形成的合金颗粒膜,在低温状态下,它具有GMR效应,其Δr/r也可达到(40~60)%。
1992年A.E.Berkowitz和Chien等首次发现了Cu-Co合金颗粒膜的GMR效应。
他们采用磁控溅射工艺,将Cu、Co分别溅射到Si(100)芯片上,形成Co-Cu薄膜;该芯片以1r.p.s.的速度转,背景压力为调整溅射速率可生成8´10-4Pa,Co含量分别为12%、19%、28%,厚度为300nm的薄膜。
图4是Cu-Co合金颗粒膜的特性曲线图,曲线a、b为19Co、28Co的样品,是采用淀积方法,在T≥100K时获得的,可以看出曲线b 已经产生振荡,它们的Δr/r分别达到8%和2%;而曲线c是在T≥10K时的19Co 样品的特性,它的Δr/r达22%以上,可见还是相当高。
实验证实,对于这种薄膜经热处理退火后,即使在室温下也可以获得20%以上的Δr/r。
近年来,不断出现了对于Fe-Ag、Fe-Cu等颗粒多层膜GMR特性的研究,发现材料的磁性成分较小时,颗粒间作用也较小;成分增至(25~30)%时,其颗粒间具有较强的磁偶合。
颗粒多层膜的另一特点是其磁性饱和场比磁电阻饱和场低得多;它在零磁场条件下电阻随温度的变化比在磁场中电阻随温度的变化要小得多。
图8.自旋阀角度传感器4.钙钛矿氧化物多层膜1993年,R.V on.Helmholt等人首次在La2/3Ba1/3MnOx铁磁多层膜中发现了巨大的CMR效应,该多层膜在磁性转变温度(居里点Tc)附近,Δr/r高达(106~108)%,即使在室温下的Δr/r也可达60%。
这类多层膜采用外延生长、离轴(off—axis)激光淀积和退火等工艺,将膜生长在SnTiO3芯片上。
图5是在T=300K条件下,淀积和退火后电阻率与温度的相关曲线。
从图中看出,随着磁场的增大Δr/r减少,Δr/r的峰值发生在零磁场附近。
图6是1995年S.Jin等人对La0.60Y0.07Ca0.33MnOx多层膜进行研究,采用多晶硅芯片,在T=140K,Hs≈6T条件下,生成钙钛矿氧化物多层膜,获得的CMR效应曲线,它的Δr/r高达10000%。
三、巨磁电阻传感器通常,轮速或增量位置传感器由磁场激励和检测传感器或电桥两部分组成。
为了产生一个周期性变化的磁场,激励部分可采用一个永磁铁多极轮,也可由一个铁磁轮和一个外加磁场组成。
检测传感器包括磁场传感器、GMR传感器等。
这类传感器可用作反时针刹车系统的轮速传感器,控制汽车发动机的速度和位置传感器以及各种角度增量编码器等。
1.磁性层间偶合多层膜传感器由于Co/Cu多层膜或在其基础上研制的CoCu/Co多层膜的磁电阻特性无迟滞效应,而且使用温度已达到200℃以上,长期稳定性也高于500h,因此,将它用于传感器的较多。