八年级数学上册第三章位置与坐标3.2平面直角坐标系3.2.1平面直角坐标系课时同步练习无答案新版北师大版
- 格式:doc
- 大小:357.50 KB
- 文档页数:3
第三章位置与坐标2 平面直角坐标系第2课时平面直角坐标系中点的坐标特征教学目标1.在给定的坐标系下,会根据坐标描出点的位置.2.结合平面直角坐标系,知道不同象限中点的坐标的特征.3.通过找点、连线、观察,确定图形的大致形状,能进一步掌握平面直角坐标系的基本内容.教学重难点重点:平面直角坐标系中点的坐标特征.难点:会根据点的坐标特征判断点在哪个象限或哪条坐标轴上.教学过程导入新课在上节课中我们学习了平面直角坐标系的相关概念,练习了在平面直角坐标系中由点写坐标以及由坐标找点,利用上节课的知识来解决下列问题.B(-6, -3).设计意图:先回顾上节课的内容,让学生加深理解平面直角坐标系的知识,为学好本节课做铺垫.探究新知一、预习新知请同学们拿出准备好的坐标纸,然后按照给出的坐标,尝试在直角坐标系中描点,并依此用线段连接起来.①D(-3,5),E(-7,3),C(1,3);②F(-6,3),G(-6,0),A(0,0),B(0,3);观察所描出的图形,它像什么?学生独立认真地连线.师:(展示学生的作品),画出的图形是这样的吗?这幅图画得很美,你们觉得它像什么?生:这个图形像一座房子.师:要想准确地作出图形,我们应该注意什么问题呢?生1:看点的坐标时容易看错符号,所以就找错了点所位于的象限.生2:连线时没有用直尺或三角尺连线,画图不规范,另外点的顺序也容易出错.设计意图:通过在坐标系中描点、连线,很好地体现了数学的趣味性,数与形的结合完美地展现出来,大大激发了学生的学习热情.二、合作探究观察上面画出的图形,回答下列问题:师:图形中哪些点在坐标轴上,它们的坐标有什么特点?生:线段AG上的点都在x轴上,它们的纵坐标等于0,线段AB上的点都在y轴上,它们的横坐标等于0.师:线段EC与x轴有什么位置关系?点E和点C的坐标有什么特点?线段EC 上其他点的坐标呢?生:线段EC平行于x轴,点E和点C的纵坐标相同,线段EC上其他点的纵坐标相同,都是3.师:点F和G的横坐标有什么共同特点,线段FG与y轴有怎样的位置关系?生:点F和G的横坐标相同,线段FG与y轴平行.学生总结,教师点评:由上面的探究过程可以得到“平行于两轴的直线上的点”的坐标特征:(1) 平行于x轴的直线上的点:纵坐标相同;(2) 平行于y轴的直线上的点:横坐标相同.做一做:师:在“笑脸”上找出几个位于第一象限的点,指出它们的坐标,说说这些点的坐标有.教师总结:第一象限内的点的横、纵坐标符号都为“+”.师:在其他象限内分别找几个点,看看其他各个象限内的点的坐标有什么特点?学生分小组讨论,然后找代表说出本小组的答案.学生总结,教师点评得到“四个象限内点”的坐标特征:各象限内的点的坐标特点:点P(x,y)分别在:第一象限内,则x>0,y>0;第二象限内,则x<0,y>0;第三象限内,则x<0,y<0;第四象限内,则x>0,y<0.巩固练习已知在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是________.解析:根据第一象限内点的坐标的符号特征,横坐标为正,纵坐标为正,可得关于m的一元一次不等式组{m>0,m−2>0,解得m>2.答案:m>2典型例题【例1】观察图形,并回答以下问题:(1)写出多边形ABCDEF各个顶点的坐标;(2)线段BC,CE的位置各有什么特点?(3)计算多边形ABCDEF的面积.点的坐标?【解】(1)A(-2,0),B(0,-3),C(3,-3),D(4,0),E(3,3),F(0,3).(2)线段BC平行于x轴(或线段BC垂直于y轴),线段CE垂直于x轴(或线段CE平行于y轴).(3)S多边形ABCDEF=S△ABF+S长方形BCEF+S△CDE =12×6×2+3×6+12×6×1=6+18+3=27.【总结】纵坐标相同的点所在直线平行(重合)于x轴;横坐标相同的点所在直线平行(重合)于y轴.【例2】已知点P(a-2,2a+8),分别根据下列条件求出点P的坐标.(1)点P在x轴上;(2)点P在y轴上;(3)点Q的坐标为(1,5),直线PQ∥y轴;(4)点P到x轴、y轴的距离相等.【问题探索】在x轴上、y轴上的点的坐标各有什么特征?平行于x轴、y轴的直线上的点的坐标又有什么特征?【解】(1)因为点P(a-2,2a+8)在x轴上,所以2a+8=0,解得a=-4,故a-2=-4-2=-6,则P(-6,0).(2)因为点P(a-2,2a+8)在y轴上,所以a-2=0,解得a=2,故2a+8=2×2+8=12,则P(0,12).(3)因为点Q的坐标为(1,5),直线PQ∥y轴,所以a-2=1,解得a=3,故2a+8=14,则P(1,14).(4)因为点P到x轴、y轴的距离相等,所以a-2=2a+8或a-2+2a+8=0,解得a=-10或a=-2.当a=-10时,a-2=-12,2a+8=-12,则P(-12,-12);当a=-2时,a-2=-4,2a+8=4,则P(-4,4).综上所述,点P的坐标为(-12,-12)或(-4,4).【总结】横轴上点的纵坐标为0,纵轴上点的横坐标为0.平行于x轴的直线上的点的纵坐标相同,平行于y轴的直线上的点的横坐标相同.课堂练习1.在平面直角坐标系中,点P(m,1)在第二象限,则点Q(-m,0)在()A.x轴的负半轴上B.x轴的正半轴上C.y轴的负半轴上D.y轴的正半轴上2.点B的坐标为(3,-4),而直线AB平行于x轴,那么点A的坐标可能为()A.(3,-2)B.(2,4)C.(-3,2)D.(-3,-4)3.如果点B与点C的横坐标相同,纵坐标不同,则直线BC与y轴的关系为()A.平行B.垂直C.相交D.以上均不对4.设点M(a,b)为平面直角坐标系内的点.(1)当a>0,b<0时,点M位于第几象限?(2)当ab>0时,点M位于第几象限?(3)当a为任意有理数,且b<0时,点M位于第几象限?参考答案1.B2.D3.A4.解:(1)点M在第四象限.(2)可能在第一象限(a>0,b>0)或者在第三象限(a<0,b<0).(3)可能在第三象限(a<0,b<0)或者第四象限(a>0,b<0)或者y轴负半轴上(a=0,b<0).课堂小结1.“平行于两坐标轴的直线上的点”的坐标特征:(1) 平行于x轴的直线上的点:纵坐标相同;(2) 平行于y轴的直线上的点:横坐标相同.2.“两坐标轴上的点”的坐标特征:(1)x轴上的点的坐标:纵坐标为0(2)y轴上的点的坐标:横坐标为0.3.“四个象限内的点”的坐标特征:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-).布置作业习题3.3第1,2题板书设计2 平面直角坐标系第2课时平面直角坐标系中点的坐标特征1.“平行于两坐标轴的直线上的点”的坐标特征.2.“两坐标轴上的点”的坐标特征.3.“四个象限内的点”的坐标特征.。
八年级数学上册3.2平面直角坐标系第1课时平面直角坐标系说课稿(新版北师大版)一. 教材分析平面直角坐标系是八年级数学上册第三章第二节的内容,本节课的主要内容有:平面直角坐标系的定义,坐标轴和坐标点的概念,坐标的表示方法以及坐标轴上的点的坐标特征。
这部分内容是学生学习函数、几何等数学知识的基础,对于学生来说具有重要的意义。
二. 学情分析学生在七年级时已经学习了坐标轴和坐标的初步知识,对本节课的内容有一定的了解。
但是,对于平面直角坐标系的定义,坐标轴和坐标点的概念,以及坐标轴上的点的坐标特征等知识,还需要进一步的讲解和巩固。
此外,学生对于实际问题中的坐标系应用还不够熟悉,需要通过实例来加强理解和运用。
三. 说教学目标1.知识与技能:理解平面直角坐标系的定义,掌握坐标轴和坐标点的概念,学会表示坐标,并能判断坐标轴上的点的坐标特征。
2.过程与方法:通过实例和练习,培养学生的空间想象能力,提高学生解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识和探究精神。
四. 说教学重难点1.重点:平面直角坐标系的定义,坐标轴和坐标点的概念,坐标的表示方法。
2.难点:坐标轴上的点的坐标特征的判断,以及坐标系在实际问题中的应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、实例教学法和合作学习法,引导学生主动探究,提高学生的学习兴趣和参与度。
2.教学手段:利用多媒体课件和教具,直观展示平面直角坐标系,帮助学生理解和记忆。
六. 说教学过程1.导入:通过问题驱动,引导学生回顾七年级学过的坐标轴和坐标点的知识,为新课的学习做好铺垫。
2.新课讲解:讲解平面直角坐标系的定义,坐标轴和坐标点的概念,坐标的表示方法,以及坐标轴上的点的坐标特征。
通过实例和练习,让学生加深对知识的理解。
3.课堂互动:学生进行小组讨论,分享学习心得,解答疑难问题。
4.练习巩固:布置一些具有代表性的题目,让学生独立完成,检验学习效果。
3.2.1平面直角坐标系教学目标知识与技能:1.理解平面直角坐标系以及横轴、纵轴、原点、坐标等概念.2.认识并能画出平面直角坐标系.3.能在给定的直角坐标系中,由点的位置写出它的坐标.过程与方法:1.从现实情境入手,感受建立平面直角坐标系的必要性,然后抽象出平面直角坐标系的相关概念.2.通过画坐标系、由点找坐标等过程,发展学生的数形结合意识、合作交流意识.情感态度与价值观:由平面直角坐标系的有关内容,以及由点找坐标,反映平面直角坐标系与现实生活的密切联系,让学生认识数学与生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心.教学重难点【重点】学生能正确画出平面直角坐标系,并能在平面直角坐标系中,根据定义写出给定点的坐标,以及根据坐标描出点的位置.【难点】理解坐标和平面上的点的一一对应的关系,体会数形结合思想.教学准备【教师准备】多媒体课件,画图工具,教材图3 - 4,3 - 5,3 - 6的情境图.【学生准备】画图工具,方格纸.教学过程一、导入新课导入一:同学们,你们喜欢旅游吗? 假如你到了某一个城市旅游,那么你应怎样确定旅游景点的位置呢?下面给出一张某市旅游景点的示意图,在科技大学的小亮如何给来访的朋友介绍该市的几个风景点的位置呢?尽可能给出简洁的表示方法,并与同伴交流.大成殿:;中心广场:;碑林:.[设计意图]试图通过介绍景点回顾前一节中确定位置的方法,体会不同的介绍方法中的共性——一般需要两个数据.导入二:[过渡语]同学们,结合以前学过的知识,请根据示意图,回答问题.你是怎样确定各个景点的位置的?[处理方式]学生口答完成,对于回答不完整的由学生补充改正!教师引导性地进行语言说明,在数轴上我们能够用一个数字来表示点的坐标,那么平面内能否用一个数来表示景点的具体的位置呢?既复习了旧知识,又为下面用类比的方法学习新知识做铺垫.此处学生回答的方法多种多样,只要合理即可,还有没有更好的方法,进而提出问题.一一感受建立平面直角坐标系的必要性.[设计意图]通过播放图片,调动学生的热情,既复习回顾了旧知识,又激发起进一步学习的兴趣,吸引学生的注意力,用类比的方法学习平面直角坐标系,为学习新知识进行铺垫.引导学生猜想、探索,鼓励学生积极思考,调动学习积极性,并在活动中培养学生的探究、合作、交流的能力.二、构建新知[过渡语]生活中到处都是确定物体位置的问题,谁能用学过的知识完成下面的做一做呢?(1)、做一做(一)(1)小红在旅游示意图上画上了方格,标上数字,如图(1)所示,并用(0,0)表示科技大学的位置,用(5,7)表示中心广场的位置,那么钟楼的位置如何表示?(2,5)表示哪个地点的位置?(5,2)呢?(1)(2)按照小红的方法,(5,2)中的2表示,(2,5)中的2表示.(2)如果小亮和他的朋友在中心广场,并以中心广场为“原点”,做了如图(2)所示的标记,那么你能表示“碑林”的位置吗?“大成殿”的位置呢?(通常将(0,0)点称为原点)[过渡语]在上一节课,我们已经学习了许多确定位置的方法,对于这个问题,大家看用哪种方法比较合适?如果城市比较大,地图还需要向右上方扩展,你能类似地表示右上部分其他点的位置吗?[设计意图]以方格纸为背景,可以方便地利用有序数对描述各景点的位置.生活中用两个距离表示位置时,一般不用负数,而直角坐标系中的坐标是可正可负的,为此,设计了本问题.(2)、相关概念思路一:给出定义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系.通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向.水平的数轴叫做x轴或横轴,铅直的数轴叫做y轴或纵轴,x轴和y轴统称坐标轴,它们的公共原点O称为直角坐标系的原点.如图所示,对于平面内任意一点P,过点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标.如图所示,在平面直角坐标系中,两条坐标轴将坐标平面分成了四部分,右上方的部分叫做第一象限,其他三部分按逆时针方向依次叫做第二象限、第三象限和第四象限.坐标轴上的点不在任何一个象限内.思路二:活动内容1:认识平面直角坐标系.[过渡语]请同学们打开教材第59页,结合自学提纲阅读课本例1之前的部分内容,并将重点内容标注出来.(多媒体展示)问题1:什么是平面直角坐标系?简称什么?两条数轴如何放置?如何称呼?方向如何确定?它们的交点叫什么?问题2:坐标轴将平面分为哪几个部分?它们的名称分别是什么?坐标轴上的点属于哪个部分?问题3:在方格纸上画出平面直角坐标系.问题4:象限是怎样划分的?[处理方式]给学生5~8分钟的时间先结合自学提纲自学课本,然后根据自己的理解在方格纸上画出平面直角坐标系,并标出各部分名称.学生之间相互提问解答.最后找学生代表发言,教师要求学生尽量不看课本,对于问题1和问题2,学生根据课本内容回答应该问题不大,但是此处教师应该补充正方向的确定不是唯一的,我们为了习惯,通常取向右与向上的方向分别为两条数轴的正方向.对于数轴的名称,多找几位学生回答,最后教师强调画平面直角坐标系应注意:①两条数轴互相垂直;②原点重合;③标注两坐标轴名称;④单位长度一般取相同的.问题3直接要求学生在所画平面直角坐标系中标出各个象限的名称,并引导学生得出坐标轴上的点不在任何一个象限内.(多媒体出示,同时给学生1分钟时间改正反思,查找错误的原因)注意:坐标轴上的点不属于任何象限,原点既在横轴上又在纵轴上.在上图建立的平面直角坐标系中,两条坐标轴将坐标平面分成四个部分(按逆时针方向)分别叫第一象限、第二象限、第三象限、第四象限.[设计意图]平面直角坐标系的产生是法国数学家迪卡尔的伟大发现,里边涉及的概念很难引导学生自己得出,因此可以通过自学的方式让学生掌握这些知识,培养学生自学能力、合作交流能力,体现学生主动学习的理念,对学生进行数学文化方面的熏陶和理想教育.培养作图能力和对概念的进一步认识,强化理解.活动内容2:点的坐标的定义.(多媒体出示)问题1:直角坐标系内,如何根据点的位置确定点的坐标?写出A 点的坐标(如图(1)所示).问题2:在平面直角坐标系内,如何根据点的坐标确定点的位置?找出坐标为(2,4)的C点(如图(2)所示).[处理方式]给学生3~4分钟的时间自学课本,然后根据自己的理解,写出A点的坐标,然后同桌比较写出的答案是否一样.找出不同的原因,然后再一次自学课本,小组内讨论得出正确答案:A(3,4).教师引导学生说明怎样得到点A的坐标,例如:①过点A分别向x轴和y 轴作垂线,垂足M在x轴上的坐标是3,垂足N在y轴上的坐标是4,我们说A点的横坐标是3,纵坐标是4,有序数对(3,4)就叫做点A的坐标,记作A(3,4).②用直角三角板中的直角,使直角顶点落在点A上,并且保证两条直角边与坐标系中x轴和y轴垂直,一条直角边通过x 轴上的坐标是3,另一条直角边通过y轴上的坐标是4,所以点A的坐标记作A(3,4).这些方法都可以得到点的坐标,此处学生容易出现错误,教师强调有序数对的横坐标在前,纵坐标在后,教师可以引导学生编顺口溜,利于学生理解辨别(平面直角坐标系,两条数轴来唱戏,一个点,两个数,先横后纵再括号,中间隔开用逗号).然后教师在平面直角坐标系中画出B点,要求学生写出点B的坐标,并板书在黑板上,学生讲评更正.对于问题2如何根据坐标找到平面上的点,学生独立思考,在方格纸上已经画好的平面直角坐标系中找出点C(2,4),组内探索交流后回答,并在黑板上演示,教师强调坐标要写在点旁边,书写格式要正确.(多媒体出示,同时给学生2分钟时间查缺补漏,查找错误的原因)[设计意图]以上两个问题的解决,是本节课的核心环节,教师的讲解配以多媒体的直观演示,能更好地突破难点,将枯燥的知识趣味化,同时,采用独立、对学、小组合作学习等多种形式相结合的学习方式,提高学生的学习兴趣,并及时地做练习,让学生将知识转化成自身的技能,注意到自己独立做题时所出现的错误,从而更好地实现本节课的教学目标.[过渡语]请同学们利用上面的知识,探究下面的例题.(3)、例题讲解(教材例1)写出图中的多边形ABCDEF各个顶点的坐标.解:各个顶点的坐标分别是:A(-2,0),B(0,-3),C(3,-3),D(4,0),E(3,3),F(0,3).[设计意图]本课时的重点是通过坐标更好地理解平面直角坐标系的思想,认识到坐标与点的一一对应关系.例1和下面的“做一做”分别让学生“根据点的位置写出它的坐标”“根据坐标描出相应的点”,在此基础上进一步感受坐标与点的对应关系.(4)、做一做(二)(1)在下图所示的平面直角坐标系中,描出下列各点:A(-5,0),B(1,4),C(3,3),D(1,0),E(3,-3),F(1,-4).(2)依次连接A,B,C,D,E,F,A,你得到什么图形?(3)在平面直角坐标系中,点与实数对之间有何关系?【问题解决】(1)图略.(2)图形像“飞机”.(3)在直角坐标系中,对于平面上的任意一点,都有唯一的一对有序实数对(即点的坐标)与它对应;反过来,对于任意一对有序实数对,都有平面上唯一的一点与它对应.[设计意图]第(3)问是建立在例1和“做一做”前两问的基础上的,让学生经历根据坐标描出点的位置,由点的位置写出它的坐标的过程,体会平面上的点与有序实数对之间是一一对应的关系.结论:在直角坐标系中,对于平面上的任意一点,都有唯一的一对有序实数对(即点的坐标)与它对应;反过来,对于任意一对有序实数对,都有平面上唯一的一点与它对应.[知识拓展]由于平面直角坐标系中的点是用一个有序实数对来表示的,所以平面上的点和有序实数对是一一对应的关系.点(a,b)(a≠b)与点(b,a)一般是不同的两个点,在描点时应注意.三、课堂总结在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系.通常两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向.水平的数轴叫做x轴或横轴.铅直的数轴叫做y轴或纵轴.x轴和y轴统称坐标轴.它们的公共原点O称为直角坐标系的原点.如图所示,两坐标轴把平面分成四个部分,右上方的部分叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限.四、课堂练习1.如果P点的坐标为(-1,2),那么P点的横坐标为,纵坐标为.解析:点的横坐标写在前,纵坐标写在后,用小括号括起来.答案:-1 22.如果Q点的坐标为(2,-3),那么Q点的横坐标为,纵坐标为.解析:点的横坐标写在前,纵坐标写在后,用小括号括起来.答案:2-33.如果M点的横坐标为-2,纵坐标为-1,那么M点的坐标为.解析:点的横坐标写在前,纵坐标写在后,用小括号括起来.故填(-2,-1).4.如图所示,分别写出点A,B,C,D,E,F,G的坐标.解:A(-1,-1),B(0,-3),C(2,-5),D(4,-1),E(3,2),F(-2,3),G(2,-2).五、板书设计3.2.1平面直角坐标系1.做一做(一).2.相关概念.3.例题讲解.4.做一做(二).六、布置作业(1)、教材作业【必做题】教材习题3.2第1,2题.【选做题】教材习题3.2第3,4题.(2)、课后作业【基础巩固】1.在平面直角坐标系中,点P(-2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限2.点P(2,3)的横坐标为,纵坐标是.【能力提升】3.点P(0,-3)的位置是在()A.x轴的正方向上B.x轴的负方向上C.y轴的正方向上D.y轴的负方向上4.已知P(3,-2),则P点到x轴的距离为,到y轴的距离为.5.已知A点在x轴上,且OA=3,则A点的坐标为.6.已知A(-1,4),B(-4,4),则线段AB的长为.【拓展研究】7.在图中的直角坐标系中描出下列各点.A(2,3),B(-2,3),C(0,-4),D(-2,0),E(-3,-1),F(3,-2).【答案与解析】1.B(解析:由象限的定义可知点P(-2,3)在第二象限.故选B.)2.2 33.D(解析:横坐标为0,在y轴上,纵坐标为负数,在负半轴上.)4.23(解析:点到x轴的距离为纵坐标的绝对值,到y轴的距离为横坐标的绝对值.)5.(3,0)或(-3,0)(解析:A点在x轴上,OA=3,则A点在O点的左侧或右侧,所以A点的坐标有两个.)6.3(解析:根据A(-1,4),B(-4,4)得AB平行于x轴,线段AB的长为A,B 两点横坐标差的绝对值.)7.解:根据点的坐标描出即可.图略.。
3.2平面直角坐标系
1、下列语句,其中正确的有()
①点(3,2)与(2,3)是同一个点;②点(0,-2)在第三象限;③点(0,0)是坐标原点.
A.0个B.1个C.2个D.3个
2、已知点M在第三象限,且到x轴的距离为3,到y轴的距离为2,则M点的坐标为()
A.(3,2) B.(-2,-3) C.(2,-3) D.(2,3)(2,-3),(-2,3),(-2,-3)
3.在平面直角坐标系中,点M(-2,1)在( )
A.第一象限 B.第二象限C.第三象限 D.第四象限
4.在平面直角坐标系中,下列坐标所对应的点位于第三象限的是( )
A.(3,1) B.(3,-1) C.(-3,1) D.(-3,-1)
5.若以百色汽车总站为坐标原点,以向阳路为y轴建立平面直角坐标系,百色纪念馆的位置如图所示,则其所覆盖的坐标可能是( )
A.(-5,3) B.(4,3) C.(5,-3) D.(-5,-3)
6.在平面直角坐标系中,点P的横坐标是-3,且点P到x轴的距离为5,则点P的坐标是( )
A.(5,-3)或(-5,-3) B.(-3,5)或(-3,-5) C.(-3,5) D.(-3,-5)
7.若点A(x,9)在第二象限,则x的取值范围是________.
8.点P(3,-4)到x轴的距离是________,到y轴的距离是________,到原点的距离是________.
9.若点P(a,b)到x轴的距离是2,到y轴的距离是5,则这样的点P有________个.
10、点M(-6,7)的横坐标是,纵坐标是,它到x轴的距离是,到y轴的距离是 .
11、原点的坐标是;已知点N在第四象限,且它到x轴的距离是7,到y轴的距离是,则点N坐标为 .
12、已知点M(-4,-3),则点M在象限,点M到原点的距离是 .
13、如图,写出A、B、C、D、E、F的坐标.
14、如图是画在方格纸上的某岛简图.
(1)分别写出地点A,L,N,P,E的坐标;(2)坐标(4,7),(5,5),(2,5)所代表的分别是图中的哪个点?
15.如图,已知四边形ABCD.(网格中每个小正方形的边长均为1)
(1)写出点A,B,C,D的坐标;(2)试求四边形ABCD的面积.
16.在平面直角坐标系中,点A,B的位置如图所示.
(1)写出A,B两点的坐标:______________.
(2)若C(-3,-4),D(3,-3),请在坐标系中标出C,D两点.
(3)写出A,B,C,D四点到x轴和y轴的距离:点A到x轴的距离为________,到y轴的距离为________;点B到x轴的距离为________,到y轴的距离为________;点C(-3,-4)到x轴的距离为________,到y轴的距离为
________;点D(3,-3)到x轴的距离为________,到y轴的距离为________.
(4)分析(3)中点的坐标与该点到坐标轴的距离的关系,利用你所发现的结论写出点P(x,y)到x轴的距离为
________,到y轴的距离为________.
17. 如图,已知△ABC的两个顶点坐标为A(-4,0),B(2,0),且AB边上的高为4,第三个顶点C的横坐标为-1,求顶点C的坐标及△ABC的面积.。