第十四章 X射线荧光
- 格式:ppt
- 大小:7.41 MB
- 文档页数:74
X射线荧光光谱分析的基本原理当能量高于原子内层电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,激发态原子寿命约为10-12-10-14s,然后自发地由能量高的状态跃迁到能量低的状态。
这个过程称为驰豫过程。
驰豫过程既可以是非辐射跃迁,也可以是辐射跃迁。
当较外层的电子跃迁到空穴时,所释放的能量随即在原子内部被吸收而逐出较外层的另一个次级光电子,此称为俄歇效应,亦称次级光电效应或无辐射效应,所逐出的次级光电子称为俄歇电子。
它的能量是特征的,与入射辐射的能量无关。
当较外层的电子跃入内层空穴所释放的能量不在原子内被吸收,而是以辐射形式放出,便产生X射线荧光,其能量等于两能级之间的能量差。
因此,X射线荧光的能量或波长是特征性的,与元素有一一对应的关系。
图10.1给出了X射线荧光和俄歇电子产生过程示意图。
K层电子被逐出后,其空穴可以被外层中任一电子所填充,从而可产生一系列的谱线,称为K系谱线:由L层跃迁到K层辐射的X射线叫Kα射线,由M层跃迁到K层辐射的X 射线叫Kβ射线……。
同样,L层电子被逐出可以产生L系辐射(见图10.2)。
如果入射的X 射线使某元素的K层电子激发成光电子后L层电子跃迁到K层,此时就有能量ΔE释放出来,且ΔE=EK-EL,这个能量是以X射线形式释放,产生的就是Kα射线,同样还可以产生Kβ射线,L系射线等。
莫斯莱(H.G.Moseley) 发现,荧光X射线的波长λ与元素的原子序数Z有关,其数学关系如下:λ=K(Z-s)-2这就是莫斯莱定律,式中K和S是常数,因此,只要测出荧光X射线的波长,就可以知道元素的种类,这就是荧光X射线定性分析的基础。
此外,荧光X射线的强度与相应元素的含量有一定的关系,据此,可以进行元素定量分析。
定性分析不同元素的荧光X射线具有各自的特定波长,因此根据荧光X射线的波长可以确定元素的组成。
如果是波长色散型光谱仪,对于一定晶面间距的晶体,由检测器转动的2θ角可以求出X射线的波长λ,从而确定元素成分。
x射线荧光光谱学
X射线荧光光谱学是一种分析方法,利用高能量X射线或伽玛射线轰击材料时激发出的次级X射线进行物质成分分析和化学态研究。
X射线荧光光谱仪主要由激发源(X射线管)和探测系统构成,其原理是利用初级X射线光子或其他微观粒子激发待测物质中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学态研究。
X射线荧光光谱仪可以分为波长色散型和能量色散型。
波长色散型X射线荧光光谱仪利用晶体对X射线的衍射作用,将不同波长的X射线分开,实现对不同元素的分析。
而能量色散型X射线荧光光谱仪则使用半导体探测器检测X射线的能量,通过不同的能量峰来识别不同的元素。
X射线荧光光谱法的优点包括:
1.分析速度快,可在几分钟内完成元素分析;
2.检出限较低,可以达到ppm级别;
3.分析精度高,误差较小;
4.可用于多种元素分析,包括轻元素和重元素;
5.无需标准样品即可进行定性分析。
在宝石鉴定、日常委托检测等领域,快速、无损的特点使其得到了广泛应用。
不过,该方法也存在一些局限性,例如对轻元素的分析较为困难、对非金属元素的灵敏度较低等。
X射线荧光分析的基本原理1. 绪论物质是由各种元素按照不同的构成方式构成的。
各种元素的原子是由原子核和一定数目的核外电子构成。
不同元素的原子,原子核中质子和中子的数量不同,核外电子数也不同,具有不同的原子结构。
核外电子的能量也各不相同,这些能量不同的原子按能量大小分层排列,离原子核最近的电子层称为K电子层,其外依次为L,M,N,O…层。
K层上的电子能量最低,由里向外,电子的能量逐渐升高。
原子在未接受足够的能量时,处于基态,即稳定状态,此时,K层最多容纳2个电子,L层最多容纳8个电子,M层最多容纳18个电子……。
当使用高能射线(如X射线)照射物质时,物质中的原子的内层电子被高能射线逐出原子之外,在内层电子层上即出现一个“空穴”。
具有较高能量的外层电子立即补充这一“空穴”而发生跃迁。
发生跃迁的电子将多余的能量(两个电子层能量之差)释放出来。
释放出来的能量以电磁波的形式向四周发射,其波长恰好在X射线的波长范围内(0.001~10nm)。
为了与照射物质的X射线(初级X射线)相区别,将被照射物质发出的X射线(二次X射线)称为荧光X射线(荧光即光致发光之意)。
对于K层电子而言,L层电子向K层电子跃迁时放射出的荧光X射线称为Kα谱线,M层电子向K层电子跃迁时放射出的荧光X射线称为Kβ谱线,其他层的电子发生跃迁时的情况依此类推(如图1.1所示)。
利用被测物质发出的荧光X射线进行物质化学成分的定性分析或定量分析,称为X射线荧光光谱分析。
图1.1原子结构示意图在形成的线系中,各谱线的相对强度是不同的,这是由于跃迁几率不同。
对K层电子而言,特定元素的荧光X 射线Kα>Kβ,对于同一种元素而言,强谱线只有1-2条,特征谱线比较简单,易于分析,光谱干扰小。
2. X射线与固体之间的相互作用X射线照射在固体表面上,主要会产生吸收和散射两种效应。
固体物质可以吸收一部分射线,并可以使X射线在固体表面发生散射,使X射线的强度衰减。
x射线荧光原理
x射线荧光原理是利用x射线与物质相互作用的现象进行分析
的一种方法。
当x射线通过物质时,它们与物质中的原子发生散射和吸收。
部分x射线被原子内层电子吸收后,将电子从原子内层击出,形成空位。
当空位被外层电子填补时,外层电子会跃迁到内层,释放出能量。
这些能量一部分以x射线的形式散射出去,而另一部分以可见光的形式发出。
通过测量这些发出的x射线或可见光的能量和强度,我们可以确定物质中存在的元素种类及其相对丰度。
具体的实验中,首先通过加热或其他方法将待测样品激发,使得样品中的原子被激发到高能级。
接下来,将样品暴露在x射线束中,x射线与样品相互作用后产生荧光辐射。
荧光辐射经
过适当的光学元件收集和分析后,我们可以得到一系列特征能量的能谱。
根据这些能谱,我们可以通过比对已知样品的能谱来确定未知样品中存在的元素。
当然,为了提高分析的准确性和灵敏度,通常会使用标准样品进行校准和定量分析。
总的来说,x射线荧光原理是基于x射线与物质相互作用的原理,通过测量由该相互作用产生的荧光辐射的能谱,可以对样品中的元素进行定性和定量分析。
x射线荧光分析原理
X射线荧光分析原理是一种无损分析技术,通过样品中的元素发射的特征X射线进行分析。
该技术基于原子的特性,当样
品受到X射线照射后,其内部原子会受到激发,然后返回稳
定状态时会发出特定的能量X射线。
X射线荧光分析仪器主要由X射线源、样品台和能谱仪组成。
首先,X射线管产生高能的X射线,这些X射线经过准直器
照射到样品上。
样品吸收了一部分X射线,并将其中的一部
分能量转化为内部原子的电磁能量。
被激发的原子将返回基态时,会发出特定能量的荧光X射线。
这些荧光X射线由能谱仪探测到,并进行能量分析。
能谱仪
可以根据不同能量的X射线,将其转化为电信号,并生成能
谱图。
根据荧光X射线的特征能量,可以确定样品中存在的元素以
及其相对含量。
每个元素都有自己独特的能量谱线,因此可以通过比较荧光X射线的能谱图与标准库中的谱线进行定性和
定量分析。
X射线荧光分析具有灵敏度高、分析速度快、多元素同时分析的特点。
它被广泛应用于材料分析、环境监测、地质矿产勘探等领域。
由于其非破坏性和准确性,X射线荧光分析成为一种重要的分析技术。
x射线荧光名词解释一、X射线荧光概述X射线荧光(X-ray fluorescence,简称XRF)是物质受到X 射线激发后,原子内层电子被电离,外层电子随即跃迁填补空位,同时放射出特征X射线的现象。
这种特征X射线也被称为X射线荧光。
二、X射线荧光的原理当高能X射线或伽马射线轰击物质时,它们可以将物质原子的内层电子激发出来,使得原子处于激发态。
随后,外层电子会填补这个空位,并释放出能量,这种能量以X射线的形式发射出去,形成X射线荧光。
每种元素释放的X射线荧光具有特定的能量,因此可以通过测量这些荧光的能量来确定物质的元素组成。
三、X射线荧光的应用1.元素分析:XRF技术被广泛用于元素分析,特别是对于那些其他方法难以分析的元素。
例如,在地质学、环境科学和材料科学中,XRF被用来确定样品的元素组成。
2.无损检测:由于XRF技术是非破坏性的,它常被用于艺术品、文物和其他贵重物品的元素分析。
3.实时检测:现代便携式XRF仪器可用于实地、实时的元素分析,例如在矿物质勘探、土壤污染研究中。
4.医疗应用:X射线荧光也被用于医疗领域,尤其是在放射性诊断和治疗中,通过测量体内特定元素的荧光来监测其浓度。
四、X射线荧光的优势与局限•优势:非破坏性、高灵敏度、能够分析多种元素。
•局限:对于轻元素(如氢、氦)不太敏感、需要专业的设备和操作人员、长期暴露可能对健康产生影响。
五、未来发展随着技术的进步,X射线荧光技术将变得更加便携和易用,同时其分析速度和精度也将得到进一步提升。
此外,随着人工智能和机器学习技术的应用,未来XRF数据的解析和处理将更加智能化,为科研和工业应用带来更多的便利。
总结X射线荧光作为一种重要的分析方法,在我们的生活和科研中发挥着不可或缺的作用。
从地质学到医学,从环境科学到材料研究,它的应用领域广泛且多样。
随着技术的进步和发展,我们有理由相信,X射线荧光技术将在未来为我们揭示更多的秘密,为科研和应用提供更强大的工具。
X射线荧光分析的原理及应用1.引言X射线荧光分析是一种十分重要的分析技术,它通过测量样品中产生的特征X射线的能量和强度,来确定样品中元素的类型和含量。
本文将介绍X射线荧光分析的基本原理和其在科学研究和工业应用中的重要性。
2.原理X射线荧光分析的基本原理由以下几个方面组成:2.1 X射线激发X射线荧光分析是通过激发样品产生的特征X射线来进行元素分析的。
当样品受到高能X射线束的照射时,其中的原子会吸收X射线的能量并获得激发态。
当原子回到基态时,会放出特征X射线。
2.2 X射线的能量和强度不同元素的特征X射线具有不同的能量,这个能量与元素的原子结构有关。
X射线荧光分析仪器可以测量特征X射线的能量和强度,通过对这些数据的分析,就可以确定样品中元素的种类和含量。
2.3 能量谱分析X射线荧光分析仪器通常会将样品中产生的特征X射线转化为能量谱图。
能量谱图展示了不同能量X射线的强度分布情况,通过比对已知标准样品的能量谱图,可以确定未知样品中的元素。
2.4 标准曲线法为了定量分析样品中各个元素的含量,常使用标准曲线法。
这种方法需要事先制备一系列含有已知浓度的标准样品,并测量它们的X射线能量和强度。
通过绘制标准曲线,再测量未知样品的能量和强度,就能得到该样品中元素浓度的定量结果。
3.应用X射线荧光分析在许多领域有着广泛的应用。
3.1 原材料分析X射线荧光分析可以用于原材料的成分分析和质量控制。
例如,在矿石矿物分析中,通过测量矿石中特定元素的含量,可以确定矿石的品质和适用性。
3.2 地质学研究地质学研究中,X射线荧光分析被广泛应用于岩石和土壤样品中元素的定量分析。
这些数据不仅可以帮助研究者了解地质构造和地质演化,还在勘探矿产资源和环境地球化学研究中具有重要作用。
3.3 金属材料分析X射线荧光分析可以用于金属材料的检测和分析。
例如,在不锈钢和合金材料中,可以通过测量特定元素(如铬、镍、钼等)的含量,来评估材料的质量和性能。
-coo -oo -分析化学第十四章 荧光分析法第一节 概 述•某些物质受到光照射时,吸收某种波长的光之后,会发射出比原来吸收波长更长的光,当激发光停止照射,这种光线也随之消失,此光称为荧光。
•定性分析:物质分子结构不同,所吸收光的波长和发射光的荧光波长也不同。
•定量分析:同种物质浓度不同,所发射的荧光强度(F )不同。
分类:•根据激发光的波长范围不同,可分为:X 射线荧光分析法;紫外-可见荧光分析法;红外荧光分析法•根据待测物质的存在形式,分为分子荧光法和原子荧光法。
•根据激发所用的能源分为光致发光法和化学发光法。
特点:•灵敏度高: 10-10~10-12 g/ml ( 紫外 10-7 )•线性范围宽:3~5个数量级( 紫外 1~2 )•选择性好:荧光衍生试剂第三节 荧光与分子结构的关系一、荧光效率发荧光的两个必要条件:• 分子能吸收光子而跃迁至激发态 • 激发态分子能以光的形式释放能量荧光效率(f f )=发出光子数/吸收光子数 如果一个分子将吸收的光子全部释放,则其量子产率为100%。
某些化合物的荧光效率化合物荧光效率 溶剂 荧光素0.92 (0.1MNaOH ) 曙红 0.19 ( 0.1MNaOH ) 罗丹明B 0.97 (乙醇) 蒽0.31 (己烷) 核黄素 0.26 (水,pH7) 菲 0.10 (乙醇) 萘 0.12 (乙醇) 酚 0.22 (水) 叶绿素 0.32(苯) 二、荧光强度与分子结构的关系荧光通常发生在具有刚性结构和平面结构的p -电子共轭体系分子中,任何有利于提高 p -电子共轭度的结构改变,都将提高荧光量子产率,或使荧光波长向长波方向移动。
化合物 荧光效率 平均波长 苯0.07 283 萘 0.23 334 蒽 0.36 402刚性、平面结构可以减少分子的振动,使分子与溶剂或其它溶质分子的相互作用减少,也就减少了碰撞去活的可能性。
酚酞:无氧桥把两个环固定,不能很好的共平面, 平面结构,强荧光物质 为非荧光物质三、影响荧光强度的外界因素• 溶剂极性, 跃迁吸收带长移,吸收强度 ,λem 长移,F 。
X射线荧光光谱分析简介利用初级X射线光子或其他微观离子激发待测物质中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学态研究的方法。
按激发、色散和探测方法的不同,分为X射线光谱法(波长色散)和X射线能谱法(能量色散)。
当原子受到X射线光子(原级X射线)或其他微观粒子的激发使原子内层电子电离而出现空位,原子内层电子重新配位,较外层的电子跃迁到内层电子空位,并同时放射出次级X射线光子,此即X射线荧光。
较外层电子跃迁到内层电子空位所释放的能量等于两电子能级的能量差,因此,X射线荧光的波长对不同元素是特征的。
根据色散方式不同,X射线荧光分析仪相应分为X射线荧光光谱仪(波长色散)和X射线荧光能谱仪(能量色散)。
光谱仪结构X射线荧光光谱仪主要由激发、色散、探测、记录及数据处理等单元组成。
激发单元的作用是产生初级X射线。
它由高压发生器和X光管组成。
后者功率较大,用水和油同时冷却。
色散单元的作用是分出想要波长的X射线。
它由样品室、狭缝、测角仪、分析晶体等部分组成。
通过测角器以1∶2速度转动分析晶体和探测器,可在不同的布拉格角位置上测得不同波长的X射线而作元素的定性分析。
探测器的作用是将X射线光子能量转化为电能,常用的有盖格计数管、正比计数管、闪烁计数管、半导体探测器等。
记录单元由放大器、脉冲幅度分析器、显示部分组成。
通过定标器的脉冲分析信号可以直接输入计算机,进行联机处理而得到被测元素的含量。
X射线荧光能谱仪没有复杂的分光系统,结构简单。
X射线激发源可用X射线发生器,也可用放射性同位素。
X射线激发源由X光机电源和X射线管组成。
能量色散用脉冲幅度分析器。
探测器和记录等与X射线荧光光谱仪相同。
X射线荧光光谱仪和X射线荧光能谱仪各有优缺点。
前者分辨率高,对轻、重元素测定的适应性广。
对高低含量的元素测定灵敏度均能满足要求。
后者的X射线探测的几何效率可提高2~3数量级,灵敏度高。
可以对能量范围很宽的X射线同时进行能量分辨(定性分析)和定量测定。
x射线荧光仪的原理
X射线荧光仪是一种用于分析样品中元素组成的仪器。
它的原理基于X射线的特性和物质的特性。
X射线荧光仪包括一个X射线源和一个X射线探测器。
X射线源产生高能量的X射线,照射到样品上。
当X射线与样品中的原子发生作用时,会发生特殊的现象,即X射线荧光。
当X射线照射到样品上时,它会与样品中的原子相互作用。
在作用过程中,X射线会将一部分能量传递给原子内的电子,将电子从内层推到外层。
当电子被推到外层时,会在一段时间后返回内层,释放出被称为荧光的能量。
这些荧光能量具有特定的能量水平,与原子的组成有关。
X射线探测器可以检测到这些荧光能量,并将其转化为电信号。
该电信号被放大并处理,最终被转化为一个能量谱图。
能量谱图显示了样品中存在的不同元素的能量峰值。
根据能量峰值的位置和强度,可以确定样品中不同元素的存在和相对含量。
通过比对样品的能量谱图与已知标准样品的能量谱图,可以确定样品中元素的具体组成。
总之,X射线荧光仪利用X射线照射物质并测量样品中X射线荧光的特征,来分析和确定样品中元素的组成。
X射线荧光光谱分析法X射线荧光光谱分析法(X-ray fluorescence spectroscopy,简称XRF)是一种利用样品被X射线辐照后发出的荧光光谱进行化学元素定性和定量分析的方法。
它是一种非破坏性的分析技术,适用于固体、液体和气体样品。
X射线荧光光谱分析法基于X射线与物质相互作用的原理。
当样品受到X射线辐照后,其内部的原子会吸收部分X射线能量,随后再以荧光的形式发射出来。
这些发出的荧光光谱可以通过光谱仪进行检测和分析。
不同元素的荧光光谱特征不同,因此可以根据光谱特征来确定样品中的元素成分。
在X射线荧光光谱分析法中,首先需要制备样品,将其制备成均匀的固体、液体或气体形态。
为了提高分析的精确度,还可以选择加入一定的荧光剂,以增加荧光光谱的信号强度。
接下来,样品将被放置于X射线辐照源下,如X射线管,发射出的X 射线将通过样品,并激发样品中的原子产生荧光。
这些荧光将被荧光仪器所记录下来,并转换成一个荧光光谱。
荧光光谱中的特征峰可以通过对样品中各元素的荧光峰进行定性和定量分析。
对于定性分析,可以通过比对荧光峰的位置和强度与已知标准峰进行比较来确定样品中的元素成分。
对于定量分析,可以通过测量荧光峰的强度,并使用已知浓度的标准样品制备的校准曲线进行计算。
X射线荧光光谱分析法具有许多优点。
首先,它是一种非破坏性的分析方法,不需要对样品进行破坏性的处理,可以重复使用。
其次,它具有高分析速度和较高的灵敏度,可以在较短的时间内分析大量的样品,并且可以检测到低至ppm级别的元素含量。
此外,X射线荧光光谱分析法还具有广泛的适用性,可以用于各种类型的样品,包括金属、岩石、矿石、玻璃、陶瓷、塑料等。
尽管X射线荧光光谱分析法具有上述的优点,但也存在一些局限性。
首先,X射线荧光光谱分析法对于一些轻元素,如氢、碳、氮等,不敏感。
其次,由于X射线荧光光谱分析法使用的是非单一元素的基线和互作用效应,因而分析结果可能受到谱线重叠和基线的干扰。
x射线荧光分析仪原理X射线荧光分析仪原理。
X射线荧光分析仪是一种常用的分析仪器,它通过测量样品受激发后发出的荧光X射线来分析样品的成分。
该仪器原理是基于X射线的吸收和再发射现象,利用不同元素的特征X射线能量来确定样品中各种元素的含量。
下面将详细介绍X射线荧光分析仪的原理。
首先,X射线荧光分析仪由X射线发生器、样品台、能谱仪和数据处理系统等组成。
X射线发生器产生高能X射线,照射到样品上时,样品中的原子会吸收X射线并发出荧光X射线。
能谱仪用于测量荧光X射线的能量和强度,数据处理系统则对测得的信号进行处理和分析。
其次,X射线荧光分析仪原理基于样品吸收入射X射线后,激发产生荧光X射线的过程。
当高能X射线照射到样品上时,样品中的原子内部电子会受到能量激发,从内层轨道跃迁到外层轨道,产生荧光X射线。
不同元素的原子结构和电子能级不同,因此产生的荧光X射线能量也不同,这就是X射线荧光分析的基本原理。
然后,X射线荧光分析仪利用能谱仪测量样品发出的荧光X射线的能谱图,根据不同元素的荧光X射线能谱特征,可以确定样品中各种元素的含量。
每种元素都有其特征性的X射线能谱线,通过测量这些能谱线的能量和强度,就可以准确地分析样品的成分。
最后,X射线荧光分析仪原理的核心在于利用不同元素的特征X 射线能谱来确定样品的成分。
通过测量和分析样品发出的荧光X射线,可以快速、准确地获得样品中各种元素的含量,广泛应用于材料科学、地质学、环境监测等领域。
综上所述,X射线荧光分析仪原理是基于X射线的吸收和再发射现象,利用不同元素的特征X射线能量来确定样品中各种元素的含量。
该原理的应用使得X射线荧光分析仪成为一种重要的分析工具,在科学研究和工业生产中发挥着重要作用。