11.1.1三角形中三边的关系
- 格式:ppt
- 大小:744.00 KB
- 文档页数:22
1.1探究三角形三边关系一等奖创新教案第十一章三角形11.1.1三角形的边教学目标:知识与技能:结合三角形的实例,探索、掌握三角形3条边之间的关系.会用符号表示三角形,了解按边关系对三角形进行分类.理解三角形三边之间的不等关系,并会初步应用它们来解决问题.过程与方法:结合具体实例,进一步认识三角形的概念及其基本要素,掌握三角形三边关系。
情感、态度和价值观:通过观察、操作、想象、推理、交流等活动,发展空间观念、推理能力和有条理地表达能力重点:三角形的三边之间的不等关系.难点:应用三角形的三边之间的不等关系判断3条线段能否组成三角形.教学过程:一、问题情境:三角形是我们早已熟悉的图形,你能列举出日常生活中有什么物体是三角形吗?看图自治区人民大会堂、博览会馆、南宁大桥、青秀山图片中找出三角形。
【设计意图】这样设计的目的是通过展示日常生活中的图片,让学生经历几何模型的抽象过程,体会到三角形是最简单,最基本的几何图形,在生活中随处可见。
激发学生学习三角形的兴趣和热情,同时引出课题。
新课学习:拼一拼:你能用三条线段拼出三角形吗?⒈三角形的相关概念.问题1 你能用自己的语言说一说,什么样的图形叫做三角形吗?【设计意图】引导学生观察拼出的三角形,在学生讨论交流的基础上,教师提炼出三角形是由三条线段,而且是不在同一直线上的,首尾顺次相接所组成的,引出三角形定义。
⑴什么是三角形:如图,由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形 .读一读:阅读课本第2页的第3~5段,自学三角形以及三角形的顶点、边、角的表示方法.三角形的表示:【设计意图】让学生学会用符号表示三角形的方法。
让学生在已有知识的基础上,通过回顾线段和角都可以用顶点的大写字母表示,不难想到三角形也可以利用顶点的大写字母来表示,教师加以规范,同时给出三角形的边、角、顶点三个基本要素的表示方法,从而帮助学生进一步认识三角形。
练习1:图中有几个三角形?先看看.再用符号表示这些三角形.(三)三角形的分类问题2 你能将这些三角形分类吗?你是按什么标准来分类的?【设计意图】通过问题的引入,让学生对三角形进行准确的分类。
====Word行业资料分享--可编辑版本--双击可删====
一.解答题(共10小题)
1.(2014秋•微山县期中)已知:△ABC的三边长分别为a,b,c,化简:|a﹣b+c|+|a﹣b﹣c|
2.已知在△ABC中,三边长分别为a,b,c,化简:|a+b﹣c|﹣|b﹣a﹣c|+2c.
3.已知:在△ABC中,三边长分别为a、b、c,化简|a+b﹣c|﹣|b﹣a+c|+|b﹣a﹣c|.
4.已知a、b、c是△ABC的三边,化简:|a+b﹣c|+|b﹣a﹣c|﹣|c+b﹣a|=.
5.(2014秋•信丰县校级期中)若a,b,c分别为三角形的三边,化简:|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a+b|.
6.(2014春•大丰市校级月考)已知a,b,c是一个三角形的三条边长,化简:|a﹣b﹣c|+|b﹣a﹣c|﹣|c ﹣a+b|.
7.(2014秋•孝感月考)已知a、b、c是三角形三边长,试化简:|b+c﹣a|+|b﹣c﹣a|+|c﹣a﹣b|﹣|a﹣b+c|.
8.(2013秋•江岸区校级月考)已知a,b,c是△ABC的三边长,化简下列式子|a+c﹣b|﹣|a+b+c|+|c﹣a ﹣b|﹣|﹣a﹣b|.
9.(2011春•成都校级期末)已知△ABC三边长是a、b、c,试化简代数式|a+b﹣c|﹣|b﹣c﹣a|﹣|c﹣a+b|+|b ﹣a﹣c|
10.已知△ABC的三边为a,b,c,化简|a+b﹣c|+|a﹣c﹣b|﹣|b﹣a﹣c|.
源-于-网-络-收-集。
人教版八年级数学上册11.1.1《三角形的边》教学设计一. 教材分析人教版八年级数学上册11.1.1《三角形的边》是三角形这一章的第一节,主要介绍了三角形的三条边的关系。
本节内容是学生学习三角形其他性质的基础,对于学生理解三角形的特点,以及后续学习三角形判定定理具有重要意义。
教材通过丰富的图形和实例,引导学生探究三角形边的关系,培养学生的观察、思考和动手能力。
二. 学情分析八年级的学生已经学习了多边形的概念,对多边形的性质有一定的了解。
但是,对于三角形这种特殊的图形,学生可能还存在着一些模糊的认识。
因此,在教学过程中,教师需要关注学生的认知基础,通过生动的实例和直观的图形,帮助学生建立三角形的边的关系。
三. 教学目标1.知识与技能:使学生掌握三角形的三条边的关系,能够运用这些关系解决实际问题。
2.过程与方法:通过观察、操作、猜想、验证等过程,培养学生的动手能力和探究能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生勇于探究、积极思考的精神。
四. 教学重难点重点:三角形的三条边的关系。
难点:如何引导学生通过观察和操作,发现三角形边的关系。
五. 教学方法采用问题驱动法、观察操作法、讨论交流法等,引导学生主动探究,合作学习。
六. 教学准备1.准备一些三角形的模型或图片,用于引导学生观察和操作。
2.准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过展示一些三角形的模型或图片,引导学生观察并思考:这些三角形有什么共同的特点?你能否找出一些特殊的三边关系?2.呈现(10分钟)教师通过PPT或黑板,呈现三角形的三条边的关系,如:任意两边之和大于第三边,任意两边之差小于第三边。
同时,引导学生进行操作,自己发现这些关系。
3.操练(10分钟)学生分组进行讨论,每组找出一些三角形,验证这些三角形是否符合三角形的三边关系。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)教师出示一些练习题,让学生独立完成,检验学生对三角形三边关系的掌握情况。
3角形的三边关系三角形的三边关系是指三角形中任意两边之和大于第三边,任意两边之差小于第三边。
这个关系可以通过几何学的基本原理来证明。
假设有一个三角形,它的三条边分别为 a、b 和 c。
我们可以将 a+b 与 c 进行比较,如果 a+b>c,那么可以在 c 上取一点 D,连接 AD 和 BD,这样就形成了一个新的三角形 ABD。
根据三角形两边之和大于第三边的原则,AD+BD>a,同时 AD+BD>b,所以 a+b>c。
同样地,如果 a+b<c,那么可以在 a 和 b 上取一点 E,连接 CE 和 DE,这样就形成了一个新的三角形 CDE。
根据三角形两边之和大于第三边的原则,CE+DE>c,同时 CE+DE>a+b,所以 a+b<c 不成立。
另外,任意两边之差小于第三边也可以通过类似的方法证明。
如果 |a-b|<c,那么可以在 a 和 b 上取一点 F,连接 CF 和 DF,这样就形成了一个新的三角形 CDF。
根据三角形两边之差小于第三边的原则,CF-DF<c,同时 CF-DF<a-b,所以 |a-b|<c。
三角形的三边关系在数学和实际生活中都有广泛的应用。
它用于判断三条线段是否能构成一个三角形,以及解决与三角形相关的各种问题,如计算三角形的周长、面积等。
同时,这个关系也在建筑设计、工程测量等领域中起到重要作用,确保结构的稳定性和可靠性。
需要注意的是,三角形的三边关系是基于几何学的基本假设和定义的,对于一些特殊情况或非欧几里得几何学中的三角形,可能会有不同的三边关系。
但在一般的欧几里得几何学中,三角形的三边关系是成立的。
第十一章 三角形 11.1 与三角形有关的线段 11.1.1 三角形的边学习目标 1.了解三角形的概念,会用符号语言表示三角形. 2.通过具体的实践活动理解三角形三边的不等关系.学习过程 一、自主学习 问题 1:观察下面的图片,你能找到哪些我们熟悉的图形?问题 2:在小学,我们学过三角形,你了解三角形的哪些性质? 二、深化探究 探究 1:观察三角形的构成,探索三角形的概念 问题 1:你能画出一个三角形吗?问题 2:结合你画的三角形,说明三角形是由什么组成的? 问题 3:下面的几个图形都是由三条线段组成的,它们都是三角形吗?问题 4:什么叫三角形?探究 2:自主学习三角形的表示方法及分类 阅读教材第 2 页到第 3 页探究前内容,回答下列问题. 问题 1:如图回答以下问题: (1)在三角形中,什么叫边?什么叫内角?什么叫顶点? (2)三角形有几条边?有几个内角?有几个顶点? (3)如何用符号表示三角形 ABC? (4)如何用小写字母表示三角形 ABC 的三条边?问题 2:如果将三角形分类,按照边的关系分可以分成几类?按照角的关系又如何分类呢?问题 3:如图,找出图中的三角形,用符号表示出来,并指出 AB,AD,CD 分别是哪个三角形的边.探究 3:通过观察实践,理解三角形三边关系 问题 1:任意画一个△ABC,假设有一只小虫从点 B 出发,沿三角形的边爬到点 C,它有几条线路 可以选择?各条线路的长一样吗?问题 2:联系三角形的三边,从问题 1 中你可以得到怎样的结论? 问题 3:用三条长度分别为 5,9,3 的线段能组成一个三角形吗?为什么? 三、练习巩固 练习 1:三角形是指( ) A.由三条线段所组成的封闭图形 B.由不在同一直线上的三条直线首尾顺次相接组成的图形 C.由不在同一直线上的三条线段首尾顺次相接组成的图形 D.由三条线段首尾顺次相接组成的图形 练习 2:图中有几个三角形?用符号表示这些三角形.练习 3.有三根木棒的长度分别为 3 cm,6 cm 和 4 cm,用这些木棒能否围成一个三角形?为什么?练习 4:用一条长 18 cm 的细绳围成一个等腰三角形. (1)如果腰长是底边的 2 倍,那么各边的长是多少? (2)能围成有一边的长为 4 cm 的等腰三角形吗?为什么?四、深化提高 练习 1:下面各组数中作为线段长不能构成三角形的一组是( ) A.0.2,0.6,0.7 B.5k,7k,10k(k>0) C.m-a,m,m+a(m>a,m>0,a>0) D.22,22,33 练习 2:小明想要钉一个三边长都是整数的三角形,现在他只有两根分别长 4 cm 和 5 cm 的木 条,那么第三根木条的长度可以是多少?(写出所有可能结果)练习 3:平面上有四个点 A,B,C,D,用它们作顶点可以组成几个三角形?参考答案 一、自主学习问题 1:三角形、四边形等. 问题 2:三条边;三个内角;具有稳定性;三角形的内角和是 180°. 二、深化探究 探究 1: 问题 1:能 问题 2:三角形是由三条线段组成的. 问题 3:只有第(1)个是三角形,其他的都不是. 问题 4:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形. 探究 2: 问题 1:组成三角形的三条线段都叫做三角形的边;相邻两边所组成的角叫做三角形的内角,简 称三角形的角;相邻两边的公共端点是三角形的顶点.三角形有三条边、三个内角、三个顶点.三角 形 ABC 用符号表示为△ABC.△ABC 的边 AB 为∠C 所对的边,可以用顶点 C 的小写字母 c 表示,同样, 边 AC 可用 b 表示,边 BC 可用 a 表示. 问题 2:三角形按照“有几条边相等”可以分为:{ 等边三角形 等腰三角形 三角形 不等边三角形也可以按照边的相等关系分为:{ { 不等边三角形等腰三角形底边和腰不相等的等腰三角形 等边三角形三角形三角形按照角的关系可以分为:{直角三角形锐角三角形 三角形 钝角三角形 问题 3:图中共有三个三角形,分别是△ABC,△ABD,△ADC,其中 AB 既是△ABC 的边,也是△ABD 的边,AD 既是△ABD 的边,也是△ADC 的边,CD 是△ADC 的边. 探究 3: 问题 1:小虫从点 B 出发沿三角形的边爬到点 C 有 2 条线路: (1)从 B→C,即线段 BC 的长; (2)从 B→A→C,即线段 BA 与线段 AC 长之和:BA+AC. 经过测量可得 BA+AC>BC,所以这两条线路的长不一样. 根据“两点的所有连线中,线段最短”,说明 BA+AC>BC. 问题 2:三角形两边的和大于第三边. 问题 3:用三条长度分别为 5,9,3 的线段不能组成一个三角形,因为 5+3<9. 三、练习巩固 答案:1.C 2.共有 5 个三角形.分别是:△ABC,△BCD,△BCE,△ABE,△CDE. 3.能,因为 3+4>6. 4.解:(1)设底边长为 x cm,则腰长 2x cm. x+2x+2x=18, 解得 x=3.6. 所以,三边长分别为 3.6 cm,7.2 cm,7.2 cm. (2)因为长 4 cm 的边可能是腰,也可能是底边,所以需要分情况讨论. 如果长 4 cm 的边为底边,设腰长为 x cm,则 4+2x=18, 解得 x=7. 如果长 4 cm 的边为腰,设底边长为 x cm,则 2×4+x=18, 解得 x=10. 因为 4+4<10,出现两边的和小于第三边的情况,所以不能围成腰长是 4 cm 的等腰三角形. 由以上讨论可知,可以围成一边长是 4 cm 的等腰三角形. 四、深化提高 练习 1:C 练习 2:解:第三根木条的长度可以是 2 cm,3 cm,4 cm,5 cm,6 cm,7 cm,8 cm. 练习 3:解:由于题中并没有说明这四个点是否在同一条直线上,所以要分情况讨论. (1)四点共线时,不能组成三角形. (2)三点共线时,可以组成三个三角形. (3)任意三点都不共线时,可以组成四个三角形.。
人教版数学八年级上册11.1.1《三角形的边》教学设计一. 教材分析人教版数学八年级上册11.1.1《三角形的边》是学生在学习了平面几何基本概念的基础上,进一步研究三角形的性质。
本节课主要让学生了解三角形的三边关系,学会用不等式表示三角形的三边关系,并能够运用这一性质解决一些实际问题。
教材通过生活中的实例引入,激发学生的学习兴趣,接着引导学生通过观察、操作、推理等过程,发现三角形的边长之间存在的关系,培养学生的几何直观能力和逻辑思维能力。
二. 学情分析学生在学习本节课之前,已经掌握了平面几何的基本概念,具有一定的观察、操作和推理能力。
但部分学生对抽象的几何概念理解不够深入,对三角形的边长关系理解起来可能存在一定的困难。
因此,在教学过程中,教师需要关注学生的学习差异,引导学生通过实际操作和几何直观图,更好地理解三角形的边长关系。
三. 教学目标1.理解三角形的三边关系,并能用不等式表示。
2.学会运用三角形的三边关系解决一些实际问题。
3.培养学生的几何直观能力和逻辑思维能力。
4.激发学生学习数学的兴趣,提高学生合作交流的能力。
四. 教学重难点1.重点:三角形的三边关系,三角形三边关系的应用。
2.难点:三角形三边关系的证明和灵活运用。
五. 教学方法1.情境教学法:通过生活中的实例引入,激发学生的学习兴趣。
2.观察操作法:引导学生观察三角形模型,操作实践,发现边长关系。
3.推理教学法:引导学生运用逻辑推理,证明三角形的三边关系。
4.合作交流法:鼓励学生分组讨论,分享学习心得,提高合作交流能力。
六. 教学准备1.教学课件:制作三角形的性质课件,用于辅助教学。
2.几何模型:准备一些三角形模型,让学生观察和操作。
3.练习题:准备一些有关三角形边长关系的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活中的实例,如:帆船比赛中的三角形帆船,引出三角形的三边关系。
引导学生关注三角形在实际生活中的应用,激发学生的学习兴趣。
人教版数学八年级上册11.1.1《三角形的边》说课稿一. 教材分析《三角形的边》是人教版数学八年级上册第11章第1节的内容。
本节课主要让学生了解三角形的三条边之间的关系,掌握三角形的边长特性。
在教材中,通过引入“三角形的边”的概念,让学生在探究过程中发现三角形的边长之间的相互关系,从而培养学生的观察能力、操作能力和推理能力。
二. 学情分析八年级的学生已经掌握了平面几何的基本概念,具备了一定的观察、操作和推理能力。
但对于三角形边长的特性和关系,可能还比较陌生。
因此,在教学过程中,我将以学生已有的知识为基础,引导学生通过观察、操作、猜想、验证等方法,探究三角形边长之间的关系,提高学生的几何思维能力。
三. 说教学目标1.知识与技能:让学生了解三角形的三条边之间的关系,掌握三角形的边长特性。
2.过程与方法:通过观察、操作、猜想、验证等方法,培养学生的几何思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神。
四. 说教学重难点1.教学重点:三角形的三条边之间的关系,三角形的边长特性。
2.教学难点:如何引导学生发现并证明三角形边长之间的关系。
五. 说教学方法与手段1.教学方法:采用观察、操作、猜想、验证的教学方法,引导学生主动探究三角形边长之间的关系。
2.教学手段:运用多媒体课件、几何画板等教学辅助工具,直观展示三角形边长的特性。
六. 说教学过程1.导入新课:通过复习平面几何的基本概念,引导学生进入新课。
2.探究三角形边长之间的关系:让学生分组讨论,每组设计实验,观察、操作、猜想三角形边长之间的关系,并尝试用语言描述。
3.验证猜想:引导学生利用几何画板等工具,验证猜想的正确性。
4.归纳总结:师生共同总结三角形边长的特性,得出结论。
5.巩固练习:设计一些具有代表性的练习题,让学生巩固新知识。
6.课堂小结:回顾本节课的学习内容,总结三角形边长的特性。
七. 说板书设计板书设计如下:三角形的三条边:1.任意两边之和大于第三边2.任意两边之差小于第三边八. 说教学评价本节课的教学评价主要从学生的知识掌握、能力培养、情感态度三个方面进行。