可修复系统可靠性.ppt
- 格式:ppt
- 大小:1.07 MB
- 文档页数:76
1 目的为确保产品在使用寿命周期内的可靠性、有效性、可维护性和安全性(以下简称RAMS),建立执行可靠性分析的典型方法,更好地满足顾客要求,保证顾客满意,特制定本程序。
2 适用范围适用于本集团产品的设计、开发、试验、使用全过程RAMS的策划和控制.3 定义RAMS:可靠性、有效性、可维护性和安全性。
R—-Reliability可靠性:产品在规定的条件下和规定的时间内,完成规定功能的能力。
可靠性的概率度量亦称可靠度。
A——Availability有效性:是指产品在特定条件下能够令人满意地发挥功能的概率。
M--Maintainability可维护性:是指产品在规定的条件下和规定的时间内,按规定的程序和方法进行维修时,保持或恢复到规定状态的能力。
维修性的概率度量亦称维修度。
S—-Safety安全性:是指保证产品能够可靠地完成其规定功能,同时保证操作和维护人员的人身安全。
FME(C)A:Failure Mode and Effect(Criticality)Analysis 故障模式和影响(危险)分析。
MTBF平均故障间隔时间:指可修复产品(部件)的连续发生故障的平均时间。
MTTR平均修复时间:指检修员修理和测试机组,使之恢复到正常服务中的平均故障维修时间。
数据库:为解决特定的任务,以一定的组织方式存储在一起的相关的数据的集合。
4 职责4。
1 销售公司负责获取顾客RAMS要求并传递至相关部门;组织对顾客进行产品正确使用和维护的培训;负责产品交付后RAMS数据的收集和反馈。
4。
2 技术研究院各技术职能部门负责确定RAMS目标,确定对所用元器件、材料、工艺的可靠性要求,进行可靠性分配和预测,负责建立RAMS数据库。
4。
3 工程技术部负责确定能保证实现设计可靠性的工艺方法。
4.4 采购部负责将相关资料和外包(外协)配件的RAMS要求传递给供方,并督促供方实现这些要求。
4。
5制造部负责严格按产品图样、工艺文件组织生产.4。
第三讲系统的可靠性一、什么是系统的可靠性?系统的可靠性是指系统在一定时间内、在规定工作条件下,能够正常运行并完成预定功能的能力。
一个可靠的系统应具备以下特点: * 正确性:系统能够按照预定的要求完成工作,输出正确的结果。
* 健壮性:系统在面对异常情况或异常输入时能够保持稳定运行,不会造成系统崩溃或数据丢失。
* 可恢复性:当系统发生故障或异常情况时,能够自动或手动地恢复到正常工作状态。
* 稳定性:系统能够长时间稳定运行,不会出现频繁的崩溃或错误。
二、提高系统可靠性的方法1. 设计方面在系统设计阶段,应注重以下几个方面,以提高系统的可靠性:* 模块化设计:将整个系统划分为多个独立的模块,每个模块完成一个明确的功能,模块之间通过接口进行通信,便于测试和维护。
* 数据备份:对于关键数据,进行定期备份,避免数据丢失造成不可修复的后果。
* 容错设计:在设计过程中引入冗余,使得系统在部分故障的情况下仍然能够正常工作。
* 异常处理:考虑系统可能遇到的各种异常情况,进行充分的异常处理机制设计,避免因异常导致系统崩溃或数据损坏。
*测试:进行全面的测试,包括单元测试、集成测试和系统测试,以保证系统在不同环境下都能够正常工作。
2. 硬件方面系统的硬件环境对其可靠性也有着重要影响,以下是提高系统可靠性的硬件方面考虑:•高质量的硬件设备:选择具有高质量和可靠性的硬件设备,来构建系统的基础。
•冷备份:为关键的硬件设备设置冗余备份,当主要设备故障时能够迅速切换到备份设备上,保证系统的连续性。
•稳定的供电:为系统提供稳定可靠的电源供应,避免电源波动或突然断电导致的系统故障。
•温度控制:合理管理系统的温度,避免过高或过低的温度对硬件设备造成损坏。
•维护和监控:定期对硬件设备进行维护和监控,及时发现故障并进行修复,避免因硬件故障导致的系统崩溃。
三、如何评估系统的可靠性?评估系统的可靠性是为了确定系统在一定时间内能够正常工作的概率。
不可修复系统和可修复系统可靠性分析比较系统是指为了完成某一特定功能,由若干个彼此有联系而且又能相互协调工作的单元所组成的综合体。
顾名思义,可修复系统是指通过维修而恢复功能的系统。
而不可修复系统是指系统或组成单元一旦发生故障,不再修复,处于报废状态的系统。
不再修复的原因多种多样:在技术上不能修复、在经济方面不值得修复或者对于一次性设备系统没必要修复。
可修复系统和不可修复系统,前者是发生故障后,经过维修可以恢复到正常状态的系统。
对于这种系统,主要是维修的速度和由发生故障恢复到正常状态所需要的时间。
后者是发生故障后不能修复或者难以修复的系统。
对于这样的系统,就需要在初始阶段进行可靠性设计,使之不发生故障或者难以发生故障。
对于可修复系统要求它可靠地、不停机地连续工作,偶尔发生故障也要求停机时间尽可能缩短。
而对于汽车、拖拉机、机床等非连续工作的产品,则只要求经常处在可用状态。
飞机等按照时刻表运行的产品则要求有较严格的时间性。
电力、煤气、通讯等设备由于公用性较强,因此要求这样的系统安全性要好,维修速度要高。
因而我们在讨论可修复系统时应该研究可靠性、可维修性以及有效性等三个方面的内容。
对于不可维修系统来说,我们总是希望系统具有较高的可靠性,或者说系统不易发生故障。
对于可维修系统来说,不仅如此,而且还希望产品本身一旦发生故障时,在规定的维修条件下,如何便于发现故障、排除故障,这称为维修性设计问题。
由于故障发生的原因、部位、程度不同,系统所处环境不同,以及维修工具及修理人员水平不同,因而修复时间是一个随机变量。
因此,研究可修复系统的可靠性,不仅包含系统的狭义可靠性,而且还应包括维修因素在内的广义可靠性。
研究可修复系统的主要数学工具是随机过程,最常用的数学方法是马尔科夫过程方法。
马尔科夫过程是:如果状态间的转移是随机性的,这个过程被称为随机过程,而对于那种其转移概率与过去有限次前的状态完全无关的过程,则叫做马尔科夫过程。